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We consider a continuous review (s, S) model of perishable items with lost sales. Once
items are perished the entire inventory drops instantaneously to zero. The total cost
includes the cost of: ordering, unsatisfied demand, units destroyed, holding, and fixed
cost of perishability. Both the time to perishability and the lead times are assumed to be
exponentially distributed while two cases of demand distribution are considered: Poisson
and compound Poisson with general demand sizes. We study the average cost criterion
and provide computational results on the problem of finding the optimal re-order level, s,
and order up-to level, S. None of the known work on the subject is as general as the
model presented here. Our analysis leads to several insights on the optimal (s, S) policies
for perishable items in the presence of lead times. For example, we demonstrate that the
effectiveness of a heuristic that ignores perishability (and is also analyzed here) decreases
with the demand variability and that the cost may either increase or decrease with this
variability.

Keywords: aging items, inventory, operations and supply chain, production: perishable,
uncertainty: stochastic

1. INTRODUCTION AND LITERATURE REVIEW

Recently, there has been growing attention in the literature on the importance of planning a
resilient supply chain. Sheffi [20] discusses how should businesses best prepare for confronting
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unexpected events. However, much of the recent discussion in this literature is on a high
level and there is little guidance on how should the firm take its daily operational decisions,
such as inventory and capacity decisions, in order to improve its resiliency. In contrast,
there is much literature on stochastic inventory theory, starting with the seminal paper of
Arrow, Harris, and Marschak [1], presenting a multi-period stochastic inventory problem.
Since then, there have been several books on inventory management, including Whitin [24],
Zipkin [26], and Porteus [18]. These books and many papers on inventory control, such as
Shi et al. [21] that considers a continuous review of a single product with compound Poisson
demand and lost sales, typically assume that items have an infinite lifetime. That is, a vast
majority of inventory theory ignores unexpected events. In this paper, we aim at filling some
of this gap. We consider a continuous review inventory model in the presence of unexpected
events that cause the inventory level to instantaneously drop down to zero.

There is a considerable amount of literature on inventory items that are subject to
perishability. This literature can be classified into four categories according to the causes
of perishability: decay, obsolescence, outdating, and disasters. Decay means that as time
progresses a fixed fraction of the inventory is vanished. Inventory is either lost continuously
over time (under models of continuous review, see, e.g., Rajan, Steinberg, and Steinberg
[19], which also consider pricing) or after every planning period (under models of periodic
review). More recently, Li, Yu, and Wu [12] and Xue, Etti, and Yao [25] studied perishable
items whose value deteriorates with time by increasing demand using promotions. Obsoles-
cence means that an item is superseded by an improved version and is typical for high-tech
products, software, and maps. In these examples the items themselves do not change, but
the environment around them changes and, as a result, their utility declines. Usually the
demand for the items is then gradually decreasing and their sale prices are changed accord-
ingly (see, e.g., Song and Lau [22] and references therein). Both Outdatings and Disasters
consider the perishability of individual items where a perishable unit has a binary (0-1)
utility; full utility before perishability and zero utility after. Several surveys of inventory
models with perishable items due to outdating and disasters are those of Nahmias [15],
Karaesmen, Scheller-Wolf, and Deniz [10], and Baron [2]. Outdating means that every item
has a, possibly random, expiration date and when time exceeds this expiration date the
item’s utility changed to 0. Most of the literature in the surveys above is devoted to models
with outdatings. We note that such models are similar to models of single-server queue
with abandonment (see, Boxma, Perry, and Stadje [5] and Perry and Asmussen [17]). In
models with disasters all items stored are subject to external unexpected events (such as
malfunctioning of storage equipment or spoilage because of extreme weather condition) that
instantaneously bring the utility of all items on the shelf to 0.

In practice, instances of perishability due to outdating and disasters are followed by a
random lead time. That is after a random lead time a new batch of items arrives at the
shelf. We consider a continuous review (s, S) (with variable lot size) inventory model of
perishable items with lost sales and lead time and aim at cost minimizing. We note that our
model is general and the assumption of a variable order size after a lead time in particular
is practical in many settings such as when the total shelf space is limited or in the case
of vendor managed inventory. Under vendor managed inventory, the vendor of the product
is responsible for maintaining the inventory in the retail outlets. Then, the vendor may be
waiting for several outlets to require new inventory, contributing to the stochasticity of the
lead time, and fills the orders from sufficiently large trucks, allowing to bring the inventory
at each retail outlet back to S. Other common controls such as (r,Q) (with a fixed lot size)
and models with backlogging are also possible, but we leave their investigation for future
work. The total cost includes the costs of: ordering, unsatisfied demand, units destroyed,
holding, and fixed cost of perishability. The stochasticity of the system is due to four factors:
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time to perishability, lead time, demand arrival time, and demand size (at each arrival).
Both the lead time and the time to perishability are exponentially distributed and the
demand follows a compound Poisson with generally distributed demand sizes. We focus
on the average cost criterion where we obtain exact closed-form expressions for the cost.
Berk and Gürler [4] analyze a (r,Q) model with Poisson (unit) demand, and deterministic
lead time and time to perishability. They use an embedded Markov chain to characterize
the effective shelf life distribution (whenever the inventory level is exactly Q) because “an
analysis based on the regenerative cycles . . . is quite intractable.” We pursue the analysis
using regenerative cycles for our model, establishing that while this analysis is challenging,
it is still tractable.

We note that the assumptions of exponential lifetime and lead time are common in the
literature not only because they are more tractable but also because they are quite reason-
able whenever a combination of different factors affect these time intervals. For example,
the exponential time to perishability is well defended when perishability is caused by dis-
asters. Disasters can occur due to unexpected events, which may include external disasters
such as thefts, earthquakes, weather related (e.g., a hurricane, a tsunami or a super storm)
and terrorism; internal disasters such as fires and strikes; and emergency orders from other
vendors that are willing to generously compensate the supplier for the order. We conjecture
that even though any individual such unexpected event is not likely to occur frequently, the
occurrence of any unexpected event may not be that rare and if the variability in demand
size is high, disasters better be taken into consideration when making inventory control
decisions.

Several of the recent continuous (s, S) models with perishability are: (Liu and Shi [13])
who considered the average cost case with exponential lifetime of inventory and general
renewal demand through a Markov process with zero lead time. A continuous (s, S) model
with random shelf life with a general distribution, zero lead time and renewal arrivals is
discussed by Gürler and Özkaya in [7]. A continuous (s, S) model with exponential life-
time, exponential lead time, Poisson demand, and with backlogging is presented by Liu and
Yang in [14] for the average cost case. A similar model, but with lost sales assuming that
the number of outstanding replenishment orders is at most one and that items perished
independently of each other, is shown by Kalpakam and Sapna in [9]. Varghese and Krish-
namoorthy [23] assumed that disasters hit only a fraction of the existing items in a discrete
demand model. Recently, Baron et al. [3] developed a continuous review (0, S) model of
perishable items under compound Poisson demand with either unit or exponentially dis-
tributed demand sizes, exponential time to perishability, and zero lead times. We note that
with zero lead time there is no reason to order when inventory is positive. Thus, the inclu-
sion of lead time in the model substantially changes the derivation due to that s > 0. This
inclusion implies not only that a different methodology is required for the analysis, but also
leads to different results and insights. More recently, Chen, Pang, and Pan [6] considered a
joint pricing and inventory control of perishable items over a finite horizon.

Our inventory model, which considers the four uncertainties mentioned above, is com-
prehensive and, to the best of our knowledge, no other relevant article is that general. As a
matter of fact even the special case of our model with general demand size without perisha-
bility (which is easily derived by taking the time to perishability to infinity in our analysis),
as far as we know, has never been investigated in the literature. For example, approximated
cost formulation (albeit in the (r,Q) settings) is used by Nagarajan and Rajagopalan in
[16] for vendor-managed non-perishable inventory (when the vendor uses continuous review
and the lead time is positive). This suggests that the analysis of this case is challenging.
Moreover, Karaesmen et al. [10, p. 27] write “within the fixed ordering cost model with
variable lot sizes, for the zero lead time case research is quite mature, but for positive lead
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times and/or batch demands there are still opportunities for research into both the optimal
policy structure and effective heuristics. These models are both complex and practically
applicable, making this yet another problem that is both challenging and important.” Our
paper derives the optimal control of the (s, S) policy for these settings (with both positive
lead time and possible batch demand-in the compound Poisson case).

Intricate derivations, using the methodologies of renewal theory, level crossing theory,
and Markov chains, enables us to provide exact, closed form, analysis for this comprehensive
model. The closed-form results allow an immediate optimization of the values of the reorder
level, s, and order up-to level, S. We provide numerical results for the optimal cost and
controls of systems with perishability. We further compared these results to the ones of
a heuristic that ignores perishability (an independent and not previously studied model).
We note that a heuristic that considers perishability but ignores lead time will choose the
reorder level s = 0, and is, thus, less practical in the presence of lead time.

Based on our numerical results, we derive several managerial guidelines on inventory
management for perishable items. The generality of our model allows us to consider the
effects of the four uncertainties on the optimal (s, S) inventory control and to compare the
resulting cost to the cost of the optimal (s, S) control for a model that ignores perishability.
To clarify the discussion, we slightly abuse the definitions of cycle and safety stock as follows:
because the cycle stock is controlled by both S, and s, we call S − s the “cycle stock” and,
similarly, because the safety stock is dictated by s, we call s the “safety stock” (note that
in most of our numerical examples, the safety stock: s-demand over lead time, is negative).
We note that such insights cannot be obtained based upon an analysis that ignores the lead
time and thus has s = 0. The insights are:

Efficiency of the heuristic: We found that considering perishability in inventory
control becomes more important as the variability of the demand size increases from a unit
to an exponential. Specifically, for the Poisson demand case, the heuristic is quite effective,
with a typical relative error (compared with the optimal (s, S) cost) of less than 1%, if
perishability is not too frequent; in contrast, in the compound Poisson demand case, the
heuristic performed quite poorly (relative errors between 7% and 113%). As expected, the
effectiveness of the heuristic deteriorates as perishability becomes more common. We also
observe that the heuristic’s effectiveness increases with the lead time, and this effectiveness
is almost independent of the rate of demand.

Safety stock (s): We found that, in contrast to the intuition in the non perishable case,
as the variability of demand size increases the safety stock decreases. This decrease reflects
a higher need for managers to hedge against perishability with the increase variability. As
expected, the safety stock increases with lead time and with time to perishability. Moreover,
we observed that the safety stock grows linearly with the demand rate. While in the non
perishable case a linear growth of the safety stock is expected, this is a somewhat surprising
in the presence of perishability.

Cycle stock (S − s): We found that as the time to perishability increases the cycle
stock is reduced slower than the safety stock. The intuition behind this observation is as
follows: Without perishability safety stock is carried most of the time, whereas only half
of the cycle stock is carried on average, thus in the events of perishability the relative cost
savings from decreasing the safety stock are higher than this savings when decreasing the
cycle stock. We also found that the cycle stock remains fixed with changes in the lead time.
This is somewhat surprising because our initial intuition suggested that in the presence of
perishability the cycle stock will decrease with the lead time in order to reduce the inventory
that can be lost (during overall longer inventory cycles). Also, surprisingly, it appears that
demand size variability has almost no effect on the cycle stock. As expected, the cycle stock
increases with the demand rate.
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Cost: As expected the cost is increasing with the perishability, lead time, and the
demand rate. Surprisingly, the cost may either increase or decrease with the demand size
variability. This occurs, because in some cases the system with higher demand size variability
carries much less inventory in order to better hedge for the increase uncertainty. So while
the cost may decrease with the demand size variability, so will the profit. The implications
are that for a model with disasters (i.e., if even though any individual unexpected event is
not likely to occur frequently, the occurrence of any unexpected event may not be rare) if
the variability in demand size is high, disasters better be considered when making inventory
control decisions.

Our plan for the paper is as follows. We present the model in Section 2. The cost
functionals are derived in Section 3. Examples of Poisson and compound Poisson with
exponential demand sizes are discussed in Section 4. In Section 5, we focus on optimization
and computational results. We conclude the paper by discussing the resulting intuitions in
Section 6. All proofs are in the Appendix.

2. PRELIMINARIES AND PROBLEM FORMULATION

The inventory model we consider assumes an (s, S) control without backlogging. Specifically,
in this continuous inventory control policy an order is triggered when the inventory level
decreases to or below s. The order is received after a lead time and it brings the inventory
level to S. Note that the order size for (s, S) models with lead time is determined at the
order fulfillment time. This model is very reasonable under the practice of vendor managed
inventory. With this practice, the product’s vendor maintains the inventory in the retail
outlets. Then, after a random lead time (possibly due to waiting for several outlets to
require inventory) the vendor fills the orders from sufficiently large trucks, bringing the
inventory at each retail outlet back to S. (For a review of vendor managed inventory, see,
Kleywegt, Nori, and Savelsbergh [11] and references therein.) We note that we focus on
the analysis of the inventory system, rather on the coordination issues faced in cases of
vendor managed inventory (see, e.g., Nagarajan and Rajagopalan [16] who consider this
issues in a (r,Q) settings.) Because we assume the time to perishability is exponential, it is
immaterial if items from the previous cycle remain at the beginning of the next cycle (the
memoryless property implies that items’ time to perishability is independent of their age).
Whenever the inventory available is not sufficient to meet the entire customers’ demand
size, the demand is filled as much as possible and the unsatisfied demand is lost. While in
models with demand backlog or long lead times there are situations where allowing several
outstanding orders is optimal, we only allow a single outstanding order. This assumption
is common in the literature, see, e.g., the discussion of the papers in Table 3 of Karaesmen
et al. [10].

We let W = {W (t) : t ≥ 0} denote the inventory level process. This process, W, is
a regenerative process with a step function where the negative jump sizes represent the
satisfied demands and the positive jumps are order arrivals. Let T be the generic cycle that
is the time between two order arrivals into the warehouse. We assume that 0 ≤ W ≤ S with
W (0) = S.

Two important features of our model are the random lead time Lξ that is exponentially
distributed with a rate ξ and the random time to perishability Dη that is exponentially
distributed with a rate η. The lead time Lξ is the time it takes from the instant that an
order is placed until it arrives at the system and the end of the lead time is also the end
of the cycle for W (i.e., at the end of the lead time W = S). At an instant of perishability
all items (if any) are removed from the shelf. However, some perishability events are not
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effective (if W (t) = 0). As a result, the times between effective perishability events (times
at which items are removed from the shelf) are not exponentially distributed, but as will
be seen in the sequel, are independent and identically distributed (iid) random variables
(RVs), so that the arrival of effective perishability events forms a renewal process.

We consider a compound Poisson demand process, with inter-arrival times Vi ∼ exp (λ),
and demand sizes that are iid RVs denoted by Yi that follow a general distribution, FY (·).
We demonstrate our derivation and provide numerical results on the two most common
(and easy) demand size examples – the Poisson demand, where demand sizes Yi = 1, and –
the compound Poisson demand with demand sizes Yi ∼ exp (μ) (with Y being the generic
RV). These demand examples are identical to the ones considered by Graves in [8].

To describe the dynamic of W we define first the compound Poisson process (with
arrival rate λ)W̄ = {W̄ (t) : t ≥ 0} where

W̄ (t) = S − [Y1 + · · · + YN(t)] (1)

and N = {N(t) : t ≥ 0} is the Poisson arrival process with rate λ. We assume that the three
random quantities, time to perishability, Dη, lead time, Lξ, and the compound Poisson
process, W̄, are independent of each other.

The inventory level W is regulated by the process W̄ and four stopping times. Before
presenting the stopping times for W, we introduce several relevant stopping times for W̄.
Recall that W̄ (0) = S and define the stopping times τ̃S−s = inf{t > 0 : W̄ (t) ≤ s}, denot-
ing the first time when W̄ drops to or below level s, and τ̃S = inf{t > 0 : W̄ (t) ≤ 0} denoting
the first time when W̄ drops to or below level 0. Also, let τ̃s−Y = τ̃S − τ̃S−s ≥ 0, denote the
duration of time from the instant when W̄ drops to or below level s and until W̄ drops to
or below level 0.

Note that in the Poisson demand case W̄ (τ̃S−s) = s, and when demand sizes are expo-
nential, it follows by the memoryless property that W̄ (τ̃S−s) = s− Y . Moreover, for any
demand size, it follows, by the strong Markov property, that τ̃S−s and τ̃s−Y are condi-
tionally independent. Also, the distribution of τ̃s−Y may have an atom at 0. The Laplace
Stieltjes transform (LST) of the stopping times τ̃S−s, τ̃s−Y (where for the Poisson demand
case s− Y = s), and τ̃S are known before for several demand sizes such as a unit demand
or phase type, see, e.g., Baron, Berman and Perry [3].

We next define the four stopping times that are associated with W: The first stopping
time is the time to perishability Dη. The second stopping time is

τS−s = min {τ̃S−s,Dη} . (2)

The stopping time τS−s can be interpreted as the first time the inventory level drops to
or below level s, either due to demand, then τS−s = τ̃S−s or due to perishability, then
τS−s = Dη. We assume that orders are initiated whenever W (t) ≤ s, whether the cause for
the decrease is a demand or a perishability, so that after a lead time Lξ, an order arrives,
bringing the inventory level back to S; then, the cycle ends. We define the third stopping
time as the end of a cycle

T = τS−s + Lξ. (3)

Finally, the fourth stopping time is

τS = min {τ̃S ,Dη} . (4)

The stopping time τS can be interpreted as the first time, after τS−s, when the inventory
level drops to or below level 0. Note that in the compound Poisson case τS = τ̃S−s with a
positive probability. This occurs whenever τ̃s−Y = 0, then τS may be longer than T .
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Figure 1. Sample paths of the inventory process for the four different possible cycles. The
bold line of downwards jumps denote perishability events. (This example shows a compound
Poisson demand, as can be seen from the different sizes of the orthogonal jumps.)

Formally, we define the inventory level process W during any one cycle by the compound
Poisson process W̄ and the four stopping times as follows (see Figure 1):

W (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W̄ (t) 0 ≤ t ≤ Dη if τS−s = Dη

0 Dη ≤ t < T, (cycle 1, in Figure 1),

W̄ (t) 0 ≤ t ≤ Dη if τS−s < Dη and Dη ≤ min (T, τ̃S)
0 Dη ≤ t < T, (cycle 2, in Figure 1),

W̄ (t) 0 ≤ t ≤ τS if τS < Dη and τ̃s−Y < Lξ
0 τS ≤ t < T, (cycle 3, in Figure 1),

W̄ (t) 0 ≤ t ≤ T, if τS < Dη and τ̃s−Y > Lξ
(cycle 4, in Figure 1).

2.1. Objective Function

We focus on deriving the average cost per time unit. The total cost is composed of four com-
ponents: ordering cost (both variable and fixed), holding costs, cost of unsatisfied demand,
and cost of perishability. We denote by Ko the order set-up cost, c is the cost per item, Ku

is the cost per unit of an unsatisfied demand, Kd is the fixed penalty for (effective) perisha-
bility events that occur when the shelf is not empty, and h is the holding cost for one unit
of inventory per time unit. We further denote the time between unsatisfied demands by U
and the time between effective perishability events by Z.

With these definitions and using the key renewal theorem the average cost can be
expressed as follows: First, in the beginning of each cycle the controller pays the set-up
ordering cost Ko; resulting in an average cost rate of K0/E (T ). Second, because each
demand is for 1/μ units on average, demand arrives at a rate λ and is unsatisfied at a
rate 1/E (U), the variable cost rate of ordering is (c/μ) (λ− (1/E(U))). We note that in
general there are two types of unsatisfied demands: arriving at an empty system, i.e., when
W (t) = 0, with an average size of 1/μ units, and arriving when there is some but not enough
inventory in the system, i.e., 0 < W (t) < Y , with an average size of E (Y |Y ≥W (t)) units.
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In the Poisson demand case, where Y = 1, every unsatisfied demand arrives when W (t) = 0
and is for 1 unit. In the compound Poisson case with Y ∼ exp (μ) demands, due to the
memoryless property, we have E (Y ) = E (Y −W (t) |Y ≥W (t)) = 1/μ. Third, by Poisson
arrivals see time averages, each perishability event destroys E (W ) items on average and
these are destroyed at a rate η and a cost c1. For simplicity, we do not consider any additional
cost per items destroyed as this cost is captured via their replenishment cost. Thus, we use
c1 = c. Fourth, the holding cost rate is hE (W ) and, as in the calculation of the variable
ordering cost rate, the expected cost of unsatisfied demand is Ku/ (μE (U)). Finally, the
average fixed cost of perishability is Kd/E (Z). Thus, letting R denote the average cost we
have

R =
Ko

E (T )
+ c

(
1
μ

(
λ− 1

E (U)

)
+ ηE (W )

)
+ hE (W ) +

Ku

μE (U)
+

Kd

E (Z)

=
Ko

E (T )
+ c

λ

μ
+ cηE (W ) + hE (W ) +

Ku − c

μE (U)
+

Kd

E (Z)
.

(5)

Note that the cost of unsatisfied demand (lost sales) is offset by the cost savings from
not having to meet this demand, so that the actual cost of a unit of un-met demand is
Ku − c. From a modeling perspective, it is reasonable that Ku − c > 0. That is, a unit of
lost demand is more costly than a unit of a satisfied one.

In the next sections, we analyze the cost components one at a time. To express these
costs, let Λo = {Λo(t) : t ≥ 0} be the counting process of order arrivals, Λu = {Λu(t) : t ≥
0} be the counting process of the unsatisfied demand, Λd = {Λd(t) : t ≥ 0} be the counting
process of the effective perishability events. Let F (·) denote the steady-state probability
distribution of the inventory level (this exists as the system is regenerative).

We use three different methodologies to express the different costs. First, we express
the LST of T , U , and Z by considering the different stopping times related to W. We
derive these LSTs using the laws of the stopping times τ̃S−s, τ̃s−Y , and τ̃S for W̄.
A critical building block in this derivation is the memoryless property of W; a property
that follows because the arrival process is a compound Poisson and both the lead time and
time to perishability are exponentially distributed. Second, to express the holding cost, we
derive F (·), which allows us to calculate E (W ) using level crossing theory. This derivation
requires solving the functional equation for F (·). For the Poisson demand case, we also
derive the holding costs rate from the Markov chain representation of the inventory level
process.

Our derivation, in the next section, holds for any general demand size distribution Yi. As
mentioned above, we focus on the two easiest discrete and continuous demand cases: Poisson
demand where Yi = 1 at each arrival and the compound Poisson case with Yi ∼ exp (μ).
For these cases, we provide the exact expressions for the different LSTs and the solution for
F (·). We note that while in both cases the solutions results in closed-form expressions for
the cost function in Eq. (5), these expressions are cumbersome and, therefore, some of them
are not explicitly given below. Still, the availability of closed-form expressions allows us to
easily optimize the inventory control parameters, the base stock level, S, and the reorder
point, s.

3. GENERAL DERIVATION OF THE COST

Here, we derive the cost functionals for any compound Poisson demand case in terms of
the LST of the different stopping times defined for the well studied W̄ process: τ̃S−s, τ̃s−Y ,
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and τ̃S . In the next sections, we express the LST for the cases of Poisson and a compound
Poisson (with exponential demand sizes) processes to derive the corresponding costs. We
remind that the expected value of an RV X, denoted by E (X) can be obtained from the
LST of X, E

(
e−βX

)
as E (X) = − limβ→0 d

(
E
(
e−βX

))
/dβ.

3.1. Cost of Ordering

We consider the time between two order arrivals, T , as a generic cycle. We have:

Proposition 3.1: The LST of the length of cycles is

E
(
e−βT

)
=

ξ

ξ + β

(
η

β + η
+
βE(e−(β+η)τ̃S−s)

β + η

)
.

As expected, the length of the cycle is a convolution of the length of the time to order
with the exponentially distributed lead time (with rate ξ). The time until an order is placed
is either the time to perishability or the time until the inventory level downcrosses s for the
process without perishability, τ̃S−s.

3.2. Cost of Unsatisfied Demand

It follows by the strong Markov property that the counting process of the unsatisfied
demands is a renewal process. And let U be generic inter-arrival time between unsatis-
fied demands. To express E

(
e−βU

)
define the random variable X as the time it takes from

the instant of order arrival until the next unsatisfied demand. We then have:

Criterion 3.2:

X =

⎧⎪⎪⎨
⎪⎪⎩

Dη + Û , Dη ≤ min {T, τS} ,
τS + Û1{W (τ̃S)=0}, τS < min {Dη, T} ,
T + X̂, T ≤ τS ,

(6)

where Û is stochastically equal to U , X̂ is stochastically equal to X and all the random
variables on the right-hand side of Eq. (6) are independent.

To understand the idea behind Eq. (6), we consider the three stopping times Dη, τS ,
and T . Suppose first that the event {Dη ≤ min {T, τS}} occurred; this event means that the
system becomes empty due to perishability and not due to an unsatisfied demand, so that
the system is empty before the cycle ends. From that instant the time to the next unsatisfied
demand is a probabilistic replication of the time between two unsatisfied demands. Thus,
when {Dη ≤ min {T, τS}}, X is stochastically equal to Dη + U . Next, suppose that {τS <
min{Dη, T}}; this event means that level 0 is downcrossed before perishability and also
before the cycle ends, so that X equals to τS . Note that the indicator function is required
for the cases where level 0 is not strictly downcrossed. In these cases, the time to the
next unsatisfied demand is a probabilistic replication of the time between two unsatisfied
demands. (Such cases can only occur if demand size is discrete.) Finally, suppose that
{T ≤ τS}; this event means that the cycle ends without an unsatisfied demand, the inventory
level is filled up to level S and the time to the next unsatisfied demand is stochastically
equal to X.
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Proposition 3.3: The LST’s of X and U satisfy the two equations:

E
(
e−βU

)
=

λ

λ+ β + ξ
+

ξ

λ+ β + ξ
E
(
e−βX

)
. (7)

E
(
e−βX

)
=

(
E
(
e−βU

)
η/η + β

) (
1 − E

(
e−(β+η)τ̃S−s

) ((
ξ + (β + η) E

(
e−(β+η+ξ)τ̃s−Y

)
/β + η + ξ

)))
(
1 − E(e−(η+β)τ̃S−s )(ξ

(
1 − E(e−(ξ+β+η)τ̃s−Y )

)
/ξ + η + β)

)

+
E(e−(η+β)τ̃S−s )E(e−(ξ+β+η)τ̃s−Y )

(
P (W (τ̃S) < 0) + E

(
e−βU

)
P (W (τ̃S) = 0)

)
(
1 − E(e−(η+β)τ̃S−s )

(
ξ
(
1 − E(e−(ξ+β+η)τ̃s−Y )

)
/ξ + η + β

)) . (8)

The intuition behind Eq. (7) is that after an unsatisfied demand there are two competing
independent exponential RVs to the next possible event: the next demand arrival, with
rate λ, and the lead time, with rate ξ. If (i) the next demand arrives first, with probability
λ/ (λ+ ξ), then the next unsatisfied demand occurs after an exponential time with rate
(λ+ ξ). Then, the partial LST of U (together with the event that it comes before the
lead time) is λ/ (λ+ ξ) ∗ (λ+ ξ) / (λ+ ξ + β)). If (ii) the next event is the lead time, with
probability ξ/ (λ+ ξ), then the time until the next un-met demand is a convolution of the
time for the lead time (with LST ξ/ (λ+ ξ) ∗ (λ+ ξ) / (λ+ ξ + β)) and the RV X as defined
above.

For example, for a continuous demand case, when P (W (τS = 0)) = 0, the solution of
Proposition 3.3 gives

E
(
e−βU

)
=

λ

λ + β + ξ

+

ξ
λ+β+ξ

λ
λ+β+ξ

η
η+β

(
1 − E

(
e−(β+η)τ̃S−s

)(
ξ+(β+η)E

(
e−(β+η+ξ)τ̃s−Y

))
β+η+ξ

)

1 − E
(
e−(η+β)τ̃S−s

)(
ξ−ξE

(
e−(ξ+β+η)τ̃s−Y

))
ξ+η+β

− ξ
λ+β+ξ

η
η+β

(
1 − E

(
e−(β+η)τ̃S−s

)(
ξ+(β+η)E

(
e−(β+η+ξ)τ̃s−Y

))
β+η+ξ

)

+

ξ
λ+β+ξE

(
e−(η+β)τ̃S−s

)
E
(
e−(ξ+β+η)τ̃s−Y

)

1 − E
(
e−(η+β)τ̃S−s

)(
ξ−ξE

(
e−(ξ+β+η)τ̃s−Y

))
ξ+η+β

− ξ
λ+β+ξ

η
η+β

(
1 − E

(
e−(β+η)τ̃S−s

)(
ξ+(β+η)E

(
e−(β+η+ξ)τ̃s−Y

))
β+η+ξ

)
. (9)

3.3. Cost of Perishability

Potential perishability instances arrive according to a Poisson process with rate η, but
effective perishability events occur only when the system is not empty. It is clear that the
effective time to perishability process is a renewal process. Recalling that Z denotes the
time between effective perishability events:
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Proposition 3.4: The LST of Z is given by

E
(
e−βZ

)
=

ξ

ξ + β

η

η + β

(
1 − E

(
e−(β+η)τ̃S−s

) ξ+(β+η)E(e−(β+ξ+η)τ̃s−Y )
β+ξ+η

)

1 − ξE
(
e−(β+η)τ̃S−s

)(ηE(e−(β+η+ξ)τ̃s−Y )
(ξ+β)(ξ+β+η) + 1

ξ+β+η

) . (10)

It is seen from Eq. (10) that the time between effective perishability events is the
convolution of (i) the lead time, exponential with rate ξ, in which there are no perishability
(because after each perishability instance the lead time starts afresh and there are no items
on the shelf), with (ii) the time to perishability, exponential with rate η, and with (iii) an
RV that corrects for the probability that the next time to perishability occurs when the
inventory level is 0 again. In this third case, the perishability is not effective and the time to
the next effective perishability event has the same distribution as before. (It can be verified
that the third fraction represents the LST of an RV by taking its limit as β → 0, which is
indeed 1.)

3.4. Holding Cost

By the dominated convergence theorem limt→∞E (W (t)) = E (W ), since the inventory level
is bounded in [0, S]. To calculate E (W ) we first evaluate the steady-state distribution F (·) or
in terms of the steady-state density dF (·) and then take expectation. It should be noted that
F (·) if the distribution of the demand size, FY (·), is an absolutely continuous distribution,
so is F (·) for all 0 < x < S but, for any demand size distribution, F (·) has an atom πS
at S and an atom π0 at 0, so that dF (S) = πS and dF (0) = π0. In the next proposition,
we introduce the balance equation generated by level crossing theory that can be used to
express dF (·). We first remind that FY (·) denotes the distribution of the demand size Y .

Proposition 3.5: We have

η

∫ S

x

dF (w) + λ

∫ S

x

(1 − FY (w − x)) dF (w) =

⎧⎨
⎩
ξ
∫ x
0
dF (w) , x ≤ s,

ξ
∫ s
0
dF (w) , s < x ≤ S,

(11)

alternatively, letting f (·) be the density of F (·) in (0, S), we have

η

∫ S

x

f(w)dw + ηπS + λ

∫ S

x

(1 − FY (w − x)) f(w)dw + λπSe
−μ(S−x)

=

⎧⎨
⎩
ξπ0 + ξ

∫ x
0
f(w)dw, x ≤ s,

ξπ0 + ξ
∫ s
0
f(w)dw, s < x ≤ S.

The boundary conditions can be found from the normalizing condition, and by taking
x = S, x = s, and x = 0, in Eq. (11):

∫ S

0

f (w) dw = 1 − πS − π0, (12)
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(λ+ η)πS = ξπ0 + ξ

∫ s

0

f (w) dw, (13)

η

∫ S

s

f (w) dw + ηπS + λ

∫ S

s

(1 − FY (w − s)) f (w) dw + λπSFY (S − s)

= ξπ0 + ξ

∫ s

0

f (w) dw, (14)

η (1 − π0) + λ

∫ S

0

(1 − FY (w)) f (w) dw + λπS (1 − FY (S)) = ξπ0. (15)

Now, E (W ) =
∫ S
0
wf (w) dw + SπS can be calculated in closed form.

4. EXAMPLES OF EXACT COST ANALYSIS

Here we consider two examples for the demand size at each arrival: a Poisson demand, with
unit demand sizes, and a compound Poisson demand, with exponential demand sizes. The
case of Poisson demand can be directly solved from an analysis of a Markov chain. However,
it is brought here to demonstrate the generality of our approach.

4.1. Poisson Demand Case

We assume that the demand follows a Poisson process, i.e., that the size of each demand
is one unit. The stopping times τ̃S−s, τ̃s, (here s− Y = s), and τ̃S that are required for
substituting in the results of Section 3 are all Erlang (n, λ) where n is the number of
demands realized

E
(
e−βτ̃n

)
=
(

λ

λ+ β

)n
,

where n = S − s, n = s, and n = S for the LST of τ̃S−s, τ̃s, and τ̃S , respectively. The
results below follow by substitution of the relevant LST in the results derived in Section 3,
noting that in this case P (W (τS) = 0) = 1, and some (tedious) algebra, no further proof
is provided. Because expressing the steady-state distribution for the inventory level (and
the implied holding cost) for this case can be also done directly from the Markov chain
representation of the inventory level process, we provide this direct derivation in the next
subsection.

Proposition 4.1: The LST of the cycles is

E
(
e−βT

)
=

ξ

ξ + β

(λ/λ+ β + η)S−sβ + η

β + η
, (16)

so that

E (T ) =
η + ξ − (λ/λ+ η)S−sξ

ξη
=

1
η

+
1
ξ
− (λ/λ+ η)S−s

η
. (17)

The LST for the time between unsatisfied demand is

E(e−βU ) =
λ(η + β)

(
η + β + ξ + ξ

(
λ

λ+β+η

)S−s ((
λ

λ+β+η+ξ

)s
− 1
))

(
β + η + ξ − ξ

(
λ

λ+β+η

)S−s)
(β(β + ξ + η) + (η + β)λ)

+ ξ(η + β)λ( λ
λ+β+η )S−s( λ

λ+β+η+ξ )
s

, (18)
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so that

E(U) =

(
λ

(
ηξ

((η + ξ) − ξ(λ/λ+ η)S−s)(λ+ η)

(
λ

λ+ η

)S−s−1

×
(

λ

λ+ η + ξ

)s
λ

ξ + η
+

η

ξ + η

))−1

. (19)

The LST of the time between effective perishability events is

E
(
e−βZ

)
=

ξ

ξ + β

η

η + β

(
1 −

(
λ

λ+β+η

)S−s ξ+(β+η)( λ
λ+β+ξ+η )s

β+ξ+η

)

1 − ξ
(

λ
λ+β+η

)S−s( η( λ
λ+β+ξ+η )s

(ξ+β)(ξ+β+η) + 1
ξ+β+η

) , (20)

so that

E (Z) =
ξ + η

ξη

ξ + η − ξ(λ/λ+ η)S−s

ξ + η − ξ(λ/λ+ η)S−s − η(λ/λ+ η)S−s(λ/λ+ ξ + η)s
. (21)

Recalling our discussion after Proposition 3.1, the cycle, T , is a convolution of the length
of time to order with the lead time. For this demand case, the LST of the time to order
for a model with no lead time was derived in Eq. (19) of Baron et al. [3]. (It agrees with
Eq. (16), after substituting α→ 0, ξ → η, and S → S − s in their result.)

4.1.1. Holding cost. To calculate E (W ) we first evaluate the steady-state distribution
F (i) =

∑i
j=0 Pj , where Pj is the steady-state probability that the inventory level is j, and

then take expectation. To this end, we consider the Markov chain representation of the
inventory level to get

(λ+ η)PS = ξF (s) (22)

(λ+ η)Pi = λPi+1 i = s+ 1, . . . , S − 1

(λ+ η + ξ)Pi = λPi+1 i = 1, . . . , s

(ξ + η)P0 = η + λP1.

Solving (22) we get

Pi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PS

(
λ

λ+ η

)S−i
i = s+ 1, . . . , S

PS

(
λ

λ+ η

)S−s−1(
λ

λ+ η + ξ

)s+1−i
i = 1, . . . , s

PS

(
λ

λ+ η

)S−s−1(
λ

λ+ η + ξ

)s
λ

ξ + η
+ η

ξ+η i = 0,
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where PS is given from the solution of (after some tedious algebra)

1 − (η/ξ + η)
PS

=
S∑

i=s+1

(
λ

λ+ η

)S−i
+

s∑
i=1

(
λ

λ+ η

)S−s−1(
λ

λ+ η + ξ

)s+1−i

+
(

λ

λ+ η

)S−s−1(
λ

λ+ η + ξ

)s
λ

ξ + η
,

PS =
ηξ

((η + ξ) − (λ/λ+ η)S−sξ) (λ+ η)
.

It can be verified that (λ+ η)PS = ξF (s).
Now

E (W ) = PS

(
S∑

i=s+1

i

(
λ

λ+ η

)S−i
+

s∑
i=1

i

(
λ

λ+ η

)S−s−1(
λ

λ+ η + ξ

)s+1−i)
(23)

= PS

⎛
⎝ηS − λ

η2
+
(

λ

λ+ η

)S−s⎛⎝s (ξ + η) + λ
((

λ
λ+η+ξ

)s
− 1
)

(ξ + η)2
− (ηs− λ)

η2

⎞
⎠
⎞
⎠ .

By Poisson arrivals see time averages and since all unsatisfied demand arrives while
there is no inventory, i.e., during P0 of the time (recall with Poisson demand there is no
unsatisfied demand if inventory is positive), the rate of unsatisfied demand 1/E (U) equals
the rate of arrivals that see an empty system, i.e.,

λP0 =
1

E (U)
,

which, of course, agrees with Eq. (19).

4.2. Compound Poisson with Exponential Demand

Here we assume that the demand follows a compound Poisson process where the size of
each demand is exponentially(μ) distributed. The stopping times τ̃S−s, τ̃s−Y , and τ̃S that
are required for substituting in the results of Section 3 are known (see, e.g., Baron et al. [3].
Specifically, setting α = 0 and substituting S − s rather than S in Eq. (7) of Baron et al.
[3] we get

E
(
e−βτ̃S

)
=

λ

λ+ β
e−(μβS/λ+β), and (24)

E
(
e−βτ̃S−s

)
=

λ

λ+ β
e−(μβ(S−s)/λ+β).

Using that W̄ (τ̃S−s) = s− Y and Eq. (24) we get

E
(
e−βτ̃s−Y

)
=
∫ s

0

λ

λ+ β
e−(μβ(s−y)/λ+β)μe−μydy +

∫ ∞

s

μe−μydy

= e−μ
β

λ+β s. (25)

Note that the independence of τ̃S and τ̃S−s implies that E(e−βτ̃s−Y ) = E
(
e−βτ̃S

)
/E(e−βτ̃S−s),

which leads to Eq. (25) as well. Substituting Eqs. (24) and (25) into the derivation in Section
3 gives (no further proof is provided).
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Proposition 4.2: The LST of the cycles is

E
(
e−βT

)
=

ξ

ξ + β

η + β(λ/λ+ β + η)e−(μ(β+η)/λ+β+η)(S−s)

β + η
, (26)

so that

E (T ) =
1
η

+
1
ξ
− λe(−(ημ(S−s)/η+λ)

η (λ+ η)
. (27)

The LST for the time between unsatisfied demand is

E
(
e−βU

)
=

λ

λ+ β + ξ
+

ξ

λ+ β + ξ

×

λ
λ+β+ξ

η
η+β

(
1 − λe

−(μ(β+η)(S−s)
λ+β+η )

λ+β+η
ξ+(β+η)e

−μ
β+η+ξ

λ+β+η+ξ
s

β+η+ξ

)

+λe
− μ(η+β)(S−s)

λ+η+β

λ+η+β e−
μ(ξ+β+η)s
λ+ξ+β+η⎛

⎝1 − λe
−(μ(η+β)(S−s)

λ+η+β )
λ+η+β

ξ

(
1−e−

μ(ξ+β+η)s
λ+ξ+β+η

)
ξ+η+β

− η
η+β

ξ
λ+β+ξ

⎛
⎝1 − λe

−(μ(β+η)(S−s)
λ+β+η )

λ+β+η
ξ+(β+η)e

−μ
β+η+ξ

λ+β+η+ξ
s

β+η+ξ

⎞
⎠
⎞
⎠

. (28)

The LST of the time between effective perishability events is

E
(
e−βZ

)
=

ξ

ξ + β

η

η + β

(
1 − λe

−(μ(β+η)(S−s)
λ+β+η )

λ+β+η
ξ+(β+η)e

−μ
β+η+ξ

λ+β+η+ξ
s

β+η+ξ

)

1 − ξ λe
−(μ(β+η)(S−s)

λ+β+η )
λ+β+η

(
ηe

−μ
β+η+ξ

λ+β+η+ξ
s

(ξ+β)(ξ+β+η) + 1
ξ+β+η

) . (29)

Recall that the cycle, T , is a convolution of the time to order with the lead time. In a
model with perishability but no lead time Eq. (16) of Baron et al. [3] gives the LST of the
time to order for this demand case. Indeed, their Eq. (16) (with the required corrections as
in the Poisson case) agrees with Eq. (26).

4.2.1. Holding cost. Following our discussion in Section 3.4 we calculate E (W ). The
next proposition that follows from Proposition 3.5 (no detailed proof is provided) and
substitution of the demand distribution, we introduce the balance equation generated by
level crossing theory that can be used to express dF (·) in closed form as explained below.

Proposition 4.3: We have

η

∫ S

x

dF (w) + λ

∫ S

x

e−μ(w−x)dF (w) =

⎧⎪⎨
⎪⎩
ξ
∫ x
0
dF (w) , x ≤ s,

ξ
∫ s
0
dF (w) , s < x ≤ S,

(30)
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or

η

∫ S−

x

f(w)dw + ηπS + λ

∫ S−

x

e−μ(w−x)f(w)dw + λπSe
−μ(S−x)

=

⎧⎪⎨
⎪⎩
ξπ0 + ξ

∫ x
0+ f(w)dw, x ≤ s,

ξπ0 + ξ
∫ s
0+ f(w)dw, s < x ≤ S,

where S− = sup {x|x < S} and 0+ = inf {x|x > 0}.

Solving for dF (·) in Eq. (30) we get

dF (x) =

{
k0e

ax 0 < x ≤ s,

k1e
bx s < x < S,

(31)

where a = (μ(ξ + η)/λ+ ξ + η) and b = (μη/λ+ η). We now have four unknowns: π0, πS ,
k0, and k1. To find these unknowns we use perishability events

∫ s

0+
k0e

awdw +
∫ S−

s

k1e
bwdw = 1 − πS − π0,

(λ+ η)πS = ξπ0 + ξ

∫ s

0+
k0e

awdw,

η

∫ S−

s

k1e
bwdw + ηπS + λ

∫ S−

s

e−μ(w−s)k1e
bwdw + λπSe

−μ(S−s) = ξπ0 + ξ

∫ s

0+
k0e

awdw,

η (1 − π0) + λk0

∫ s

0+
e−(μ−a)wdw + λk1

∫ S−

s

e−(μ−b)wdw + λπSe
−μS = ξπ0.

These equations are equivalent to

k0
eas − 1
a

+ k1
ebS − ebs

b
= 1 − πS − π0,

(λ+ η)πS = ξπ0 + ξk0
eas − 1
a

,

ηk1
ebS − ebs

b
+ ηπS + λeμsk1

e(b−μ)S − e(b−μ)s

b− μ
+ λπSe

−μ(S−s) = ξπ0 + ξk0
eas − 1
a

,

η (1 − π0) + λk0
e(−μ+a)s − 1

−μ+ a
+ λk1

e(−μ+b)S − e(−μ+b)s

−μ+ b
+ λπSe

−μS = ξπ0.

These four linear equations in four unknowns can be solved in closed form (which is too
cumbersome to include here). We then have

E (W ) = k0

∫ s

0

xeaxdx+ k1

∫ S

s

xebxdx+ SπS (32)

= k0
eas (as− 1) + 1

a2
+ k1

ebS (bS − 1) − ebs (bs− 1)
b2

+ SπS .
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5. OPTIMIZATION

In this section, we discuss the optimization of the order up-to level, S, and the re-order
level, s, for the Poisson and compound Poisson demand distributions. For both cases, we
consider the problem (see Eq. (5))

min
S,s

R =
K0

E(T )
+ c

λ

μ
+ cηE(W ) + hE(W ) +

ku − c

μE(U)
+

Kd

E(Z)
,

where for the Poisson demand cases E(T ) and E(W ) are given, respectively, in Eqs. (17),
(23) and E(U) and E(Z) are derived from Eqs. (18) and (21) and for the compound Poisson
demand cases E(T ) and E(W ) are given, respectively, in Eqs. (27) and (32) and E(U) and
E(Z) are derived from Eqs. (28) and (29). We provide numerical results on the sensitivity
of parameters for the optimal s∗ and S∗.

Two important asymptotics, leading to relevant special cases, are the one when there
is no lead time, i.e., ξ → ∞, analyzed by Baron et al. in [3], and the one when there is
no perishability, i.e., η → 0. To capture the value of considering perishability, we compared
the value of the exact analysis of the system with perishability to the one that ignores
perishability. We refer to the system without perishability as the heuristic. We note that
the alternative heuristic of ignoring the lead time and use the results of Baron et al. [3], is
not sensible because having no safety stock, i.e., choosing s = 0, is clearly not optimal in
the presence of lead times.

We note that the expressions for the objective function allows no theoretical derivation
of structural properties for it. However, our exact, closed-form analysis allowed us to use an
off the shelf non-linear optimization (the solver in Maple) to numerically find the optimal
policy (controls and cost). For our numerical results, we considered a base case withK0 = 50,
h = 1, Ku = 10, Kd = 50, c = 5, ξ = 0.2, η = 0.05, and λ = 50 (and μ = 1 in the compound
Poisson case) and derived the optimal policy. We then varied each of the parameters ξ, η,
and λ one at a time under the optimal policy and compared the values of the exact analysis
with perishability to the system with no perishability which we refer to as the heuristic.
We observed that it is beneficial to provide the solver with a starting point (values for
both S and s). We found that providing the starting point as the solution of the previous
optimization run allowed the solver to find the optimal solution in “no time” (few seconds
for ten runs, for both demand scenarios). To make sure that the solution provided by Maple
is (close to) optimal, we used standard methodology such as plotting the objective function
for different choices of (s, S) and starting the optimization from different starting points.
We used similar optimization approach for the heuristic. As is common, we let S∗, s∗, and
R∗, denote the optimal order up-to level, reorder point, and cost, respectively. We let RH

denote the cost of the heuristic and report the Loss % =
(
RH −R∗) /R∗.

5.1. Poisson Demand Case

We note that when demand is Poisson, there is no value in ordering a non-integer number
of units, so after finding the optimal continuous controls, if needed, we run a quick search
comparing the costs for any round up and round down combination of S and s. The same
procedure was used with the heuristic (where, of course, we used the heuristic cost function
in this comparison). We note that the optimal S∗ and s∗ were the round up results of the
continuous solution in all our numerical experiments.

From Table 1 we observe that when ξ increases, as expected, R∗, S∗, s∗, E (T ), and
E (Z) decrease while E(W ) and E(U) increase.
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Table 1. Results when varying ξ-Poisson demand.

ξ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S∗ 169 159 151 145 139 134 130 126 122 119
s∗ 106 96 88 81 76 71 67 63 59 56
R∗ 483 469 458 449 440 434 427 422 417 413
ET 21.22 11.22 7.89 6.24 5.22 4.55 4.08 3.72 3.44 3.22
EZ 140.87 80.58 60.41 50.19 44.17 40.15 37.21 35.09 33.52 32.16
EW 12.63 21.04 26.92 31.35 34.39 36.65 38.53 39.73 40.34 41.09
EU 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.05 0.05

RH 485 472 461 452 444 437 430 425 420 416
Loss % 0.40 0.58 0.66 0.71 0.69 0.72 0.70 0.67 0.65 0.66

Table 2. Results when varying η-Poisson demand.

η 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S∗ 145 120 102 88 78 70 63 57 52 48
s∗ 81 62 49 39 32 26 22 18 15 12
R∗ 449 449 467 473 477 481 484 487 489 491
ET 6.24 6.09 5.98 5.89 5.82 5.77 5.71 5.67 5.63 5.6
EZ 50.19 30.26 23.66 20.48 18.47 17.15 16.27 15.68 15.22 14.83
EW 31.35 21.57 15.67 11.73 9.25 7.46 6.08 5 4.19 3.58
EU 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02

RH 452 469 485 500 512 524 535 545 554 562
Loss % 0.71 2.14 3.83 5.57 7.2 8.9 10.42 11.85 13.17 14.39

From Table 2 we observe that when varying η, as expected, when η increases, because
the time to perishability decreases, S∗ and s∗, decrease, R∗ increases, and E (T ), E (Z),
E (W ), and E (U) decrease.

From Table 3 we observe that when varying λ, as expected, when λ increases, S∗, s∗, R∗,
and E (W ) increase, and E (T ), and E (U) decrease. The value of E (Z) does not change
much and it may increase or decrease with λ (see the case where λ = 60). The gap between
the optimal and heuristic costs is less than 1%; again this is despite that the heuristic may
be considerably off in calculating its controls.

As expected the no-perishability heuristic is only close to optimal for small η. Consider
the second column in Table 2 where η = 0.1 and recall that here ξ = 0.2. That is in this

Table 3. Results when varying λ-Poisson demand.

λ 10 20 30 40 50 60 70 80 90 100

S∗ 32 61 89 117 145 172 200 228 256 284
s∗ 4 21 40 60 81 103 126 148 171 194
R∗ 96.45 184.77 272.80 360.71 448.57 536.40 624.21 712.00 799.79 887.56
ET 7.61 6.90 6.57 6.37 6.24 6.12 6.03 5.98 5.92 5.88
EZ 51.85 50.52 50.35 50.26 50.19 50.29 50.20 50.16 50.12 50.08
EW 6.56 12.90 19.02 25.16 31.35 37.23 43.50 49.70 55.94 62.18
EU 0.16 0.08 0.06 0.04 0.03 0.03 0.02 0.02 0.02 0.02

RH 97.36 186.26 275.14 363.30 451.75 541.29 629.64 717.83 806.17 893.45
Loss % 0.94 0.81 0.86 0.72 0.71 0.91 0.87 0.82 0.80 0.66
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column perishability occurs on average every two lead times. The results in columns 3–10 are
for shorter time to perishability. Therefore, ignoring perishability is costly in these settings;
nevertheless, we believe these settings are not common in practice.

5.2. Compound Poisson with Exponential Demand

Here, we report the results for the compound Poisson case where as mentioned above we
choose μ = 1 in the base case.

The results when varying ξ, η, and λ are depicted in Tables 4–6, respectively. The
direction of changes of s∗, S∗, R∗, E (T ), E (W ), and E(U) in these tables is similar to
the direction of changes in Tables 1–3. Similarly, E (Z) in Tables 4 and 5 decreases, as

Table 4. Results when varying ξ-compound Poisson arrival with exp (μ) demand.

ξ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S∗ 196.5 142.4 113.5 95.7 83.6 75.1 68.7 63.9 59.2 54.9
s∗ 134 79.8 50.9 33.0 21.0 12.5 6.1 1.3 0 0
R∗ 459 445 438 435 433 432 431 431 431 432
ET 21.23 11.23 7.90 6.23 5.23 4.56 4.09 3.73 3.39 3.09
EZ 123.73 87.76 75.49 69.22 65.39 62.79 60.91 59.46 58.07 56.80
EW 16.87 17.17 15.81 14.43 13.27 12.34 11.61 11.03 10.47 9.93
EU 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

RH 491.7 514.8 538.6 558.9 575.6 589.3 600.8 610.3 618.4 625.4
Loss % 7.07 15.70 22.92 28.59 33.03 36.53 39.31 41.55 43.37 44.84

Table 5. Results when varying η-compound Poisson arrival with exp (μ) demand.

η 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S∗ 95.65 52.59 34.79 25.86 20.52 16.98 14.46 12.58 11.12 9.95
s∗ 33.04 0 0 0 0 0 0 0 0 0
R∗ 435 467 481 488 492 495 497 499 500 501
ET 6.23 6.01 5.68 5.51 5.41 5.34 5.29 5.26 5.23 5.21
EZ 69.22 59.28 55.91 54.27 53.25 52.51 51.93 51.44 51.02 50.64
EW 14.43 4.60 2.17 1.26 0.82 0.58 0.43 0.33 0.27 0.22
EU 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

RH 559 742 864 945 997 1029 1049 1060 1064 1065
Loss % 28.59 58.84 79.85 93.69 102.53 107.91 110.95 112.39 112.76 112.42

Table 6. Results when varying λ-compound Poisson arrival with exp (μ) demand.

λ 10 20 30 40 50 60 70 80 90 100

S∗ 22.07 41.54 59.67 77.69 95.65 113.59 131.50 149.39 167.28 185.15
s∗ 0 2.14 11.29 21.74 33.04 44.93 57.30 70.03 83.06 96.35
R∗ 93.37 178.89 264.22 349.43 434.59 519.71 604.82 689.90 774.98 860.05
ET 7.17 6.92 6.58 6.37 6.23 6.13 6.05 5.98 5.92 5.88
EZ 66.10 68.79 69.03 69.15 69.22 69.27 69.31 69.33 69.35 69.37
EW 3.55 6.30 8.99 11.71 14.43 17.16 19.89 22.63 25.37 28.11
EU 0.14 0.07 0.05 0.04 0.03 0.02 0.02 0.02 0.02 0.01

RH 118 229 339 449 559 669 779 889 999 1109
Loss % 26.96 27.76 28.2 28.44 28.59 28.7 28.78 28.83 28.88 28.92
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in Tables 1 and 2. In Table 6, E (Z) increases with λ, whereas in Table 3, E (Z) is not
monotone; but this increase is quite mild. We further observe that the heuristic performance
is deteriorating when the lead time and the demand rate increase and when the time to
perishability decreases.

6. CONCLUSIONS: INSIGHTS ON MANAGEMENT OF PERISHABLE INVENTORY

In this paper, we presented a continuous review (s, S) model with lost sales and perishability
with stochasticity due to four factors: time to perishability, lead time, demand arrival time,
and demand size (at each arrival). We provided exact, closed-form expressions for the cost of
the system under the average cost criterion. Using these expressions, we minimize the total
cost and obtained optimal re-order and order up-to levels. We compared the cost resulting
from the exact model to the one of a heuristic that ignores perishability.

There are several insights on the management of perishable items from our analysis and
the numerical results. These insights are focused on the changes in s, S, and the efficiency
of the heuristic along the four uncertainties considered. We remind that we slightly abuse
the definitions of cycle and safety stock: the cycle stock is controlled by both S and s, thus
we call S − s the “cycle stock;” similarly, the safety stock is dictated by s, thus we call
s the “safety stock” (note that in most of our examples, the safety stock, s− λ/ (μξ), is
negative). From Tables 1–6 we observe:

The effect of time to perishability: As the time to perishability increases both s
and S increase at a faster than linear rate (s grows a bit faster), the total cost decreases
at a rate slower linear, and the heuristic that ignores perishability gets closer to optimal.
These results are intuitive because perishability increases the cost in the case of having high
inventory and therefore decreasing the total level of inventory in the system (including the
safety stock) makes sense. That the ratio s/S increases implies that reducing the safety
stock is more effective in combating perishability than reducing the cycle stock. With-
out perishability safety stock is carried most of the time, whereas only half of the cycle
stock is carried on average, thus in events of perishability the relative cost savings from
decreasing the safety stock are higher than the savings when decreasing the cycle stock.
As expected, considering perishability is important when perishability events are quite
frequent.

The effect of lead time: As the lead time increases both s and S increase in the
same amount and the cost of the heuristic that ignores perishability gets closer to optimal.
Without perishability longer lead time increases the safety stock and do not effect the cycle
stock. Apparently, the effect of lead time in the presence of perishability is identical. Shorter
lead time helps to mitigate the effects of perishability explaining the changes in the cost.
The improved effectiveness of the heuristic follows because longer lead times increase the
length of cycles between inventory orders and increase the total inventory such that the
relative error of the heuristic decreases.

The effect of demand arrival rate: As the arrival rate increases S increases linearly
and s grows faster than linear, but with an absolute growth that is lower than that of S, the
total cost increases (linearly), and the efficiency of the heuristic that ignores perishability
remains fixed (i.e., its cost also linearly increases). While in the non perishable case a
linear growth of the cost with the demand rate is expected, this is a somewhat surprising
result when there is perishability. In the presence of perishability, when more inventory
is carried (due to higher demand), we expect that any perishability instance will affect a
higher inventory and the overall cost to increase faster than in the non perishable case. As
it turns out, the optimal (s, S) are such that the rate of event instances slowly decreases
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with the demand rate such that the total effect on the cost of the increase demand rate
remains linear.

The effect of demand size variability: As the demand size variability increases (from
a unit to an exponential demand size) s and S and the total cost may either increase or
decrease, and the efficiency of the heuristic that ignores perishability significantly decreases.
A reduction of the inventory level for a riskier business is expected; the fact that this
reduction may offset the costs such that the cost in the more variable demand case ends up
lower than the lower demand variability case is surprising.

Efficiency of the heuristic: For the Poisson demand case, the heuristic is quite
effective, with a typical relative (compared with the optimal cost) error of less than 1%, if
perishability is not too frequent. This is true despite that its controls may be quite far from
optimal (e.g., for the base case, S∗ = 145, s∗ = 81, whereas the heuristic chooses S = 183
and s = 108), implying that the cost function is quite flat. In contrast, in the compound
Poisson demand case, the heuristic performs quite poorly. Its best performance are in the
case where the lead time is quite long, ξ = 0.05. In all other cases the heuristic is much worse
with a maximum error of about 45, 113, and 29% in Tables 1–3, respectively. Therefore, we
conclude that considering perishability in inventory control is important as the variability
of the demand size increases.

Acknowledgements

The research of David Perry is partially supported by the German Israeli Foundation (GIF), Grant number
1-1184-31.4/2012 and the Israeli Science Foundation (ISF), grant number 1071/14. The research of Opher
Baron and Oded Berman was supported by their NSERC grants.

References

1. Arrow, K.A., Harris, T.E., & Marschak, T. (1951). Optimal inventory policy. Econometrica 19(3):
250–272.

2. Baron, O. (2011). Managing Perishable Inventory. Wiley Encyclopedia of Operations Research and
Management Science.

3. Baron, O., Berman, O., & Perry, D. (2010). Continuous review inventory models for perishable items
ordered in batches. Mathematical Methods of Operations Research 72: 217–247.

4. Berk, E. & Gürler, Ü. (2008). Analysis of the (Q, r) inventory model for perishables with positive lead
times and lost sales. Operations Research 56(5): 1238–1246.

5. Boxma, O.J., Perry, D., & Stadje, W. (2011). The M/G/1 + G queue revisited. Queueing Systems 67(3):
207–220.

6. Chen, X., Pang, Z., & Pan, L. (2014). Coordinating inventory control and pricing strategies for perishable
products. Operations Research 62: 284–300.
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APPENDIX – PROOFS OF PROPOSITIONS

Appendix A: Proof of Proposition 3.1

To calculate the functional E
(
e−βT

)
, we notice that Lξ and τS−s in Eq. (3) are independent.

Thus,

E
(
e−βT

)
=

ξ

ξ + β
E
(
e−βτS−s

)
,

where ξ/ξ + β is the LST of Lξ. So we only need to calculate the LST of τS−s, E
(
e−βτS−s

)
=

E
(
e−βmin{τ̃S−s,Dη}

)
. By definition

E
(
e−βτS−s

)
= β

∫ ∞

0
e−βtd Pr(τS−s ≤ t).

Thus

E
(
e−βτS−s

)
= E

(
e−βmin{τ̃S−s,Dη}

)
(A.1)

= β

∫ ∞

0
e−βt (1 − Pr(min {τ̃S−s, Dη} > t)) dt

= β

∫ ∞

0
e−βt

(
1 − e−ηt Pr(τ̃S−s > t)

)
dt,

so that

E
(
e−βτS−s

)
= 1 − β

β + η

∫ ∞

0
(β + η) e−(η+β)t (1 − Pr(τ̃S−s ≤ t)) dt

= 1 − β

β + η
+

βE(e−(β+η)τ̃S−s)

β + η
=

η + βE(e−(β+η)τ̃S−s)

β + η
.
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Appendix B: Proof of Proposition 3.3

Let V denote the time between two consecutive demands. Using the memoryless of the lead time
we have

E
(
e−βU

)
= E

(
e−βV 1{V <Lξ}

)
+ E

(
e−βLξ1{Lξ≤V }

)
E
(
e−βX

)
,

where 1{V <Lξ} is a competition between two exponentials, so on this event V the time between
consecutive demands is exp (λ + ξ) and

E
(
e−βV 1{V <Lξ}

)
=

λ

λ + β + ξ
.

Similarly, we have

E
(
e−βLξ1{Lξ≤V }

)
=

ξ

λ + β + ξ
.

Establishing Eq. (7).
By Eq. (6)

E
(
e−βX

)
= E

(
e−βDη e−βU1{Dη≤min{T,τS}}

)
(B.1)

+ E
((

e−βτS

(
1{W (τ̃S)<0} + e−βU1{W (τ̃S)=0}

))
1{τS<min{Dη,T}}

)
+ E

(
e−β(T+X)1{T≤τS}

)
.

The functional E
(
e−βDη e−βU1{Dη≤min{T,τS}}

)
. We first note that due to the definitions

in Eqs. (2)–(4) the following events are equivalent:

{Dη ≤ min {T, τS}} =
{
Dη ≤ min

{
τS−s + Lξ, τ̃S

}}
=
{
Dη ≤ min

{
τ̃S−s + Lξ, τ̃S−s + τ̃s−Y

}}
=
{
Dη ≤ τ̃S−s + min

{
Lξ, τ̃s−Y

}}
,

so that

E
(
e−βDη e−βU1{Dη≤min{T,τS}}

)
= E

(
e−βU

)
E

(∫ τ̃S−s+min{Lξ,τ̃s−Y }

0
e−βzηe−ηzdz

)

=
E
(
e−βU

)
η

η + β

(
1 − E

(
e−(η+β)(τ̃S−s+min{Lξ,τ̃s−Y }))) .

We remind that τ̃S−s, Lξ, and τ̃s−Y are all independent, so that E
(
e−(η+β)(τ̃S−s+min{Lξ,τ̃s−Y })

)
=

E
(
e−(η+β)τ̃S−s

)
E
(
e−(η+β) min{Lξ,τ̃s−Y }

)
. To calculate E

(
e−βmin{Lξ,τ̃s−Y }

)
, we use a similar

argument to the one in Eq. (A.1), replacing τ̃S−s with τ̃s−Y and η with ξ, to get

E
(
e−βmin{Lξ,τ̃s−Y }) =

ξ + βE
(
e−(β+ξ)τ̃s−Y

)
β + ξ

. (B.2)

The functional E
((

e−βτS

(
1{W (τ̃S)<0} + e−βU1{W (τ̃S)=0}

))
1{τS<min{Dη,T}}

)
.
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We notice that the following events are equivalent:

{τS < min {Dη, T}} = {{τ̃s−Y ≤ Lξ
} ∪ {τ̃S ≤ Dη}} = {{τ̃s−Y ≤ Lξ

} ∪ {τ̃s−Y + τ̃S−s ≤ Dη}

and that on {τS < min {Dη, T}} we have

τS = τ̃s−Y + τ̃S−s.

So that by the independence of U , τ̃s−Y and τ̃S−s we have

E
(
e−βτS

(
1{W (τ̃S)<0} + e−βU1{W (τ̃S)=0}

)
1{τS<min{Dη,T}}

)
= E

(
e−βτS1{τS<min{Dη,T}}

)
E
(
1{W (τ̃S)<0} + e−βU1{W (τ̃S)=0}

)
= E

(
e−βτS1{τS<min{Dη,T}}

) (
P (W (τ̃S) < 0) + E

(
e−βU

)
P (W (τ̃S) = 0)

)
and

E
(
e−βτS1{τS<min{Dη,T}}

)
= E

(
e−β(τ̃s−Y +τ̃S−s)1{τ̃s−Y ≤Lξ}1{τ̃s−Y +τ̃S−s≤Dη}

)

= E

(
e−β(τ̃s−Y +τ̃S−s)

∫ ∞

τ̃s−Y

ξe−ξydy

∫ ∞

τ̃s−Y +τ̃S−s

ηe−ηxdx

)

= E
(
e−β(τ̃s−Y +τ̃S−s)e−ξτ̃s−Y e−η(τ̃s−Y +τ̃S−s)

)
= E

(
e−(β+η)τ̃S−s

)
E
(
e−(ξ+β+η)τ̃s−Y

)
.

The functional E
(
e−β(T+X)1{T≤τS}

)
.

We notice that the following events are equivalent:

{T ≤ τS} =
{
τS−s + Lξ ≤ min {τ̃S , Dη}

}
=
{
min {τ̃S−s, Dη} + Lξ ≤ min {τ̃S , Dη}

}
=
{
τ̃S−s + Lξ ≤ min {τ̃S , Dη}

}
=
{
τ̃S−s + Lξ ≤ Dη

} ∪ {Lξ ≤ τ̃s−Y
}

,

so that

E
(
e−β(T+X)1{T≤τS}

)
= E

(
e−βX

)
E
(
e−βT1{τ̃S−s+Lξ≤Dη}1{Lξ≤τ̃s−Y }

)
.

Next, since on {T ≤ τS} we have T = τS−s + Lξ = τ̃S−s + Lξ and due to the independence of Dη,
τ̃S−s, and Lξ we have

E
(
e−βT1{τ̃S−s+Lξ≤Dη}1{Lξ≤τ̃s−Y }

)

= E

(
e−βτ̃S−s

∫ τ̃s−Y

0
e−βLξ

(∫ ∞

τ̃S−s+Lξ

ηe−ηxdx

)
ξe−ξLξdLξ

)

= E

(
e−βτ̃S−s

∫ τ̃s−Y

0
e−βLξe−η(τ̃S−s+Lξ)ξe−ξLξdLξ

)

= ξE
(
e−(β+η)τ̃S−s

)
E

(∫ τ̃s−Y

0
e−(ξ+β+η)LξdLξ

)

=
ξE
(
e−(β+η)τ̃S−s

) (
1 − E

(
e−(ξ+β+η)τ̃s−Y

))
ξ + β + η

. (B.3)

Substituting these functionals into Eq. (B.1), establishes Eq. (8).

https://doi.org/10.1017/S0269964817000225 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000225


INVENTORY MODELS OF PERISHABLE WITH LEADTIMES 341

Appendix C: Proof of Proposition 3.4

To compute the LST of Z we shift the origin to the time of an outdating and recall that

E
(
e−βZ

)
=

ξ

ξ + β
E
(
e−βB

)
, (C.1)

where the random variable B is the time it takes from the instant the inventory level is S until the
next perishability instance. The explanation for Eq. (C.1) is simple. Since perishability does not
occur when the system is empty, we should wait until the end of the lead time which is exponentially
distributed(ξ). From that instant the time to the next outdating is B. We now have

E
(
e−βB

)
= E

(
e−βDη1{Dη<τ̃S−s+min(τ̃s−Y ,Lξ)}

)

+ E
(
e−βτ̃S1{τ̃S≤Dη}1{τ̃s−Y ≤Lξ)}

) ξ

ξ + β
E
(
e−βB

)
(C.2)

+ E
(
e−β(τ̃S−s+Lξ)1{τ̃S−s+Lξ≤Dη}1{Lξ≤τ̃S−Y )}

)
E
(
e−βB

)
.

The first term on the right hand side of Eq. (C.2) indicates the partial LST of the time to the next
perishability instance if it arrives before τ̃S−s + min(τ̃S−Y , Lξ). The second term indicates that an
unsatisfied demand occurs before the next perishability event and before the end of the lead time.
Then, we have to wait until the end of the lead time and from that instant the time to the next
outdating starts afresh. The third term on the right hand side of Eq. (C.2) is for the case when the
time until the inventory level equals S is τ̃S−s + Lξ, where τ̃S−s + Lξ occurs before perishability
and also the lead time comes before τ̃S−Y . Again, since the inventory level is refilled up to level S,
the time to the next outdating starts afresh.

For the first component of Eq. (C.2) we obtain (using the independence between τ̃S−s and
min(τ̃s−Y , Lξ)

E
(
e−βDη1{Dη<τ̃S−s+min(τ̃s−Y ,Lξ)}

)

= E

(∫ τ̃S−s+min(τ̃s−Y ,Lξ)

0
e−βtηe−ηtdt

)

=
η

η + β

(
1 − E

(
e−(β+η)τ̃S−s

)
E
(
e−(β+η) min(τ̃s−Y ,Lξ)

))

=
η

η + β

⎛
⎝1 − E

(
e−(β+η)τ̃S−s

) ξ + (β + η) E
(
e−(β+ξ+η)τ̃s−Y

)
β + ξ + η

⎞
⎠ ,

where E
(
e−(β+η) min(τ̃s−Y ,Lξ)

)
is given in Eq. (B.2).

For the second component, using that τ̃S = τ̃S−s + τ̃s−Y and that the last two RVs are
independent we get

E
(
e−βτ̃S1{τ̃S≤Dη}1{τ̃s−Y ≤Lξ)}

) ξ

ξ + β
E
(
e−βB

)

=
ξ

ξ + β
E
(
e−βB

)
E

(
e−βτ̃S

∫ ∞

τ̃S

ηe−ηxdx

∫ ∞

τ̃s−Y

ξe−ξzdz

)

=
ξE
(
e−βB

)
ξ + β

E
(
e−βτ̃S e−ητ̃S e−ξτ̃s−Y

)

=
ξE
(
e−βB

)
ξ + β

E
(
e−(β+η+ξ)τ̃s−Y

)
E
(
e−(β+η)τ̃S−s

)
.

https://doi.org/10.1017/S0269964817000225 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000225


342 O. Baron, O. Berman, and D. Perry

For the third component, because on these events T = (τ̃S−s + Lξ) we can use Eq. (B.3)

E
(
e−β(τ̃S−s+Lξ)1{τ̃S−s+Lξ≤Dη}1{Lξ≤τ̃s−Y )}

)
=

ξE
(
e−(β+η)τ̃S−s

) (
1 − E

(
e−(ξ+β+η)τ̃s−Y

))
ξ + β + η

.

Solving for E
(
e−βB

)
we get

E
(
e−βB

)
=

η
η+β

(
1 − E

(
e−(β+η)τ̃S−s

) ξ+(β+η)E
(
e−(β+ξ+η)τ̃s−Y

)
β+ξ+η

)

1 − ξE
(
e−(β+η)τ̃S−s

)(E
(
e−(β+η+ξ)τ̃s−Y

)
η

(ξ+β)(ξ+β+η)
+ 1
ξ+β+η

) .

Using Eq. (C.1), we obtain Eq. (10).

Appendix D: Proof of Proposition 3.5

The left hand side of Eq. (11) is the long run average number of downcrossings of level x. There are
two types of downcrossings. The first occurs at times of perishability, so that when a perishability
event arrives (at rate η) and the inventory level is above level x, level x is downcrossed. Therefore

the long run average number of downcrossings that are generated by perishability is η
∫ S
x dF (w).

The second type is due to the demands that arrive at rate λ. Every demand starting at inventory
level w downcrosses x if the demand size is greater than w − x, i.e., with probability 1 − FY (w − x).

Therefore, the second type of downcrossings of level x has a rate λ
∫ S
x (1 − FY (w − x)) dF (w). The

right hand side of Eq. (11) is the long run average upcrossing of level x. When x ≤ s, the upcrossings
are generated by the replenishment (that arrive at rate ξ); every replenishment is an upcrossing if
the inventory level is less than x. However, if s < x ≤ S level x is upcrossed only by jumps that
start below level s, since the lead time starts only after downcrossings of level S − s. Finally, the
density dF (·) is the same in both sides of Eq. (11) because of poisson arrivals see time averages.
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