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REDUCTION TECHNIQUES FOR PROVING DECIDABILITY IN LOGICS

AND THEIR MEET–COMBINATION

JOÃO RASGA, CRISTINA SERNADAS, ANDWALTER CARNIELLI

Abstract. Satisfaction systems and reductions between them are presented as an

appropriate context for analyzing the satisfiability and the validity problems. The notion

of reduction is generalized in order to cope with the meet-combination of logics. Reductions

between satisfaction systems induce reductions between the respective satisfiability problems

and (under mild conditions) also between their validity problems. Sufficient conditions

are provided for relating satisfiability problems to validity problems. Reflection results for

decidability in the presence of reductions are established. The validity problem in the meet-

combination is proved to be decidable whenever the validity problem for the components are

decidable. Several examples are discussed, namely, involving modal and intuitionistic logics,

as well as the meet-combination of K modal logic and intuitionistic logic.

§1. Introduction. A logical decision problem is a pair (L,Γ) where L is
the set of formulas of a certain logic and Γ is a subset of L. When looking
at a logic from a semantic perspective we can consider two main decision
problems. The satisfiability problem is the pair

(L,{ã ∈ L : ã is a satisfiable formula})

and the validity problem is the pair

(L,{ã ∈ L : ã is a valid formula}).

Logic decision problems were firstly stated by David Hilbert (Entschei-
dungsproblem; see [18, 19]) for first-order logic in the following way.
The Satisfiability Problem: Given a first-order formula ϕ, is ϕ satisfiable?
The Validity Problem: Given a first-order formula ϕ, is ϕ valid? and the
Provability Problem: Given a first-order formula ϕ, is ϕ provable (in a given
proof system)?
The main interest in decision problems is related to their decidability.
Intuitively speaking, a decision problem (L,Γ) is decidable if there is an
algorithm (a recipe or a finite set of rules) that when applied to an argument
ϕ ∈ L returns either 1 if ϕ ∈ Γ or 0 otherwise. When dealing with a
decision problem in logic, we have two different options. Either weworkwith
formulas all over or we convert our logical decision problem to the universe
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of the natural numbers (see, for instance, [17, 26, 33]). The latter option was
followed by Kurt Gödel while proving the Incompleteness Theorems, by
giving what we now call Gödelization maps (see [11, 13, 28]). The essential
requirement for a Gödelization map is to guarantee that the logical decision
problem is decidable if and only if the corresponding problem in the natural
numbers’ setting is decidable. When working with natural numbers, Turing
machines and recursive functions are often adopted as the computation
model (see [20, 34]). If we decide to work with other universes it seems
interesting to use an abstract high level language (see [31]).
Proving or disproving decidability is not always a simple task. However,
there are some techniques that can help besides the direct way of producing a
program that computes the characteristicmapof the set under consideration.
The finite model property technique has been used in the context of first-
order logic (see [6, 10, 23]) andmodal logic. In first-order logic the technique
was used for showing that the satisfiability problems in FO(∃∗∀∗) (Bernays–
Schönfinkel class), FO(∃∗∀∃∗) (Ackermann class), and FO2 are decidable.
In normal modal logic, filtrations have been used for showing that several
normal modal logics have the finite model property (see [5]).
Another very important technique is reduction. Intuitively, a problem is
reducible to another problem whenever a method (an algorithm) for solving
the latter provides a method (an algorithm) for solving the former. The
concept was introduced by Alan Turing (see [35]) in terms of oracles. Later
on Stephen Kleene gave a notion of reduction using recursive functions (see
[21]) on the natural numbers.
Nowadays there is an abstract notion of many-to-one reducibility over the
set of natural numbers (see [26, 34]). This notion can be adapted to logical
decision problems, by saying that a reduction from (L,Γ) to (L′,Γ′) is a
computable map ô : L→ L′ such that, for each ϕ ∈ L,

ϕ ∈ Γ if and only if ô(ϕ) ∈ Γ′.

However, we need a generalized version of this concept appropriate for
meet-combination of logics (that provides an axiomatization of the product
of matrix logics; see [25, 30]). In the meet-combination of two logics a
connective is a pair composed by a connective of each logic inheriting only
the common logical properties of the component connectives. So, to transfer
decidability results from the component logics to the meet-combination we
need to extend the notion of reduction from one logical decision problem to
a non-empty finite collection of logical decision problems.
The reductions described in the literature are for specific logics and
no general mechanism is presented for reduction between logical decision
problems. Moreover, in most of the cases the reduction is between the same
kind of decision problems, that is, either between two satisfiability problems,
or between two validity problems. One of the exceptions is related to the
equivalence between the satisfiability problem and the validity problem for
first-order logic, that is, the satisfiability problem for first-order logic is
decidable if and only if the validity problem for first-order logic is decidable
(see [18, 19]).
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The paper is organized as follows. In Section 2, we adopt the notion of
satisfaction system (introduced in [2]) as the appropriate framework for
setting-up logical decision problems based on semantics. We define decision
problem over a satisfaction system and provide examples of the satisfiability
(respectively, the dual of the satisfiability) and of the validity (respectively,
the dual of the validity) problems, proving that decidability is reflected
by reduction. We end the section by establishing a sufficient condition for
having a reduction from the validity problem in a satisfaction system to the
satisfiability in another satisfaction system.
Section 3 concentrates on the important concept of reduction between
a satisfaction system and a finite collection of satisfaction systems. Two
main results are established: decidability of the satisfiability problem for
the source satisfaction system whenever the satisfiability problem for each
target satisfaction system is decidable and, under some mild conditions,
decidability of the validity problem for the source satisfaction system
whenever the validity problem for each target satisfaction system is
decidable. Both results capitalize on the fact that a satisfaction system
reduction induces a reduction between the corresponding satisfiability
problems (similarly for validity problems). Three examples are provided.
(1) Decidability of the satisfiability problem in Kmodal logic endowed with
local Kripke semantics from the decidability of the satisfiability problem in
FO2 first-order logic endowed with contextual satisfaction. (2) Decidability
of the validity problem in K modal logic endowed with algebraic semantics
from the decidability of the validity problem in Kmodal logic endowed with
global Kripke semantics using StoneRepresentation Theorem and Jonssón–
Tarski Theorem (see [4, 9]). (3) Finally, decidability of the validity problem
in intuitionistic logic endowedwith algebraic semantics from the decidability
of the validity problem in intuitionistic logic endowed with global Kripke
semantics using Stone Representation Theorem (see [9, 27]).
Finally, in Section 4 we start by introducing the meet-combination of
two (matrix) satisfaction systems. We show that there is a reduction from
the satisfaction system for meet-combination to the collection composed by
the component satisfaction systems and prove that the validity problem in
meet-combination is decidable provided that the validity problem in each
component logic is decidable as well. We end up the section by discussing
the meet-combination of Kmodal logic and intuitionist logic both endowed
with algebraic semantics.

§2. Satisfaction system decision problems. The objective of this section
is to introduce some important decision problems on logics presented by a
satisfaction system.

Definition 2.1. A satisfaction system is a triple

S = (L,M, ),

where L is a non-empty set of formulas,M is a class of semantic structures,
and ⊆M×L is a binary relation called the satisfaction relation.
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Example 2.2. The local Kripke satisfaction system

S lk,KΠ = (LMLΠ ,M
lk,K
Π , 

lk,K
Π )

for K modal logic over a set Π of propositional symbols is such that

• LMLΠ is the set of modal formulas inductively defined as follows:

– Π⊆ LMLΠ ;

– ¬ϕ,✸ϕ ∈ LMLΠ provided that ϕ ∈ LMLΠ ;

– ϕ1⊃ϕ2 ∈ L
ML
Π provided that ϕ1,ϕ2 ∈ L

ML
Π ;

• Mlk,K
Π is the class of all pointed Kripke structures, that is, pairs

((W,R,V ),w) where (W,R,V ) is a Kripke structure, i.e.,
– W is a non-empty set whose elements are called worlds;
– R ⊆W 2 is a relation called the accessibility relation;
– V : Π→ ℘W is a map called valuation;
and w ∈W ;

• 
lk,K
Π ⊆Mlk,K

Π ×Llk,KΠ is the local satisfaction relation of a formula ϕ
by ((W,R,V ),w), written

(W,R,V ),w 
lk,K
Π ϕ

inductively defined as follows:

– (W,R,V ),w 
lk,K
Π p whenever w ∈ V (p) for p ∈Π;

– (W,R,V ),w 
lk,K
Π
¬ϕ whenever (W,R,V ),w 6lk,KΠ ϕ;

– (W,R,V ),w 
lk,K
Π ϕ1⊃ϕ2 whenever either (W,R,V ),w 6

lk,K
Π ϕ1

or (W,R,V ),w Π ϕ2;

– (W,R,V ),w 
lk,K
Π ✸ϕ whenever (W,R,V ),w ′


lk,K
Π ϕ for some

w ′ ∈W such that wRw ′.

We now present another modal satisfaction system using the previous
example.

Example 2.3. The global satisfaction system

Sgk,KΠ = (LMLΠ ,M
gk,K
Π , gk,KΠ )

for K modal logic is such that

• Mgk,K
Π is the class of all Kripke structures;

• 
gk,K
Π ⊆Mgk,K

Π ×LMLΠ is the global satisfaction relation of a formula ϕ
by (W,R,V ), written

(W,R,V ) gk,KΠ ϕ

that holds when (W,R,V ),w 
lk,K
Π ϕ for every w ∈W .

Definition 2.4. A decision problem on a satisfaction system

S = (L,M, )

is a pair (L,Γ) where Γ⊆ L.
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Informally, such a decision problem can be stated as

given ϕ ∈ L, is ϕ ∈ Γ?

In order to discuss decision problems induced by the satisfaction system
S we need some notions. A formula ϕ ∈ L is satisfiable if there is M ∈M
such thatM  ϕ. Moreover, ϕ is valid wheneverM  ϕ for everyM ∈M.

Definition 2.5. The satisfiability problem is the pair

SatS = (L,{ϕ ∈ L : ϕ is satisfiable}).

The co-satisfiability problem is the pair

co-SatS = (L,{ϕ ∈ L : ϕ is not satisfiable}).

The validity problem is the pair

ValS = (L,{ϕ ∈ L : ϕ is valid}).

The co-validity problem is the pair

co-ValS = (L,{ϕ ∈ L : ϕ is not valid}).

A decision problem (L,Γ) is decidable whenever the characteristic map

÷(L,Γ) : L→{0,1}

defined as follows:

÷(L,Γ)(ϕ) =

{

1 whenever ϕ ∈ Γ,

0 otherwise

is computable (see [31]).

Proposition 2.6. Let (L,Γ) be a decision problem. Then

(L,Γ) is decidable if and only if (L,L\Γ) is decidable.

Proof. Observe that

÷(L,L\Γ)(ϕ) = 1 – ÷(L,Γ)(ϕ) and ÷(L,Γ)(ϕ) = 1 – ÷(L,L\Γ)(ϕ).

So ÷(L,Γ) is computable if and only if ÷(L,L\Γ) is computable. ⊣

As a consequence,

SatS is decidable if and only if co-SatS is decidable,

and

ValS is decidable if and only if co-ValS is decidable.

Definition 2.7. Let k ∈ N
+, DS = (L,Γ) be a decision problem on S =

(L,M, ), and DS i = (L
i,Γi) a decision problem on S i = (Li,Mi, i) for

each i = 1, ...,k. A collection of computable maps ôi : L→ Li for each
i = 1, ...,k is a reduction from DS to DS1, ...,DSk , denoted by

(ô1, ...,ôk) :DS →DS1×···×DSk,
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44 JOÃO RASGA ET AL.

whenever

ϕ ∈ Γ if and only if ôi(ϕ) ∈ Γi for each i = 1, ...,k.

Proposition 2.8. Let (ô1, ...,ôk) : DS → DS1 × ··· ×DSk be a reduction.
Then, DS is decidable whenever DS i is decidable for each i = 1, ...,k.

Proof. Assume that DS i is decidable for each i = 1, ...,k. Then, ÷DSi is a
computable map for each i = 1, ...,k. Observe that

÷DS (ϕ) =
k

∏

i=1

÷DSi ◦ ôi(ϕ),

since (ô1, ...,ôk) is a reduction. Hence, ÷DS is a computable map. Therefore,
DS is decidable. ⊣

It is worthwhile to discuss the relationship between the satisfiability and
the validity problems. For that we need to introduce the following notion.

Definition 2.9. A satisfaction system S ′ = (L′,M′, ′) has a (standard )
negation ¬ if L′ is closed for ¬, that is, if ϕ ∈ L′ then ¬ϕ ∈ L′, and

M ′
 ϕ if and only if M ′ 6 ¬ϕ.

Observe that not all negations have the property above (see [7]).

Example 2.10. The local Kripke satisfaction system

S lk,KΠ

defined in Example 2.2 has the negation ¬.

Proposition 2.11. Let S = (L,M, ) and S ′ = (L,M′, ′) be satisfaction
systems such that S ′ has a negation ¬. Assume that there is a map f :M→
℘M′ such that f(M) =M′ and

M  ϕ if and only if M ′

′ ϕ for eachM ′ ∈ f(M ).

Then, there is a reduction from ValS to co-SatS′ . Moreover,

SatS′ is decidable implies ValS is decidable.

Proof. We start by showing that the map ô : L→ L such that ø 7→ ¬ø
is a reduction from ValS to co-SatS′ .

(1) It is immediate to see that ô is a computable map.
(2) We must show that

ϕ is valid in S if and only if ¬ϕ is not satisfiable in S ′.

(→) Assume that ϕ is valid in S. Thus,M  ϕ for everyM ∈M. Therefore,
by hypothesis,M ′


′ ϕ for everyM ′ ∈f(M ) andM ∈M. Hence,M ′ 6′ ¬ϕ

for every M ′ ∈ f(M ) and M ∈ M. Since f(M) =M′ then there is no
M ′ ∈M′ such thatM ′


′ ¬ϕ. Thus ¬ϕ is not satisfiable in S ′.
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(←) Assume that ¬ϕ is not satisfiable in S ′. Then M ′ 6′ ¬ϕ for every
M ′ ∈M′. Hence,M ′


′ ϕ for eachM ′ ∈M′. LetM ∈M. ThenM ′


′ ϕ

for everyM ′ ∈ f(M ) and soM  ϕ.
Assume that SatS′ is decidable. Then, co-SatS′ is decidable (seeProposition
2.6). Therefore, ValS is decidable by Proposition 2.8. ⊣

Proposition 2.12. The problem Val
S
gk,K
Π
is decidable for every set Π of

propositional symbols.

Proof. Westart byobserving thatSgk,KΠ andS lk,KΠ satisfy the requirements
of Proposition 2.11 by taking f(W,R,V ) = {((W,R,V ),w) : w ∈ W }.
Again, by Proposition 2.11,

SatS lk,KΠ
is decidable implies Val

S
gk,K
Π
is decidable.

The result follows since SatS lk,KΠ
is decidable as we will show in Proposition

3.11. ⊣

§3. Satisfaction system reductions. We now introduce the concept of
reduction from one satisfaction system to a non-empty finite collection of
satisfaction systems and discuss its impact on reductions between decision
problems.

Definition 3.1. A reduction from satisfaction system (L,M, ) to
satisfaction systems (L1,M1, 1), ...,(Lk,Mk, k) where k ∈ N

+, is a tuple

(ô1, ...,ôk,g1, ...,gk,h),

where, for each i = 1, ...,k,

• ôi : L→ Li is a computable map;
• g i :M→Mi is a map such that

ifM  ϕ then g i(M ) i ôi(ϕ)

for everyM ∈M;

and h :M1×···×Mk →M is a map such that

if M1 
1 ô1(ϕ) ... Mk 

k ôk(ϕ) then h(M1, ...,Mk)  ϕ

for everyMi ∈Mi with i = 1, ...,k.

In the sequel we denote such a reduction by

(ô1, ...,ôk,g1, ...,gk,h) : (L,M, )→ (L1,M1, 1)×···× (Lk,Mk, k).

We compare the notion of reduction for k = 1 with the usual definition of
satisfaction system morphism (see [2, 29]).

Definition 3.2. A satisfaction system morphism from S = (L,M, ) to
S ′ = (L′,M′, ′) is a pair (h,h) where h :L→L′ and h :M′→M are maps
such that

M ′

′ h(ϕ) if and only if h(M ′)  ϕ.
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Hence, without further assumptions, these two notions do not coincide.
We now show that a satisfaction system reduction induces a reduction over
the respective satisfiability problems.

Proposition 3.3. Let (ô1, ...,ôk,g1, ...,gk,h) : S → S1 × ··· × Sk be a
satisfaction system reduction. Then,

(ô1, ...,ôk)

is a reduction from SatS to SatS1, ...,SatSk .

Proof. We must show that

ϕ is satisfiable in S iff ôi(ϕ) is satisfiable in S i for each i = 1, ...,k.

(→) Assume that ôi(ϕ) is not satisfiable in S i for some i = 1, ...,k. Then,
there is noMi ∈Mi such thatMi i ôi(ϕ). Hence, there is noM ∈M such
that g i(M )i ôi(ϕ). Therefore, there is noM ∈M such thatM  ϕ. Thus,
ϕ is not satisfiable in S.
(←) Assume that ôi(ϕ) is satisfiable inS i for each i =1, ...,k. Then, there are
M1 ∈M

1, ...,Mk ∈M
k such thatMi i ôi(ϕ) for each i = 1, ...,k. Hence,

h(M1, ...,Mk)  ϕ. Therefore, ϕ is satisfiable in S. ⊣

Proposition 3.4. Let (ô1, ...,ôk,g1, ...,gk,h) : S→ S1×···×Sk be a satis-
faction system reduction. Then, SatS is decidable provided that SatS1, ...,SatSk
are decidable.

Proof. Assume SatS1, ...,SatSk are decidable. By Proposition 3.3,

(ô1, ...,ôk) : SatS → SatS1×···×SatSk

is a reduction. Hence, by Proposition 2.8, SatS is decidable. ⊣

Similarly, a satisfaction system reduction induces a reduction over the
respective validity problems whenever the semantic translation maps are
surjective up to satisfaction, as we define now.

Definition 3.5. Let (ô1, ...,ôk,g1, ...,gk,h) : S → S1 × ··· × Sk be a
satisfaction system reduction. The maps g1, ...,gk,h are surjective up to
satisfaction whenever

• for everyM ∈M,

h(g1(M ), ...,gk(M ))  ϕ if and only if M  ϕ;

• for everyM1 ∈M
1, ...,Mk ∈M

k ,

gi(h(M1, ...,Mk)) 
i ôi(ϕ) if and only if Mi 

i ôi(ϕ)

for each i = 1, ...,k.

Proposition 3.6. Let (ô1, ...,ôk,g1, ...,gk,h) : S → S1 × ··· × Sk be a
satisfaction system reduction such that g1, ...,gk,h are surjective up to
satisfaction. Then,

(ô1, ...,ôk)

is a reduction from ValS to ValS1, ...,ValSk .
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Proof. We must show that

ϕ is valid in S if and only if ôi(ϕ) is valid in S i for each i = 1, ...,k.

(→) LetMi ∈Mi for i = 1, ...,k. Then h(M1, ...,Mk) ∈M and so

h(M1, ...,Mk)  ϕ,

because ϕ is valid in S. Since (ô1, ...,ôk,g1, ...,gk,h) is a reduction,

g i(h(M1, ...,Mk)) 
i ôi(ϕ)

for every i = 1, ...,k. Therefore, by surjectivity up to satisfaction,

Mi 
i ôi(ϕ)

for every i = 1, ...,k.
(←) LetM ∈M. Then g i(M ) ∈Mi for each i = 1, ...,k. Hence

g i(M ) i ôi(ϕ),

because ôi(ϕ) is valid for each i = 1, ...,k. Since (ô1, ...,ôk,g1, ...,gk,h) is a
reduction,

h(g1(M ), ...,gk(M ))  ϕ.

Moreover, by surjectivity up to satisfaction,M  ϕ. ⊣

Proposition 3.7. Let (ô1, ...,ôk,g1, ...,gk,h) : S→ S1×···×Sk be a satis-
faction system reduction such that g1, ...,gk,h are surjective up to satisfaction.
Then, ValS is decidable provided that ValS1, ...,ValSk are decidable.

Proof. By Proposition 3.6,

(ô1, ...,ôk) : ValS → ValS1×···×ValSk

is a reduction. So, by Proposition 2.8, ValS is decidable if ValS1, ...,ValSk are
decidable. ⊣

3.1. Satisfiability of S lk,KΠ from satisfiability of SFO
2

ΣML,Π
. We want to show,

using the results in the previous section and [4], that the satisfiability problem
for K modal logic with local Kripke semantics is decidable by using the fact
that the satisfiability problem for a fragment FO2 of FOL consisting of
formulas using only a pair of variables is decidable (see [16]).

Example 3.8 (FO2-two variable first-order logic.). Let Σ be a first-order
logic signature with no function symbols and with a set Pn of predicate
symbols of arity n for each n ∈ N

+ and X = {x,y}. A satisfaction system
for FO2

SFO
2

Σ = (LFO
2

Σ ,M
FO2

Σ , 
FO2

Σ )

over signature Σ and X is such that

• LFO
2

Σ is the set of formulas inductively defined as follows:

– p(z1, ...,zn) ∈ L
FO2

Σ for every p ∈ Pn and z1, ...,zn ∈ X ;
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– ¬ϕ ∈ LFO
2

Σ whenever ϕ ∈ LFO
2

Σ ;

– ϕ1⊃ϕ2 ∈ L
FO2

Σ whenever ϕ1,ϕ2 ∈ L
FO2

Σ ;

– ∃z ϕ ∈ LFO
2

Σ whenever z ∈ X and ϕ ∈ LFO
2

Σ ;

• MFO2

Σ is the class of all pairs

(I ,ñ),

where I is a tuple

(D,{{pI }p∈Pn}n∈N+),

called an interpretation structure, such that
– D is a non-empty set;
– pI :Dn→{0,1} is a map for each p ∈ Pn and n ∈ N

+;
and ñ : X →D is a map called an assignment;

• 
FO2

Σ ⊆MFO2

Σ ×LFO
2

Σ is the satisfaction relation inductively defined as
follows:
– I ,ñ FO

2

Σ p(z1, ...,zn) whenever p
I (ñ(z1), ...,ñ(zn)) = 1;

– I ,ñ FO
2

Σ
¬ϕ whenever I ,ñ 6FO

2

Σ ϕ;

– I ,ñ FO
2

Σ ϕ1⊃ϕ2 whenever either I ,ñ 6
FO2

Σ ϕ1 or I ,ñ 
FO2

Σ ϕ2;

I ,ñ 
FO2

Σ ∃z ϕ whenever I ,ñ′ FO
2

Σ ϕ for some ñ′ ≡z ñ, i.e.,
assignment ñ′ such that ñ′(z ′) = ñ(z ′) for every z ′ ∈ X \{z}.

Let ΣML,Π be the FO
2 signature induced by the Kmodal logic over Π with

no function symbols, set of predicate symbols {p̄ : p ∈ Π} of arity 1, and
predicate symbol R̄ of arity two. In order to discuss the reduction from K
modal logic to FO2 logic, we start by introducing an auxiliary map for each
z ∈ X . Let

ôz : L
ML
Π → LFO

2

ΣML,Π

be inductively defined as follows:

• ôz(p) = p̄(z);
• ôz(¬ϕ) = ¬ôz(ϕ);
• ôz(ϕ1⊃ϕ2) = ôz(ϕ1)⊃ ôz(ϕ2);
• ôz(✸ϕ) = ∃z

′(R̄(z,z ′)∧ ôz′(ϕ)), where z
′ ∈ X \{z}.

Furthermore, for each z ∈ X , consider the map

gz :M
lk,K
Π →MFO2

ΣML,Π

defined as follows:

gz((W,R,V ),w) = (I ,ñz),

where I = (W,{p̄I }p∈Π,R̄I ) such that, for every w1,w2 ∈W ,

• p̄I (w1) = 1 if and only if w1 ∈ V (p);
• R̄I (w1,w2) = 1 if and only if w1Rw2;

and ñz is an assignment such that ñz(z) = w.
We now show that local satisfaction carries over from K modal logic to
FO2 logic.
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Proposition 3.9. Let ((W,R,V ),w) ∈Mlk,K
Π and ϕ ∈LMLΠ . Then, for each

z ∈ X ,

(W,R,V ),w 
lk,K
Π ϕ if and only if I ,ñz 

FO2

ΣML,Π
ôz(ϕ),

where gz((W,R,V ),w) = (I ,ñz).

Proof. We prove the result by induction on ϕ.
(Base) Let ϕ be p ∈ Π. Hence, (W,R,V ),w 

lk,K
Π p if and only if w ∈

V (p) if and only if p̄I (w) = 1 if and only if I ,ñz FO
2

ΣML,Π
p̄(z) if and only if

I ,ñz 
FO2

ΣML,Π
ôz(p).

(Step) We only consider the case that ϕ is ✸ø. We start by showing that

(W,R,V ),w 
lk,K
Π ✸ø implies I ,ñz 

FO2

ΣML,Π
ôz(✸ø).

Assume that (W,R,V ),w 
lk,K
Π ✸ø. Then, there is w ′ ∈W with wRw ′ and

(W,R,V ),w ′

lk,K
Π ø. We must show that

I ,ñz 
FO2

ΣML,Π
∃z ′(R̄(z,z ′)∧ ôz′(ø)),

where z ′ ∈ X \{z}. Let ñz′ ≡z′ ñz be such that ñz′(z ′) = w ′. Then,

I ,ñz′ 
FO2

ΣML,Π
R̄(z,z ′),

since R̄I (w,w ′) = 1. Moreover,

I ,ñz′ 
FO2

ΣML,Π
ôz′(ø)

by the induction hypothesis, since (W,R,V ),w ′

lk,K
Π ø. We now prove that

I ,ñz 
FO2

ΣML,Π
ôz(✸ø) implies (W,R,V ),w 

lk,K
Π ✸ø.

Assume that I ,ñz FO
2

ΣML,Π
ôz(✸ø). Hence

I ,ñz 
FO2

ΣML,Π
∃z ′(R̄(z,z ′)∧ ôz′(ø)).

Thus, there is ñz′ ≡z′ ñz such that

(†) I ,ñz′ 
FO2

ΣML,Π
R̄(z,z ′)

and

(‡) I ,ñz′ 
FO2

ΣML,Π
ôz′(ø).

From (†), we conclude that ñz′(z)Rñz′(z ′) holds in (W,R,V ). SowRñz′(z ′)
because ñz′(z) = ñz(z) = w. On the other hand, from (‡) we can conclude,
by the induction hypothesis, that (W,R,V ),ñz′(z ′) 

lk,K
Π ø. Therefore,

(W,R,V ),w 
lk,K
Π ✸ø. ⊣

Finally, for each z ∈ X , consider the map

hz :M
FO2

ΣML,Π
→Mlk,K

Π
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defined as follows:

hz(I ,ñ) = ((W,R,V ),ñ(z)),

where

• W is the domain of I ;
• R = {(w1,w2) ∈W

2 : R̄I (w1,w2) = 1};
• V (p) = {w ∈W : p̄I (w) = 1}.

The following result shows that hz preserves and reflects local satisfaction.
We omit its proof since it follows the same steps as the proof of Proposition
3.9.

Proposition 3.10. Let (I ,ñ)∈MFO2

ΣML,Π
andϕ ∈LMLΠ . Then, for each z ∈X ,

(W,R,V ),ñ(z) lk,KΠ ϕ if and only if I ,ñ FO
2

ΣML,Π
ôz(ϕ),

where hz(I ,ñ) = ((W,R,V ),ñ(z)).

Proposition 3.11. The satisfiability problem SatS lk,KΠ
for K modal logic is

decidable for every set Π of propositional symbols.

Proof. We start by observing that (ôx,gx,hx) is a reduction from S
lk,K
Π

to SFO
2

ΣML,Π
by Propositions 3.9 and 3.10 and since ôx is computable. The

satisfiability problem SatS lk,KΠ
is decidable by Proposition 3.4 since the

satisfiability problem Sat
SFO

2
ΣML,Π

is decidable because Sat
SFO

2
Σ
is decidable for

every signature Σ of FO2 (see [16, 23, 24]). ⊣

3.2. Validity of Sga,KΠ from the validity of Sgk,KΠ . Herein, we prove that the
validity problem of K modal logic endowed with an (global) algebraic
semantics (see [14, 27]) is decidable taking into account the decidability
of the validity problem of K modal logic endowed with a global Kripke
semantics (see Proposition 2.12).

Example 3.12. The (global) algebraic satisfaction system

Sga,KΠ = (LMLΠ ,M
ga,K
Π , ga,KΠ )

for K modal logic over a set Π of propositional symbols is such that

• LMLΠ is as defined in Example 2.2;

• Mga,K
Π is the class of all modal algebras with distinguished value, that

is, pairs (A,D) such that
– A = (A, ⊓ , ⊔ , ❂ ,–,⊤,✷,V ) where (A, ⊓ , ⊔ , ❂ ,–,⊤) is a Boolean
algebra, ✷ : A→ A satisfies the following identities:

✷(a1⊓a2) = (✷a1⊓✷a2) and ✷⊤=⊤,

and V : Π→ A is a map;
– D = {⊤};
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• 
ga,K
Π ⊆Mga,K

Π ×Lga,KΠ is the satisfaction relation such that

(A,D) ga,KΠ ϕ

whenever [[ϕ]]A =⊤ where

[[ϕ]]A ∈ A

is inductively defined as follows:
– [[p]]A = V (p) for p ∈Π;
– [[¬ø]]A = –[[ø]]A;
– [[ø1⊃ø2]]

A = [[ø1]]
A
❂ [[ø2]]

A;
– [[✷ø]]A =✷[[ø]]A.

We need to consider a restricted class of Kripke structures for K modal
logic in order to provide a reduction from the algebraic semantics to the
Kripke semantics.

Example 3.13. The descriptive global Kripke satisfaction system for K
modal logic is the tuple

Sdgk,KΠ = (LMLΠ ,M
dgk,K
Π , dgk,KΠ )

over a set Π of propositional symbols obtained fromSgk,KΠ (see Example 2.3)

by takingMdgk,K
Π as the subclass ofMgk,K

Π composed by Kripke structures
that are descriptive (that is, differentiated, tight, and compact; (see [9, 14]))

and dgk,KΠ as the restriction of gk,KΠ toMdgk,K
Π . Similarly for Sdlk,KΠ .

We now show that there is a map from modal algebras to descriptive
Kripke structures that preserves and reflects satisfaction. Before we recall
some notions.

Definition 3.14. A filter in a modal algebraA is a set F ⊆A such that:

• ⊤ ∈ F ;
• if a,b ∈ F then a ⊓b ∈ F ;
• if a ∈ F and a ≤ b then b ∈ F where a ≤ b whenever a ⊓b = a.

A filter F is a ultrafilter whenever:

• ⊥ /∈ F ;
• for every a ∈ A either a ∈ F or – a ∈ F .

Proposition 3.15. Let g :Mga,K
Π →Mdgk,K

Π be such that

g(A,{⊤}) = (W,R,V ),

where

• W is {U ⊆ A :U is an ultrafilter of A};
• URU ′ whenever for every a ∈ A if ✷a ∈U then a ∈U ′;
• V (p) = {U ∈W : V (p) ∈U}.
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Then, for every U ∈W ,

[[ϕ]]A ∈U if and only if (W,R,V ),U 
dlk,K
Π ϕ.

Furthermore,

(A,{⊤}) ga,KΠ ϕ if and only if (W,R,V ) dgk,KΠ ϕ.

Proof. We start by observing that (W,R,V ) is a descriptive global
Kripke structure (see [14, Theorem 1.10.5]). It is immediate to see that
the second assertion about satisfaction of formulas follows from the first
(taking into account Theorem 5.38 in [5]). The proof of the first statement
follows by induction on ϕ and we only consider the step when ϕ is ✷ø.
Before, we show that:

(†) ✷a ∈U provided that a ∈U ′ for every U ′ ∈W such that URU ′

for everyU ∈W and a ∈A. Assume, by contradiction, that a ∈U ′ for every
U ′ ∈W such that URU ′ and ✷a /∈U . Consider

F = {b ∈ A :✷b ∈U}.

Observe that a /∈ F . Moreover, F is a filter. Indeed,

(1) ⊤ ∈ F . Since U is an ultrafilter ⊤ ∈ U . Since ✷⊤ = ⊤ then ✷⊤ ∈ U
and so ⊤ ∈ F .

(2) Assume that b,b′ ∈ F . Hence ✷b,✷b′ ∈ U . Therefore, ✷b ⊓✷b′ ∈
U and so ✷(b ⊓ b′) ∈ U because ✷(b ⊓ b′) = (✷b)⊓ (✷b′). Thus,
b⊓b′ ∈ F .

(3) Suppose that b ∈F and b ≤ b′. Thus, b⊓b′= b and so✷(b⊓b′) =✷b.
Then, (✷b)⊓ (✷b′) = ✷b. Hence, (✷b)≤ (✷b′). Therefore, ✷b′ ∈ U
since ✷b ∈U and U is a filter. Hence, b′ ∈ F .

Then, (see Proposition 5.38 of [5]) there isU ′′ ∈W extending F such that
a /∈ U ′′. Moreover, URU ′′ by definition of R. The existence of such U ′′

contradicts the initial assumption.
We are ready to prove the step when ϕ is ✷ø.
(→) Assume that [[✷ø]]A ∈ U . Then, ✷[[ø]]A ∈ U . Let U ′ ∈W be such
that URU ′. Thus, by definition of R, [[ø]]A ∈U ′. Hence, by the induction
hypothesis (W,R,V ),U ′


dlk,K
Π ø. Therefore, (W,R,V ),U 

dlk,K
Π ϕ.

(←) Assume that (W,R,V ),U 
dlk,K
Π ✷ø. Then, (W,R,V ),U ′


dlk,K
Π ø for

everyU ′ ∈W such thatURU ′. Thus, by the induction hypothesis, [[ø]]A ∈
U ′ for every U ′ ∈W such that URU ′. Therefore, by (†), we can conclude
that ✷ [[ø]]A ∈U . ⊣

Wenowdefine amap fromdescriptiveKripke structures tomodal algebras
that preserves and reflects satisfaction.

Proposition 3.16. Let h :Mdgk,K
Π →Mga,K

Π be such that

h(W,R,V ) = ((℘W, ∩ , ∪ , ❂ ,–,W,✷,V ),{W }),
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where

• –Z =W \Z;
• Z1 ❂ Z2 = –Z1∪Z2;
• ✷Z = {w ∈W : w ′ ∈ Z whenever wRw ′};

for Z,Z1,Z2 ⊆W . Then, for every w ∈W ,

(W,R,V ),w 
dlk,K
Π ϕ if and only if w ∈ [[ϕ]]A.

Furthermore,

(W,R,V ) dgk,KΠ ϕ iff ((℘W, ∩ , ∪ , ❂ ,–,W,✷,V ),{W }) ga,KΠ ϕ.

Proof. It is immediate to see that the second assertion follows from the
first, so we only prove the first assertion by induction on ϕ. Consider the
case of ✷.
(Step) ϕ is ✷ø.
(→) Assume that (W,R,V ),w 

dlk,K
Π ✷ø. Then, for every w ′ ∈W such that

wRw ′,

(W,R,V ),w ′

dlk,K
Π ø.

So by the induction hypothesis,

w ′ ∈ [[ø]]A

for every w ′ ∈W such that wRw ′. Therefore, w ∈✷[[ø]]A = [[ϕ]]A.
(←) Assume that w ∈ [[✷ø]]A. Then w ′ ∈ [[ø]]A for every w ′ ∈W such
that wRw ′. Hence, by the induction hypothesis, (W,R,V ),w ′


dlk,K
Π ø for

every w ′ ∈W such that wRw ′. Thus, (W,R,V ),w 
dlk,K
Π ϕ. ⊣

In summary, we have the following reductions between decision problems:

Val
S
gk,K
Π
→Prop 2.12 SatS lk,KΠ

SatS lk,KΠ
→Prop 3.11 SatSFO2ΣML,Π

and

Val
S
ga,K
Π
→Prop 3.17 ValSdgk,KΠ

Val
S
dgk,K
Π
= Cor 1.10.6 of [14]ValSgk,KΠ

.

We are ready to prove that the validity problem of K modal logic with an
algebraic semantics is decidable.

Proposition 3.17. The validity problem Val
S
ga,K
Π
is decidable for every set

Π of propositional symbols.

Proof. Observe that

(idLML,g,h) : S
ga,K
Π → Sdgk,KΠ ,

where g and h are defined in Propositions 3.15 and 3.16, respectively, is a
satisfaction system reduction since idLML is computable. Observe that g and
h are surjective up to satisfaction because for every modal algebra A,

(A,{⊤}) ga,KΠ ϕ if and only if h(g(A,{⊤})) dgk,KΠ ϕ
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(see [14, p. 17]) and, for every descriptive Kripke structure (W,R,V ),

(W,R,V ) dgk,KΠ ϕ if and only if g(h(W,R,V ) ga,KΠ ϕ

(see [14, Theorem 1.10.7]). Hence, by Proposition 3.7 Val
S
ga,K
Π
is decidable if

Val
S
dgk,K
Π
is decidable. Note also that

ϕ is valid in Sdgk,KΠ if and only if ϕ is valid in Sgk,KΠ

(see [14, Corollary 1.10.6]). Thus, Val
S
ga,K
Π
is decidable if Val

S
gk,K
Π
is decidable.

The thesis follows since Val
S
gk,K
Π
is decidable, by Proposition 2.12. ⊣

3.3. Validity in Sga,IntΠ from Hintikka systems. The objective of this
subsection is to show that the validity problem for intuitionistic logic
with an algebraic semantics is decidable. We start by showing that the
dual of the validity problem for intuitionistic logic with a global Kripke
semantics is decidable using Hintikka systems. After that, we show that
there is a reduction from the satisfaction system for intuitionistic logic with
a Heyting finite algebra semantics to the satisfaction system with finite
Kripke structures.

Example 3.18 (Intuitionistic logic). Let

Sgk,IntΠ = (LIntΠ ,M
gk,Int
Π , gk,IntΠ )

be a satisfaction system for intuitionistic logic where:

• the set of formulas LIntΠ is inductively defined as follows:

– Π∪{ff} ⊆ LIntΠ ;

– ϕ1⇒ ϕ2,ϕ1∧ϕ2,ϕ1∨ϕ2 ∈ L
Int
Π provided that ϕ1,ϕ2 ∈ L

Int
Π .

Moreover, ∼ ϕ ∈ LIntΠ is defined as an abbreviation of ϕ⇒ ff provided

that ϕ ∈ LIntΠ ;

• Mgk,Int
Π is the class of all Kripke structures (W,R,V ) such that
– R is reflexive, transitive, and anti-symmetric;
– if w ∈ V (p) and wRw ′ then w ′ ∈ V (p);

• 
gk,Int
Π is such that

(W,R,V ) gk,IntΠ ϕ

whenever

(W,R,V ),w 
lk,Int
Π ϕ for each w ∈W,

where lk,IntΠ is inductively defined as follows:

– (W,R,V ),w 
lk,Int
Π p whenever w ∈ V (p);

– (W,R,V ),w 6lk,IntΠ ff;

– (W,R,V ),w 
lk,Int
Π ϕ1 ⇒ ϕ2 whenever if (W,R,V ),w

′

lk,Int
Π ϕ1

then (W,R,V ),w ′

lk,Int
Π ϕ2 for every w

′ such that wRw ′;
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– (W,R,V ),w 
lk,Int
Π ϕ1∧ϕ2 whenever (W,R,V ),w 

lk,Int
Π ϕi for i =

1,2;
– (W,R,V ),w 

lk,Int
Π ϕ1∨ϕ2 whenever either (W,R,V ),w 

lk,Int
Π ϕ1

or (W,R,V ),w 
lk,Int
Π ϕ2.

We want to investigate the validity problem in Sgk,IntΠ . For that we need to
introduce the concepts of tableau and Hintikka system (see [9]).

Definition 3.19. A tableau is a pair (Γ,∆) where Γ,∆ ⊆ LIntΠ . A tableau
(Γ,∆) is saturated if it fulfils the following closure conditions:

• if ã1∧ ã2 ∈ Γ then ã1 ∈ Γ and ã2 ∈ Γ;
• if ä1∧ ä2 ∈ ∆ then either ä1 ∈ ∆ or ä2 ∈ ∆;
• if ã1∨ ã2 ∈ Γ then either ã1 ∈ Γ or ã2 ∈ Γ;
• if ä1∨ ä2 ∈ ∆ then ä1 ∈ ∆ and ä2 ∈ ∆;
• if ä⇒ ã ∈ Γ then either ä ∈ ∆ or ã ∈ Γ.

A saturated tableau (Γ,∆) is disjoint if Γ∩∆ = ∅ and ff /∈ Γ. A Hintikka
system is a pair (T , �) where T is a non-empty set of disjoint saturated
tableaux and � is a partial order on T such that:

• if (Γ,∆),(Γ′,∆′) ∈ T and (Γ,∆)� (Γ′,∆′) then Γ⊆ Γ′ ( hereditarity);
• if (Γ,∆) ∈ T and ã ⇒ ä ∈ ∆ then there is (Γ′,∆′) ∈ T such that (Γ,∆)�
(Γ′,∆′), ã ∈ Γ′, and ä ∈ ∆′.

A pair (T , �) is aHintikka system for (Γ,∆) if there is (Γ′,∆′) ∈ T such that
Γ ⊆ Γ′ and ∆ ⊆ ∆′. Moreover, (T , �) is a Hintikka system for ϕ whenever
(T , �) is a Hintikka system for (∅,{ϕ}).

For instance, (∅,{ϕ}) is a tableau provided that ϕ ∈ LIntΠ .
In the sequel, we denote by sub(ϕ) the set of subformulas of ϕ. For the
next result we need to consider the following decision problem:

HS
S
gk,Int
Π
= (LIntΠ ,{ϕ : exists a Hintikka system T for ϕ,|T | ≤ 2

|sub(ϕ)|}).

Proposition 3.20. The decision problem co–Val
S
gk,Int
Π
is decidable, for every

set Π of propositional symbols.

Proof. We show that idLIntΠ is a reduction from co–ValSgk,IntΠ
to HS

S
gk,Int
Π
. It

is immediate that idLIntΠ is computable. It remains to show that

ϕ is not valid in Sgk,IntΠ if and only if
there is a Hintikka system (T , �)

for ϕ and |T | ≤ 2|sub(ϕ)|.

(→) Let (W,R,V ) ∈Mgk,Int
Σ and w ∈W be such that (W,R,V ),w 6lk,IntΠ ϕ.

Consider the family

T = {(Γu,∆u)}u∈W

of tableaux such that
{

Γu = {ø ∈ sub(ϕ) : (W,R,V ),u 
lk,Int
Π ø},

∆u = {ç ∈ sub(ϕ) : (W,R,V ),u 6
lk,Int
Π ç}.
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Define the relation � over T such that (Γu,∆u) � (Γu′,∆u′) whenever Γu ⊆
Γu′ .We now prove that (T , �) is aHintikka system forϕ with |T | ≤ 2|sub(ϕ)|.

(1) Assume that (Γu,∆u),(Γu′,∆u′) ∈ T and (Γu,∆u) � (Γu′,∆u′). Then,
by definition of �, Γu ⊆ Γu′ .

(2) Suppose that (Γu,∆u) ∈ T and ã ⇒ ä ∈ ∆u . So, (W,R,V ),u 6
lk,Int
Π

ã ⇒ ä. Therefore, there is u′ ∈W such that uR u′, ã ∈ Γu′ and ä ∈
∆u′ . Moreover, by hereditarity (see [27]), Γu ⊆ Γu′ and so (Γu,∆u)�
(Γu′,∆u′).

(3) (T , �) is a Hintikka system for ϕ since ∅ ⊆ Γw and ϕ ∈ ∆w .
(4) By construction, each Γu and ∆u are subsets of sub(ϕ). Moreover,

∆u = sub(ϕ)\Γu . Therefore, |T | ≤ 2
|sub(ϕ)|.

(←) Let (T , �) be a Hintikka system for (∅,{ϕ}) with |T | ≤ 2|sub(ϕ)|.
Consider the Kripke structure (T ,�,V ) where V is such that

V (p) = {(Γ,∆) : (Γ,∆) ∈ T and p ∈ Γ}.

Observe that if (Γ,∆) ∈V (p) and (Γ,∆)� (Γ′,∆′) then, by the first property
of Hintikka system, (Γ′,∆′)∈V (p). We now show, for every (Γ,∆)∈ T , that







if ç ∈ Γ then (T ,�,V ),(Γ,∆) lk,IntΠ ç,

if ç ∈ ∆ then (T ,�,V ),(Γ,∆) 6lk,IntΠ ç,

by induction on ç. The base and the cases where ç is either a conjunction or
a disjunction are immediate. We concentrate on ç being ç1⇒ ç2.

(1) Assume, by contradiction, ç1 ⇒ ç2 ∈ Γ and (T ,�,V ),(Γ,∆) 6
lk,Int
Π

ç1⇒ ç2. Therefore, there exists (Γ
′,∆′)∈ T such that (Γ,∆)� (Γ′,∆′),

(T ,�,V ),(Γ′,∆′) lk,IntΠ ç1, and (T ,�,V ),(Γ
′,∆′) 6lk,IntΠ ç2. Thus, by

the first property of the Hintikka system, ç1 ⇒ ç2 ∈ Γ
′. Then,

either ç1 ∈ ∆
′ or ç2 ∈ Γ

′ because (Γ′,∆′) is saturated. Hence, by

the induction hypothesis, either (T ,�,V ),(Γ′,∆′) lk,IntΠ ç2 or (T ,�,

V ),(Γ′,∆′) 6lk,IntΠ ç1 which is a contradiction.
(2) Assume that ç1 ⇒ ç2 ∈ ∆. Then, by the second property of the
Hintikka system, there is (Γ′,∆′) ∈ T such that (Γ,∆) � (Γ′,∆′),
ç1 ∈ Γ

′, and ç2 ∈ ∆
′. Therefore, by the induction hypothesis, (T ,�,

V ),(Γ′,∆′) lk,IntΠ ç1 and (T ,�,V ),(Γ
′,∆′) 6lk,IntΠ ç2. So (T ,�,

V ),(Γ,∆) 6lk,IntΠ ç1⇒ ç2.

Hence, we can conclude that co–ValIntΠ is decidable, since HS
Int
Π is decidable

for every set Π (see [9, p. 39]) and there is a reduction from the former to
the latter (see Proposition 2.8). ⊣

The following result is a direct consequence of Propositions 2.6 and 3.20.

Proposition 3.21. The decision problem Val
S
gk,Int
Π
is decidable, for every set

Π of propositional symbols.

We now describe an algebraic satisfaction system for intuitionistic logic.
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Example 3.22. The (global) algebraic satisfaction system

Sga,IntΠ = (LIntΠ ,M
ga,Int
Π , ga,IntΠ )

for intuitionistic logic over a set Π of propositional symbols is such that

• LIntΠ is as defined in Example 3.18;

• Mga,Int
Π is the class of all Heyting or pseudo-Boolean algebras with

distinguished value, that is, pairs (A,D) such that
– A= (A,∧,∨,⇒,⊥,V ) where (A,∧,∨,⇒,⊥) satisfies the following
identities, where a1 ≤ a2 whenever a1∧a2 = a1:
* a1∧a2 = a2∧a1 and a1∨a2 = a2∨a1;
* (a1∧a2)∧a3 = a1∧(a2∧a3) and (a1∨a2)∨a3 = a1∨(a2∨a3);
* (a1∧a2)∨a2 = a2 and a1∧(a1∨a2) = a1;
* a1∧a2 ≤ a3 if and only if a1 ≤ a2⇒a3;
* ⊥≤ a;
and V : Π→ A is a map;

– D = {⊤} where ⊤ is ⊥⇒⊥;
• 

ga,Int
Π ⊆Mga,Int

Π ×LIntΠ is the satisfaction relation such that

(A,{⊤}) ga,IntΠ ϕ

whenever [[ϕ]]A =⊤ and

[[ϕ]]A ∈ A

is inductively defined as follows:
– [[p]]A = V (p) for p ∈Π;
– [[ff]]A =⊥;
– [[ø1∧ø2]]

A = [[ø1]]
A∧[[ø2]]

A;
– [[ø1∨ø2]]

A = [[ø1]]
A∨[[ø2]]

A;
– [[ø1⇒ ø2]]

A = [[ø1]]
A⇒[[ø2]]

A.

We denote by

S fga,IntΠ

the satisfaction system obtained from Sga,IntΠ by taking the elements of

Mga,Int
Π where the set A is finite. Similarly, we denote by

S fgk,IntΠ

the satisfaction system obtained from Sgk,IntΠ (see Example 3.18) by taking

the elements ofMgk,Int
Π where the setW is finite.

Observe that from the point of view of validity it is equivalent to work
with Heyting algebras or finite Heyting algebras (see [9, Theorem 7.21]). We
start by introducing two relevant concepts.

Definition 3.23. A filter U in a Heyting algebra A is a subset of A such
that:

• ⊤ ∈U ;
• if a,a⇒b ∈U then b ∈U .
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A filter U is prime whenever U 6= A and if a∨b ∈ U then either a ∈ U or
b ∈U .

As a consequence we have that if a ∈U and a ≤ b then b ∈U .

Proposition 3.24. Let g :Mfga,Int
Π →Mfgk,Int

Π be such that

g(A,{⊤}) = (W,R,V ),

where

• W is the set of all prime filters in A;
• R is such that URU ′ whenever U ⊆U ′;
• V (p) is {U ∈W : V (p) ∈U}.

Then, for every U ∈W ,

[[ϕ]]A ∈U if and only if (W,R,V ),U 
fgk,Int
Π ϕ.

Furthermore,

(A,{⊤}) fga,IntΠ ϕ if and only if (W,R,V ) fgk,IntΠ ϕ.

Proof. It is immediate to see that the second assertion follows from
the first (taking into account Theorem 7.41 of [9]). The proof of the first
statement follows by induction on ϕ. We only prove the step where ϕ is
ϕ1⇒ ϕ2.

(→) Assume that [[ϕ1⇒ ϕ2]]
A ∈ U , URU ′ and (W,R,V ),U ′


fgk,Int
Π ϕ1.

Hence, by the induction hypothesis, [[ϕ1]]
A ∈U ′. Thus, [[ϕ2]]

A ∈U ′ because
U ′ is a filter and [[ϕ1⇒ ϕ2]]

A = [[ϕ1]]
A⇒[[ϕ2]]

A ∈ U ′. So, by the induction

hypothesis, (W,R,V ),U ′

fgk,Int
Π ϕ2. Hence, (W,R,V ),U 

fgk,Int
Π ϕ1⇒ ϕ2.

(←) Assume that (W,R,V ),U 
fgk,Int
Π ϕ1 ⇒ ϕ2. Then, for every U ′ ∈W

such that URU ′ if (W,R,V ),U ′

fgk,Int
Π ϕ1 then (W,R,V ),U ′


fgk,Int
Π ϕ2.

Consider two cases:

(1) Assume that [[ϕ2]]
A ∈U .We show that [[ϕ1⇒ ϕ2]]

A ∈U . Observe that
[[ϕ2]]

A ≤ [[ϕ1⇒ ϕ2]]
A because [[ϕ2]]

A∧[[ϕ1]]
A ≤ [[ϕ2]]

A. So, the thesis
follows.

(2) Assume that [[ϕ2]]
A /∈U . Let

F = {a ∈ A : ∃b ∈U b∧[[ϕ1]]
A ≤ a}.

Observe that:

(a) U ⊆ F . It is enough to note that u∧[[ϕ1]]
A ≤ u for every u ∈U .

(b) [[ϕ1]]
A ∈ F since ⊤∧[[ϕ1]]

A ≤ [[ϕ1]]
A and ⊤ ∈U .

(c) F is a filter. Indeed, ⊤ ∈ F since ⊤∧[[ϕ1]]
A ≤ ⊤ and ⊤ ∈ U . For the

other condition, assume that a1,a1⇒a2 ∈ F . Then there are b1,b ∈U
such that

b1∧[[ϕ1]]
A ≤ a1 and b∧[[ϕ1]]

A ≤ a1⇒a2.
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Hence,

b∧a1∧[[ϕ1]]
A ≤ a2.

Thus,

b∧b1∧[[ϕ1]]
A ≤ a2.

Since b∧b1 ∈U then a2 ∈ F .
(d) We prove that [[ϕ2]]

A ∈ F . Assume, by contradiction, that [[ϕ2]]
A /∈ F .

Then (see [9, Theorem 7.41]) there is a prime filter U ′ such that
F ⊆ U ′ and [[ϕ2]]

A /∈ U ′. Thus, U ⊆ U ′ by (a) and so URU ′.

Therefore, by the induction hypothesis, (W,R,V ),U ′

fgk,Int
Π ϕ1 by

(b) but (W,R,V ),U ′ 6fgk,IntΠ ϕ2 which is a contradiction because

(W,R,V ),U 
fgk,Int
Π ϕ1⇒ ϕ2. Thus, [[ϕ2]]

A ∈ F and so there is b ∈U
such that

b∧[[ϕ1]]
A ≤ [[ϕ2]]

A.

Hence, b ≤ [[ϕ1]]
A⇒[[ϕ2]]

A and, consequently, [[ϕ1]]
A⇒[[ϕ2]]

A ∈U .⊣

We now define a map from finite Kripke structure for intuitionistic logics
to finite pseudo-Boolean algebra that preserves and reflects satisfaction.

Proposition 3.25. Let h :Mfgk,Int
Π →Mfga,Int

Π be such that

h(W,R,V ) = ((UpW, ∩ , ∪ ,⇒, ∅, V ),{W }),

where

• UpW is the set of all subsets of W that are upwards closed with respect
to R;

• X⇒Y is {w ∈W : ∀w ′ ∈W if wRw ′ and w ′ ∈ X then w ′ ∈ Y};
• V (p) = {w ∈W : w ∈ V (p)}.

Then, for every w ∈W ,

(W,R,V ),w 
fgk,Int
Π ϕ if and only if w ∈ [[ϕ]]A,

where A= (UpW, ∩ , ∪ ,⇒,∅,V ). Furthermore,

(W,R,V ) fgk,IntΠ ϕ if and only if ((UpW, ∩ , ∪ ,⇒,∅,V ),{W }) fga,IntΠ ϕ.

Proof. It is immediate to see that the second assertion follows from the
first, so we only prove the first assertion by induction on ϕ. Consider the
case of ϕ1⇒ ϕ2.

(→) Assume that (W,R,V ),w 
fgk,Int
Π ϕ1⇒ϕ2,w ′ ∈W such thatwRw ′ and

w ′ ∈ [[ϕ1]]
A. Then, by the induction hypothesis, (W,R,V ),w ′


fgk,Int
Π ϕ1 and

so (W,R,V ),w ′

fgk,Int
Π ϕ2. Thus, by the induction hypothesis, w ′ ∈ [[ϕ2]]

A.

Hence, w ∈ [[ϕ1⇒ ϕ2]]
A.

(←) Assume w ∈ [[ϕ1⇒ ϕ2]]
A, w ′ ∈W , wRw ′, and (W,R,V ),w ′


fgk,Int
Π

ϕ1. Hence, by the induction hypothesis, w ′ ∈ [[ϕ1]]
A and so w ′ ∈ [[ϕ2]]

A.
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Once again by the induction hypothesis, (W,R,V ),w ′

fgk,Int
Π ϕ2. Therefore,

(W,R,V ),w 
fgk,Int
Π ϕ1⇒ ϕ2. ⊣

In summary, we have the following reductions between decision problems:

Val
S
gk,Int
Π
→Prop 3.21 co–ValSgk,IntΠ

→Prop 3.20 HSSgk,IntΠ

and

Val
S
fga,Int
Π
→Prop 3.26 ValS fgk,IntΠ

and

ValSga,IntΠ
=Thm 7.21 of [9] ValS fga,IntΠ

, Val
S
gk,Int
Π
=Thm 2.5.60 of [27] ValS fgk,IntΠ

.

We are ready to prove that the validity problem for the intuitionistic logic
endowed with algebraic semantics is decidable.

Proposition 3.26. The validity problem ValSga,IntΠ
is decidable for every set

Π of propositional symbols.

Proof. Observe that

(idLIntΠ ,g,h),

where g and h are defined in Propositions 3.24 and 3.25, respectively, is
a satisfaction system reduction. Moreover, g and h are surjective up to
satisfaction because for every finite Heyting algebra (A,D),

(A,D) fga,IntΠ ϕ if and only if h(g(A,D)) fga,IntΠ ϕ

(see [9, Theorem 8.18]) and, for every finite Kripke structure (W,R,V ),

(W,R,V ) fgk,IntΠ ϕ if and only if g(h(W,R,V )) fgk,IntΠ ϕ

(see [27, Theorem 2.5.60]). Therefore, by Proposition 3.7 Val
S
fga,Int
Π

is

decidable if Val
S
fgk,Int
Π
is decidable. On the other hand, ValSga,IntΠ

is decidable if

and only if Val
S
fga,Int
Π
is decidable (see [9, Theorem 7.21]). Note also that

ϕ is valid in S fgk,IntΠ if and only if ϕ is valid in Sgk,IntΠ

(see [3]). The thesis follows because Val
S
gk,Int
Π
is decidable, by Proposition

3.21. ⊣

§4. Reductions for meet-combination. Herein we discuss reductions
between the satisfaction system resulting from meet-combination and their
components. Meet-combination was introduced in [25, 30] and it provides
an axiomatization for the product of two matrix logics.
Let Σ be a signature, that is, a family {Σ(n)} where Σ(n) is a set for every
n ∈ N such that tt,ff ∈ Σ(0). Each element of Σ(n) is a connective of arity n.
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Definition 4.1. A matrix satisfaction system over Σ is a triple

(LΣ,AΣ, Σ),

where

• LΣ is inductively defined as follows: Σ
(0) ⊆ LΣ and if c ∈ Σ

(n) and
ϕ1, ...,ϕn ∈ LΣ then c(ϕ1, ...,ϕn) ∈ LΣ;

• AΣ is a non-empty class of matrices over Σ, that is, pairs (A,D) where
– A is an algebra over Σ, that is, a pair (A,{{cA}c∈Σ(n)}n∈N) where

A is a non-empty set and cA : An → A is a map for each c ∈ Σ(n).
Moreover, we denote by [[ϕ]]A the denotation of ϕ in A;
– D is a non-empty subset of A (the elements of D are called
distinguished elements) such that ttA ∈D and ffA /∈D;

• Σ⊆AΣ×LΣ is such that

(A,D) Σ c(ϕ1, ...,ϕn)

whenever cA([[ϕ1]]
A, ...,[[ϕn]]

A) ∈D.

Observe that a matrix satisfaction system is also a satisfaction system
where each semantic structure inM is a pair (A,D).
Given signatures Σ1 and Σ2, let

Σ⌈12⌉

be the signature such that, for each n ∈ N, Σ(n)
⌈12⌉
is

{⌈c1c2⌉ | c1 ∈ Σ
(n)
1 ,c2 ∈ Σ

(n)
2 }∪{⌈c1tt2⌉ | c1 ∈ Σ

(n)
1 }∪{⌈tt1c2⌉ | c2 ∈ Σ

(n)
2 },

where the constructor ⌈c1c2⌉ is the meet-combination of c1 and c2. Observe
that we look at signature Σ⌈12⌉ as an enrichment of Σ1 via the embedding

ç1 : c1 7→ ⌈c1tt2⌉ for each c1 ∈ Σ
(n)
1 and similarly for Σ2. For the sake of

lightness of notation, in the context of Σ⌈12⌉, from now on, we may write c1

for ⌈c1tt2⌉ when c1 ∈ Σ
(n)
1 and c2 for ⌈tt1c2⌉ when c2 ∈ Σ

(n)
2 . In this vein, for

k = 1,2, we look at LΣk as a subset of LΣ⌈12⌉ . Given a formula ϕ over Σ⌈12⌉
and k ∈ {1,2}, we denote by ϕ|k the formula in LΣk inductively defined as
follows:

• ϕ|k is ttk whenever ϕ is ⌈c1c2⌉(ϕ1, ...,ϕn) and ck is ttk ;
• ϕ|k is ck(ϕ1|k, ...,ϕn|k) whenever ϕ is ⌈c1c2⌉(ϕ1, ...,ϕn) and ck is not
ttk .

Definition 4.2. The meet-combination of matrix satisfaction systems
SΣ1 = (LΣ1,AΣ1, Σ1) and SΣ2 = (LΣ2,AΣ2, Σ2) over signatures Σ1 and Σ2,
respectively, denoted by

⌈SΣ1 SΣ2⌉

is the matrix satisfaction system

(LΣ⌈12⌉,AΣ⌈12⌉, Σ⌈12⌉)
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over the signature Σ⌈12⌉ such that AΣ⌈12⌉ is the class of product matrices

{(A1,D1)× (A2,D2) : (A1,D1) ∈ AΣ1 and (A2,D2) ∈ AΣ2}

over Σ⌈12⌉ such that each (A1,D1)× (A2,D2) = (A1×A2,D1×D2) where

A1×A2 = (A1×A2,{{⌈c1c2⌉
A1×A2}

⌈c1c2⌉∈Σ
(n)
⌈12⌉
}n∈N)

with

⌈c1c2⌉
A1×A2((a1,b1), ...,(an,bn)) =



















(c1A1(a1, ...,an),c2A2(b1, ...,bn)) if c1 ∈ Σ
(n)
1 and c2 ∈ Σ

(n)
2 ;

(tt1A1,c2A2(b1, ...,bn)) if c1 is tt1 and c2 ∈ Σ
(n)
2 ;

(c1A1(a1, ...,an),tt2A2) if c2 is tt2 and c1 ∈ Σ
(n)
1 .

The following results were proved in [25, 30].

Proposition 4.3. Let ϕ ∈ LΣ1 ∪LΣ2 , (A1,D1) ∈ AΣ1 , and (A2,D2) ∈ AΣ2 .
Then

[[ϕ]]A1×A2 =

{

([[ϕ]]A1,[[tt2]]
A2) if ϕ is in LΣ1,

([[tt1]]
A1,[[ϕ]]A2) if ϕ is in LΣ2 .

Proposition 4.4. Let ϕ ∈LΣ⌈12⌉ , (A1,D1) ∈AΣ1 , and (A2,D2) ∈AΣ2 . Then

[[ϕ]]A1×A2 =
(

([[ϕ|1]]
A1×A2)1,([[ϕ|2]]

A1×A2)2
)

.

Proposition 4.5. Let ϕ ∈LΣ⌈12⌉ , (A1,D1) ∈AΣ1 , and (A2,D2) ∈AΣ2 . Then

(A1,D1)× (A2,D2) Σ⌈12⌉ ϕ iff (A1,D1) Σ1 ϕ|1 and (A2,D2) Σ2 ϕ|2.

Proof. Observe that (A1,D1)×(A2,D2)Σ⌈12⌉ ϕ iff [[ϕ]]
A1×A2 is inD1×D2

if and only if ([[ϕ|1]]
A1×A2)1 is in D1, ([[ϕ|2]]

A1×A2)2 is in D2, by Proposition

4.4, iff [[ϕ|1]]
A1 is in D1, [[ϕ|2]]

A2 is in D2, by Proposition 4.3, if and only if
(A1,D1) Σ1 ϕ|1 and (A2,D2) Σ2 ϕ|2. ⊣

We omit the proof of the following result since it is a straightforward
consequence of Proposition 4.5.

Proposition 4.6. Let SΣ1 = (LΣ1,AΣ1, Σ1) and SΣ2 = (LΣ2,AΣ2, Σ2) be
matrix satisfaction systems over signatures Σ1 and Σ2, respectively. Then

(ô1,ô2,g1,g2,h),

where

• ôk(ϕ) = ϕ|k for k = 1,2;

• gk((A1,D1)× (A2,D2)) = (Ak,Dk) for k = 1,2;
• h((A1,D1),(A2,D2)) = (A1,D1)× (A2,D2);

is a satisfaction system reduction from ⌈SΣ1 SΣ2⌉ to SΣ1×SΣ2 .
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Proposition 4.7. Let SΣ1 = (LΣ1,AΣ1, Σ1) and SΣ2 = (LΣ2,AΣ2, Σ2) be
matrix satisfaction systems over arbitrary signatures Σ1 and Σ2, respectively.
Then Val⌈SΣ1 SΣ2⌉ is decidable whenever ValSΣ1 and ValSΣ2 are decidable for

every pair of signatures Σ1 and Σ2.

Proof. Assume that ValSΣ1 and ValSΣ2 are decidable. Since there is a
satisfaction system reduction, by Proposition 4.6, from ⌈SΣ1 SΣ2⌉ toSΣ1×SΣ2
where gk for k = 1,2 and h are surjective up to satisfaction then Val⌈SΣ1 SΣ2⌉
is decidable by Proposition 3.7. ⊣

We now consider the meet-combination

⌈Sga,KΠ Sga,IntΠ ⌉

of the matrix satisfaction system for K modal logic and the matrix
satisfaction system for intuitionistic logic both endowed with algebraic
semantics.

Proposition 4.8. The validity problem in the meet-combination

⌈Sga,KΠ Sga,IntΠ ⌉

is decidable.

Proof. We know from Propositions 3.17 and 3.26 that Val
S
ga,K
Π

and ValSga,IntΠ
are decidable, respectively. Therefore, by Proposition 4.7,

Val⌈Sga,KΠ S
ga,Int
Π ⌉ is decidable. ⊣

§5. Concluding remarks. We presented satisfaction systems as the right
general abstraction for analyzing in a semantic way logical decision
problems. The essential notion of a reduction from a satisfaction system
to a finite collection of satisfaction systems was here introduced. We showed
that reductions between satisfaction systems induce reductions between
the satisfiability and the validity problems leading to general results on
decidability. We also consider the meet-combination of logics and proved
that the validity problem in the meet-combination is decidable provided that
the validity problem in the components is also decidable. An illustration
was provided for the meet-combination of K modal logic with algebraic
semantics and intuitionistic logic with algebraic semantics.
We intend to extend the reduction technique proposed herein for obtaining
results about entailment and deductive consequence problems (having
hypotheses). The general setting should be defined over the notion of
consequence system. In this case, preservation of semidecidability seems
to play an important role. Moreover, it would also be interesting to use the
fact that if some non-decidable problem can be reduced to another problem
then the latter one is also not decidable.
We think that preservation of decidability for other forms of combination
should also be considered. For instance, the preservation of decidability
in fusion of modal logics (see [22]) was already addressed but not using
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reductions. The other case that comes to mind is to investigate reduction
techniques in the fibring of logics (see [8, 12, 32, 36]).
Another challenging extension of this work is to adapt the reduction
techniques to enumerable sets of logics, namely in the context of logics of
formal inconsistency (see [7]) and many-valued logics (see [15]).
Moreover, we intend to obtain preservation results for complexity classes
when in the presence of reductions. In particular we would like to relate
the complexity class of logical decision problems for the meet-combination
with the complexity classes of logical decision problems for the component
logics.
Finally, following the recent work of [1], we intend to investigate logical
decision problems and their reductions for logics presented by a polynomial
ring calculus.
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