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REDUCTION TECHNIQUES FOR PROVING DECIDABILITY IN LOGICS
AND THEIR MEET-COMBINATION

JOAO RASGA, CRISTINA SERNADAS, AND WALTER CARNIELLI

Abstract. Satisfaction systems and reductions between them are presented as an
appropriate context for analyzing the satisfiability and the validity problems. The notion
of reduction is generalized in order to cope with the meet-combination of logics. Reductions
between satisfaction systems induce reductions between the respective satisfiability problems
and (under mild conditions) also between their validity problems. Sufficient conditions
are provided for relating satisfiability problems to validity problems. Reflection results for
decidability in the presence of reductions are established. The validity problem in the meet-
combination is proved to be decidable whenever the validity problem for the components are
decidable. Several examples are discussed. namely, involving modal and intuitionistic logics,
as well as the meet-combination of K modal logic and intuitionistic logic.

§1. Introduction. A logical decision problem is a pair (L.I') where L is
the set of formulas of a certain logic and I is a subset of L. When looking
at a logic from a semantic perspective we can consider two main decision
problems. The satisfiability problem is the pair

(L.{y € L7y is a satisfiable formula})
and the validity problem is the pair
(L.{y € L:y isavalid formula}).

Logic decision problems were firstly stated by David Hilbert (Entschei-
dungsproblem; see [18, 19]) for first-order logic in the following way.
The Satisfiability Problem: Given a first-order formula ¢, is ¢ satisfiable?
The Validity Problem: Given a first-order formula ¢, is ¢ valid? and the
Provability Problem: Given a first-order formula ¢. is ¢ provable (in a given
proof system)?

The main interest in decision problems is related to their decidability.
Intuitively speaking, a decision problem (L.I") is decidable if there is an
algorithm (a recipe or a finite set of rules) that when applied to an argument
@ € L returns either 1 if ¢ € I or 0 otherwise. When dealing with a
decision problem in logic, we have two different options. Either we work with
formulas all over or we convert our logical decision problem to the universe
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of the natural numbers (see, for instance, [17, 26, 33]). The latter option was
followed by Kurt Godel while proving the Incompleteness Theorems, by
giving what we now call Godelization maps (see [11, 13, 28]). The essential
requirement for a Godelization map is to guarantee that the logical decision
problem is decidable if and only if the corresponding problem in the natural
numbers’ setting is decidable. When working with natural numbers, Turing
machines and recursive functions are often adopted as the computation
model (see [20, 34]). If we decide to work with other universes it seems
interesting to use an abstract high level language (see [31]).

Proving or disproving decidability is not always a simple task. However,
there are some techniques that can help besides the direct way of producing a
program that computes the characteristic map of the set under consideration.
The finite model property technique has been used in the context of first-
order logic (see [6, 10, 23]) and modal logic. In first-order logic the technique
was used for showing that the satisfiability problems in FO(3*v*) (Bernays—
Schénfinkel class), FO(3*v3*) (Ackermann class), and FO? are decidable.
In normal modal logic, filtrations have been used for showing that several
normal modal logics have the finite model property (see [5]).

Another very important technique is reduction. Intuitively, a problem is
reducible to another problem whenever a method (an algorithm) for solving
the latter provides a method (an algorithm) for solving the former. The
concept was introduced by Alan Turing (see [35]) in terms of oracles. Later
on Stephen Kleene gave a notion of reduction using recursive functions (see
[21]) on the natural numbers.

Nowadays there is an abstract notion of many-to-one reducibility over the
set of natural numbers (see [26. 34]). This notion can be adapted to logical
decision problems, by saying that a reduction from (L.I') to (L'.T”) is a
computable map 7 : L — L’ such that, for each ¢ € L,

pc ifandonlyif t(p)ecl”.

However, we need a generalized version of this concept appropriate for
meet-combination of logics (that provides an axiomatization of the product
of matrix logics; see [25, 30]). In the meet-combination of two logics a
connective is a pair composed by a connective of each logic inheriting only
the common logical properties of the component connectives. So, to transfer
decidability results from the component logics to the meet-combination we
need to extend the notion of reduction from one logical decision problem to
a non-empty finite collection of logical decision problems.

The reductions described in the literature are for specific logics and
no general mechanism is presented for reduction between logical decision
problems. Moreover, in most of the cases the reduction is between the same
kind of decision problems, that is, either between two satisfiability problems,
or between two validity problems. One of the exceptions is related to the
equivalence between the satisfiability problem and the validity problem for
first-order logic, that is, the satisfiability problem for first-order logic is
decidable if and only if the validity problem for first-order logic is decidable
(see [18, 19]).
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The paper is organized as follows. In Section 2, we adopt the notion of
satisfaction system (introduced in [2]) as the appropriate framework for
setting-up logical decision problems based on semantics. We define decision
problem over a satisfaction system and provide examples of the satisfiability
(respectively, the dual of the satisfiability) and of the validity (respectively,
the dual of the validity) problems, proving that decidability is reflected
by reduction. We end the section by establishing a sufficient condition for
having a reduction from the validity problem in a satisfaction system to the
satisfiability in another satisfaction system.

Section 3 concentrates on the important concept of reduction between
a satisfaction system and a finite collection of satisfaction systems. Two
main results are established: decidability of the satisfiability problem for
the source satisfaction system whenever the satisfiability problem for each
target satisfaction system is decidable and, under some mild conditions,
decidability of the validity problem for the source satisfaction system
whenever the validity problem for each target satisfaction system is
decidable. Both results capitalize on the fact that a satisfaction system
reduction induces a reduction between the corresponding satisfiability
problems (similarly for validity problems). Three examples are provided.
(1) Decidability of the satisfiability problem in K modal logic endowed with
local Kripke semantics from the decidability of the satisfiability problem in
FO? first-order logic endowed with contextual satisfaction. (2) Decidability
of the validity problem in K modal logic endowed with algebraic semantics
from the decidability of the validity problem in K modal logic endowed with
global Kripke semantics using Stone Representation Theorem and Jonssén—
Tarski Theorem (see [4, 9]). (3) Finally, decidability of the validity problem
in intuitionistic logic endowed with algebraic semantics from the decidability
of the validity problem in intuitionistic logic endowed with global Kripke
semantics using Stone Representation Theorem (see [9, 27]).

Finally, in Section 4 we start by introducing the meet-combination of
two (matrix) satisfaction systems. We show that there is a reduction from
the satisfaction system for meet-combination to the collection composed by
the component satisfaction systems and prove that the validity problem in
meet-combination is decidable provided that the validity problem in each
component logic is decidable as well. We end up the section by discussing
the meet-combination of K modal logic and intuitionist logic both endowed
with algebraic semantics.

§2. Satisfaction system decision problems. The objective of this section
is to introduce some important decision problems on logics presented by a
satisfaction system.

DEFINITION 2.1. A satisfaction system is a triple
S =(LM.I),

where L is a non-empty set of formulas, M is a class of semantic structures,
and IFC M x L is a binary relation called the satisfaction relation.
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ExaMmpLE 2.2. The local Kripke satisfaction system
Sk = (LME MEE, ISR
for K modal logic over a set IT of propositional symbols is such that

° LI\H/IL is the set of modal formulas inductively defined as follows:
- mc LMy
— 2. Op € LML provided that ¢ € LML
— 1 D s € LML provided that ¢y, € LML
o MK is the class of all pointed Kripke structures, that is, pairs
((W.R.V),w) where (W_.R.V) is a Kripke structure, i.e.,
— W is a non-empty set whose elements are called worlds;
— R C W?2is a relation called the accessibility relation;
— V11 = W is a map called valuation;
and w € W;
o IHEKC pqlK o pICK 49 the local satisfaction relation of a formula %)
by (W.R.V).,w), written

(W.RV).wFEE o

inductively defined as follows:
— (W.R.V).w Il—ﬁ"K p whenever w € V (p) for p € I:
— (W.RV).w IFHEE = whenever (W.R.V),w /15
- (W.RV),w Iklnk"K 1 D ¢ whenever either (W, R,V ), w IV%’K 1
or (W,R, V),w ”_H ("2
— (W.R.V).w H—lnk’K O whenever (W.R.V).w' IFIIIT("K ¢ for some
w’ € W such that w Rw’.

We now present another modal satisfaction system using the previous
example.

ExampLE 2.3. The global satisfaction system
for K modal logic is such that

° Mgnk K is the class of all Kripke structures;

° Il—gk”KQ Mgnk Ky L%I/IL is the global satisfaction relation of a formula ¢
by (W,R.,V ), written

(W.RV) IFEK o
that holds when (W.R.V),w H—%‘"K o foreveryw € W.
DEFINITION 2.4. A decision problem on a satisfaction system
S=(LM,I)
is a pair (L.I') where I’ C L.
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Informally, such a decision problem can be stated as
givenp e L, ispel?

In order to discuss decision problems induced by the satisfaction system
S we need some notions. A formula ¢ € L is satisfiable if there is M € M
such that M I+ ¢. Moreover, ¢ is valid whenever M I ¢ for every M € M.

DEerINITION 2.5. The satisfiability problem is the pair
Sats = (L.{¢ € L : ¢ is satisfiable}).
The co-satisfiability problem is the pair
co-Sats = (L,{p € L : ¢ is not satisfiable}).
The validity problem is the pair
Valg = (L.{p € L : ¢ is valid}).
The co-validity problem is the pair
co-Valg = (L. {p € L : ¢ is not valid}).
A decision problem (L.I") is decidable whenever the characteristic map
xr L —A{0.1}
defined as follows:

1 whenever ¢ €T,

X(L.F)(SO)Z 0 otherwise

is computable (see [31]).
PROPOSITION 2.6. Let (L.T") be a decision problem. Then
(L.T) is decidable  if and only if (L,L\T) is decidable.
Proor. Observe that
X(L,L\r)(%o) =1-xwn (¢) and A(LT) (p) =1 _X(L,L\F)(SO)-
So x(z.r) 1s computable if and only if y(; ;\r) is computable. -
As a consequence,
Satg is decidable if and only if co-Satg is decidable,
and
Valg is decidable if and only if co-Valg is decidable.

DEFINITION 2.7. Let k € N*, Dg = (L.T") be a decision problem on S =
(L.M. ), and Dgi = (L'.T"") a decision problem on S’ = (L, M‘, IF) for
each i = 1.....k. A collection of computable maps ¢’ : L — L' for each
i =1.....k i1sareduction from Dg to Dy, ..., Dgi, denoted by

(t!,....7%) : Dg = Dgi x .- x D,
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whenever
p el ifandonlyif t'(¢)eT’ foreachi=1,... k.

PROPOSITION 2.8. Let (t',....7%) : Dg — Dgi x --- x Dg be a reduction.
Then, Dy is decidable whenever Dy is decidable for eachi =1, ..., k.

PROOF. Assume that Dy is decidable for each i = 1.....k. Then, yp, is a
computable map for each i = 1, ..., k. Observe that

k
aps(0) =[] xpg 0 tile0).
i=1

since (7', ....7%) is a reduction. Hence, yp, is a computable map. Therefore,
Dy is decidable. N

It is worthwhile to discuss the relationship between the satisfiability and
the validity problems. For that we need to introduce the following notion.

DEFINITION 2.9. A satisfaction system S’ = (L/. M, IF) has a (standard )
negation — if L’ is closed for —, that is, if ¢ € L’ then - € L', and

M'IF¢ ifand onlyif M'If—ep.
Observe that not all negations have the property above (see [7]).
ExampLE 2.10. The local Kripke satisfaction system
glkK
m
defined in Example 2.2 has the negation —.

PrOPOSITION 2.11. Let S = (L. M. V) and S' = (L. M’ ') be satisfaction
systems such that S" has a negation —. Assume that there is a map f : M —

oM’ such that { (M) = M and
Mo ifandonlyif M'IF ¢ foreach M' € f(M).
Then, there is a reduction from Vals to co-Sats:. Moreover,
Satg: is decidable implies Vals is decidable.

PrOOF. We start by showing that the map 7 : L — L such that v — -y
1s a reduction from Valg to co-Satg:.

(1) Itis immediate to see that 7 is a computable map.
(2) We must show that

pisvalidin § ifand onlyif - isnot satisfiable in S’.
(—) Assume that ¢ is valid in S. Thus, M |- ¢ for every M € M. Therefore,
by hypothesis, M’ I ¢ forevery M’ € f(M)and M € M.Hence, M’ |/ =

for every M’ € f(M) and M € M. Since f (M) = M’ then there is no
M’ € M’ such that M’ I = . Thus —¢ is not satisfiable in S’.
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(¢<-) Assume that —¢ is not satisfiable in S’. Then M’ I ¢ for every
M' e M’'. Hence, M’ I ¢ for each M’ € M'. Let M € M. Then M’ IH ¢
for every M’ € f(M ) and so M I .

Assume that Satg is decidable. Then. co-Sats: is decidable (see Proposition
2.6). Therefore, Valg is decidable by Proposition 2.8. -

PropPoSITION 2.12. The problem ValSigIk.K is decidable for every set Il of
propositional symbols.

ProoF. Westart by observing that Sﬁk'K and satisfy the requirements
of Proposition 2.11 by taking f(W.R. V)= {(W.R,V)w):w € W}.
Again, by Proposition 2.11,

Slk,K

SatSll_l;K is decidable implies Valgax is decidable.
I

The result follows since SatS#K is decidable as we will show in Proposition
3.11. -

§3. Satisfaction system reductions. We now introduce the concept of
reduction from one satisfaction system to a non-empty finite collection of
satisfaction systems and discuss its impact on reductions between decision
problems.

DErFINITION 3.1. A reduction from satisfaction system (L, M, IF) to
satisfaction systems (L', M1, IF), ....(L*, M¥ IFK) where k € N*, is a tuple

(', ... 5 gh gk,
where, foreachi =1, ...k,

e 7/ : L — L' is a computable map:
e g : M — M'is a map such that

if M IF o then g"(M) IH 7% (p)
for every M € M:
and h: M! x --- x M¥ — M is a map such that
it M IF (o) ... M IFKT8(p) then A(My,.... M) Ik
for every M; € M! withi =1,....k.
In the sequel we denote such a reduction by
(<t ghn) (LM IF) = (LY MY, IFY) x o x (LK, ME, 1R,

We compare the notion of reduction for k£ = 1 with the usual definition of
satisfaction system morphism (see [2, 29]).

DEFINITION 3.2. A satisfaction system morphism from S = (L. M, IF) to
S' = (L' M’ W) isapair (h.h) where h : L — L' and h : M’ — M are maps
such that

M'IF h(p) ifandonlyif h(M')I- .
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Hence, without further assumptions, these two notions do not coincide.
We now show that a satisfaction system reduction induces a reduction over
the respective satisfiability problems.

1

PropoSITION 3.3. Let (7!,....75.g'....g"h) : S — S x - x S* be a
satisfaction system reduction. Then,
(r!,....7%)
is a reduction from Satg to Sats,, ..., Sats, .
ProoF. We must show that
¢ is satisfiable in S iff 7() is satisfiable in S’ foreach i =1, ... k.

(—) Assume that 7/(¢) is not satisfiable in S’ for some i = 1, ....k. Then,
there is no M; € M’ such that M; I 7/(y). Hence, there isno M € M such
that g’ (M) I 77 (). Therefore, there isno M € M such that M I . Thus,
 is not satisfiable in S.

(<) Assume that 7’ () is satisfiable in S’ foreach i = 1, ..., k. Then, there are
M, € M, ....M; € MF¥ such that M; I- i () for each i = 1. ....k. Hence,
h(M. ....My) I . Therefore, ¢ is satisfiable in S. -

PrOPOSITION 3.4. Let (7!, ....7%.g'.....g".h): S — S x --- x S¥ be a satis-
faction system reduction. Then, Sats is decidable provided that Sats, ..., Sat g
are decidable.

PrOOF. Assume Satg, ...,Satge are decidable. By Proposition 3.3,
(z!.....7%) : Satg — Satg, x --- x Satg,
is a reduction. Hence, by Proposition 2.8, Sats is decidable. -

Similarly, a satisfaction system reduction induces a reduction over the
respective validity problems whenever the semantic translation maps are
surjective up to satisfaction, as we define now.

DerNITION 3.5, Let (¢!, ....75.¢'. ....g5h) : S — S' x --- x S* be a
satisfaction system reduction. The maps g',....g".h are surjective up to
satisfaction whenever

e forevery M € M,
h(gi(M). ....gx(M)) I+ ifand onlyif M IF:
o forevery My e M, ... M; € MK,
gi(h(My,....My)) IF () ifand onlyif M; IH 77 ()
foreachi =1, ....k.

ProPOSITION 3.6. Let (7!.....75.g'....g"h) 1 S — S x --- x S* be a
satisfaction system reduction such that g'.....g".h are surjective up to
satisfaction. Then,

(7!, ....7%)

is a reduction from Vals to Vals,. .... Vals, .
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ProoF. We must show that

@isvalidin § ifand onlyif 7'(¢)isvalidin S’ foreachi =1.....k.
(=) Let M; € M fori =1,....k. Then h(M;. ....M;) € M and so

h(My,....M;) - .
because ¢ is valid in S. Since (¢!, ....75.g'. ....g%.h) is a reduction,
g (h(My. ... M) IF 7' ()
for every i = 1, ...,k. Therefore, by surjectivity up to satisfaction,
M; IF (o)

foreveryi =1,....k.
(<) Let M € M. Then g'(M) € M' foreachi =1,....k. Hence

g (M) IF ' (),
because 7/(¢) is valid for each i = 1,....k. Since (¢!, ....75.g'.....g%.h) is a
reduction,
h(g"(M)....g"(M)) I .
Moreover, by surjectivity up to satisfaction, M I+ . -

PROPOSITION 3.7. Let (7', ....7%.g",....g".h) : S — S x --- x S¥ be a satis-
faction system reduction such that g', ....g* . h are surjective up to satisfaction.
Then, Vals is decidable provided that Vals, ..., Valg are decidable.

Proor. By Proposition 3.6,
(!, ....7%) : Valg — Valg, x --- x Valg,

is a reduction. So, by Proposition 2.8, Valg is decidable if Valg:, ..., Valg are
decidable. =

3.1. Satisfiability of Sll_lf'Kfrom satisfiability of SZFN?LZH. We want to show,
using the results in the previous section and [4], that the satisfiability problem
for K modal logic with local Kripke semantics is decidable by using the fact
that the satisfiability problem for a fragment FO? of FOL consisting of
formulas using only a pair of variables is decidable (see [16]).

ExaMPLE 3.8 (FO?-two variable first-order logic.). Let X be a first-order
logic signature with no function symbols and with a set P, of predicate
symbols of arity n for each n € N* and X = {x,y}. A satisfaction system
for FO?

SEO" = (LEO MEO" IH®)
over signature X and X is such that

. Lgoz is the set of formulas inductively defined as follows:
— plzy. .z € Lgoz forevery p € P,and 21, ....2, € X;
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- e Lgoz whenever ¢ € Lgoz;

- p1OprE L§O2 whenever ¢1,¢) € Lgoz;

—dzpe Lgoz whenever z € X and ¢ € Lgoz;
. Mgoz is the class of all pairs

(1.p).

where [ is a tuple
(DALP Y pep, Ynent).

called an interpretation structure, such that
— D is a non-empty set;
— pl . D" — {0.1} is a map for each p € P, and n € N*;
and p: X — D is a map called an assignment;
o H—gozg Mgoz X Lgoz is the satisfaction relation inductively defined as
follows:
~Ip Il—g02 p(z1. ....z») whenever p! (p(z)). ....p(z,)) = 1;
- 1p IFEOZ - whenever 1, p \Vgoz ©;
- Lp Il—g02 ©1 D oy whenever either 7,p IVEOZ pp or 1p H—goz 02

I.p Il—g02 3z ¢ whenever I.p’ Il—g02 @ for some p’ =. p. ie.,
assignment p’ such that p’(z’) = p(z’) for every z’ € X \ {z}.

Let Sy 1 be the FO? signature induced by the K modal logic over IT with
no function symbols, set of predicate symbols {p : p € I1} of arity 1, and
predicate symbol R of arity two. In order to discuss the reduction from K
modal logic to FO? logic, we start by introducing an auxiliary map for each
z€ X. Let

Ly —=L
be inductively defined as follows:
w.(p) = p(2):
Tz(_‘SO) =-17.(p):

72(p1 D 2) = 72 (p1) DT (2):
7.(Op) = 3z (R(z,2") At/ (p)), where z' € X\ {z}.

Furthermore, for each z € X, consider the map

defined as follows:
g:((W.RV).w)=(1.p:),
where I = (W.{p'}pen. R") such that, for every wy,wy € W,
e p!(wy)=1ifand only if w; € V(p):
e R!(wj,wy) = 1if and only if w R wy;
and p. is an assignment such that p.(z) = w.

We now show that local satisfaction carries over from K modal logic to
FO? logic.
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PrOPOSITION 3.9. Let (W .,R. V), w) € ./\/lil]"K and ¢ € LY. Then, for each
zeX,

(W.RV).wl-sE o ifandonly if I.p. IHEO" 2 (o),

Eyrn “Z
where g.(W.R. V), w) = (I,p-).
ProOOF. We prove the result by induction on ¢.
(Base) Let ¢ be p € I1. Hence, (W.R. V). w Il—lé‘K p if and only if w €
V (p) if and only if p’(w) = 1 if and only if 7, p. Il—ggin p(z) if and only if

Lp- IFO 7.(p).

(Step) We only consider the case that ¢ is Oy. We start by showing that
(W.RV).wFH% oy implies  1.p. IFEO" 7. (Op).

ZMLI

Assume that (W . R, V), w Iklnk’K Ow. Then, there is w’ € W with w Rw’ and
(W.RV),w II—}FI’K w. We must show that

Lp. FEO 32/ (R(z.2") At (),

ZMLI

where z/ € X'\ {z}. Let p., =., p. be such that p./(z') = w’. Then,

L.p FEO' R(z.2'),

ZMLn

since R! (w,w’) = 1. Moreover,

Lp IHEO o ()

EMLI

by the induction hypothesis, since (W, R, ¥'),w’ I ™ w. We now prove that
Lp- IS w-(0w) implies (W.R.V).wIFX Oy,

Assume that 1, p. H—g\?in 7.(Ow). Hence

L.p-FEO" 3/ (R(z.2) At (w)).

EMLn

Thus, there is p. =, p. such that
(1) Lp IFEO R(z.Z')

EMLII

and
() Lpr FES v ().

From (), we conclude that p..(z) R p..(z") holdsin (W ,R.V).SowR p..(z')
because p./(z) = p.(z) = w. On the other hand, from (}) we can conclude,
by the induction hypothesis. that (W,R,V).p..(z') IFE* w. Therefore,
(W.RV)wlFEE Ow. N
Finally, for each z € X, consider the map
. A4 FO? Ik K
h.: M — My

EMLI
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defined as follows:

h-(I.p) = ((W.R.V).p(2)).
where

e W is the domain of I; .

o R={(wwy) € W?: RN (wi.w;) = 1};

o V(p)={weWw:p(w)=1}

The following result shows that /4. preserves and reflects local satisfaction.

We omit its proof since it follows the same steps as the proof of Proposition
3.9.

ProposITION 3.10. Let (I,p) € Mg‘ﬁ_n and ¢ € LME. Then, for eachz € X

(W.RV).p(z) IF5K o ifand only if I.pIHEC 7.(p).

DRYIA
where h.(I.p) = ((W.R.V),p(z)).

ProposiTiON 3.11. The satisfiability problem Sazsgcx for K modal logic is
decidable for every set 11 of propositional symbols.

PrOOF. We start by observing that (z,.g..A,) is a reduction from Sﬁ"K
to SZF“?LZ_H by Propositions 3.9 and 3.10 and since 7, is computable. The
satisfiability problem Satshk.x is decidable by Proposition 3.4 since the

satisfiability problem Sat s> is decidable because Sat o is decidable for
IMLIT z

every signature ¥ of FO? (see [16. 23, 24]). .

3.2. Validity of SE*X from the validity of SEX. Herein, we prove that the
validity problem of K modal logic endowed with an (global) algebraic
semantics (see [14, 27]) is decidable taking into account the decidability
of the validity problem of K modal logic endowed with a global Kripke
semantics (see Proposition 2.12).

ExamPLE 3.12. The (global) algebraic satisfaction system
Si S = (L ME S )
for K modal logic over a set IT of propositional symbols is such that

o LML is as defined in Example 2.2;

° ./\/lgna’K is the class of all modal algebras with distinguished value, that
is, pairs (2(, D) such that
~A=(4.N,u, 3,-T.0,V) where (4,71, , 3,-,T) is a Boolean
algebra, O : A — A satisfies the following identities:

O(a1Map) = (0a;M0ay) and OT =T,

and V : II — A4 is a map;
- D={T}
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ga.K ga K ga.K . . . .
o b TC M X Ly 18 the satisfaction relation such that
(2A,.D) IF&5 o
whenever [p]* = T where

Tel™ € 4

is inductively defined as follows:
= [pI* =V (p) for p € T;
= [yT™ = IvI™
= w1 Dwal® = [y 1™ 2 [wal™:
- [OyI* = oy I*.
We need to consider a restricted class of Kripke structures for K modal

logic in order to provide a reduction from the algebraic semantics to the
Kripke semantics.

ExampLE 3.13. The descriptive global Kripke satisfaction system for K
modal logic is the tuple

dgk.K ML dgk.K dgk.K
SUERK _ (ML pqdekK ) dekK)

over a set I'1 of propositional symbols obtained from Slgi[k’K (see Example 2.3)

by taking Mdngk’K as the subclass of Mﬁ( K composed by Kripke structures
that are descriptive (that is, differentiated, tight, and compact: (see [9, 14]))
and Il—dngk"K as the restriction of H—gnk K 1o M?[gk‘K. Similarly for Sglk’K.

We now show that there is a map from modal algebras to descriptive
Kripke structures that preserves and reflects satisfaction. Before we recall
some notions.

DEFINITION 3.14. A filter in a modal algebra 21 is a set F C A4 such that:

e T ckl:
e ifabe FthenalbeF;
e ifa € F and a < b then b € F where a < b whenever alb = a.

A filter F is a ultrafilter whenever:

° J_¢F;
e foreverya € A eithera € For—a € F.

PrOPOSITION 3.15. Let g : M%fl’K — M(rllgk'K be such that
gRATH=(W.RV).
where

o Wis{U C A:U isan ultrafilter of A};
o UR U’ whenever for every a € Aif Da € U thena € U’;
e V(p)={UeW:V(p)eU}.
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Then, for every U € W,
Tel* € U ifandonlyif (W.R.V).U IFﬂk’K 0.
Furthermore,
(L{T}) H—’ff‘K ¢ ifandonlyif (W.R.V) ||_%gkvK 0.

ProoF. We start by observing that (W.R.V) is a descriptive global
Kripke structure (see [14, Theorem 1.10.5]). It is immediate to see that
the second assertion about satisfaction of formulas follows from the first
(taking into account Theorem 5.38 in [5]). The proof of the first statement
follows by induction on ¢ and we only consider the step when ¢ is Oy.

Before, we show that:

(t) Oa € U provided that a € U’ for every U’ € W such that UR U’

forevery U € W and a € A. Assume, by contradiction, that a € U’ for every
U’ € W such that UR U’ and Oa ¢ U. Consider

F={becA:0becU}.
Observe that a ¢ F. Moreover, F is a filter. Indeed,

(I) T € F. Since U is an ultrafilter T € U. Since OT =T then OT € U
andso T € F.

(2) Assume that b,b’ € F. Hence Ob,0b" € U. Therefore, Db 100" €
U and so O(b1Mb’) € U because O(hMb’) = (Ob) N (3b"). Thus,
bnb' eF.

(3) Suppose thath € F andb <b’. Thus, brb’ =b and so O(hMb’) = Ob.
Then, (Ob) N (8b") = Ob. Hence, (Ob) < (Ob'). Therefore, Ob' € U
since Ob € U and U is a filter. Hence, b’ € F.

Then, (see Proposition 5.38 of [5]) there is U” € W extending F such that
a ¢ U". Moreover, UR U" by definition of R. The existence of such U”
contradicts the initial assumption.

We are ready to prove the step when ¢ is Q.
(=) Assume that [Ow]* € U. Then, O[y* € U. Let U’ € W be such
that UR U’. Thus, by definition of R, [w]* € U’. Hence, by the induction
hypothesis (W.R. V). U’ Ihq}k“K w. Therefore, (W .R. V), U Ikl‘i}k“K 0.
(+) Assume that (W, R, V), U IFIX Oy Then, (W,R. V), U’ IFIK 4 for
every U’ € W such that UR U’. Thus, by the induction hypothesis, [y ]* €
U’ for every U’ € W such that UR U’. Therefore, by (). we can conclude
that Of[y]* € U. 4

We now define a map from descriptive Kripke structures to modal algebras
that preserves and reflects satisfaction.

PROPOSITION 3.16. Let it : MIES — MEX be such that

h(W.RV)=((pW.Nn,U, 2.~ W.0V){W}),
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where

o« Z=W\Z:
o /1 1/ =—-21UZLy;
e 0Z ={weW:w'eZwhenever wRw'};

for 2,72\, Z, C W. Then, for every w € W,
(W.RV)wlFI o ifand only if w € [p]™.
Furthermore,
(W.RV)IFEK o ifr ((pW.N, U, 3.~ W.O.V){W}) K o

Proor. It is immediate to see that the second assertion follows from the
first, so we only prove the first assertion by induction on ¢. Consider the
case of 0.

(Step)  is Oy.
(—) Assume that (W, R.V).w IFI“¥ Oy. Then, for every w’ € W such that
wRw’,

(W.RV)w' IFIE .
So by the induction hypothesis,
w' € [y]™

for every w’ € W such that w Rw’. Therefore w 6 O] = [[<p]]9‘
(<) Assume that w € [Ow]*. Then w’ € [w]* for every w’ € W such
that w R w’. Hence, by the induction hypothesis. (W.R.V ). w’ H—%lk’K w for

every w’ € W such that w Rw’. Thus, (W, R.V).w IFIK . -
In summary, we have the following reductions between decision problems:
Valsl%lk.K —Prop 2.12 Satsgx Satslk K —*Prop 3.11 SatsgﬁzL )
and
Valslgla.K —Prop 3.17 ValS;_j[gk.K Val SUEkK = Cor 1.10.6 of (14 Val SEK

We are ready to prove that the validity problem of K modal logic with an
algebraic semantics is decidable.

PROPOSITION 3.17. The validity problem Val yex is decidable for every set
I
I1 of propositional symbols.

Proor. Observe that
(idpyy.g.h) : SEN — soekk,

where g and / are defined in Propositions 3.15 and 3.16, respectively, is a
satisfaction system reduction since idy,,, is computable. Observe that g and
h are surjective up to satisfaction because for every modal algebra 2L,

(T} IFE o ifand onlyif /(g(2A{T}))IFEX o
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(see [14, p. 17]) and, for every descriptive Kripke structure (W.R, V),
(W.RV)IFE® o ifandonlyif g(h(W.RV)IFEX o

(see [14, Theorem 1.10.7]). Hence, by Proposition 3.7 Val seK is decidable if
Val aacx is decidable. Note also that

@ is valid in STEX ifand only if ¢ is valid in SE°X

(see[14, Corollary 1.10.6]). Thus, Valslgla.K is decidable if Val sEK is decidable.
The thesis follows since Val e« is decidable, by Proposition 2.12. o
I

3.3. Validity in SE*™ from Hintikka systems. The objective of this
subsection is to show that the validity problem for intuitionistic logic
with an algebraic semantics is decidable. We start by showing that the
dual of the validity problem for intuitionistic logic with a global Kripke
semantics is decidable using Hintikka systems. After that, we show that
there is a reduction from the satisfaction system for intuitionistic logic with
a Heyting finite algebra semantics to the satisfaction system with finite
Kripke structures.

ExampLE 3.18 (Intuitionistic logic). Let
Slglk,lnt _ (L{_rllt’Mng.Int’ H_lg_}qlnt)
be a satisfaction system for intuitionistic logic where:

e the set of formulas LIr‘[lt is inductively defined as follows:
- DU{ff} C LI,
— 1 = 02.01 Np2.p1 V iy € LI provided that ¢y.¢5 € LI
Moreover, ~ ¢ € L{_II“ 1s defined as an abbreviation of ¢ = ff provided
that p € LIt

° ./\/lgHk Intis the class of all Kripke structures (W, R. V) such that
— R is reflexive, transitive, and anti-symmetric;
— ifw € V(p) and w Rw’ then w’ € V (p);

o Il—gnk ntis such that

(W.R.V)IFEI
whenever

(W.RV)wlFE™ o foreachw € W,

where Il—lnk’Int is inductively defined as follows:
- (W.RV)w H—ﬁ’lm p whenever w € V(p):
— (W.RV).w I 1F;
- (W.RV)w Il—ll_[k"Int ©1 = r whenever if (W.R. V). w' Il—ll_[k’Int 01
then (W, R. V). w’ Il—ﬁ"Int ©, for every w’ such that w Rw’;
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- (W.,RV)w H—E’Im ©1 Ay whenever (W, R. V). w H—E‘Im p; fori =
1,2:
- (W.,RV),w Ikﬁ’lm ©1 V @y whenever either (W.R. V), w Il—lll‘fInt 0

or (W.RV),w ™ o).

We want to investigate the validity problem in Sﬁk"lm. For that we need to
introduce the concepts of tableau and Hintikka system (see [9]).

DEFINITION 3.19. A tableau is a pair (I,A) where ILA C L. A tableau
(T',A) is saturated if it fulfils the following closure conditions:

if py Ayp €l'theny; e I'and 9, € T';

if 01 Ady € A then either 6, € A or o, € A;
if y1 Vo € I' then either y; € T or yp € T;
if6; Vo, € Athend; € Aand o, € A;

if6 =y € I' then eithero € Aory € T.

A saturated tableau (I',A) is disjoint if TNA = and ff ¢ '. A Hintikka
system is a pair (T, <) where 7 is a non-empty set of disjoint saturated
tableaux and < is a partial order on 7 such that:

o if ('A).(I",A’) € T and (I.A) =< (I",A’) then I C I ( hereditarity);
o if (I’A) € T and y = 6 € A then there is (I'",A’) € T such that (I',A) <
(I A"),y €I’ andd € A.
A pair (T, =) is a Hintikka system for (I',A) if there is (I",A’) € T such that
' CT”" and A C A’. Moreover, (7, <) is a Hintikka system for ¢ whenever
(7, =) is a Hintikka system for (0, {¢}).

For instance, (0.{¢}) is a tableau provided that ¢ € L{.
In the sequel, we denote by sub(yp) the set of subformulas of ¢. For the
next result we need to consider the following decision problem:

HS e = (LI {4 : exists a Hintikka system 7T for ¢, |7 < 215906,
I

PROPOSITION 3.20. The decision problem co—Val sem is decidable, for every
188
set T1 of propositional symbols.

PrOOF. We show that id i is a reduction from co—Val gecin to HS ggern. It
I I

is immediate that id i is computable. It remains to show that

there is a Hintikka system (7, <)

. o q . gk, Int . .
@ is not valid in ST if and only if for @ and |T] < 20

(=) Let (W.R.V) € ME"™ and w € W be such that (W, R, V),w A&t .
Consider the family

T: {(ruaAu)}uEW

of tableaux such that

r,= {W S SUb(go) : (W,R’ V)’u H_ll_[k,lnt l//},
A, ={ne Sub(go) : (W’R’ V).u U,éﬁlnt 7.
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Define the relation < over 7 such that (I',.A,) < (I',A,/) whenever T, C
I",,. We now prove that (7, <) is a Hintikka system for ¢ with | 7] < 2/sub(e)!

(1) Assume that (I';.A,).(T,.A,/) € T and (I'y.A,) < (T,7.A,7). Then,
by definition of <, I', C I',,.

(2) Suppose that (I'y,A,) € T and y = € A,. So, (W.R,V),u I}‘ﬁ’lm
y = J. Therefore, there is u’ € W such that uRu’, y € Ty and J €
A,s. Moreover, by hereditarity (see [27]). T, € I',» and so (I',.A,) <
)

(3) (T. =) is a Hintikka system for ¢ since ) C I, and ¢ € A,,.

(4) By construction, each I';, and A, are subsets of sub(yp). Moreover,
Ay = sub(y) \ T,,. Therefore, | 7| < 2/sub(e)l.

(<) Let (7. <) be a Hintikka system for (0.{¢}) with |T| < 2lsubl)l,
Consider the Kripke structure (7, =, V) where V is such that

V(p)={(T A):(T,A) € T and p € T}.

Observe that if (I, A) € V(p) and (I',A) < (I"",A’) then, by the first property
of Hintikka system, (I, A’) € V' (p). We now show, for every (I",A) € T that

if 7 € T then (7.2, 7).(C.A) IF™ 7,
if 7 € A then (T.=.V),(T.A) U,zlnk,lnt .

by induction on #. The base and the cases where # is either a conjunction or
a disjunction are immediate. We concentrate on # being #; = 5.

(1) Assume, by contradiction, 57y = 5, € I and (7.=.V).(I".A) I}‘ﬁ’lm
11 = 1. Therefore, there exists (I'",A’) € T such that (I, A) < (I, A/).
(T.=, V). (T A IFSI yy and (T,<, V). (T.A') 1A% 5. Thus, by
the first property of the Hintikka system. #; = #, € I'". Then,
either 71 € A’ or 5, € I because (I',A’) is saturated. Hence, by
the induction hypothesis, either (7.=<,V).(I".A’) H—%“Im ny or (T.=,
V), (T, A U»‘ll%’ Int,,which is a contradiction.

(2) Assume that 5y = 7> € A. Then, by the second property of the
Hintikka system, there is (I",A’) € T such that (I A) < (I, A/),
n € I'’. and 5, € A’. Therefore, by the induction hypothesis, (7. <.
V). A) IHEI 0 and (TL=0).(TLAY) IS 5. So (T,

V).(TA) ™ 1 = .

Hence, we can conclude that co-Val{ is decidable, since HS[™" is decidable
for every set IT (see [9. p. 39]) and there is a reduction from the former to
the latter (see Proposition 2.8). 4

The following result is a direct consequence of Propositions 2.6 and 3.20.

PROPOSITION 3.21. The decision problem Val s is decidable. for every set
11
I1 of propositional symbols.

We now describe an algebraic satisfaction system for intuitionistic logic.
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ExamPLE 3.22. The (global) algebraic satisfaction system
S]g[a,lnt _ (L{_r[n, Mlg_?.lnt’ “_Ig]a.lnt)
for intuitionistic logic over a set I of propositional symbols is such that

° L{_II“ is as defined in Example 3.18;
° /\/11%? It s the class of all Heyting or pseudo-Boolean algebras with
distinguished value, that is, pairs (2, D) such that
— A= (4. A\, V.=, L. V) where (4, A, V., =, L) satisfies the following
identities, where ¢ < ay whenever ajAay = ay:
* ayNay = apNay and a1Va; = axVay:
* (a1haz) Nay = ajA(ay Na3) and (a1 Vay)Vaz = a1V(arVaz):
* (a1haz)Vay = ay and a1 A(aVay) = ay:
* aiNay < ay if and only if ) < ar=a3;
* 1 <a;
and V :I1 — A is a map;
— D={T} where Tis L=1;
° Il—fila ’ Img ./\/lgnal At LIrI[lt 1s the satisfaction relation such that

(AT ™ e

whenever [o]® = T and
Tl € 4

is inductively defined as follows:
— [pI* =V (p) for p € TI;
- [f* = L
= [y Apal® = [y I ALy
= Ly Vol = [y 1P VoI
- [v1 = vl = Il = Dol ™
We denote by

fga. Int
Sl'[

the satisfaction system obtained from SE™ by taking the elements of
ME ™ where the set A is finite. Similarly, we denote by
Sﬁgk,lnt

the satisfaction system obtained from Sﬁk'lm (see Example 3.18) by taking
the elements of M%}‘ I wWhere the set W is finite.

Observe that from the point of view of validity it is equivalent to work
with Heyting algebras or finite Heyting algebras (see [9, Theorem 7.21]). We
start by introducing two relevant concepts.

DEerINITION 3.23. A filter U in a Heyting algebra 21 is a subset of 4 such
that:

e T cU;
o ifa,a=b e Uthenb e U.
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A filter U is prime whenever U # A and if aVb € U then either a € U or
beU.

As a consequence we have thatifa € U and a < b thenb € U.
PRrOPOSITION 3.24. Let g : M%a'lm — /\/lfngk"Int be such that
g@AA{TH=(W.RY).
where

o Wis the set of all prime filters in 2;
e R is such that UR U’ whenever U C U’;
o V(p)is{Ue W :V(p)eU}.

Then, for every U € W,
Tel* € U ifandonlyif (W.RV). U Il—fr"fk’Int ©
Furthermore,
(L{T}) H—%a’lm o ifandonlyif (W.R.V) ||_§kzlnt 0.

Proor. It is immediate to see that the second assertion follows from
the first (taking into account Theorem 7.41 of [9]). The proof of the first
statement follows by induction on . We only prove the step where ¢ is
p1= 2.

(—) Assume that [; = @2]™ € U, UR U’ and (W,R.¥),U" IFE™ o).
Hence, by the induction hypothesis, [¢1]* € U’. Thus, [o.]]* € U’ because
U’ is a filter and [[; = @2]* = [1]* =21 € U'. So. by the induction
hypothesis, (W, R, V), U’ IFE"™ o, Hence, (W.R. V), U IFE™ o) = ).
(+) Assume that (W.R. V). U H—fl_glk‘Int ©1 = 2. Then, for every U' € W
such that UR U’ if (W, R. V), U" IFE“™ | then (W.R. V), U’ IFE™ o,.
Consider two cases:

(1) Assume that [[r]* € U. We show that [[o; = @»]]* € U. Observe that

[21* < [1 = o™ because [a* Allp1 I* < [2]*. So. the thesis
follows.
(2) Assume that [r]* ¢ U. Let

F={aecA:3becUbA[e " <a}.

Observe that:

(a) U C F. Itis enough to note that uA[p; % < u forevery u € U.

(b) [e11™ € F since TA[pi]* < [1]* and T € U.

(c) Fis a filter. Indeed, T € F since TA[i]* < T and T € U. For the
other condition, assume that a,a1=-a, € F. Then there are b;.b € U
such that

biAlpiI* <a; and AL ] < aj=as.
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Hence,
brai Al < as.
Thus,
bAb AL T < a3

Since bAby € U then a; € F.

(d) We prove that [,]]* € F. Assume, by contradiction, that [, * ¢ F.
Then (see [9, Theorem 7.41]) there is a prime filter U’ such that
F C U’ and [[p2]* ¢ U'. Thus, U C U’ by (a) and so UR U'.
Therefore, by the induction hypothesis, (W.R. V), U’ H—{%k”]m ©] by
(b) but (W.R. V), U’ IV{_‘%k’Im ¢, which is a contradiction because

(W.R.V).U H—%k”lm ©1 = . Thus, [¢2]* € F and so thereisb € U
such that

bATe T™ < TeaT™.
Hence, b < [o1]*=[¢2]* and, consequently, [ [*=[p:]* € U.

We now define a map from finite Kripke structure for intuitionistic logics
to finite pseudo-Boolean algebra that preserves and reflects satisfaction.

PROPOSITION 3.25. Let it : ME™ — ME™ be such that
hW.RV)=((UpW.N,U,=.0,V){W}),
where

o UpW is the set of all subsets of W that are upwards closed with respect
to R;

e X=Yis{we W :Vw' e WifwRw' andw' € X thenw' € Y};

o V(p)={weW:weV(p)}

Then, for every w € W,
(W.R. V). w Il—fl_[gk'Int o ifandonlyif w e [e]™.
where A = (UpW ., N, U,=.0,V). Furthermore,
(W.RV)IFE™ & ifand only if (UpW,N,U,=.0.¥).{W}) IFE" o,

Proor. It is immediate to see that the second assertion follows from the
first, so we only prove the first assertion by induction on ¢. Consider the
case of ¢ = s.

(—) Assume that (W.R. V), w H—%k’lm 01 = 3. w’ € W such that w Rw’ and
w’ € [1 ™. Then, by the induction hypothesis, (W.R,V).w’ H—lf_%k'lm o1 and
so (W.R.V).w' IF%k‘lm ©>. Thus, by the induction hypothesis, w’ € [¢2]*.
Hence, w € [o1 = @)™

(«) Assume w € [ = @2]%, w’' € W, wRw', and (W, R, V),w' IFE™
1. Hence, by the induction hypothesis. w’ € [[¢1]* and so w’ € [o.]*.
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Once again by the induction hypothesis, (W.R.V ), w’ \angk“lm 2. Therefore,

(W.RV).wIFE™ o) = . -
In summary, we have the following reductions between decision problems:

Valsﬁk.lm —Prop 3.21 CO—VaISlgIkAIm —Prop 3.20 Hssﬁk.lnl

and

Val ot — Val e
Srfq nt Prop 3.26 Sng nt
and
Valsga.lm =Thm 7.21 of [9] Valega.lm, Vangk,Im =Thm 2.5.60 of [27] Valsfgk.lnt.
o m n n

We are ready to prove that the validity problem for the intuitionistic logic
endowed with algebraic semantics is decidable.

PROPOSITION 3.26. The validity problem Val g is decidable for every set
11
IT of propositional symbols.

ProoF. Observe that
(idL{—lI“’g’h)’

where g and / are defined in Propositions 3.24 and 3.25, respectively, is
a satisfaction system reduction. Moreover, g and / are surjective up to
satisfaction because for every finite Heyting algebra (2, D),

(D) IFE™ ¢ ifand onlyif A(g(A.D)) IFE"™ ¢
(see [9, Theorem 8.18]) and, for every finite Kripke structure (W,R, V),
(W.RV) ||_{_Eik.lnt ¢ ifandonlyif g(h(W.R.V)) ”_fl_%k,lnt 0

(see [27. Theorem 2.5.60]). Therefore, by Proposition 3.7 Valgram 18
11
decidable if Val ek Int is decidable. On the other hand, Val sgn 1s decidable if
I
and only if Val st is decidable (see [9. Theorem 7.21]). Note also that

@ is valid in S if and only if ¢ is valid in SE-™

(see [3]). The thesis follows because Val s is decidable, by Proposition
I
3.21. 4

§4. Reductions for meet-combination. Herein we discuss reductions
between the satisfaction system resulting from meet-combination and their
components. Meet-combination was introduced in [25, 30] and it provides
an axiomatization for the product of two matrix logics.

Let T be a signature, that is, a family {Z} where X is a set for every
n € N such that tt,ff € 20, Each element of ) is a connective of arity n.
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DEFINITION 4.1. A matrix satisfaction system over X is a triple
(Ls. As, IFs),
where

e Ly is inductively defined as follows: £ C Ly and if ¢ € £ and
@1, ....¢on € Ly then c(¢py, ....0n) € Ly:
e Ay is a non-empty class of matrices over X, that is, pairs (2, D) where
— 2 is an algebra over X. that is, a pair (4.{{¢"},_s() }nen) Where

A is a non-empty set and ¢* : 4” — A4 is a map for each ¢ € 3,
Moreover, we denote by [¢]* the denotation of ¢ in 2:
— D is a non-empty subset of A (the elements of D are called
distinguished elements) such that tt* € D and ff* ¢ D:
e |y C Ay x Ly is such that

(Q[D) H_Z C(‘Pl: ""Qoi’l)
whenever ¢ ([ 1% ....[e %) € D.

Observe that a matrix satisfaction system is also a satisfaction system
where each semantic structure in M is a pair (21, D).
Given signatures X; and X, let

X2

(n)

be the signature such that, for each n € N, EUZ

1 1S
{Terca] [ er €2 ey e B U{[ertta] | e € BV U{Tttiea] | 2 € 20,

where the constructor [cjc; ]| is the meet-combination of ¢; and c¢,. Observe

that we look at signature Z;,7 as an enrichment of ¥; via the embedding
(n

n : e — [ceitty] for each ¢ € X ) and similarly for X,. For the sake of
lightness of notation, in the context of Xy), from now on, we may write ¢;

for [citty] when ¢ € 2(1") and ¢; for [ttjcy| when ¢; € 2&”). In this vein, for
k =1,2, we look at Ly, as a subset of Ly, Given a formula ¢ over 2“21
and k € {1.2}, we denote by ¢|, the formula in Ly, inductively defined as
follows:

* |, is tty whenever ¢ is [c1c2](¢1. ....on) and ¢y is tty:

o ©|, is ¢k (o1]g- -...0nl,) whenever ¢ is [crca](g1. ....0n) and ¢ is not
tty.

DEerFINITION 4.2. The meet-combination of matrix satisfaction systems
Sy, = (Ls,.As,. IFs,) and Ss, = (Ls,. As,. IFs,) over signatures ¥ and X,
respectively, denoted by

[Szl S22—|

is the matrix satisfaction system

(LZUﬂ aAE“ﬂ 5 “_Zﬂﬂ )
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over the signature X5 such that Ay ,,, is the class of product matrices
{(A1.D1) x (A2, D7) : (A1.Dy) € As, and (Ar,.D5) € As, }
over Xy, such that each (A1, D1) x (A5, D7) = (A1 x A, D1 x D>) where
Ay x Ay = (A4 x sz{{h’lcﬂmlX%}[qcﬂ@:(m bnen)
21€211)
with
fe1ea™ 2 ((ar.by). ... (an.by)) =

(C]Qll(al, ...,an),c‘z912 (b], ,bn)> ifc; € Egn) and ¢, € Eén);

(ttl%,czw (bl» ,bn)) if cl is tt and ) E zgn)’
(1M (ay, ....ay).tr%2) if ¢y is tty and ¢ € 5,

The following results were proved in [25, 30].

ProOPOSITION 4.3. Let ¢ € Ly, ULsy,, (Ql],Dl) S Agl, and (le,Dz) € .,422.
Then

(T[T . [tta]™)  if g isin Ls,.
([t I™.[eD*)  if g isin Ls,.
PROPOSITION 4.4. Let ¢ € Ly ;. (A1.D) € As,. and (%5.D1) € As,. Then

L™ = (Ml 1™ ™)1 (Lo 1™ ): )
PROPOSITION 4.5. Let ¢ € Ly, ;. (U1.D) € As,. and (U5, D>) € As,. Then

(Qll,Dl) X (le,Dz) ||—z“ﬂ (%) ﬁ (Ql],Dl) H—z] (p|1 and (le,Dz) ”_22 <p|2.

PrOOF. Observe that (1. Dy) x (. D) IFx,,, @ iff [ ** isin Dy x D5
if and only if ([e|,J™**?); is in D1, ([],]™ **?) is in D,. by Proposition
4.4, iff [[ga\l]]m‘ is in Dy, |Igo|2]]le is in D,, by Proposition 4.3, if and only if
(Q[l,Dl) “_21 g0|1 and (le,Dz) H—zz (p|2. —

[e]* ™ = {

We omit the proof of the following result since it is a straightforward
consequence of Proposition 4.5.

PROPOSITION 4.6. Let Sy, = (Ly,, As,, IFs,) and Ss, = (Ls,. As,, IFs,) be
matrix satisfaction systems over signatures X\ and X,, respectively. Then

(z'.7%.g" g% h),
where

o K(p) = @l fork =12
o gX((A1.Dy) x (A2. D7) = (Ay.. Dy) for k = 1,2;
o h((A1.D1).(Az.D7)) = (A1, D7) x (A, Dy):

is a satisfaction system reduction from [ Sy, Sy, | to Ss, X Sy,.
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ProposITION 4.7. Let Sy, = (Ls,. As,. IFs,) and Ss, = (Ls,.As,. IFs,) be
matrix satisfaction systems over arbitrary signatures X\ and X,, respectively.
Then Val(sz] Ss,] 18 decidable whenever Vals, and Vals, are decidable for
every pair of signatures Xy and %,.

PrOOF. Assume that Valg, and Vals, are decidable. Since there is a
satisfaction system reduction, by Proposition 4.6, from [ Sy, Sy, | to Sz, x Sy,
where g/ for k = 1,2 and / are surjective up to satisfaction then Val; Ss, Ss,1
is decidable by Proposition 3.7.

We now consider the meet-combination
ga, K oga.Int
[Sn S|

of the matrix satisfaction system for K modal logic and the matrix
satisfaction system for intuitionistic logic both endowed with algebraic
semantics.

PROPOSITION 4.8. The validity problem in the meet-combination
(Sl%la.K Sﬁaﬁlntw
is decidable.

ProOF. We know from Propositions 3.17 and 3.26 that Valgemx
11
and Valgm are decidable, respectively. Therefore, by Proposition 4.7,
I
Val: sk ey 18 decidable. -
[Sqsq 1

§5. Concluding remarks. We presented satisfaction systems as the right
general abstraction for analyzing in a semantic way logical decision
problems. The essential notion of a reduction from a satisfaction system
to a finite collection of satisfaction systems was here introduced. We showed
that reductions between satisfaction systems induce reductions between
the satisfiability and the validity problems leading to general results on
decidability. We also consider the meet-combination of logics and proved
that the validity problem in the meet-combination is decidable provided that
the validity problem in the components is also decidable. An illustration
was provided for the meet-combination of K modal logic with algebraic
semantics and intuitionistic logic with algebraic semantics.

We intend to extend the reduction technique proposed herein for obtaining
results about entailment and deductive consequence problems (having
hypotheses). The general setting should be defined over the notion of
consequence system. In this case, preservation of semidecidability seems
to play an important role. Moreover, it would also be interesting to use the
fact that if some non-decidable problem can be reduced to another problem
then the latter one is also not decidable.

We think that preservation of decidability for other forms of combination
should also be considered. For instance, the preservation of decidability
in fusion of modal logics (see [22]) was already addressed but not using
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reductions. The other case that comes to mind is to investigate reduction
techniques in the fibring of logics (see [8, 12, 32, 36]).

Another challenging extension of this work is to adapt the reduction
techniques to enumerable sets of logics, namely in the context of logics of
formal inconsistency (see [7]) and many-valued logics (see [15]).

Moreover, we intend to obtain preservation results for complexity classes
when in the presence of reductions. In particular we would like to relate
the complexity class of logical decision problems for the meet-combination
with the complexity classes of logical decision problems for the component
logics.

Finally, following the recent work of [1], we intend to investigate logical
decision problems and their reductions for logics presented by a polynomial
ring calculus.
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