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The detonation wave structure is analysed in a binary mixture undergoing a reversible
chemical reaction represented by Ar 
 Ap. It is assumed that the flow satisfies the
proper basic assumptions of the Zel’dovich–von Neumann–Döring (ZND) detonation
model, namely the flow is one-dimensional and the shock is represented by a jump
discontinuity, but the assumption of local thermodynamic equilibrium is disregarded.
This allows us to deeply investigate the coupling between the detonation structure of
overdriven detonations and its chemical kinetics. The thermodynamic non-equilibrium
effects are taken into account in the mathematical description, using the model of
a multi-temperature mixture developed within extended thermodynamics, which has
been proved to be consistent with a kinetic theory approach. The reaction rate is then
enriched with terms that take into account the temperatures of the constituents. The
results show that the temperature difference between components within the detonation
wave structure, which describes thermodynamic non-equilibrium, is driven by the
chemical reaction. Numerical computations confirm the existence of non-monotonic
profiles in the reaction zone of overdriven detonations which are sensitive to changes
in the activation energy and reaction heat.
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1. Introduction
Mathematical modelling of chemically reacting gas mixtures within continuum

theories usually relies upon models that comprise the conservation laws of mass,
momentum and energy of the mixture, and an additional balance law that describes
the progress of the reaction by tracking the rate of change of product concentration,
driven by the reaction rate. These models are, on the one hand, well founded
in molecular gas theory. On the other hand, they are mathematically tractable and
provide a good description of real processes. This classical approach is well explained
in seminal works (Hirschfelder et al. 1954; Courant & Friedrichs 1977; Zel’dovich
& Raizer 2002), as well as in more recent monographs devoted to combustion and
detonation problems (Fickett 1985; Williams 1985; Lee 2008).

† Email address for correspondence: damirm@uns.ac.rs
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Versatile problems that appear in the detonation processes are both physically
interesting and mathematically demanding. Physical aspects and various approaches
that emerge in their study are well documented (Fickett 1985; Williams 1985; Lee
2008). On the other hand, the mathematical complexity of the detonation problem
motivated the construction of model equations, like the one proposed by Majda
(1981). It retained the basic features of the detonation process utilizing a reactive
Burgers equation analogue. Such a model was analysed for the solution properties
(Razani 2002), as well as for the stability of the detonations (Liu & Yu 1999;
Szepessy 1999; Lyng & Zumbrun 2004). The existence of a solution for the complete
set of detonation equations (Euler equations and reaction progress equation) was
studied by Gardner (1983) and Hesaaraki & Razani (2001). A then up-to-date review,
comprising the detonation structure, was given by Clavin (2004). Meanwhile, certain
new aspects of detonation waves emerged within the continuum framework, e.g. radial
propagation (Kasimov & Korneev 2014), multi-dimensional self-sustained detonations
(Faria, Kasimov & Rosales 2015) and decay of plane detonation waves (Clavin
& Denet 2018), so that detonation processes still remain in focus. Apart from the
continuum approach, detonation problems were also analysed using the kinetic theory
of gases as a starting point, and deriving macroscopic models as moment equations of
distribution functions. In this approach the system was usually closed at Euler level
(Conforto et al. 2003, 2004; Carvalho & Soares 2012; Marques Junior et al. 2015),
leading to hyperbolic systems of balance laws (the exception is Conforto, Monaco &
Ricciardello (2014), where the closure was done at Navier–Stokes level). Finally, the
intricacy of the numerical computation of detonation profiles due to the scale disparity
brings additional difficulties. The computations should be carefully performed in order
to obtain reliable results (see Bdzil & Stewart 2007; Cael et al. 2009).

The continuum models mentioned above can be enriched if one digs deeper into
the structure of the medium. One of the simplest, and conceptually reasonable,
ways is to take into account the information about the constituents by extending
the list of state variables that describe the medium. In fact, this is the aim of
the mixture theory developed within the framework of extended thermodynamics
(Müller & Ruggeri 1998, pp. 79–104). In fact, in this approach, the state of the
mixture is described by the fields of mass density, velocity and temperature of each
constituent (Ruggeri & Simić 2007; Ruggeri 2009). This choice of state variables, and
appropriate governing equations, enables more sophisticated modelling and acquiring
more information about non-equilibrium processes. Moreover, this model for mixtures
possesses two main features of extended thermodynamic models: it is dissipative, and
it is hyperbolic. Nevertheless, it can be put within the classical framework either by
means of Maxwellian iteration (Ruggeri & Simić 2009, 2017), or directly (Gouin &
Ruggeri 2008).

1.1. Assumptions and the aim of the paper
The aim of this paper is to propose a variant of the Zel’dovich–von Neumann–Döring
(ZND) detonation model within the framework of multi-temperature extended
thermodynamics of mixtures, and to investigate the detonation wave structure problem.
In this approach the basic assumptions of the ZND model will be retained: the flow
is assumed to be one-dimensional, the shock is described by a non-reactive jump
discontinuity, and the chemical reaction occurs in a finite reaction zone following
the shock front. Finally, the study will be concerned with overdriven detonations that
propagate with a speed greater than the Chapman–Jouguet one. To that end, certain
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generalizations of the standard ZND model will be made. First, it will be assumed
that the chemical reaction is reversible, restricting the analysis to the simplest possible
mechanism, represented by

Ar
 Ap, (1.1)

with only two constituents – reactants (r) and products (p) of the forward reaction.
This representation includes the symmetric reaction A1 + A1 
 A2 + A2, which has
been considered in previous works about detonation and linear stability (see Carvalho
& Soares 2012; Marques Junior et al. 2015). Reaction (1.1) can also represent
an inelastic transition of a polyatomic molecule from one energy state to another
energy state and, in this case, Ar and Ap denote two different energetic components
of the same gas. Second, the rather restrictive assumption of local thermodynamic
equilibrium will be replaced with a set of new assumptions about the constituents
and their dynamics, at both molecular and macroscopic scale:

(i) the molecular masses are equal, mr =mp =m;
(ii) the molecular diameters are equal, dr = dp = d;

(iii) the binding (formation) energies of the molecules are different, εr 6= εp;
(iv) during elastic collisions, molecules have monatomic-like behaviour, and both

constituents will be modelled as hard spheres;
(v) the ratios of specific heats are equal, γr = γp = γ = 5/3;

(vi) the macroscopic state of the constituents is described by the fields of mass
density ρα, velocity vα and temperature Tα, with α = r, p; and

(vii) the constituents are assumed to be Eulerian fluids, and thus the viscosity and heat
conductivity of the constituents do not influence the detonation structure and are
not taken into account.

The physical motivation for the choice of chemical reaction (1.1) and the set of
assumptions (i)–(vii) is to capture, in the simplest possible setting, the scenario that is
typical for overdriven detonations. Namely, in the analysis of pathological detonations,
Sharpe (1999), and also Khokhlov (1989), mentioned that overdriven detonations have
continuous but non-monotonic profiles, in which the turning point corresponds to the
state with maximum heat release. So far, the simplest type of chemical reaction
that allows this kind of behaviour is the two-step reaction A → B → C, where
the first reaction is exothermic, while the second one is endothermic. In a recent
paper, Marques Junior et al. (2015) used a reversible reaction of the kind (1.1), but
did not comply with the expected behaviour of the state variables in overdriven
detonations. Our aim is to bring into play the thermal non-equilibrium through the
multi-temperature assumption, and to show that the standard overdriven detonation
scenario is possible in (1.1) due to different temperatures of the constituents.

1.2. Discussion of the assumptions
Assumptions (i) and (vi) are the most important ones for the generalizations in our
model. Assumption (i), although it seems counter to our intentions for generalization,
is a direct consequence of the mass conservation in chemical reaction (1.1). It
induces a kind of singular behaviour of the mixture, since the molecules of the
constituents cannot be distinguished in a mechanical sense due to their equal masses.
This observation will be summarized as the basic assumption, and it will simplify the
model – the difference of the velocities will be disregarded and a single-velocity
model will be considered. On the other hand, assumption (vi) introduces the
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multi-velocity and multi-temperature structure into the model. This structure is
already embedded into the rational thermodynamics of mixtures (see Truesdell 1984,
pp. 219–236), and has become fundamental in the extended thermodynamic theory of
mixtures (Ruggeri & Simić 2007) and the kinetic theory of reactive mixtures (Bisi,
Martalò & Spiga 2011, 2013; Murugesan, Sirmas & Radulescu 2017). Furthermore,
it is of macroscopic kind, but at the same time it goes deeply into the structure
of matter and resonates with molecular assumptions, thus reflecting the primary
aim of extended thermodynamics – to bridge the gap between the macro- and
meso-scales. In the context of chemically reactive mixtures, it aims to describe the
internal energy transfer from reactants to products of the reaction, or vice versa,
and the corresponding opposite kinetic energy transfer. Such an assumption has been
proved to be reasonable when the constituents have large discrepancies in molecular
masses, and thus considerably different internal energies (temperatures) (see Bird
1968; Kosuge, Aoki & Takata 2001; Madjarević, Ruggeri & Simić 2014). This
observation came from studies in which non-reactive mixtures were analysed, and
mutual interactions between the constituents were of purely mechanical nature. Our
model will bring another novelty by applying the multi-temperature assumption to
chemical interactions as well: the reaction rate for the reversible chemical reaction
will be enriched with terms that take into account the constituents’ temperatures. It
will be shown that this generalization, in conjunction with large initial discrepancy
of concentrations of the constituents, will be sufficient to drive the constituents’
temperatures apart within the detonation wave. In such a way, we shall be in a
position to prove that the difference of the temperatures, driven by the chemical
reaction, influences the structure of the detonation profile.

Although our study is concerned with the relation of the multi-temperature
assumption to the detonation profile, it does not have the aim to cover all the involved
aspects and possible consequences. It will be shown in the discussion that it can be
legitimately applied to multi-step chemical reactions or to other complex chemical
processes, and used to describe both the structure of pathological detonation waves
(Fickett & Davis 1979; Sharpe 1999) and the effects resulting from the competing
exothermic and endothermic reactions. In particular, in conjunction with reversible
chemical reactions, it predicts the appearance of the non-monotonic profiles expected
in the case of overdriven detonations, which we shall deal with in this paper.

Furthermore, the multi-temperature assumption may be related not only to different
kinetic temperatures of the constituents, but also to different degrees of freedom of
polyatomic molecules through vibrational temperature, as well as to different phases.

In particular, with regard to the multi-temperature formalisms applied to treat
detonation, we quote, in particular, the relevant work about the modelling, structure
and other aspects of detonation solutions in two-phase reactive flows (Powers, Stewart
& Krier 1990a,b) and the important contributions about the non-equilibrium effects in
gaseous detonation systems resulting from the interplay between vibrational relaxation
and chemical reactions (Taylor, Kessler & Oran 2013; Shi et al. 2017).

1.3. Structure of the paper
The paper is organized as follows. In §§ 2 and 3 we shall provide a proper background
for the modelling of ZND detonation waves. Section 2 will review the basic aspects
of the multi-temperature model for a binary reactive mixture, while § 3 will explain
the main features of the steady ZND detonation waves in the context of reversible
chemical reactions. Section 4 will contain the formulation of the steady detonation
problem and the reduction of the model based upon the basic assumption regarding
diffusion. After that, qualitative aspects of the reacting flow profiles will be analysed,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.218


678 D. Madjarević, S. Simić and A. J. Soares

which include the equilibrium state and the existence of non-monotonic profiles. In § 5
continuous multi-temperature steady reacting flow profiles are computed numerically
for overdriven detonations, and compared with appropriate single-temperature profiles.
Since the solution of the detonation problem depends on several parameters, their
influence will be thoroughly analysed. It will be shown that, for certain values of
the parameters, the multi-temperature model yields qualitatively different detonation
profile in comparison to the single-temperature one. For other values of the parameters,
the qualitative picture is the same. Nevertheless, the influence of two temperatures in
the model is inevitable in the structure of the profiles. The paper ends with a summary
and some possible studies to be considered as a continuation of our paper.

2. The multi-temperature model of reactive binary mixture
The framework for the detonation wave structure problem with reversible chemical

reaction in a binary mixture will be the multi-temperature (MT) model developed
within extended thermodynamics (Ruggeri & Simić 2007). A similar model was
recently applied to the description of flame structures (Brini 2009). The main
feature of the model is the introduction of the velocities and the temperatures of the
constituents, with the aim of capturing non-equilibrium effects in the simplest possible
constitutive framework. Although it may seem quite unusual to extend the list of state
variables of a macroscopic model in such a way, it resonates with the appropriate
models derived within the kinetic theory of gases (Goldman & Sirovich 1967), and
thus goes along with the main intention of rational extended thermodynamics (Müller
& Ruggeri 1998) to bridge the gap between the macroscopic and mesoscopic levels
of description. The rationale for this approach in detonation problems comes from
the fact that chemical reactions are processes that could drive the medium out of
equilibrium, in a chemical sense, as well as in mechanical and thermal senses.

2.1. Governing equations
The main modelling assumption is that each constituent of the mixture obeys the same
balance laws as a single fluid, but mutual interaction of the constituents must be taken
into account (Truesdell 1984). The governing equations for an n-component mixture
(α = 1, . . . , n) then read (see Ruggeri & Simić 2007):

∂ρα

∂t
+ div(ραvα)= τα,

∂(ραvα)

∂t
+ div(ραvα ⊗ vα − T α)=mα,

∂( 1
2ραv

2
α + ραεα)

∂t
+ div{( 1

2ραv
2
α + ραεα)vα − T αvα + qα} = eα,


(2.1)

where ρα, vα and εα are the mass density, the velocity and the internal energy of the
α-constituent, T α and qα are the stress tensor and the heat flux, while the source terms
τα, mα and eα take into account the mutual interactions of the constituents. Moreover,
vα = |vα| and similar notations are adopted for other velocities from here on. It is an
axiom of the mixture theory that conservation laws of mass, momentum and energy of
the whole mixture must hold, imposing the following constraints on the source terms:

n∑
α=1

τα = 0,
n∑
α=1

mα = 0,
n∑
α=1

eα = 0. (2.2a−c)
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In accordance with our assumption (vii), the stress tensor and the heat flux will be
reduced to

T α =−pαI, qα = 0, (2.3a,b)

where I is the unit tensor.
For the sake of brevity we shall omit the general analysis of the MT model of

mixtures, which can be found elsewhere (Ruggeri & Simić 2007; Madjarević & Simić
2013; Madjarević et al. 2014). Instead, the case of a binary reactive mixture will be
presented. The governing equations consist of conservation laws of mass, momentum
and energy for the mixture, and balance laws of mass, momentum and energy for one
constituent (Ruggeri & Simić 2007). Since it is common practice in simple modelling
of chemical reactions to monitor the behaviour of the product of the forward reaction,
we decided to include the balance laws for the product in the governing equations, so
that they read:

∂ρ

∂t
+ div(ρv)= 0, (2.4)

∂(ρv)

∂t
+ div

(
ρv⊗ v + pI +

1
ρz(1− z)

J⊗ J
)
= 0, (2.5)

∂

∂t

(
1
2
ρv2
+ ρε

)
+ div

{(
1
2
ρv2
+ ρε+ p

)
v +

(
v · J

ρz(1− z)
+

1
β

)
J
}
= 0, (2.6)

∂ρz
∂t
+ div(ρzv + J)= τp, (2.7)

∂(ρzv + J)
∂t

+ div
(
ρzv⊗ v + ppI +

1
ρz

J⊗ J+ v⊗ J+ J⊗ v

)
=mp, (2.8)

and

∂

∂t

(
1
2
ρz
(

v +
J
ρz

)2

+ ρzεp

)

+ div

{(
1
2
ρz
(

v +
J
ρz

)2

+ ρzεp + pp

)(
v +

J
ρz

)}
= ep. (2.9)

Here the following quantities are introduced:

ρ = ρr + ρp mass density of the mixture,
z= ρp/ρ concentration of the products,

v =
1
ρ
(ρrvr + ρpvp) mean velocity of the mixture,

p= pr + pp total pressure of the mixture,
J= ρpup =−ρrur diffusion flux vector,

uα = vα − v (α = r, p) diffusion velocities,

εI =
1
ρ
(ρrεr + ρpεp) intrinsic (thermal) internal energy density of the mixture,

ε= εI +
1

2ρ
(ρru2

r + ρpu2
p) internal energy density of the mixture,


(2.10)
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and
1
β
= gp − gr, with gα = εα +

pα
ρα
+

1
2

u2
α, for α = p, r, (2.11)

where gα are dynamic enthalpies.
To close the system of equations (2.4)–(2.9), one has to introduce constitutive

assumptions about pressure and internal energy density, as well as to determine the
structure of the source terms. The latter is dictated by the general principles of
extended thermodynamics – Galilean invariance and the entropy principle. Galilean
invariance determines the velocity dependence of source terms (Ruggeri & Simić
2007):

τp = τ̂p, mp = m̂p + τ̂pv, ep = êp + m̂p · v + τ̂p
v2

2
, (2.12a−c)

where τ̂p, m̂p and êp denote velocity-independent mass, momentum and energy
production rate, respectively. Information about the chemical reaction is contained
in the source term τp of the mass balance law (2.7). Nevertheless, it is reflected
in all other source terms as well, due to Galilean invariance (2.12). The entropy
principle imposes a further restriction on the source terms by requiring that every
thermodynamic process is compatible with an entropy inequality. Its consequences
will be discussed in the sequel.

2.2. Constitutive assumptions and the state variables
Since viscosity and heat conductivity are not taken into account in our model, the
constitutive assumptions are related to thermal and caloric equations of state. We shall
restrict our study to a binary mixture of ideal gases that consists of reactants and
products. As we are analysing the simplest possible model of a reversible chemical
reaction, Ar
Ap, according to assumption (i) the masses of the constituents ought to
be equal due to mass conservation, mr =mp=m. Consequently, the equations of state
have the following form:

pα = ρα
k
m

Tα, εα = εα +

∫ Tα

T0

cvα(τ ) dτ , α = r, p, (2.13a,b)

where k is the Boltzmann constant, cvα(Tα) are the specific heats at constant volume
and εα are the binding energies. Assuming cvp = cvr = cv = const., and εr = cvT0, the
internal energies take the form:

εp = cvTp −1ε, εr = cvTr, (2.14a,b)

where 1ε = εp − εr, and cv = k/(m(γ − 1)) in accordance with assumption (v).
The temperatures of the constituents are not equal in general, and we have

to introduce the average (mean) temperature of the mixture as a global variable.
Following Gouin & Ruggeri (2008) and Ruggeri & Simić (2009), we shall define the
average temperature using the definition of the intrinsic part of the internal energy
density:

ρpcvTp + ρrcvTr = (ρpcv + ρrcv)T, that is, T = zTp + (1− z)Tr, (2.15)

where we have taken into account the relations ρp = ρz and ρr = ρ(1− z). It is also
convenient to introduce the difference of temperatures,

Θ = Tp − Tr, (2.16)
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as a state variable, which also serves as a measure of thermal non-equilibrium. In such
a way, the temperatures of the constituents can be expressed in terms of z, T and Θ ,
as follows:

Tp = T + (1− z)Θ, Tr = T − zΘ. (2.17a,b)

The total pressure p and the intrinsic internal energy density εI of the mixture can be
expressed in terms of T:

p= pp + pr = ρ
k
m

T, εI =
ρp

ρ
εp +

ρr

ρ
εr =

k
m(γ − 1)

T − z1ε, (2.18a,b)

where we have taken into account assumption (v), that is, γp = γr = γ .
Having in mind the structure of the governing equations (2.4)–(2.9), we may fix the

set of state variables. Although the first choice is usually (ρ, v, T, ρp, vp, Tp), using
the relations given above, we shall adopt U= (ρ, v, T, z, J, Θ).

2.3. The source terms
In our model, the source terms describe the mutual interactions between the
constituents. Their structure, compatible with entropy inequality, was determined
by Ruggeri & Simić (2007) when a non-reactive mixture is considered. However, the
extended thermodynamics has its limits and the phenomenological coefficients cannot
be determined within its framework. Instead, one has either to take into account
experimental results, or to make a link with a more refined approach (e.g. kinetic
theory) to determine them (see Madjarević & Simić 2013; Madjarević et al. 2014).
We shall proceed in the latter way.

2.3.1. The reaction rate
For the reactive mixture considered in this paper, the reaction rate is obtained

from the kinetic theory; more precisely, from the Boltzmann equation for chemically
reactive mixtures, assuming reactive differential cross-sections with activation energy,
and a particular form of the velocity distribution functions in order to obtain an
approximate solution to the reactive kinetic equations. Since we are considering an
MT mixture, an appropriate form for such an input function should be a Maxwellian
distribution in the constituent rest frame,

fα = nα

(
m

2πkTα

)3/2

exp
(
−

m
2kTα

(cα − vα)2
)
, α = r, p, (2.19)

where cα=|cα|, cα being the molecular velocity of each constituent, and nα=ρα/m the
constituent number density. However, the evaluation of the collision integrals applying
to the input functions (2.19) becomes a very difficult task and the computations lead
to intractable expressions. To overcome such difficulty we approximate function (2.19)
through an expansion at the first order around a Maxwellian in the mixture rest frame
with temperature T and mean velocity v:

Gα = nα
( m

2πkT

)3/2
exp

(
−

m
2kT

(cα − v)2
)

×

[
1+

m
kT

3∑
i=1

(cαi − vi)(vαi − vi)+

(
m

2kT
(cα − v)2 −

3
2

)
∆α

]
. (2.20)
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Here (vαi− vi) and (cαi− vi) represent the spatial components of the diffusion velocity
and of the peculiar velocity, respectively, and ∆α = (Tα − T)/T is the normalized
temperature difference. The input function (2.20) represents a linearization of the
Maxwellian distribution (2.19), with respect to the diffusion velocity and temperature
difference.

Adopting reactive differential cross-sections with activation energy, and taking into
account the indistinguishability of the colliding particles, the reaction rate for the mass
concentration z of the products results in (Kremer, Bianchi & Soares 2007)

τ̂p = 2
ρ2

m

√
πkT

m
d2 exp

(
−
εf

kT

) [
(1− z)2 − z2 exp

(
εf − εb

kT

)
+ (1− z)2

(
εf

kT
+

1
2

)
∆r − (1− z)2

(
εb

kT
+

1
2

)
∆p

]
, (2.21)

where εf and εb denote the forward and the backward activation energies of the
chemical reaction. The reaction rate (2.21) shows a second-order form, in the sense
that it depends explicitly on the square of the product concentration z and of the
reactant concentration (1 − z). This is a direct consequence of the fact that it was
derived from the Boltzmann equation with binary reactive encounters. A detailed
account of other aspects of the mathematical modelling of reactive flows may be
found in Giovangigli (1999).

The thermodynamic equilibrium condition, chemical and thermal, corresponds to
τ̂p = 0 and, therefore, we will have thermodynamic equilibrium if

∆r = 0, ∆p = 0,
1− z

z
= exp

(
Q

2kT

)
, (2.22a−c)

where Q = εf − εb = −2m1ε is the reaction heat. The last condition in (2.22)
represents the law of mass action of the model and gives a constraint on the chemical
equilibrium values of the product concentration z and mixture temperature T .

2.3.2. The momentum production rate
The momentum production rate in a binary mixture has the form:

m̂p =−ψpp

(
up

Tp
−

ur

Tr

)
, ψpp =

1
τD
ρz(1− z)T, (2.23a,b)

where ψpp is a phenomenological coefficient related to the relaxation time τD for
diffusion. By linearizing the source term in the neighbourhood of the local equilibrium
state, and taking into account the definition of the diffusion flux, one obtains

m̂p =−
J
τD
. (2.24)

2.3.3. The energy production rate
The energy production rate in a binary mixture reads

êp =−θpp

(
−

1
Tp
+

1
Tr

)
, θpp =

1
τT
ρz(1− z)cvT2, (2.25a,b)
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where θpp is a phenomenological coefficient related to the relaxation time τT for
the temperature. By linearizing the source term in the neighbourhood of the local
equilibrium state, and using the difference of temperatures Θ as non-equilibrium
variable, one obtains

êp =−
1
τT
ρz(1− z)cvΘ. (2.26)

In expressions (2.24) and (2.26), the relaxation times τD and τT , which are part of
the phenomenological coefficients, cannot be determined by the methods of extended
thermodynamics. It was shown in Madjarević & Simić (2013) and Madjarević et al.
(2014), using the arguments of kinetic theory, that the relaxation times for diffusion
and temperature can be related to diffusivity of the binary mixture. In our notation,
the diffusivity D for the hard-sphere model reads:

D=
3

8nd2

(
kT
2π

mp +mr

mpmr

)1/2

. (2.27)

Taking into account that mp = mr = m, the relaxation times reduce to the following
simple form:

τD =
m
kT

D, τT =
2m
kT

D, D=
3

8nd2

(
kT
πm

)1/2

. (2.28a−c)

Note that τT > τD, which is a typical result of kinetic theory.

2.4. The basic assumption and reduced form of the governing equations
Equations (2.4)–(2.9), with the source terms given by (2.21), (2.24) and (2.26),
constitute a complete set of governing equations for a chemically reacting MT binary
mixture. In their derivation we exploited all the simplifying assumptions mentioned
in the introduction. However, it was mentioned that assumption (i) implies further
simplifications. It is appropriate at this stage to introduce the basic assumption that
will imply the reduction of the system of governing equations, and simplification of
the remaining ones.

2.4.1. The basic assumption
Since reactants and products have equal molecular masses, mr = mp = m, the

molecules of the constituents are indistinguishable in a mechanical sense. Therefore,
the diffusion of the constituents can be ignored and the momentum balance law (2.8)
can be dropped from the list of governing equations.

The basic assumption is a consequence of the simplicity of the chemical reaction
(1.1). The fact that the masses of the constituents are equal implies that one cannot
distinguish the molecules of reactants and products during mechanical collisions. As
a consequence, the mean (macroscopic) velocities of the constituents are equal, vr =

vp = v, and the diffusion velocities vanish, ur = up = 0, as well as the diffusion
flux, J= 0. However, the mean energies of the constituents may not be equal, which
implies thermal non-equilibrium, Tr 6= Tp, and chemical reaction may play a role in
their approach to equilibrium. The MT assumption is in this case motivated by the
presence of chemical reaction, rather than the difference of masses as in previous
studies (Ruggeri & Simić 2009; Madjarević & Simić 2013; Madjarević et al. 2014).
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2.4.2. The reduced form of the governing equations
As a consequence of the basic assumption, the set of governing equations reduces to

five equations, namely (2.4)–(2.7) and (2.9), for the state variables U= (ρ, v, T, z, Θ),
with production terms τ̂p and êp given by expressions (2.21) and (2.26).

The reduced set of equations describes the evolution of the considered binary
reactive mixture, in a regime of thermal and chemical non-equilibrium in which
diffusion, heat conduction and viscosity are not taken into account. Such a set of
equations is the one considered in the sequel to define the mathematical setting for
the determination of the detonation wave solutions.

3. Steady ZND detonation waves
In this section we follow the classical ZND model, advanced by Zel’dovich,

von Neumann and Döring (see Fickett 1985; Williams 1985; Lee 2008), for a
one-dimensional detonation wave, and propose its generalization taking into account
the reversibility of the chemical reaction and the MT assumption.

The configuration of the ZND detonation wave consists of a plane, non-reactive
shock wave propagating with constant speed s in the direction orthogonal to the
singular surface, followed by a finite reaction zone where the chemical reaction takes
place and eventually reaches equilibrium.

The spatial structure of the steady detonation wave is determined by solving two
different problems in a convenient parametric space. The first problem is purely
algebraic and consists in determining the post-shock state – the von Neumann state
N – as the solution to the non-reactive jump Rankine–Hugoniot conditions. The
second problem is the initial value problem for the determination of the continuous
reacting flow in the reaction zone, with initial data at the von Neumann state. The
final state S, at the end of the reaction zone, can be obtained either from the second
problem, as the state of the continuous reacting flow for which the reactive mixture
reaches the chemical and thermal equilibrium, or from a Rankine–Hugoniot analysis
combined with the equilibrium condition, chemical and thermal.

In what follows we refer the governing equations to the frame attached to the shock
wave, and establish the analytic part of the modelling.

3.1. Governing equations in the moving frame
According to the ZND model, we shall assume that the wave moves in the x-direction,
from left to right, and that the flow is one-dimensional, v = (v, 0, 0). The wave
configuration is supposed to be steady in the shock-attached frame, and we introduce
the steady variable ξ and the relative velocity u of the mixture with respect to the
shock front:

ξ = x− st, u= v − s. (3.1a,b)

In the steady frame attached to the shock wave, the reaction zone extends from x0
to xS, where x0 represents the location of the shock front. The state just behind the
shock, located at x= x0, is the von Neumann state N, where the chemical reaction is
triggered, and the one located at x= xS, at the end of the reaction zone, is the final
steady state S, where the mixture reaches chemical and thermal equilibrium. Ahead of
the shock front, that is, for x> x0, the quiescent mixture is at rest in its initial state I,
where the rate of the chemical reaction is completely negligible.

Assuming steady, one-dimensional travelling wave structure of the detonation wave,
in which the vector of state variables U = (ρ, u, T, z, Θ) depends on a single
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A ZND-like detonation wave 685

independent variable, say U(ξ)= U(x− st), the governing equations are transformed
into a set of ordinary differential equations:

d
dξ
(ρu)= 0, (3.2)

d
dξ

[
ρu2
+ ρ

k
m

T
]
= 0, (3.3)

d
dξ

[(
1
2
ρu2
+

γ

γ − 1
ρ

k
m

T − ρz1ε
)

u
]
= 0, (3.4)

d
dξ
(ρzu)= τ̂p, (3.5)

d
dξ

[(
1
2
ρzu2
+

γ

γ − 1
ρz

k
m
(T + (1− z)Θ)− ρz1ε

)
u
]
= êp + τ̂p

u2

2
. (3.6)

The source terms τ̂p and êp are used in linearized form (2.21) and (2.26), respectively.
Formally, the governing equations of the standard ZND detonation waves are
(3.2)–(3.5). Here, they are extended with (3.6), which describes the profile of the
temperature difference Θ .

3.2. Algebraic analysis of the detonation wave
As the first step, the algebraic part of the problem will be studied. It will outline the
basic structure of the detonation wave, including the important notion of equilibrium
Hugoniot curve, peculiar for reversible chemical reactions.

3.2.1. Rankine–Hugoniot conditions
The governing equations of conservative type, equations (3.2)–(3.4), lead to the

well-known algebraic Rankine–Hugoniot (RH) conditions that relate a state behind
the shock wave to the initial state ahead the shock. Such conditions connect the
fluxes of the conserved quantities across the wave front, and are given by

ρu=−ρ0s, (3.7)
ρu2
+ p= ρ0s2

+ p0, (3.8)
1
2

u2
+

γ

γ − 1
p
ρ
=

1
2

s2
+

γ

γ − 1
p0

ρ0
, (3.9)

where ρ0 and p0 are the mass density and pressure at the unperturbed initial state.
Moreover, z0= 0 and Θ0= 0 at the initial state. Additionally we have assumed that the
initial state is at rest, so that v0=0 and u0=−s. For each fixed value of the detonation
velocity s, the corresponding von Neumann and equilibrium states can be determined
from the RH conditions (3.7)–(3.9), with additional proper conditions, as will be
explained in the sequel. Introducing the specific volume of the mixture, ν = 1/ρ,
the states (ν, p) in the reaction zone, compatible with a strong detonation wave (Lee
2008), are characterized as a function of the product concentration z, with the shock
speed s as parameter, by

ν

ν0
=

γ

γ + 1
1+ s2

s2 −Υ (z),
p
p0

=
1+ s2

γ + 1
+ s2Υ (z), (3.10a,b)
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where Υ (z) is defined by

Υ (z)=

√
(s2
− γ )2 − 2(γ + 1)(γ − 1)z1εs2

(γ + 1)s2 . (3.11)

In the derivation of (3.10) we used the state equations (2.18); see Marques Junior
et al. (2015) for a detailed analysis.

3.2.2. Von Neumann state
The von Neumann state is the state just behind the shock wave. Since the passage

of the mixture through the shock front is a non-reactive process, the progress variable
remains constant through the shock and the temperature difference does not change.
Accordingly, z= 0 and Θ = 0 at the von Neumann state. Therefore, the state N can
be obtained as the non-trivial solution to the RH conditions (3.7)–(3.9) complemented
by the conditions z= 0 and Θ = 0. Equivalently, the state N can be obtained directly
from conditions (3.10), together with the vanishing conditions for z and Θ , that is

pN =
2s2

γ + 1
p0−

γ − 1
γ + 1

p0, νN =
γ − 1
γ + 1

ν0+
2
s2

γ

γ + 1
ν0, zN = 0, ΘN = 0. (3.12a−d)

3.2.3. Continuous reacting flow
The reacting flow in the reaction zone describes the continuous evolution of the

mixture from the von Neumann state N, say at ξ = 0, to the final state S, say at
ξ = ξS, due to the chemical reaction and thermal equilibration. From the mathematical
point of view, the ordinary differential equations (3.2)–(3.6) have to be solved for the
fields ρ, u, T, z and Θ , with initial conditions at the state N.

3.2.4. Equilibrium final state
The final state S at the end of the reaction zone represents the state for which

the reactive mixture reaches chemical and thermal equilibrium. It can be determined
from expressions (3.10) with z and Θ satisfying the equilibrium conditions (2.22).
Therefore, S is characterized by expressions (3.10) together with

Θ = 0,
(

1+ s2

γ + 1
+ s2Υ (z)

)(
γ

γ + 1
1+ s2

s2 −Υ (z)
)
=−

1ε

ln
(

1− z
z

) , (3.13a,b)

where we have used Υ (z) defined by (3.11). Observe that the second condition in
(3.13) represents the law of mass action given in (2.22) parametrized by the shock
velocity s.

Additionally, since the state S represents the end point of the continuous reacting
flow, in which the mixture reaches equilibrium and all state variables become constant,
it can be obtained by integrating equations (3.2)–(3.6) from ξ = 0 to ξ = ξS for which
all the production rates vanish, as predicted by the equilibrium conditions (2.22) or
(3.13).
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FIGURE 1. Hugoniot diagram showing unreacted (z = 0) and complete reaction (z = 1)
Hugoniot curves (solid black curves), Hugoniot curve corresponding to a fixed zeq value
(solid grey curve), equilibrium Hugoniot curve (dashed curve) and Rayleigh lines (solid
black straight lines).

3.2.5. Chapman–Jouguet state
The Chapman–Jouguet state (CJ) is a particular final state obtained for the minimum

admissible value of the shock velocity s, say sj. Since it is an equilibrium final
state, equilibrium conditions (3.13) must be satisfied. Therefore, the CJ state is
the final state of a strong detonation for which p/p0 is minimum and ν/ν0 is
maximum, see (3.10). This corresponds to having Υ (z)= 0 (see Marques Junior et al.
2015). Accordingly, we determine the CJ velocity sj and the corresponding product
concentration zj by solving the equilibrium conditions (3.13), together with condition
Υ (z)= 0. The CJ state is then obtained from (3.10) for z= zj and s= sj.

3.2.6. Hugoniot diagram
The detonation solution can be represented in the (ν, p)-plane through the Hugoniot

diagram (Fickett 1985; Lee 2008; Conforto et al. 2014; Marques Junior et al. 2015)
straightly connected to the RH conditions (3.7)–(3.9). As shown in figure 1, this is
a qualitative representation of the solution in terms of Rayleigh lines and Hugoniot
curves for fixed product concentration, as well as in terms of the equilibrium Hugoniot
curve, which constitutes an important ingredient when the chemical reaction is
reversible and the reactive mixture reaches a final equilibrium state (Lee 2008;
Marques Junior et al. 2015).

For fixed values of the material properties, say the specific heat ratio γ , the binding
energy difference 1ε and the activation energy εf , each Rayleigh line gathers all
states obtained for a fixed value of the wave velocity s corresponding to mass and
momentum conservation. Each Hugoniot curve for fixed product concentration collects
all states along which the total energy of the mixture is preserved. On the other hand,
the equilibrium Hugoniot curve accommodates all final equilibrium states for fixed
values of the material properties. The necessity for the equilibrium Hugoniot curve
comes from the fact that we analyse a reversible chemical reaction. Such a curve is
the locus of all thermal and chemical equilibrium states, parametrized by the wave
velocity s.
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In the Hugoniot diagram, we highlight two items, namely the CJ state, corresponding
to the tangency point of the Rayleigh line to the equilibrium Hugoniot curve, and
the equilibrium final state (νeq, peq) for a fixed value of s (s > sj), obtained as the
intersection point of the corresponding Rayleigh line with the equilibrium Hugoniot
curve.

For the considered value s > sj, we also plot in figure 1 the fixed-concentration
Hugoniot curve obtained for the corresponding value z = zeq (solid grey curve). The
equilibrium state (νeq, peq) for such s> sj, point S in figure 1, is then the intersection
of three curves: the corresponding Rayleigh line, the equilibrium Hugoniot curve, and
the z = zeq Hugoniot curve. Although in figure 1 it seems that the latter two curves
almost coincide, they do not and they must be distinguished.

4. Continuous reacting flow – qualitative analysis

Certain features of the MT ZND detonation waves can be revealed by a qualitative
analysis. On the one hand, a hierarchy of models can be established and the MT
model gradually simplifies to the standard ZND model. On the other hand, certain
properties of the solution, peculiar for MT models, can also be recognized.

4.1. Steady detonation equations and hierarchy of the models
The governing equations (3.2)–(3.6) will be written in dimensionless form using the
following scaled variables (subscript 0 refers to the unperturbed initial state in front
of the shock wave):

ρ̃=
ρ

ρ0
, ũ=

u√
p0

ρ0

, T̃=
T
T0
, Θ̃=

Θ

T0
, 1ε̃=

1ε
p0

ρ0

, ε̃f =
εf
p0

ρ0

, ξ̃ =
ξ

τ0

√
p0

ρ0

,

(4.1a−g)
where the reference time τ0 is given by

τ0 =
1

2n0d2

√
m

πkT0
(n0 = ρ0/m). (4.2)

Although the choice (4.2) is taken for convenience, τ0 and relaxation times τD and
τT (2.28) can be related to the so-called collision time scale, i.e. the mean free time
of particles between collisions in equilibrium (Bardos, Golse & Levermore 1993).
Omitting, for brevity, the tilde in the quantities (4.1), the dimensionless governing
equations of the steady detonation are as follows:

d
dξ
(ρu)= 0, (4.3)

d
dξ
(ρu2
+ ρT)= 0, (4.4)

d
dξ

[(
1
2
ρu2
+

γ

γ − 1
ρT − ρz1ε

)
u
]
= 0, (4.5)

d
dξ
(ρzu)= τ̃p (4.6)
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and

d
dξ

[(
1
2
ρzu2
+

γ

γ − 1
ρz (T + (1− z)Θ)− ρz1ε

)
u
]

=−
τ0

τT

1
γ − 1

ρz(1− z)Θ + τ̃p
u2

2
, (4.7)

where

τ̃p = ρ2
√

T exp
(
−
εf

T

){
(1− z)2 − z2 exp

(
−

21ε
T

)
− (1− z)2

[
εf

T
+

1
2
+ (1− z)

21ε
T

]
Θ

T

}
(4.8)

and
τ0

τT
=

2
3
ρ
√

T. (4.9)

The governing equations consist of the conservation laws (4.3)–(4.5) of mass,
momentum and energy for the mixture, and the balance laws (4.6) and (4.7) of
mass and energy for the product. The balance law of momentum for the product is
dropped from the set of governing equations in accordance with the basic assumption.

4.1.1. Governing equations solved with respect to first derivatives
The governing equations (4.3)–(4.7) can be solved with respect to first derivatives:

dρ
dξ
=
(γ − 1)1ε
u(u2 − γT)

τ̃p, (4.10)

du
dξ
=−

(γ − 1)1ε
ρ(u2 − γT)

τ̃p, (4.11)

dT
dξ
=
(γ − 1)1ε(u2

− T)
ρu(u2 − γT)

τ̃p, (4.12)

dz
dξ
=

1
ρu
τ̃p, (4.13)

dΘ
dξ
=
(γ − 1)1ε(1− z)− γ [T + (1− 2z)Θ]

γρz(1− z)u
τ̃p −

τ0

τT

Θ

γ u
. (4.14)

This form will be useful for the analysis of certain qualitative aspects of the solutions.

4.1.2. Hierarchy of the models
In § 5 we shall provide a comparative analysis of the detonation profiles obtained by

the solutions to (4.3)–(4.7), with those obtained through the solutions to the simpler
models. This analysis will be achieved through the hierarchy of models obtained
through the simplification of the reaction rate (4.8). Namely, τ̃p can be split into a
single-temperature (ST) part τ̃ ST

p , which does not depend on Θ , and an MT part τ̃MT
p ,

which depends on Θ , as follows:

τ̃p = τ̃
ST
p (z, T, 1ε)+ τ̃MT

p (z, T, Θ), (4.15)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.218


690 D. Madjarević, S. Simić and A. J. Soares

where

τ̃ ST
p (z, T, 1ε)= ρ2

√
T exp

(
−
εf

T

){
(1− z)2 − z2 exp

(
−

21ε
T

)}
, (4.16)

τ̃MT
p (z, T, Θ)=−ρ2

√
T exp

(
−
εf

T

)
(1− z)2

[
εf

T
+

1
2
+ (1− z)

21ε
T

]
Θ

T
. (4.17)

In such a way the following hierarchy of the models can be obtained and analysed in
the sequel:

(MT) the MT model is described by the system (4.3)–(4.7), with the complete
reaction rate term (4.8);

(qMT) the quasi-MT model consists of the same equations (4.3)–(4.7) as for the
MT model, but with simplified reaction rate τ̃p= τ̃

ST
p that does not take into

account the contribution of the different temperatures; and
(ST) the ST model consists of (4.3)–(4.6), assumes that the reaction rate τ̃p= τ̃

ST
p

and assumes a common temperature for both constituents throughout
the whole process – this model, along with reversible chemical reaction,
corresponds to the model studied in (Marques Junior et al. 2015).

4.2. Properties of the solution
The analysis of MT detonation waves possesses certain particular features which
distinguish it from the standard analysis based upon reactive Euler equations. Such
features will be qualitatively analysed in the sequel.

4.2.1. Equilibrium state
As mentioned above, the MT model of the steady detonation wave describes a

continuous solution that connects the von Neumann state UN with the equilibrium
one Ueq. Thus, we analyse the boundary value problem for (4.3)–(4.7) in a (formally)
unbounded domain ξ ∈ [0,∞), with the following boundary data:

U(0)=UN, (4.18)

lim
ξ→ξS

U(ξ)=Ueq and lim
ξ→ξS

dU
dξ
(ξ)= 0, 0< ξS <∞, (4.19a,b)

where ξS denotes the value of the steady variable at which the process terminates. Note
that condition (4.19) leads to a necessary condition for equilibrium.

STATEMENT 1. If the system (4.3)–(4.7) is in an equilibrium state characterized by
relations (4.19), then the state variables obey the following relations:

1− zeq

zeq
= exp

(
−
1ε

Teq

)
and Θeq = 0. (4.20a,b)

Proof. The terminal condition (4.19) implies that production terms in governing
equations (4.6) and (4.7) vanish in equilibrium. In particular, the equilibrium condition
for (4.6) implies that the reaction rate vanishes, τ̃p = 0, which provides a relation
between equilibrium values zeq, Teq and Θeq. However, the equilibrium condition for
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(4.7) requires simultaneous vanishing of the reaction rate τ̃p and the temperature
difference Θ , which leads to Θeq = 0. As a consequence, we have

Θeq = 0 ⇒ τ̃MT
p (zeq, Teq, Θeq)= 0, (4.21)

so that the ST part τ̃ ST
p of the reaction rate vanishes independently, implying the law

of mass action

τ̃ ST
p (zeq, Teq, 1ε)= 0 ⇒

1− zeq

zeq
= exp

(
−
1ε

Teq

)
, (4.22)

which completes the proof.

Having in mind the analysis developed in § 3, it becomes obvious that the terminal
state of the system has to be the equilibrium one, i.e. U(ξS) = US = Ueq, where
the equilibrium state is uniquely determined by the intersection of the Rayleigh
line and the equilibrium Hugoniot curve, together with the independent condition
ΘS =Θeq= 0. The additional condition (4.20b) is peculiar for the MT model and has
to be considered with particular attention, as will be shown in the sequel.

4.2.2. Non-monotonic detonation profiles
Further qualitative analysis will be based upon twofold characterization of the

equilibrium state, given by the terminal condition (4.19). A distinguished role in this
analysis will be played by the temperature difference Θ . To facilitate the formulation
of the forthcoming statements, we shall introduce the following notation for the state
variables:

U= (UST, Θ), UST
= (ρ, u, T, z). (4.23a,b)

In the case of reversible chemical reaction, typical ZND detonation profiles
are monotonic (Marques Junior et al. 2015), except in the neighbourhood of the
Chapman–Jouguet solution, the solution that connects the von Neumann state N with
the Chapman–Jouguet state CJ. However, equilibrium conditions (4.20) of the MT
model imply the possibility of occurrence of non-monotonic profiles. The existence
of such profiles will be demonstrated first through a qualitative analysis. It will then
be confirmed by numerical computation in the next section.

STATEMENT 2 (Crossing condition). Assume that there exists ξC ∈ (0,∞) such that
the state vector UST(ξC)= (ρC, uC, TC, zC) satisfies the equilibrium condition (4.20a),
i.e. zC = zeq, TC = Teq. Then, the following two cases are possible: either

(i) Θ(ξC)=ΘC =Θeq = 0 and the equilibrium state is reached at ξC = ξS; or
(ii) Θ(ξC) 6=0, which implies dU(ξC)/dξ 6=0, and the process will continue for ξ >ξC.

Proof. If zC and TC satisfy the equilibrium condition (4.20a), i.e. the law of mass
action, then ρC and uC are uniquely determined by (3.10) and (3.7) for the fixed value
of s. Moreover, τ̃ ST

p (zC, TC, ΘC) = 0. In case (i) it is obvious that the equilibrium
state is reached, since both equilibrium conditions (4.20) are satisfied. In case (ii),
Θ(ξC) 6= 0 implies τ̃p(ξC)= τ̃

MT
p (zC, TC, ΘC) 6= 0. Consequently, by a simple inspection

of the system (4.10)–(4.14), one may conclude that dU(ξC)/dξ 6= 0, which completes
the proof.
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The crossing condition has a simple interpretation. If the state variables UST satisfy
the law of mass action (4.20a), and lie on the Rayleigh line and the equilibrium
Hugoniot curve simultaneously, the ST part of the reaction rate will vanish, τ̃ ST

p (ξC)=0.
However, if Θ(ξC) 6= 0, the process is not terminated, since the derivatives of the state
variables do not yet vanish, and the curve UST(ξ) only crosses the equilibrium values
at ξC. This motivates the denomination crossing condition. Its importance lies in the
fact that it may occur for certain values of the parameters, in contrast to the standard
ST case.

STATEMENT 3 (Local extremum). Assume that there exists ξE ∈ (0,∞) such that the
derivative of the state vector UST vanishes, dUST(ξE)/dξ = (0, 0, 0, 0). Then, the
following two cases are possible: either

(i) dΘ(ξE)/dξ = 0, which implies Θ(ξE)= 0, and the equilibrium state is reached at
ξE = ξS, or

(ii) dΘ(ξE)/dξ 6= 0, which implies Θ(ξE) 6= 0, and the process will continue for
ξ > ξE.

Proof. If dUST(ξE)/dξ = (0, 0, 0, 0) at some point ξE ∈ (0,∞), then from (4.10)–(4.13)
one obtains τ̃p(ξE)= 0. However, this condition is not sufficient for equilibrium since
it only determines one relation between all the state variables U. If case (i) is valid,
dΘ(ξE)/dξ = 0, from (4.14) it follows that Θ(ξE) = 0, and the system reaches the
equilibrium state at ξE = ξS. If case (ii) is valid, dΘ(ξE)/dξ 6= 0 implies Θ(ξE) 6= 0
from (4.14), and the process is not terminated, but continues for ξ > ξE.

As a conclusion of the analysis of non-monotonic profiles, one fundamental remark
has to be given. Either in the case of crossing the equilibrium state (statement 2), or
in the case of local extremum (statement 3), the main driving agent for continuation
of the process is the temperature difference of the constituents.

4.2.3. Quasi-multi-temperature behaviour
In § 3 we defined the qMT model as the one consisting of (4.3)–(4.7), or

equivalently (4.10)–(4.14), but with a simplified reaction rate τ̃p = τ̃ ST
p . Note that

such a reaction rate does not depend on Θ , but only on the UST state vector. This
fact has a simple consequence that will be exploited in our numerical computations.

STATEMENT 4. Assume that the reaction rate has the form τ̃p = τ̃
ST
p . Then (4.3)–

(4.6), or equivalently (4.10)–(4.13), have the same structure as in the ST case and
completely determine the solution for UST(ξ). Equation (4.7), or equivalently (4.14),
is decoupled from the rest of the system and serves for the determination of Θ(ξ)
once the ST part of the model is solved.

Proof. It is sufficient to note that the differential part of the system (4.3)–(4.6) has
the same structure as in the ST case (Marques Junior et al. 2015), and thus does not
depend on Θ . If moreover τ̃p= τ̃

ST
p , then this part of the system has the ST structure,

independent of Θ , the same as the one in Marques Junior et al. (2015). Therefore, the
complete system (4.3)–(4.7) decouples into an ST part (4.3)–(4.6), which determines
the behaviour of UST(ξ), and an MT part (4.7), which tracks the evolution of Θ(ξ).
The proof is then complete.
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5. Continuous reacting flow profiles
The profiles of a continuous reacting flow can be determined numerically, by

solving an appropriate initial value problem, as discussed in § 3.2. Namely, the
governing equations of the problem are (4.3)–(4.7), for ξ ∈ (0, +∞), and the initial
data are taken as

U(0)=


ρ(0)
u(0)
T(0)
z(0)
Θ(0)

=



4M2
0

3+M2
0

√
γ

3+M2
0

4M0

1
16

(
14−

3
M2

0
+ 5M2

0

)
0
0


=UN, (5.1)

where UN stands for the von Neumann state. By M0 = u0/c0 we denote the Mach
number in the unperturbed initial state in front of the shock, with c0=

√
γ p0/ρ0 being

the adiabatic speed of sound. It will be convenient to express the Mach number in an
alternative form, for the sake of comparison with the results presented in Marques
Junior et al. (2015):

M0 =
sj
√
γ

√
f , f =

(
s
sj

)2

, (5.2)

where sj is the dimensionless steady detonation wave velocity at the CJ state, and f
is the so-called overdrive degree. For reasons that will become apparent in the sequel,
a subsequent analysis of the reacting flow profiles will be restricted to overdriven
detonations, f > 1, for which s> sj and the equilibrium state lies on the strong branch
of the equilibrium Hugoniot curve (see figure 1).

To avoid singularities in numerical computations, we have to adopt a small value
of the initial concentration of the product at the von Neumann state. Thus, we shall
assume z(0)=0.01 in all the computations. Other possible singularities do not interfere
with numerical simulations. In particular, we have ρ > 0 and u> 0, and thus ρ and u
do not create any singularity; moreover, z<1, since the chemical reaction is reversible,
and no other singularity arises from z. Finally, since we analyse only the overdriven
detonations, the flow in the reaction zone is subsonic and u2<γT throughout the flow.

The latter singularity, corresponding to the sonic condition u2
= γT , is rather

delicate and has to be treated with care. When the detonation process comprises
an exothermic reaction followed by an endothermic one, there is a possibility for a
pathological detonation to occur (Fickett & Davis 1979). There is a point within the
profile where the flow becomes sonic, and the detonation is unsupported and ends up
on the weak branch of the equilibrium Hugoniot curve (see § 3.1 in Sharpe (1999) for
a comprehensive analysis). In this case, the flow described by the model (4.3)–(4.7)
will reach the singularity at the sonic point. For that reason, the analysis is restricted
to overdriven detonations, while the other possibilities will be outlined in the final
section.

The terminal, i.e. the equilibrium, state is determined by condition (4.19) for ξ→ ξS.
In the numerical computations, we perform the analysis on a finite domain ξ ∈ [0, ξ ∗],
ξ ∗ 6 ξS, taking ξ ∗ in such a way that the state variables reach the neighbourhood of
the equilibrium state with sufficient accuracy. We shall not go for the determination of
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the position ξS of the equilibrium state, since it can be determined only approximately
and the result depends on the accuracy proposed beforehand.

The basic modelling novelty, i.e. the introduction of multiple temperatures,
influences neither the von Neumann state nor the terminal equilibrium state. It
may be reflected only in the reacting flow profiles. This is a consequence of the fact
that von Neumann and equilibrium states are determined through the solution of the
appropriate RH conditions and the vanishing of production terms, respectively, which
both include the vanishing of the temperature difference, as described in § 3.2. The
aim of the numerical computation of the reacting profiles is to analyse the influence
of the temperature difference on its structure. It is important to note that the model
(4.3)–(4.7) together with initial data (5.1) contains three parameters: the forward
activation energy εf , the overdrive degree f , and the binding energy difference 1ε (or
the reaction heat Q=−21ε). Our aim is to analyse the influence of these parameters
on the structure of the continuous reacting flow, and to compare these results with
those presented in Marques Junior et al. (2015), i.e. with ST profiles. Note that in
view of statement 4, there is no need for a comparison with qMT profiles, since
they are the same as ST ones. In figures 2–6, the steady variable ξ is given on
a logarithmic scale and the state variables u, p and T are given in units of their
corresponding values uN , pN and TN at the von Neumann state.

5.1. Case 1: Influence of εf on the profile
First we consider the influence of the activation energy of the forward reaction εf on
the structure of the continuous reacting flow profile. This is the case in which the
MT assumption strongly reveals its influence and leads to completely new results in
a qualitative sense. It is well known (Lee 2008) that the activation energy is strictly
related to the temperature sensitivity of the chemical reaction. To compare our results
with (Marques Junior et al. 2015), we adopted the same values of the parameters:

1ε = 1.0, f = 1.5, εf ∈ {2.0, 10.0, 30.0}. (5.3a−c)

Numerically computed profiles are presented in figure 2, for both MT and ST models.
For lower values of εf , one can observe two qualitatively different types of profiles.

The first one (εf = 2.0) is non-monotonic – it contains a crossing point with the
state UST

eq , as indicated by statement 2, as well as at least one local extremum, as
described in statement 3. This does not occur in the ST case at all. Moreover, it can
be observed that the MT profiles are driven out of the von Neumann state faster than
the ST ones, and this fact can be attributed to the presence of MT part τ̃MT

p in the
reaction rate.

When the activation energy is increased (εf = 10.0), the profiles become monotonic,
like in the ST case. There is still, however, a difference between the MT and ST
profiles: the MT profiles are driven out of the von Neumann state faster than the
ST ones, but the ST profiles are steeper than the MT ones. Obviously, there exists a
threshold value of the activation energy εf which separates the non-monotonic profiles
from monotonic ones. This issue will be tackled in the sequel.

As in Marques Junior et al. (2015), for very large values of the activation energy
(εf = 30.0), the reaction rate is considerably smaller (see (4.8)) and the profile
is much wider – the equilibrium state is reached at ξeq ≈ 106. Both MT and ST
profiles are monotonic and have a similar behaviour as in the previous case. However,
the difference between the state variables in the MT and ST cases is much less
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FIGURE 2. Influence of εf on the reacting flow: profiles of z(ξ), u(ξ), p(ξ), T(ξ)
obtained with the MT model (black) and ST model (grey), for different values of εf .

pronounced, e.g. zMT(ξ)− zST(ξ) < 10−3 throughout the profile. For these reasons, the
profiles obtained for εf = 30.0 are not displayed in the whole range of ξ , but just in
the range that is significant for the first two cases.

The analysis of the temperature profiles of the constituents sheds new light on the
MT phenomenon. In the case of non-reactive mixtures, it is usually related to the fact
that constituents have disparate masses. In our problem the masses of reactants and
products are equal by assumption, mr =mp =m. Nevertheless, there is a temperature
difference that cannot be ignored. A careful examination of the profiles, presented
in figure 3, reveals that there appears an immediate temperature drop of the product
temperature right behind the von Neumann state. This result suggests that the main
reason for sustained thermal non-equilibrium between the constituents is not the
mass difference, but the chemical reaction and the huge initial difference in the
concentration of the constituents.

As a final remark, we would like to compare the non-monotonic profiles that
appear in our model with the non-monotonic profiles in the standard model for ZND
detonation waves. Namely, in the standard model, the non-monotonic temperature
profiles appear for large values of the activation energy, and they are preceded by a
longer induction zone and have steeper profiles (see Lee 2008, pp. 77–78). Other state
variables have monotonic profiles. The main difference between our model and the
standard one is the reversibility of the chemical reaction and the MT assumption. They
are both properly taken into account in the reaction rate (2.21), and its subsequent
dimensionless forms. In contrast to the standard model, the non-monotonic profiles
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FIGURE 3. Influence of εf on the reacting flow: profiles of T(ξ), Tr(ξ) and Tp(ξ) obtained
with the MT model for two different values of εf : εf = 2.0 (a) and εf = 10.0 (b).

in our case appear in all the state variables and for small values of the activation
energy εf . Therefore, it seems that reversibility and thermal non-equilibrium (Θ 6= 0)
play the crucial role in generating non-monotonic profiles through their appearance
in the reaction rate. It must be emphasized that the scope of this remark is restricted
to ZND detonation waves, and that we do not tend to cover processes like Rayleigh
flow, in which non-monotonic temperature profiles occur as well.

5.2. Case 2: Influence of f on the profile
The influence of the overdrive degree f on the continuous reacting profiles is analysed
for the following values of the parameters:

1ε = 1.0, f ∈ {1.08, 1.5, 3.0}, εf = 2.0, (5.4a−c)

and the results are presented in figure 4. As expected, different values of f lead to
different terminal equilibrium states. However, there is no qualitative difference
between the profiles – only non-monotonic profiles appear. This leads to the
conclusion that the major influence on the qualitative structure of the profile still
comes from the activation energy εf , rather than from the overdrive degree f . This
is a consequence of the fact that the activation energy is strictly related to the
temperature sensitivity of the chemical reaction.

In the present analysis we took the value f = 1.08 with the aim to mimic the
behaviour of the Chapman–Jouguet solution. It can be observed in the temperature
profile illustrated in figure 4 that there occurs a temperature drop in the profile.
A similar result has been obtained in (Marques Junior et al. 2015), where it was
attributed to the prevalence of backward reaction (which is endothermic) for f = 1.0.
However, this phenomenon appears also for f > 1.0 and yet has to be analysed
carefully.

5.3. Case 3: Influence of 1ε on the profile
In Marques Junior et al. (2015), the influence of the binding energy difference 1ε was
not analysed at all. Nevertheless, in the context of MT ZND detonation waves, it is of
interest to pay attention to the impact of this parameter on the reacting profiles, since
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FIGURE 4. Influence of f on the reacting flow: profiles of z(ξ), u(ξ), p(ξ), T(ξ) obtained
with the MT model (black) and ST model (grey), for different values of f .

it is related to the reaction heat. In fact, higher values of 1ε indicate more violent
chemical reactions. Although sj varies with 1ε, we kept the overdrive degree f fixed
in all the computations. However, we computed the profiles for two different values
of εf , so that the final set of parameter values is

1ε ∈ {1.0, 5.0, 10.0}, f = 1.5 εf ∈ {2.0, 10.0}, (5.5a−c)

and the results are presented in figures 5 and 6, for εf = 2.0 and εf = 10.0, respectively.
It may be observed in figure 5 that for εf = 2.0 all the computed profiles in the MT

model are non-monotonic, regardless of the value of 1ε. This means that the influence
of a low level of activation energy opens the door to non-monotonic profiles, without
any regard to the heat of reaction.

However, figure 6 reveals that, for εf = 10.0, the value 1ε = 1.0 yields monotonic
MT profiles, whereas higher values of 1ε yield non-monotonic profiles. Therefore,
when the activation energy is high, the reaction has to be sufficiently violent in
order to produce non-monotonic profiles. Moreover, by a continuity argument we
may expect that there exists a threshold value of 1ε which separates monotonic MT
profiles from non-monotonic ones and this aspect will be analysed in the sequel.

5.4. General remark on overdriven detonations
In view of the analysis related to the Hugoniot diagram (figure 1), and the detailed
explanation of pathological and overdriven detonations, it may be observed that
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FIGURE 5. Influence of 1ε on the reacting flow: profiles of z(ξ), u(ξ), p(ξ), T(ξ)
obtained with the MT model (black) and ST model (grey), for εf =2.0 and different values
of 1ε.

non-monotonic profiles of overdriven detonations exactly follow the scenario given by
Khokhlov (1989) and Sharpe (1999). They pass through the point in which (4.20a)
is satisfied, reach the turning point, and then converge to the equilibrium state. This
behaviour is predicted in § 4 in the qualitative analysis of non-monotonic profiles. As
already mentioned in the analysis of case 1, in the ST ZND model with reversible
reaction, studied by Marques Junior et al. (2015), this behaviour cannot be obtained,
but only the monotonic one. Therefore, the MT assumption appears to be a crucial
modelling assumption for capturing the non-monotonic behaviour. In particular, for
a certain range of values of the parameters, the single reversible reaction (1.1) in
conjunction with the MT assumption yield the same qualitative behaviour in the case
of overdriven detonation as the two-step reactions A→ B→ C with an endothermic
phase following the exothermic one.

It is also interesting to relate the turning points in the state space and the
corresponding heat release. In the MT ZND model, taking into account (2.18b),
the heat release is Q= z1ε. The turning point in overdriven detonations corresponds
to the maximum heat release (see Sharpe 1999). Consequently, one has

dQ
dξ
=

dz
dξ
1ε = 0, (5.6)
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FIGURE 6. Influence of 1ε on the reacting flow: profiles of z(ξ), u(ξ), p(ξ), T(ξ)
obtained with the MT model (black) and ST model (grey), for εf = 10.0 and different
values of 1ε.

and this implies τ̃p = 0 (see (4.10)–(4.14)), which corresponds to the local extremum
in our study. However, there remains a qualitative difference between the overdriven
detonations in the MT ZND detonation model with a single reversible reaction, and
the same detonations in the two-step model – in the former case there appear more
than one local extremum in the profile. This will remain an open question for future
studies.

5.5. Qualitative analysis of the reaction rate
The analysis in case 3 to a certain extent confirms the observation already given in
case 1 – the major influence on the qualitative behaviour of the continuous reacting
profile comes from the activation energy εf . However, the heat of reaction 1ε becomes
important, and actually decisive, when the activation energy is large and suppresses the
non-monotonic behaviour.

These findings can be supported by the qualitative analysis of the reaction rate τ̃MT
p

already given in (4.17) by

τ̃MT
p (z, T, Θ)=−ρ2

√
T exp

(
−
εf

T

)
(1− z)2

[
εf

T
+

1
2
+ (1− z)

21ε
T

]
Θ

T
. (5.7)

For εf small enough, the reaction rate τ̃MT
p is large enough to induce the crossing

condition and appearance of a local extremum, i.e. the appearance of non-monotonic
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FIGURE 7. Threshold behaviour in the (εf , f )-plane: non-monotonic profiles (white region)
and monotonic profiles (light grey region) of all state variables; non-monotonic profiles of
the temperature T (dark grey region).

profiles. When εf is increased, the exponential factor in τ̃MT
p is dominant and

suppresses the non-monotonic behaviour. However, this may be changed if some
other parameter, like 1ε, becomes sufficiently large to prevail and re-establish the
non-monotonic profiles. That is what exactly happened in case 3.

5.6. Threshold in the parameter space
The main difference between MT and ST ZND detonation waves lies in the fact that
in the MT case there appear two qualitatively different configurations of continuous
reacting profiles – non-monotonic and monotonic ones. The non-monotonic behaviour
of state variables is directly related to the MT assumption, since both crossing
condition and local extremum are consequences of thermal non-equilibrium, Θ 6= 0.
However, the parametric analysis revealed that the activation energy εf has a major
influence on the qualitative behaviour. Therefore, we performed a thorough numerical
analysis of the profiles with the aim to determine the threshold in parameter space
separating the non-monotonic from the monotonic ones.

Figure 7 presents the threshold in the (εf , f )-plane for the fixed value of the reaction
heat, 1ε = 1.0. It reveals that a threshold exists separating two classes of profiles. It
may be observed that the threshold value of the activation energy εf increases with
the increase of the overdrive degree f , and this relation is approximately linear. The
threshold values are the same for all the state variables ρ, u and z, but they differ for
T – there occurs a temperature drop phenomenon for small values of the overdrive
degree f > 1.0 (up to f ≈ 1.1). This is indicated in the threshold graph by a narrow
dark grey region at the bottom that corresponds to the non-monotonic profiles, but it
is related to a temperature drop which occurs in the ST case as well. For other state
variables ρ, u and z, this region should be regarded as light grey.

Figure 8 presents the threshold in the (1ε, f )-plane for the fixed value of the
activation energy, εf = 10.0. Numerical analysis showed that the threshold in this
case is not linear, and that there is an upper bound for 1ε for which the monotonic
profiles appear. Also, the peculiar region of solely temperature non-monotonic profiles
is found like in the previous case. It has to be noted that our analysis was performed
for the value of εf for which two kinds of profiles exist; e.g. for εf = 2.0 there exist
only non-monotonic profiles in the region of parameter space in our study.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.218


A ZND-like detonation wave 701

1.1

1.5

2.0

2.3
2.5

3.0

1.0
1.00 1.50 2.00 2.50 3.00 3.67 4.00 4.30

Î´

f

FIGURE 8. Threshold behaviour in the (1ε, f )-plane: non-monotonic profiles (white
region) and monotonic profiles (light grey region) of all state variables; non-monotonic
profiles of the temperature T (dark grey region).
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FIGURE 9. Threshold behaviour in the (εf , 1ε)-plane: non-monotonic profiles (white
region) and monotonic profiles (light grey region) of all state variables.

Finally, figure 9 presents the threshold in the (εf , 1ε)-plane for the fixed value of
the overdrive degree, f = 1.5. Like in the first case, the threshold is approximately
linear, and there is a lower bound for the activation energy εf for the existence of
monotonic profiles. However, since f > 1.1 there is no region in the parameter space
in which only temperature non-monotonic profiles appear.

6. Summary and forthcoming problems
In this work, we proposed a variant of the ZND detonation model for a chemically

reactive mixture with the aim to study the non-equilibrium effects in the detonation
wave. The standard ZND model is generalized in two aspects: (i) following Marques
Junior et al. (2015), we introduced the reversible chemical reaction, and (ii) we

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.218


702 D. Madjarević, S. Simić and A. J. Soares

considered a multi-temperature (MT) model for the gaseous mixture established
within the framework of extended thermodynamics with the reaction rate derived
from the kinetic theory.

One of the essential elements of the ZND detonation model is the finite length
reaction zone following the shock wave, where the transformation of the mixture
constituents to the detonation products occurs, due to the explosive chemical reaction
and consequent energy release. The non-equilibrium effects in this zone determine
the structure of the detonation wave solution and the model proposed in this paper
allows us to capture many of these non-equilibrium effects, in particular those of
thermal nature.

In fact, the MT model of the reactive mixture, combined with a detailed second-
order rate law deduced from the kinetic theory, provides a comprehensive description
of the detonation solution in terms of the underlying parameters in the detonation
process, namely the overdrive degree, activation energy and chemical reaction heat. In
particular, the MT model seems to be appropriate to describe the effects due to the
transfer of internal energy from reactants to products of the reaction, or vice versa,
and to the opposite transfer of kinetic energy. As an outcome, the one-step reversible
chemical reaction together with the MT assumption provide a simple framework that
properly describes steady overdriven detonations, and yields qualitatively the same
results as a two-step reaction.

The main results obtained with the new model are of qualitative and quantitative
nature, alike. Qualitatively, the introduction of the MT assumption in the reaction rate
implied non-zero temperature difference within the profile and the possible existence
of non-monotonic detonation profiles. The latter is a consequence of the more
complex equilibrium condition, which, apart from the law of mass action, requires
the equilibration of the constituents’ temperatures. However, the monotonicity of the
detonation profile strongly depends on the underlying parameters mentioned above,
which required a thorough quantitative analysis. By numerical computation, it was
shown that the activation energy εf has the major influence on the monotonicity:
lower values of the activation energy allow the appearance of non-monotonic profiles,
whereas higher values suppress them. This result motivated the computation of
the threshold in a pertinent parameter space, which separates monotonic from
non-monotonic profiles. It appeared that the threshold value of εf increases with
the increase of the overdrive degree f . Furthermore, a quantitative analysis showed
that the temperatures of the constituents were driven apart by the chemical reaction,
supported by the large discrepancy in initial concentrations of the constituents. Even
in the quasi-MT case, in which the MT part of the reaction rate is not taken into
account, there appears a temperature difference within the profiles.

In our opinion, the inclusion of the MT phenomenon in the mathematical model
enhances the description of the detonation profiles of the ZND type. It reveals
certain substantially new aspects of the solution that were not captured with the
single-temperature (ST) model. Since the MT phenomenon is the hallmark of thermal
non-equilibrium in gaseous mixtures, we expect that its influence on the processes in
reactive mixtures still has to be thoroughly studied. This opens the perspective for
further applications of the MT model. In particular, it may be proved to be a key
tool in the following problems:

(i) to investigate the stability of the detonation wave and the effects of the chemistry
on stability;

(ii) to extend the MT approach to detonation and linear stability in a quaternary
mixture with a bimolecular reversible reaction;
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(iii) to describe in more detail the structure of detonation profiles, in particular the
transition from the induction zone to the reaction zone;

(iv) to study pathological detonations, or other non-ideal configurations of detonation
waves; and

(v) to study the spherical and cylindrical MT ZND detonations.

These are the planned topics of our future studies on detonation and stability.
Some of them represent challenging problems, and additional tools will certainly be
required. However, we believe that the MT model proposed here can contribute to a
comprehensive analysis of the problems and, in particular, to a good description of the
effects of chemistry on the detonation structure and propagation of instabilities. For
example, when multi-step chemical reactions or other complex chemical mechanisms
are involved in the detonation process, the thermal effects due to the coexisting
exothermic and endothermic reactions or due to other dissipative processes have a
great influence on the structure of the detonation wave and the MT model can be
used to capture these effects.
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RUGGERI, T. & SIMIĆ, S. 2007 On the hyperbolic system of a mixture of Eulerian fluids: a

comparison between single- and multi-temperature models. Math. Meth. Appl. Sci. 30 (7),
827–849.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://www.arxiv.org/abs/1712.08208
https://doi.org/10.1017/jfm.2019.218


A ZND-like detonation wave 705
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