
TLP 8 (5 & 6): 643–690, 2008. C© 2008 Cambridge University Press

doi:10.1017/S1471068408003463 First published online 11 July 2008 Printed in the United Kingdom

643

Logic programming with social features1

FRANCESCO BUCCAFURRI and GIANLUCA CAMINITI

DIMET—Università “Mediterranea” degli Studi di Reggio Calabria

via Graziella, loc. Feo di Vito, 89122 Reggio Calabria, Italia

(e-mail: bucca@unirc.it, gianluca.caminiti@unirc.it)

submitted 16 January 2007; revised 13 November 2007, 18 April 2008; accepted 21 May 2008

Abstract

In everyday life it happens that a person has to reason out what other people think and how

they behave, in order to achieve his goals. In other words, an individual may be required to

adapt his behavior by reasoning about the others’ mental state. In this paper we focus on

a knowledge-representation language derived from logic programming which both supports

the representation of mental states of individual communities and provides each with the

capability of reasoning about others’ mental states and acting accordingly. The proposed

semantics is shown to be translatable into stable model semantics of logic programs with

aggregates.

KEYWORDS: Logic programming, stable model semantics, knowledge representation

1 Introduction

In everyday life it happens that a person has to reason out what other people think

and how they behave, in order to achieve his goals. In other words, an individual

may be required to adapt his behavior by reasoning about the others’ mental state.

This typically happens in the context of cooperation and negotiation: for instance,

an individual can propose his own goals if he knows that they would be acceptable

to the others. Otherwise he can decide not to make them public. As a consequence,

one can increase the success chances of his actions, by having information about the

other individuals’ knowledge.

In this paper, we focus on a knowledge-representation language derived from logic

programming which both supports the representation of mental states of individual

communities and provides each with the capability of reasoning about others’ mental

states and acting accordingly. The proposed semantics is shown to be translatable

into stable model semantics of logic programs with aggregates.

We give the flavor of the proposal by two introductory examples, wherein we

describe the features of our approach in an informal, yet deep fashion. Even though

1 An abridged version of this paper appears in (Buccafurri and Caminiti 2005).

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

644 F. Buccafurri and G. Caminiti

in these examples, as well as elsewhere in the paper, we use the term agent to denote

the individual reasoning, we remark that our focus is basically concerning to the

knowledge-representation aspects, with no intention to investigate how this reasoning

layer could be exploited in the intelligent-agent contexts. However, in Section 8, we

relate our work with some conceptual aspects belonging to this research field.

Now consider the first example.

Example 1

There are four agents which have been invited to the same wedding party. Following

are the desires of the agents:

Agent1 will go to the party only if at least the half of the total number of agents

(not including himself) goes there.

Agent2 possibly does not go to the party, but he tolerates such an option. In case

he goes, then he possibly drives the car.

Agent3 would like to join the party together with Agent2, but he does not trust on

driving skill of Agent2. As a consequence, he decides to go to the party only if

Agent2 goes there and does not want to drive the car.

Agent4 does not go to the party.

Now, assume that some agents are less autonomous than the others, i.e. they may

decide either to join the party or not to go at all, possibly depending on the other

agents’ choice. Moreover some agents may not require, yet tolerate some options.

The standard approach to representing communities by means of logic-based

agents (Subrahmanian et al., 2000; Costantini and Tocchio, 2002; Satoh and

Yamamoto, 2002; Alberti et al., 2004; De Vos et al., 2005) is founded on suitable

extensions of logic programming with negation as failure (not) where each agent is

represented by a single program whose intended models (under a suitable semantics)

are the agent’s desires/requests. Although, we take this as a starting point, it is still

not suitable to model the above example because of two following issues:

(1) There is no natural representation for tolerated options, i.e. options which are

not requested, but possibly accepted (see Agent2).

(2) A machinery is missing which enables one agent to reason about the behavior

of other agents (see Agent1 and Agent3).

In order to solve the first issue (1) we use an extension of standard logic

programming exploiting the special predicate okay(), previously introduced in

(Buccafurri and Gottlob, 2002). Therein a model-theoretic semantics aimed to

represent a common agreement in a community of agents was given. However,

representing the requests/acceptances of single agents in a community is not enough.

Concerning (2), a social language should also provide a machinery to model possible

interference among agents’ reasoning (in fact it is just such an interference that

distinguishes the social reasoning from the individual one). To this aim, we introduce

a new construct providing one agent with the ability to reason about other agents’

mental state and then to act accordingly.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 645

Table 1. The wedding party (Example 1)

P1 (Agent1): go wedding ← [n
2
− 1,]{go wedding}

P2 (Agent2): okay(go wedding) ←
okay(drive) ← go wedding

P3 (Agent3): go wedding ← [Agent2]{go wedding, not drive}
P4 (Agent4): empty program

Program rules have the form:

head ← [selection condition]{body},

where selection condition predicates about some social condition concerning either

the cardinality of communities or particular individuals satisfying body.

For instance, consider the following rule, belonging to a program representing a

given agent A:

a← [l , h] {b, not c}.

This rule means that agent A will require a in case a number ν of agents (other

than A) exists such that they require or tolerate b, neither require nor tolerate c

and it holds that 0 � l � ν � h � n − 1. By default, l = 0 and h = n − 1. The

number n is a parameter—known by each agent—representing the total number of

agents (including the agent A). This enriched language is referred to as social logic

programming (SOLP). The wedding party scenario of Example 1 can be represented

by the four SOLP programs shown in Table 1, where the program P4 is empty since

the corresponding agent has not any request or desire to express.

The intended models represent the mental states of each agent inside the commu-

nity. Concerning the party, such models are the following:

M1 = ∅, M2 = {go weddingP1
, go weddingP2

, driveP2
}, and M3 = {go weddingP1

,

go weddingP2
, go weddingP3

}, where the subscript Pi (1 � i � n) references, for each

atom in a model, the program (resp. agent) that atom is entailed by. The models

respectively mean that either (M1) no agent will go to the party, (M2) only Agent1
and Agent2 will go and also Agent2 will drive the car, or (M3) all agents but Agent4
will go to the party.

Let us show why the above models represent the intended meaning of the program:

M1 is empty in case Agent2 does not go to the wedding party (i.e. go wedding is not

derived by P2). Indeed, in such a case, Agent3 will not go too, since his requirements

w.r.t. Agent2 are not satisfied. Moreover, since Agent4 expresses neither requirements

nor tolerated options, he does not go to the party (observe that such a behavior is

also represented by the models M2 and M3). Finally, Agent1 requires that at least

one2 agent (other than himself) goes to the party. As a consequence of the other

agents’ behavior, Agent1 will not go. Thus, no agent will go to the party and M1

is empty. The intended meaning of M2 is that both Agent1 and Agent2 will go to

2 Since n
2 − 1 = 1, where n is the total number of agents, i.e. n = 4.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

646 F. Buccafurri and G. Caminiti

the party and Agent2 will also drive the car. In such a case Agent3 will not go

since he requires that Agent2 does not drive the car. The model M3 represents the

case in which Agent2 goes to the party, but does not drive the car. Now, since all

requirements of Agent3 are satisfied, then he will also go to the party. Certainly,

Agent1 will join the other agents, because, in order to go to the party, he requires

that at least one agent goes there.

The intended models are referred to as social models, since they express the

results of the interactions among agents. As it will be analyzed in Section 6,

the multiplicity of intended models is induced both by negation occurring in

rule bodies and also directly by the social features, thus making the approach

nontrivial.

Let us informally introduce the most important properties of the semantics of the

language.

• Social conditions model reasoning conditioned by the behavior of other agents

in the community. In particular, it is possible to represent collective mental

states, preserving the possibility of identifying the behavior of each agent.

• It is possible to nest social conditions, in order to apply recursively the social-

conditioned reasoning to agents’ subsets of the community.

• Each social model represents the mental state (i.e. desires, requirements, etc.)

of every agent in case the social conditions imposed by the agents are enabled.

Observe that, in order to meet such goals, merging all the input SOLP programs is

not enough, since in this way we lose all information about the relationship between

an atom and the program (resp. agent) which such an atom comes from. Therefore,

we have to find a nontrivial solution.

Our approach starts from (Buccafurri and Gottlob, 2002), where the joint fixpoint

semantics (JFP), that is a semantics providing a way to reach a compromise (in terms

of a common agreement) among agents modeled by logic programs, is proposed.

Therein, each model contains atoms representing items being common to all the

agents. The approach proposed here in order to reach a social-based conclusion is

more general: the agents’ behavior is defined by taking into account social conditions

specified by the agents themselves.

Informally, a social condition is an expression [selection condition]{body}, where

selection condition can be of two forms: either (i) cardinality-based, or (ii) identity-

based. In the former case the agent requires that the number of other agents

(bounded by selection condition itself) satisfy body. In the latter case, selection

condition identifies which agent is required to satisfy body. Given a program rule

including a social condition such as head ← [selection condition]{body}, the intuitive

meaning is that head is derived if the social condition is satisfied.

An example of cardinality-based condition [case (i)] is shown in Table 1 by the

program P1: An intended model M will include the atom go weddingP1
if a set

of programs S ′ ⊆ {P2,P3,P4} exists such that for each P ∈ S ′, it results that

go weddingP belongs to M and also it holds that the number of programs in S ′

satisfies the social condition imposed by the program P1, that is |S ′| � n
2
− 1.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 647

An example of case (ii) (identity-based condition) is represented by the program

P3, which requests the atom go weddingP3
to be part of an intended model M

if go weddingP2
belongs to M, but the atom driveP2

does not. Importantly, social

conditions can be nested with each other, as shown by the next example.

Example 2

Consider a peer-to-peer (P2P) file-sharing system where a user can share his

collection of files with other users on the Internet. In order to get better performance,

a file is split in several parts being downloaded separately (possibly each part from a

different user)3. The following SOLP program P describes the behavior of an agent

(acting on behalf of a given user) that wants to download every file X being shared

by at least a number min of users such that at least one of them owns a complete

version of X (rule r1). Moreover, the agent tolerates to share any file X of his, which

is shared also by at least 33% of the total number of users in the network and such

that among those users, a number of them (bounded between 20% and 70% of the

total) exists having a high bandwidth. In this case the agent tolerates to share, since

he is sure that the network traffic will not be unbalanced (rule r2). Observe that the

use of nested social conditions in P is emphasized by means of program indentation.

r1 : download(X)← [min,]{share(X),

[1,]{not incomplete(X)

}, file(X)

r2 : okay(share(X))← [0.33 ∗ n,]{share(X),

[0.2 ∗ n, 0.7 ∗ n]{high bw}
}, file(X)

.

Now, one could argue that a different choice concerning the selection condition

could be done. As a first observation we note that the chosen selection conditions

play frequently an important role in common-sense reasoning. Indeed, it often

happens that the beliefs and the choices of an individual depend on how many

people think or act in a certain way. For instance, a person who needs a new mobile

phone is interested in collecting—from his colleagues or the Internet—a number

of opinions on a given model, in order to decide whether he should buy it or not.

It occurs also that one is interested in the behavior of a given person, in order to

act or to infer something. For example, two people are doing shopping together

and do not want to buy the same clothes in order not to be dressed in the same

way. So, one of them decides not to buy a given item, in case it has been chosen

by his partner. These short examples show that two important parameters acting

in the social influence are either (i) the number or (ii) the identity of the people

involved. For such a reason, we propose a simple, clear-cut, yet general mechanism

to represent the selection of a social condition.

As a second observation we remark that this work represents a first step toward

a thorough study on how to include in a classical logic-programming setting the

paradigm of social interference, in order to directly represent community-based

3 Among others, KaZaA, EMule, and BitTorrent are the most popular Internet P2P file-sharing systems
exploiting such a feature.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

648 F. Buccafurri and G. Caminiti

reasoning. To this aim, we focus on some suitable selection conditions, but we

are aware that other possible choices might be considered. From this perspective,

our work tries to give some nontrivial contributions toward what kind of features

a knowledge-representation language should include, in order to be oriented to

complex scenarios. Anyway, as it will be shown by examples throughout the paper,

the chosen social conditions combined with the power of nesting allow us to represent

more articulated selections among agents.

Besides the definition of the language, of its semantics, and the application to

knowledge representation, another contribution of the paper is the translation of

SOLP programs into logic programs with aggregates4 . In particular, given a set

of SOLP programs, a source-to-source transformation exists which provides as

output a single logic program with aggregates whose stable models are in one-

to-one correspondence with the social models of the set of SOLP programs. The

translation to logic programs with aggregates gives us the possibility of exploiting

existing engines to compute logic programs.

Moreover, Section 6 shows that our kind of social reasoning is not trivial, since

even in the case of positive programs, the semantics of SOLP has a computational

complexity which is NP-complete.

The paper is organized as follows: in Sections 2 and 3, we define the notion of

SOLP programs and their semantics (social semantics), respectively. In Section 4,

we illustrate how a set of SOLP programs, each representing a different agent, is

translated into a single logic program with aggregates whose stable models describe

the mental states of the whole agent community and then we show that such a

translation is sound and complete. In Section 5, we prove that the social semantics

extends the JFP semantics (Buccafurri and Gottlob, 2002), and in Section 6 we

study the complexity of several interesting decision problems. Section 7 describes

how this novel approach may be used for knowledge representation by means of

several examples. Then, in Section 8 we discuss related proposals and, finally, we

draw our conclusions and sketch the future directions of the work.

In order to improve the overall readability, these sections are followed by Ap-

pendix A—where we have placed the proofs of the most complicated technical

results—and by the list of symbols and abbreviations used throughout the paper.

2 Syntax of SOLP programs

In this section we first introduce the notion of social condition and then we describe

the syntax of SOLP programs.

A term is either a variable or a constant. Variables are denoted by strings starting

with uppercase letters, while those starting with lower case letters denote constants.

An atom or positive literal is an expression p(t1, . . . , tn), where p is a predicate of arity

n and t1, . . . , tn are terms. A negative literal is the negation as failure (NAF) not a of

a given atom a.

4 As it is shown in Section 4, we choose the syntax of the nondisjunctive fragment of DLPA (Dell’Armi
et al., 2003), supported by the DLV system (Leone et al., 2002).

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 649

Definition 1

Given an integer n > 0, an (n-)social condition s, also referred to as (n-)SC, is an

expression of the form cond (s) property(s), such that

(1) cond (s) is an expression [α] where α is either (i) a pair of integers l, h such that

0 � l � h � n− 1 or (ii) a string;

(2) property(s) = content (s)∪ skel (s), where content(s) is a nonempty set of literals

and skel (s) is a (possibly empty) set of SCs.

n-Social conditions operate over a collection of n programs representing the agent

community. Each agent is modeled by a program (we will formally define later in

this section which kind of programs are allowed). n represents the total number of

agents. In the following, whenever the context is clear, n is omitted.

Concerning item (1) of the above definition, in case (i), cond (s) is referred to

as cardinal selection condition, while, in case (ii), cond (s) is referred to as member

selection condition.

Concerning item (2) of Definition 1, if skel (s) = ∅ then s is said simple. For a

simple SC s such that content (s) is singleton, the enclosing braces can be omitted.

Finally, given an SC s, the formula not s is referred to as the NAF of s. The following

are simple SCs extracted from our initial wedding party example (see Table 1):

Example 3

[n
2
− 1,]{go wedding}.

Example 4

[Agent2]{go wedding, not drive}.

The social conditions occurring in the example regarding a P2P system (see Ex-

ample 2) are not simple. As a further example, consider an SC s = [l, h]{a, b, c, [l1, h1]

{d, [l2, h2]e}, [l3, h3]f}. Observe that s is not simple, since skel (s) = {[l1, h1]{d, [l2, h2]e},
[l3, h3]f}, moreover, content (s) = {a, b, c}.

Social conditions enable agents to specify requirements over either individual or

groups within the agent community, by using member or cardinal selection condi-

tions, respectively. Moreover, by nesting social conditions it is possible to declare

requirements over sub-groups of agents, provided that a super-group satisfying an

SC exists. In order to guarantee the correct specifications of nested social conditions,

the notion of well-formed social condition is introduced next.

Given two n-SCs s and s′ such that cond (s) = [l, h] and cond (s′) = [l′, h′] (0 � l �
h � n− 1, 0 � l′ � h′ � n− 1), if h′ � h, then we write cond (s′) ⊆ cond (s).

An SC s is well formed if either (i) s is simple, or (ii) s is not simple, cond (s) is a

cardinal selection condition and ∀s′ ∈ skel (s) it holds that either (a) cond (s′) is a car-

dinal selection condition, s′ is a well-formed social condition, and cond (s′) ⊆ cond (s),

or (b) cond (s′) is a member selection condition and s′ is simple.

According to the intuitive explanation of the above definition, it results that,

besides simple SCs, only nonsimple SCs with cardinal selection condition are

candidate to be well formed. Indeed, a nonsimple SC with member selection

condition requires some property on a single target agent, but no further sub-

group of agents could be specified by means of SCs possibly nested in it. Anyway,

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

650 F. Buccafurri and G. Caminiti

a further property is required to SCs with cardinal selection condition in order

to be well formed. In particular, given a nonsimple SC s (with cardinal selection

condition), all the SCs nested in s with cardinal condition must not exceed the

cardinality constraints expressed by cond(s).

Example 5

The SC s = [1, 8]{a, [3, 6]{b, [Agent2]{c, d}}} is well formed. Note that the nonsimple

SCs s1 = [Agent3]{a, [3, 6]{b}} and s2 = [4, 7]{a, [3, 9]b} are not well formed, because

cond(s1) is a member selection condition and, concerning s2, [3, 9]b ∈ skel(s2) and

[3, 9] �⊆ [4, 7].

From now on, we consider only well-formed SCs.

We introduce now the notion of rule. Our definition generalizes the notion of

classical logic rule.

Definition 2

Given an integer n > 0, an (n-)social rule r is a formula a← b1∧ · · · ∧bm∧s1∧ · · · ∧sk
(m � 0, k � 0), where a is an atom, each bi (1 � i � m) is a literal, and each sj
(1 � j � k) is either an n-SC or the NAF of an n-SC.

Concerning the above definition, the atom a is referred to as the head of r, while

the conjunction b1 ∧ · · · ∧ bm ∧ s1 ∧ · · · ∧ sk is referred to as the body of r.

In case a is of the form okay(p), where p is an atom, then r is referred to as

(n-)tolerance (social) rule. In case k = 0, then a social nontolerance rule is referred

to as classical rule.

Social tolerance rules, i.e. rules with head of the form okay(p), encode tolerance

about the occurrence of p. The rule okay(p)← body differs from the rule p← body

since the latter produces the derivation of p whenever body is satisfied, thus encoding

something that is required under the condition expressed by body. According to the

former rule (okay(p) ← body), the truth of body does not necessarily imply p, yet

its derivation is not in contrast with the intended meaning of the rule itself. In this

sense, under the condition expressed by body, p is just tolerated.

Given a rule r, we denote by head (r) [resp. body(r)] the head (resp. the body) of

r. Moreover, r is referred to as a fact in case the body is empty, while r is referred

to as an integrity constraint if the head is missing.

Example 6

An example of nontolerance social rule is a← b, c, [1, 9]{b, c,not g, [1, 4]{d}}, [P2]{d}.
An example of tolerance social rule is okay(a)←not b, c, [1, 6]{a,not f, g},not [P2]{d}.

Definition 3

An SOLP collection is a set {P1, . . . ,Pn} of SOLP programs, where each SOLP

program is a set of n-social rules.

An SOLP program is positive if no NAF symbol not occurs in it. For the sake of

presentation we refer, in the following sections, to ground (i.e., variable-free) SOLP

programs—the extension to the general case is straightforward.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 651

3 Semantics of SOLP programs

In this section, we introduce the Social Semantics, i.e. the semantics of a collection

of SOLP programs. We assume that the reader is familiar with the basic concepts

of logic programming (Gelfond and Lifschitz, 1991; Baral, 2003).

We start by introducing the notion of interpretation for a single SOLP program.

An interpretation for a ground (SOLP)5 program P is a subset of Var(P), where

Var(P) is the set of atoms appearing in P. A positive literal a (resp. a negative

literal not a) is true w.r.t. an interpretation I if a ∈ I (resp. a /∈ I), otherwise it is

false. A rule is true w.r.t. I if its head is true or its body is false w.r.t. I .

Recall that, for each traditional logic program Q, the immediate consequence

operator TQ is a function from 2Var(Q) to 2Var(Q) defined as follows. For each

interpretation I ⊆ Var(Q), TQ(I) consists of the set of all heads of rules in Q

whose bodies are true w.r.t. I . An interpretation I is a fixpoint of a logic program Q

if I is a fixpoint of the associated transformation TQ, i.e., if TQ(I) = I .

The set of all fixpoints of Q is denoted by FP (Q).

Before defining the intended models of our semantics, we need some preliminary

definitions.

Let P be an SOLP program. We define the autonomous reduction of P, denoted

by A(P), the program obtained from P by removing all the SCs from the rules in P.

The intuitive meaning is that in case the program P represents the social behavior

of an agent, then A(P) represents the behavior of the same agent in case he decides

to operate independently of the other agents.

Definition 4

Given an SOLP program P and an interpretation I ⊆ Var(A(P)), let TR(A(P)) be

the set of tolerance rules in A(P) and Var∗(A(P)) be the set Var(A(P)) \ {okay(p) |
okay(p) ∈ Var(A(P))} ∪ {p | okay(p) ∈ Var(A(P))}. The autonomous immediate

consequence operator ATP is the function from 2Var
∗(A(P)) to 2Var

∗(A(P)), defined as

follows:

ATP(I) = {head (r) | r ∈ A(P) \ TR(A(P)) ∧ body(r) is true w.r.t. I} ∪
{a | head (r) = okay(a) ∧ r ∈ TR(A(P)) ∧ (body(r) ∧ a) is true w.r.t. I}.

Observe that ATP, when applied to an interpretation I , extends the classical

immediate consequence operator TP, by collecting not only heads of nontolerance

rules whose body is true w.r.t. I , but also each atom a occurring as okay(a) in the

head of some rule such that both a and the rule body are true w.r.t. I .

Definition 5

An interpretation I for an SOLP program P is an autonomous fixpoint of P if I is

a fixpoint of the associated transformation ATP, i.e. if ATP(I) = I . The set of all

autonomous fixpoints of P is denoted by AFP (P).

5 We insert SOLP into brackets since the definition is the same as for traditional logic programs.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

652 F. Buccafurri and G. Caminiti

Observe that by means of the autonomous fixpoints of a given SOLP program

P we represent the mental states of the corresponding agent, assuming that every

social condition in P is not taken into account.

Example 7

Consider the following SOLP program P:
okay(a) ← b, [1,]{c}

b ← [2, 4]{d} .

It is easy to see that AFP (P) = {{b}, {a, b}}, i.e. the interpretations I1 = {b} and

I2 = {a, b} are the autonomous fixpoints of P, since it holds that ATP(I1) = I1 and

ATP(I2) = I2.

Definition 6

Given an SOLP collection C = {P1, . . . ,Pn}, let Pi (1 � i � n) be an SOLP program

of C and L be a set of atoms. The labeled version of L w.r.t. Pi, denoted by (L)Pi is

the set {aPi | a ∈ L}. Each element of (L)Pi is referred to as a labeled atom w.r.t. Pi.

Example 8

Given an SOLP program P1 of an SOLP collection C , if L = {a, b, c}, then

(L)P1
= {aP1

, bP1
, cP1
}, where the program identifier P1 indicates the associated

SOLP program.

Now we introduce the concept of social interpretation, devoted to represent the

mental states of the collectivity described by a given SOLP collection and then we

give the definition of truth for both literals and SCs w.r.t. a given social interpretation.

To this aim, the classical notion of interpretation is extended by means of program

identifiers introducing a link between atoms of the interpretation and programs of

the SOLP collection.

Definition 7

Let C = {P1, . . . ,Pn} be an SOLP collection. A social interpretation for C is a set

Ī = (I1)P1
∪ · · · ∪ (In)Pn , where Ij is an interpretation for Pj (1 � j � n) and (Ij)Pj

is the labeled version of Ij w.r.t. Pj (see Definition 6).

Example 9

Given C = {P1,P2,P3}, I1 = {a, b, c}, I2 = {a, d, e}, and I3 = {b, c, d}, where Ij is an

interpretation for Pj (1 � j � 3), then Ī = {aP1
, bP1

, cP1
, aP2

, dP2
, eP2

, bP3
, cP3

, dP3
}

is a social interpretation for C .

We define now the notion of truth for literals, SCs, and social rules, respectively.

Let C = {P1, . . . ,Pn} be an SOLP collection. Given a social interpretation Ī for

C and a positive literal a ∈
⋃
P∈C Var(P), a (resp. not a) is true for Pj (1 � j � n)

w.r.t. Ī if aPj ∈ Ī (resp. aPj /∈ Ī), otherwise it is false.

Because of the recursive nature of SCs, before giving the definition of truth for a

SC s, we introduce a way to identify s (and also every SC nested in s) occurring in

a given rule r of an SOLP program P. To this aim, we first define a function which

returns, for a given SC, its nesting depth.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 653

Given an SC s, we define the function depth as follows:

depth(s) =

{
depth(s′) + 1 if ∃s′ | s ∈ skel (s′)

0 otherwise.

Given an SOLP program P, a social rule r ∈ P and an integer n � 0, we define the

set MSC〈P,r,n〉 = {s | s is an SC occurring in r ∧ depth(s) = n}, i.e. the set including

all the SCs having a given depth n and occurring in a social rule r of an SOLP

program P. Observe that, in case the parameter n is zero, then MSC〈P,r,0〉 denotes

the set of SCs as they appear in the rule r of P.

Example 10

Let a ← [1, 8]{a, [3, 6]{b, [P2]{c, d}}}, [2, 3]{e, f} be a rule r in an SOLP program P1.

Then

MSC〈P,r,0〉 = { [1, 8]{a, [3, 6]{b, [P2]{c, d}}}, [2, 3]{e, f} },
MSC〈P,r,1〉 = { [3, 6]{b, [P2]{c, d}} },
MSC〈P,r,2〉 = { [P2]{c, d} },
MSC〈P,r,3〉 = ∅.

Given an SOLP program P, we define the set MSCP =
⋃
r∈PMSC〈P,r,0〉.

MSCP is the set of all the SCs (with depth 0) occurring in P.

Now we provide the definition of truth of an SC w.r.t. a given social interpretation

and, subsequently, the definition of truth of a social rule.

Definition 8

Let C = {P1, . . . ,Pn} be an SOLP collection, C ′ ⊆ C and Pj ∈ C ′. Given a social

interpretation Ī for C and an n-SC s ∈ MSCPj , we say that s is true for Pj in C ′

w.r.t. Ī if it holds that either
(1) cond (s) = [Pk] ∧

∃Pk ∈ C ′ | ∀a ∈ content(s), a is true for Pk w.r.t. Ī , or

(2) cond (s) = [l, h] ∧
∃D ⊆ C ′ \ {Pj} | l � |D| � h ∧
∀a ∈ content(s), ∀P ∈ D, a is true for P w.r.t. Ī ∧
∀s′ ∈ skel (s) ∃D′ ⊆ D | s′ is true for Pj in D′ w.r.t. Ī ,

where l, h are integers and Pk is an SOLP program.

If C ′ = C , then we simply say that s is true for Pj w.r.t. Ī . An n-SC not true for

Pj (in C ′) w.r.t. Ī is false for Pj (in C ′) w.r.t. Ī .

Finally, the NAF of an n-SC s, not s, is true (resp. false) for Pj (in C ′) w.r.t. Ī if

s is false (resp. true) for Pj (in C ′) w.r.t. Ī .

Informally, given an SC s included in Pj , s is true for Pj w.r.t. a social

interpretation Ī if a single SOLP program Pk (resp. a set D of SOLP programs not

including Pj) exists such that all the elements in content(s) are true for Pk w.r.t. Ī

(resp. for every program P ∈ D w.r.t. Ī , and such that every element in skel (s) is true

for Pj w.r.t. Ī). Observe that the truth of property(s) is possibly defined recursively,

since s may contain nested SCs.

Once the notion of truth of SCs has been defined, we are able to define the notion

of truth of a social rule w.r.t. a social interpretation.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

654 F. Buccafurri and G. Caminiti

Let C be an SOLP collection and P ∈ C . Given a social interpretation Ī for C

and a social rule r in P, the head of r is true w.r.t. Ī if either (i) (head (r) = a) ∧ (a is

true for P w.r.t. Ī), or (ii) (head (r) = okay(a)) ∧ (a is true for P w.r.t. Ī). Moreover,

the body of r is true w.r.t. Ī if each element of body(r) is true for P w.r.t. Ī . Finally,

the social rule r is true w.r.t. Ī if its head is true w.r.t. Ī or its body is false w.r.t. Ī .

Given an SOLP collection {P1, . . . ,Pn}, we define the set of candidate social

interpretations for P1, . . . ,Pn as

U(P1, . . . ,Pn) =
{
(F1)P1

∪ · · · ∪ (Fn)Pn | Fi ∈ AFP (Pi) ∧ 1 � i � n
}
,

where, recall, AFP (Pi) is the set of autonomous fixpoints of the SOLP program Pi
(introduced in Definition 5) and by (Fi)P (1 � i � n) we denote the labeled version

of Fi w.r.t. P (see Definition 6).

The set U(P1, . . . ,Pn) represents all the configurations obtained by combining

the autonomous (i.e. without considering the social conditions) mental states of the

agents corresponding to the programs P1, . . . ,Pn. Each candidate social interpre-

tation is a candidate intended model. The intended models are then obtained by

enabling the social conditions.

Now, we are ready to give the definition of intended model w.r.t. the social

semantics.

Definition 9

Given an SOLP collection C = {P1, . . . ,Pn} and a social interpretation Ī for C , let

V̄ be the set (Var(P1))P1
∪ · · · ∪ (Var(Pn))Pn and TR(Pi) be the set of tolerance

rules of Pi (1 � i � n). The social immediate consequence operator STC is a function

from 2V̄ to 2V̄ defined as follows:
STC(Ī) = {aP | P ∈ C ∧ r ∈ P \ TR(P) ∧ head (r) = a ∧

body(r) is true w.r.t. Ī} ∪
{aP | P ∈ C ∧ r ∈ TR(P) ∧ head (r) = okay(a) ∧
a is true for P w.r.t. Ī ∧ body(r) is true w.r.t. Ī}.

A candidate social interpretation Ī ∈ U(P1, . . . ,Pn) for C is a social model of C if

STC (Ī) = Ī .

Social models are defined as fixpoints of the operator STC . Given a social

interpretation Ī , STC(Ī) contains

(1) for each program P in the SOLP collection C , the labeled versions (w.r.t. P) of

the heads of nontolerance rules, such that the body is true w.r.t. Ī (according

to Definition 8, all the SCs included in the body are checked w.r.t. the given

social interpretation Ī).

(2) for each program P in the SOLP collection C , the labeled versions (w.r.t. P)

of the arguments of the predicates okay occurring in the heads of tolerance

rules, such that both the rule body is true w.r.t. Ī and the predicate argument

is true for P w.r.t. Ī .

Observe that the social immediate consequence operator STC works differently

from the autonomous immediate consequence operator ATP (see Definition 4), since

the former exploits all the programs—and the social conditions included—of a given

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 655

SOLP collection C , while the latter operates only within a given program P, where

the social conditions have been removed.

Definition 10

Given an SOLP collection {P1, . . . ,Pn}, the Social Semantics of P1, . . . ,Pn is the set

SOS(P1, . . . ,Pn) = {M̄ | M̄ ∈ U(P1, . . . ,Pn) ∧ M̄ is a social model of P1, . . . ,Pn}.

SOS(P1, . . . ,Pn) is the set of all social models of P1, . . . ,Pn.
Now, we introduce an important property holding for social models, i.e. they are

supported in the associated SOLP collection. The next definition gives the notion of

supportness for a social model.

Definition 11

Given an SOLP collection C = {P1, . . . ,Pn} and a social model M ∈SOS(P1, . . . ,

Pn), M is supported in C if ∀P ∈ C, ∀a ∈ Var(P1) ∪· · · ∪ Var(Pn), in case aP ∈M,

then at least one of the following holds:

(1) ∃r | r ∈ P ∧ head (r) = a ∧ body(r) is true w.r.t. M;

(2) ∃r | r ∈ P ∧ head (r) = okay(a) ∧ a is true for P w.r.t. M ∧ body(r) is true

w.r.t. M.

The property is stated in the following theorem:

Theorem 1

Given an SOLP collection C = {P1, . . . ,Pn}, ∀M ∈ SOS(P1, . . . ,Pn), M is

supported in C .

Proof

By contradiction, assume that M ∈ SOS(P1, . . . ,Pn) and M is not supported in C .

As a consequence,

∃P, ∃a | P∈C ∧ a∈
⋃

P∈C
Var(P) ∧ aP ∈M and both of the following conditions hold:

(1) ∀r ∈ P, it holds that head (r) = a⇒ body(r) is false w.r.t. M;

(2) ∀r ∈ P, it holds that head (r) = okay(a)⇒ a is false for P w.r.t. M ∧ body(r) is

false w.r.t. M.

It is easy to see that, according to Definition 9, aP �∈ STC (M). Now, since,

according to the hypothesis, aP ∈ M, it holds that STC(M) �= M. Thus M is not a

social model and we have reached a contradiction. �

Example 11

Consider the following SOLP collection C = {P1,P2}:
P1 : a← b, [P2]{c} (r1),

P2 : ← c (r2).

It holds that AFP (P1) = {{a, b}, ∅} and AFP (P2) = {∅}. Thus, there exist two

candidate social interpretations, namely I1 = {aP1
, bP1
} and I2 = ∅.

Since both body(r1) and body(r2) are false w.r.t. I1, it holds that STC(I1) = ∅. As

a consequence, I1 is not a social model of the SOLP collection C . Concerning the

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

656 F. Buccafurri and G. Caminiti

social interpretation I2 it is easy to see that STC (I2) = ∅. Hence, I2 is a social model

of the SOLP collection C .

Now, consider a slightly different SOLP collection C ′ = {P′1,P′2}
P′1 : a← b, [P′2]{c} (r′1),

P′2 : c← (r′2).

It holds that AFP (P′1) = {{a, b}, ∅} and AFP (P′2) = {c}. Thus, we can build the

following candidate social interpretations: I1 = {aP′1 , bP′1 , cP′2} and I2 = {cP′2}.
Now, since STC ′(I1) = {aP′1 , cP′2} and {aP′1 , cP′2} �= I1, I1 is not a social model of

the collection C ′ = {P′1,P′2}. Finally, STC ′(I2) = I2, hence I2 is a social model of C ′.

It is easy to see that I2 is supported in C ′.

Now, by means of a complete example, we illustrate the notions introduced above.

Example 12

Three agents represented by the SOLP collection C = {P1, P2, P3} are as follows:

P1 : go party ← [2,]{go party, [1,]{guitar}},
P2 : go party ← [P3]{go party}

guitar ← not bad weather, go party,

P3 : go party ← not bad weather.

The intended meaning of the above SOLP programs is the following: agent P1

goes to the party only if there are at least other two agents which go there and such

that at least one of them brings the guitar with him. Agent P2 goes to the party

only if agent P3 goes too. Moreover, in case agent P2 goes and the weather is not

bad, then he thinks it is safe to bring the guitar with him. Finally, agent P3 goes to

the party if there is no evidence of bad weather.

It is easy to see that SOS(P1, P2, P3) = {Ī}, where Ī is the intended model of the

collection C and Ī = {go partyP1
, go partyP2

, guitarP2
, go partyP3

}.
Indeed, it holds that AFP (P1) = {{go party}}, AFP (P2) = {{go party, guitar}},

and AFP (P3) = {{go party}}. Now, note that the candidate social interpretation Ī

is a social model of C , since it holds that STC(Ī) = Ī . Finally, it is easy to see that

Ī is supported in C .

4 Translation to logic programming with aggregates

In this section, we give the translation from SOLP under the social semantics to

logic programming with aggregates6 under the stable model semantics. We assume

that the reader is familiar with the stable model semantics (Gelfond and Lifschitz,

1988). Given a traditional logic program P, we denote by SM(P) the set of all the

stable models of P. For the sake of presentation, the most complicated proofs are

placed in Appendix A.

Our goal is the following: given a collection of SOLP programs we have to generate

a single LPA program whose stable models are in one-to-one correspondence with

6 We choose the syntax of the nondisjunctive fragment of DLPA (Dell’Armi et al., 2003), denoted as
LPA in the sequel of the section. The DLV system (Leone et al., 2002) can be used to compute the
social models of the SOLP programs.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 657

the social models of the collection. To this aim we perform the following two tasks:

(a) we generate a LPA program by means of a suitable transformation of all the

SCs occurring in the SOLP programs of the collection; (b) we obtain another logic

program by processing the original SOLP programs in such a way that the SCs

are replaced by suitable atoms. Finally, we merge the two programs obtained from

tasks (a) and (b) into a single LPA program. At the end of the section, we present

a comprehensive example (Example 13) describing the whole translation process.

Next we describe how task (a) is performed. The first step is the translation of a

single SC and the extension of such a translation to all the SCs included in a social

rule, an SOLP program, and an SOLP collection, respectively. As a result of task

(a), a single LPA program is generated which represents the translation of the social

conditions occurring in the SOLP collection. In order to have fresh literals that

allow us to encode—in such a program—the truth of social conditions, we need a

mechanism to generate auxiliary atoms that are in one-to-one correspondence with

the social conditions occurring in an SOLP program.

Definition 12

Given an SOLP program P, we define USCP =
⋃
r∈P

⋃
n�0MSC〈P,r,n〉. Moreover,

let Lρ and Lg be two sets of literals such that both (1) Var(P), Lρ, and Lg are

disjoint sets and (2) |Lρ| = |Lg| = |USCP|. We define two one-to-one mappings,

ρ : USCP → Lρ and g : USCP → Lg .

Observe that, according to the definition of the set MSC〈P,r,n〉 (see p. 11), USCP

is the set of all the SCs (at any nesting depth) in P. Thus, given an SC s included in

an SOLP program P, the mapping ρ (resp. g), returns the auxiliary atom ρ(s) (resp.

the predicate g(s)) such that it is fresh, i.e. it does not occur in P. We will explain

next how ρ(s) and g(s) are exploited by the translation process.

The following definition enables the translation of a single social condition s

of a given program P of an SOLP collection C . Observe that this definition is

recursive in order to produce the translation of every social condition nested in

s. Such a translation produces two sets of rules that we reference as GUESSP(s)

and CHECKP(s), respectively. Informally, the rules in the set GUESSP(s) aim at

verifying properties concerning atoms belonging to other SOLP programs different

from P. These properties are then checked according to the selection condition of s

(i.e. cond(s)) by means of the rules included in the set CHECKP(s).

In the definition, ρ(s)P denotes the atom ρ labeled atom w.r.t. P (see Definition 6)

and it is derived in case the social condition s is true for P in C w.r.t. a given social

interpretation. With a little abuse of notation, (g(s))(x)P denotes the predicate g(s)

labeled w.r.t. P, having argument x.

Definition 13

Given an SOLP collection SP = {P1, . . . ,Pn}, an integer j (1 � j � n), an SOLP

program Pj ∈ SP , and a social condition s ∈ USCPj , we define the SC translation of

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

658 F. Buccafurri and G. Caminiti

s as the LPA program ΨPj (s) = GUESSPj (s) ∪ CHECKPj (s), where GUESSPj (s) =

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{(g(s))(k)Pj ←
∧
b∈content(s) bPk}, if cond (s) = [Pk] ∧ (1 � k � n),

{(g(s))(i)Pj ←
∧
b∈content(s) bPi ∧∧
s′∈skel(s) ρ(s

′)Pj | 1 � i �= j � n} ∪⋃
s′∈skel(s) GUESS

Pj (s′), if cond (s) = [l , h],

CHECKPj (s) =

=

⎧
⎪⎪⎨

⎪⎪⎩

{ρ(s)Pj ← (g(s))(k)Pj}, if cond (s) = [Pk] ∧ (1 � k � n),

{ρ(s)Pj ← l � #count{K : (g(s))(K)Pj , K �= j} � h} ∪⋃
s′∈skel(s) CHECK

Pj (s′), if cond (s) = [l , h]

and #count denotes an aggregate function which returns the cardinality of a set of

literals satisfying some conditions (Dell’Armi et al., 2003).

The reader may find an instance of application of the above transformation in

the final example (Example 13). Now, by means of the next definition, we extend

the scope of the above translation to a social rule, an SOLP program and an SOLP

collection.

Definition 14

Given an SOLP program P, a social rule r ∈ P and an SOLP collection {P1, . . . ,Pn},
we define

(1) the SC translation of r as the LPA program TP(r) =
⋃
s∈MSCP ΨP(s);

(2) the SC translation of P as the LPA program WP =
⋃
r∈P T

P(r);

(3) the SC translation of the collection as the LPA program C(P1, . . . ,Pn) =⋃
1�i�n W

Pi .

Observe that given an SOLP program P, for any classical rule r ∈ P, TP(r) = ∅.
As a consequence, for any program P with no social rules, it holds that WP = ∅.
C(P1, . . . ,Pn) denotes the LPA program obtained from the processing of all the SCs

included in the SOLP collection {P1, . . . ,Pn}. The generation of C(P1, . . . ,Pn) is the

final step of the task (a) within the whole translation machinery.

Now, we describe task (b). We introduce a suitable mapping from SOLP programs

to traditional logic programs7 , and then we apply such a transformation to each

SOLP program in a given SOLP collection. Finally, we combine the traditional logic

programs so obtained into a single program.

Before introducing the mapping, we need a preliminary processing of all tolerance

rules in an SOLP program. This is done by means of the following transformation:

Definition 15

Given an SOLP program P, we define the SOLP program P̂ = P\TR(P) ∪ {p←
p ∧ body(r) | r ∈ TR(P) ∧ head (r) = okay(p)}.

7 Note that, differently from task (a), the logic program generated here does not contain aggregates.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 659

Note that P̂ is obtained from P by replacing each tolerance rule okay(p) ← body

with the rule p← p, body .

The next step gives a mapping from an SOLP program to a traditional logic

program.

Definition 16
Let P be an SOLP program. We define the program Γ′(P̂) over the set of atoms

Var(Γ′(P̂)) = {aP | a ∈ Var(A(P̂))}∪{a′P | a ∈ Var(A(P̂))}∪{saP | a ∈ Var(A(P̂))}∪
{failP} as Γ′(P̂) = S ′1(P̂)∪ S ′2(P̂)∪ S ′3(P̂), where S ′1(P̂), S ′2(P̂), and S ′3(P̂) are defined

as follows:
S ′1(P̂) = {aP ←not a′P | a ∈ Var(A(P̂))} ∪ {a′P ←not aP | a ∈ Var(A(P̂))},

S ′2(P̂) = {saP ← b1
P, . . . , b

n
P, ρ(s1)P, . . . , ρ(sm)P |

a← b1, . . . bn, s1, . . . , sm ∈ P},

S ′3(P̂) = {failP ←not failP, saP,not aP | a ∈ Var(A(P̂))}∪
{failP ←not failP, aP,not saP | a ∈ Var(A(P̂))},

where A() is the autonomous reduction operator (see p. 9).

In other words, given an SOLP program P, first a program P̂ is produced

(according to Definition 15) such that all the predicates okay() occurring in it are

suitably translated. Then, according to Definition 16, three sets of standard logic

rules are generated from P̂, referenced as S ′1(P̂), S ′2(P̂), and S ′3(P̂). Observe that

atoms occurring in these sets are labeled w.r.t. the source program P in order not

to generate name mismatch in the final merging phase. Informally, the set S ′1(P̂)

guesses atoms that are candidates to be included in a social model. By means of

the rules included in the set S ′2(P̂), atoms that are supported by a social rule are

inferred. The atoms denoted by ρ(si)P (1 � i � m) are in one-to-one correspondence

with those generated by WP (see Definition 14) and represent the social conditions

occurring in P. Finally, the set S ′3(P̂) ensures that an atom is derived by means of

some rule in S ′2(P̂) iff it is also guessed by some rule in S ′1(P̂).

The next definition introduces a logic program representing the translation of the

whole SOLP collection.

Definition 17
Given an SOLP collection {P1, . . . ,Pn}, we define the program P ′u =

⋃
1�i�n Γ′(P̂i).

P ′u is obtained by combining the translations of all the SOLP programs in a

given SOLP collection, where the social conditions are replaced by ρ-atoms. The

generation of P ′u concludes task (b) of the translation process. Then, the program P ′u
is merged with the LPA program C(P1, . . . ,Pn)—obtained as a result of task (a)—in

order to enable the social conditions [recall that C(P1, . . . ,Pn) contains the ρ-atoms

as heads of rules, thus allowing the activation of some rule bodies in P ′u]. Finally,

the social models of the SOLP collection {P1, . . . ,Pn} can be found by computing

the stable models of the logic program P ′u ∪ C(P1, . . . ,Pn).
Once we have described how the translation mechanism proceeds, we need to

demonstrate that it is sound and complete. To this aim, we have to prove the

following results:

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

660 F. Buccafurri and G. Caminiti

(1) The ρ-atoms occurring in C(P1, . . . ,Pn) are in one-to-one correspondence with

true SCs for {P1, . . . ,Pn}.
(2) A one-to-one correspondence exists between the social models of P1, . . . ,Pn

and the stable models of the LPA program P ′u ∪ C(P1, . . . ,Pn).

First, we prove item (1) given above.

Lemma 1

Given an SOLP collection SP = {P1, . . . ,Pn}, an integer j (1 � j � n), an SOLP

program Pj ∈ SP , a social interpretation Ī for SP , and an SC s ∈MSCPj , it holds

that s is true for Pj w.r.t. Ī iff ∃M ∈ SM(C(P1, . . . ,Pn) ∪ Q) s.t. ρ(s)Pj ∈ M, where

Q = {a←| a ∈ Ī}.

Proof

See Appendix A. �

Intuitively, a given social interpretation Ī will infer rule heads in C(P1, . . . ,Pn).
These are either labeled ρ-atoms or labeled g-predicates. Lemma 1 states that the ρ-

atoms occurring in C(P1, . . . ,Pn) are in one-to-one correspondence with true social

conditions. Now, since those ρ-atoms occur also in rule bodies of P ′u, in order to

replace the corresponding SCs (recall Definitions 16 and 17), they contribute to

infer rule heads in P ′u, which represent elements in a social model of the collection

{P1, . . . ,Pn}.
Our intention is to compute the social models of P1, . . . ,Pn in terms of the stable

models of the logic program P ′u ∪ C(P1, . . . ,Pn)8 . Thus, we must prove item (2).

To this aim, let us recall from Buccafurri and Gottlob (2002) some definitions and

results that we shall use later.

Definition 18 (Buccafurri and Gottlob 2002)

Let P be a traditional logic program and M ⊆ Var(P). We denote by [M]P the set

{aP | a ∈M} ∪ {a′P | a ∈ Var(P) \M} ∪ {saP | a ∈M}.

Definition 19 (Buccafurri and Gottlob 2002)

Let P be a positive program. We define the program Γ(P) over the set of atoms

Var(Γ(P)) = {aP | a ∈ Var(P)} ∪ {a′P | a ∈ Var(P)} ∪ {saP | a ∈ Var(P)} ∪ {failP}
as the union of the sets of rules S1, S2, and S3 defined as follows:

S1 = {aP ←not a′P | a ∈ Var(P)} ∪ {a′P ←not aP | a ∈ Var(P)}
S2 = {saP ← b1

P, . . . , b
n
P | a← b1, . . . , bn ∈ P}

S3 = {failP ←not failP, saP,not aP | a ∈ Var(P)}∪
{failP ←not failP, aP,not saP | a ∈ Var(P)}.

Note that Definition 16 (introducing Γ′) can be viewed as an extension of the

above definition, since the former takes into account social conditions, while the

latter does not. In fact, the transformations Γ′ and Γ produce the same result in

case of programs with no social conditions.

8 This can be efficiently accomplished by using the DLV system (Leone et al., 2002).

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 661

Proposition 1

Given an SOLP program P, it holds that Γ′(A(P̂)) = Γ(A(P̂)).

Proof

Since A(P̂) contains no social condition, it is easy to see that, according to

Definitions 16 and 4, S ′1(A(P̂)) = S1(A(P̂)), S ′2(A(P̂)) = S2(A(P̂)), and S ′3(A(P̂)) =

S3(A(P̂)). As a consequence, Γ′(A(P̂)) = Γ(A(P̂)). �

Lemma 2 (Buccafurri and Gottlob 2002)

Let P be a traditional logic program. Then

SM(Γ(P)) =
⋃

F∈FP (P)

{[F]P}.

Once we have recalled the results from (Buccafurri and Gottlob, 2002), we

introduce some more results that we shall use in order to prove item (2).

Proposition 2

Let P be an SOLP program. Then FP (A(P̂)) = AFP (P).

Proof

First observe that, given an SOLP program P, it holds that A(P̂) = Q̂ where

Q = A(P), i.e. the result of the joint application of the two operators A() and ˆ

is invariant w.r.t. to the order of application. In fact, according to the definitions

of both A() (see p. 9) and ˆ (see Definition 15), it is easy to see that the former

operates only on social conditions, while the latter does not, since it operates on

both standard atoms and okay predicates. Thus, the two operators have disjoint

application domains. Hence, the order of application is not relevant.

As a result it holds that, FP (A(P̂)) = FP (Q̂) where Q = A(P) and, according

to the traditional definition of fixpoint of a logic program (pp. 9), FP (Q̂) = {X |
TQ̂(X) = X ∧ X ∈ 2Var(Q̂)}.

Now, according to the definition of the classical immediate consequence operator

(pp. 9), TQ̂(X) = {head(r) | r ∈ Q̂ ∧ body(r) is true w.r.t. X}, moreover, according to

Definition 15, Q̂ = Q\TR(Q) ∪ {a← a, body(r) | r ∈ TR(Q) ∧ head (r) = okay(a)}.
As a consequence,

TQ̂(X)

= {head(r) | r ∈ Q \ TR(Q) ∧ body(r) is true w.r.t. X} ∪
{a | head (r) = okay(a) ∧ r ∈ TR(Q) ∧ (a ∧ body(r)) is true w.r.t. X}

= ATP(X) (see Definition 4).

It is easy to see that FP (A(P̂)) = FP (Q̂) = {X | TQ̂(X) = X ∧ X ∈ 2Var(Q̂)}
{X | ATP(X) = X ∧ X ∈ 2Var(A(P̂))}.

Now, observe that Var(A(P̂)) = Var∗(A(P)) (see Definition 4), since after the

application of the operator ˆ to A(P), each predicate okay(p) is replaced by its

argument p, and, according to Definition 4, for each predicate okay(p) appearing in

A(P), okay(p) does not occur in Var∗(A(P)), but the argument p does.

As a consequence, it holds that {X | ATP(X) = X ∧ X ∈ 2Var(A(P̂))} = {X |
ATP(X) = X ∧ X ∈ 2Var

∗(A(P))} = AFP (P). �

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

662 F. Buccafurri and G. Caminiti

Now we extend Definition 18 and Lemma 2, given in Buccafurri and Gottlob

(2002), to SOLP programs.

Definition 20

Let P be a (SOLP) program and M ⊆ Var(P). We denote by [M]P the set

{aP | a ∈M} ∪ {a′P | a ∈ Var(A(P̂)) \M} ∪ {saP | a ∈M}.

Given a (SOLP) program P, the operator []P produces a set of auxiliary atoms

labeled w.r.t. P. Those atoms are used in the translation process. Observe that the

above definition extends Definition 18, since in case P is a traditional logic program,

then Var(A(P̂)) = Var(P) and thus the two definitions match.

The above results are now exploited in order to prove that, by applying the above

operator []P to the autonomous fixpoints of a given SOLP program P, we obtain

the stable models of the translation of the autonomous version of P.

Lemma 3

Given an SOLP program P, it holds that

SM(Γ′(A(P̂))) =
⋃

F∈AFP (P)

{[F]P}.

Proof

By virtue of Proposition 1, Γ′(A(P̂)) = Γ(A(P̂)). As a consequence, SM(Γ′(A(P̂))) =

SM(Γ(A(P̂))). Now, denoting A(P̂) by Q, by virtue of Lemma 2, SM(Γ(Q)) =⋃
F∈FP (Q){[F]Q}. According to Definition 18, [F]Q = {aQ | a ∈ F} ∪ {a′Q | a ∈

Var(Q) \ F} ∪ {saQ | a ∈ F}.
Now, recall that Q = A(P̂). Q represents the SOLP program P , after the

application of both ˆ and A() operators. As a consequence, atoms in [F]Q are

labeled w.r.t. P. Observe that atoms in Γ′(A(P̂)) are labeled w.r.t. P too. Therefore,

with a little abuse of notation, we can write [F]Q = {aP | a ∈ F} ∪ {a′P | a ∈
Var(A(P̂)) \ F} ∪ {saP | a ∈ F} = [F]P, according to Definition 20 and since Q is a

traditional logic program.

Now, we have obtained that SM(Γ(A(P̂))) =
⋃
F∈FP (A(P̂)){[F]P}.

Since, by virtue of Proposition 2, FP (A(P̂)) = AFP (P), it results that⋃

F∈FP (A(P̂))

{[F]P} =
⋃

F∈AFP (P)

{[F]P}. �

Now we extend Lemma 3 to a whole SOLP collection, but first let us recall the

following result from Eiter et al. (1997).

Lemma 4 (Eiter et al. 1997)

Let P = P1 ∪P2 be a program such that Var(P1) ∩ Var(P2) = ∅. Then

SM(P) =
⋃

M1∈SM(P1),M2∈SM(P2)

{M1 ∪M2}.

Lemma 5

Given an SOLP collection {P1, . . . ,Pn}, consider the following sets:

(1) Pu =
⋃

1�i�n Γ′(A(P̂i)),

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 663

(2) SM(Pu), and

(3) B =
{
{(F1)P1

∪ (G1)P1
}

⋃
· · ·

⋃
{(Fn)Pn ∪ (Gn)Pn} |

∀i 1 � i � n Fi ∈ AFP (Pi) ∧ (Gi)Pi = [Fi]Pi \ (Fi)Pi
}

.
It holds that SM(Pu) = B.

Proof

For each i and j such that 1 � i �= j � n, according to Definition 16, it holds that

Var(Γ′(A(P̂i))) ∩ Var(Γ′(A(P̂j))) = ∅. It is easy to see that

SM(Pu) = SM(
⋃

1�i�n Γ′(A(P̂i))) = (by virtue of Lemma 4)

=
⋃

M1∈SM(Γ′(A(P̂1))),...,Mn∈SM(Γ′(A(P̂n)))

{M1 ∪ · · · ∪Mn}.

Note that, for each i (1 � i � n), Mi ∈ SM(Γ′(A(P̂i)) and, by virtue of Lemma 3,

SM(Γ′(A(P̂i)) =
⋃
F∈AFP (P){[F]P}. Thus,⋃

M1∈SM(Γ′(A(P̂1))),...,Mn∈SM(Γ′(A(P̂n)))

{M1 ∪ · · · ∪Mn} =

=
⋃

F1∈AFP (P1),...,Fn∈AFP (Pn)

{[F1]P1
∪ · · · ∪ [Fn]Pn}.

Now, for each i (1 � i � n), let us denote by (Gi)Pi the set [Fi]Pi \ (Fi)Pi . It is easy

to see that ⋃

F1∈AFP (P1),...,Fn∈AFP (Pn)

{[F1]P1
∪ · · · ∪ [Fn]Pn} =

=
⋃

F1∈AFP (P1),...,Fn∈AFP (Pn)

{{(F1)P1
∪ (G1)P1

} ∪ · · · ∪ {(Fn)Pn ∪ (Gn)Pn}} =

= B.

�

Before proving (2) we need a further definition, introducing the notion of a set

of ρ-atoms and g-predicates associated, by virtue of Lemma 1, with the social

conditions true for a given SOLP program w.r.t. a social interpretation.

Definition 21

Given an SOLP collection SP = {P1, . . . ,Pn}, a social interpretation Ī for SP , an

SOLP program P ∈ SP and an SC s ∈MSCP, let Q = {a←| a ∈ Ī}. We define the

set

SATP
Ī

(s) =
{
h | h = head (r), r ∈ ΨP(s) ∧ (∃M ∈ SM(C(P1, . . . ,Pn) ∪ Q) | h ∈M)

}
.

Observe that in case s is true for P w.r.t. Ī , SATP
Ī

(s) includes the atom ρ(s)P
and those heads of the rules in ΨP(s) [recall from Definition 13 that ΨP(s) =

GUESSP(s) ∪ CHECKP(s)] corresponding to both the social condition s and the

SCs nested in s.

Finally, we are ready to prove item (2). The next theorem states that a one-to-one

correspondence exists between the social models in SOS(P1, . . . ,Pn) and the stable

models of the LPA program P ′u ∪ C(P1, . . . ,Pn).

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

664 F. Buccafurri and G. Caminiti

Theorem 2

Given an SOLP collection SP = {P1, . . . ,Pn}, it holds that A = B, where

A = SM(P ′u ∪ C(P1, . . . ,Pn)) and

B = {F̄ ∪ Ḡ ∪ H̄ |
(1) F̄ =

⋃
1�i�n(F

i)Pi ∧ Fi ∈ AFP (Pi) ∧ F̄ ∈ SOS(P1, . . . ,Pn) ∧
(2) Ḡ =

⋃
1�i�n(G

i)Pi ∧ (Gi)Pi = [Fi]Pi \ (Fi)Pi ∧
(3) H̄ =

⋃
1�i�n(H

i)Pi ∧ (Hi)Pi =
⋃
s∈MSCPi SAT

Pi
F̄

(s)}.
Proof

See Appendix A.

�

As a result of the above theorem, each stable model X of the program P ′u ∪
C(P1, . . . ,Pn) may be partitioned in three sets: F̄ (representing the corresponding

social model of the SOLP collection), Ḡ and H̄ (each including auxiliary literals

needed by the translation). Thus, it is possible to find the social models of P1, . . . ,Pn
by a post-processing of the stable models of P ′u∪C(P1, . . . ,Pn), which drops the sets

Ḡ and H̄ .

Example 13

Before closing the section, we present the following logic program P = P ′u ∪
C(P1, . . . ,P4) resulting from the translation of the SOLP collection {P1, . . . ,P4}
presented in Example 1 (see Table 1).

r1 : go weddingP1
← not go wedding′P1

r2 : go wedding′P1
← not go weddingP1

r3 : sgo weddingP1
← ρ 1 1P1

r4 : failP1
← not failP1

, sgo weddingP1
,not go weddingP1

r5 : failP1
← not failP1

, go weddingP1
,not sgo weddingP1

r6 : go weddingP2
← not go wedding′P2

r7 : go wedding′P2
← not go weddingP2

r8 : driveP2
← not drive′P2

r9 : drive′P2
← not driveP2

r10 : sgo weddingP2
← go weddingP2

r11 : sdriveP2
← driveP2

, go weddingP2

r12 : failP2
← not failP2

, sgo weddingP2
,not go weddingP2

r13 : failP2
← not failP2

, go weddingP2
,not sgo weddingP2

r14 : failP2
← not failP2

, sdriveP2
,not driveP2

r15 : failP2
← not failP2

, driveP2
,not sdriveP2

r16 : go weddingP3
← not go wedding′P3

r17 : go wedding′P3
← not go weddingP3

r18 : sgo weddingP3
← ρ 1 1P3

r19 : failP3
← not failP3

, sgo weddingP3
,not go weddingP3

r20 : failP3
← not failP3

, go weddingP3
,not sgo weddingP3

r21 : g 1 1(2)P1
← go weddingP2

r22 : g 1 1(3)P1
← go weddingP3

r23 : ρ 1 1P1
← 1 <= #count{K : g 1 1(K)P1

, K <> 1} <= 3

r24 : g 1 1(2)P3
← go weddingP2

,not driveP2

r25 : ρ 1 1P3
← g 1 1(2)P3

Observe that, according to Definition 16, Γ′(P̂1) = S ′1(P̂1) ∪ S ′2(P̂1) ∪ S ′3(P̂1),

where S ′1(P̂1) = {r1, r2}, S ′2(P̂1) = {r3}, and S ′3(P̂1) = {r4, r5}. Concerning the SOLP

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 665

program P2, Γ′(P̂2) = S ′1(P̂2) ∪ S ′2(P̂2) ∪ S ′3(P̂2), where S ′1(P̂2) = {r6, r7, r8, r9},
S ′2(P̂2) = {r10, r11}, and S ′3(P̂2) = {r12, r13, r14, r15}. Γ′(P̂3) = S ′1(P̂3)∪S ′2(P̂3)∪S ′3(P̂3),

where S ′1(P̂3) = {r16, r17}, S ′2(P̂3) = {r18}, and S ′3(P̂3) = {r19, r20}. Finally, Γ′(P̂4) =

∅ since P4 is empty. Recall that P ′u = Γ′(P̂1) ∪ Γ′(P̂2) ∪ Γ′(P̂3) ∪ Γ′(P̂4) (see

Definition 17).

Now, according to Definition 14, C(P1, . . . ,P4) = {WP1 ∪WP2 ∪WP3 ∪WP4},
where WP1 = {r21, r22, r23}, WP2 and WP4 are empty (since P2 and P4 do not

include any social rule) and, finally, WP3 = {r24, r25}. It is easy to check that the

stable models of P correspond, by virtue of Theorem 2, to the social models of the

SOLP programs P1, . . . ,P4.

5 Social models and joint fixpoints

In this section, we show that the social semantics extends the JFP semantics

(Buccafurri and Gottlob, 2002). Basically, COLP programs are logic programs

which also contain tolerance rules (named okay rules) which are rules of the form

okay(p) ← body(r). The semantics of a collection of COLP programs is defined

over traditional programs obtained from the COLP programs by translating each

rule of the form okay(p)← body(r) into the rule p← p, body(r). The semantics of a

collection P1, . . . ,Pn of COLP programs is defined by Buccafurri and Gottlob (2002)

in terms of joint (i.e., common) fixpoints (of the immediate consequence operator) of

the logic programs obtained from P1, . . . ,Pn by transforming okay rules occurring

in them (as shown above).

First we need some preliminary definitions and results. We define a translation

from COLP programs Buccafurri and Gottlob (2002) to SOLP programs.

Definition 22

Given a COLP program P and an integer n � 1, the SOLP translation of P is an

SOLP program

σn(P) = {σn(r) | r ∈ P},

where

σn(r) =

{
head (r)← [n− 1, n− 1]head (r), body(r) if r is a classical rule,

okay(p)← [n− 1, n− 1]p, body(r) if r is an okay rule.

Definition 23

Given a COLP program P, let OKAY (P) be the set of all the okay rules included

in P. We define P̂ = P \ OKAY (P) ∪ {p← p, body(r) | r ∈ OKAY (P) ∧ head (r) =

okay(p)}.

Informally, for any given COLP program P, P̂ is a traditional logic program

obtained from P by replacing the head of each okay rule with the argument of the

predicate okay and then adding such an argument to the body of the rule.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

666 F. Buccafurri and G. Caminiti

Lemma 6

Given a COLP program P, then

∀n � 1 FP (P̂) = AFP (σn(P)).

Proof

First, observe that, according to Definition 4, all SCs occurring in the program σn(P̂)

are discarded in order to compute the autonomous fixpoints. As a consequence, the

equivalence holds for any value of the parameter n. Now, it is easy to see that the

proof follows directly from Definitions 5, 22, and 23. �

Lemma 7

Let P1, . . . ,Pn be a set of COLP programs and Q1, . . . , Qn be SOLP programs such

that Qi = σn(Pi). Then

SOS(Q1, . . . , Qn) = {(F1)Q1
∪ · · · ∪ (Fn)Qn | ∀i, j 1 � i �= j � n, Fi = Fj}.

Proof

By contradiction let us assume that

(1) ∃M̄ | M̄ = (F1)Q1
∪ · · · ∪ (Fn)Qn ∧ M̄ ∈ SOS(Q1, . . . , Qn), and

(2) ∃i, j 1 � i �= j � n | Fi �= Fj.

Thus, without loss of generality there exists h ∈ Fi s.t. hQi ∈ (Fi)Qi and hQj �∈ (Fj)Qj .

As a consequence, hQi ∈ M̄ and hQj �∈ M̄. Now, we have reached a contradiction

because, according to Definitions 10 and 22, hQi ∈ M̄ only if for each k, (1 � k �=
i � n), hQk ∈ M̄, thus M̄ �∈ SOS(Q1, . . . , Qn) (contradiction). �

The next theorem states that the JFP semantics is a special case of the social

semantics. JFP (P1, . . . ,Pn) denotes the set of the joint fixpoints of the collection of

COLP programs P1, . . . ,Pn.

Theorem 3

Let P1, . . . ,Pn (n � 1) be COLP programs and C = {Q1, . . . , Qn} be a collection of

SOLP programs such that Qi = σn(Pi). Then

SOS(Q1, . . . , Qn) =

{
⋃

1�i�n

(F)Qi | F ∈ JFP (P1, . . . ,Pn)
}

.

Proof

(⊇). First, we show that

∀F ∈ JFP (P1, . . . ,Pn),
⋃

1�i�n

(F)Qi ∈ SOS(Q1, . . . , Qn).

By contradiction, let us assume that ∃M̄ =
⋃

1�i�n(F)Qi | M̄ �∈ SOS(Q1, . . . , Qn).

Thus, there exists an integer j, 1 � j � n, such that either

(1) F �∈ AFP (Qj), or

(2) F ∈ AFP (Qj) ∧ STC (M̄) �= M̄.

In case (1), by virtue of Lemma 6, F �∈ FP (P̂j) which contradicts the hypothesis that

F ∈ JFP (P1, . . . ,Pn).

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 667

In case (2), it holds that either

(a) ∃h, Qj | Qj ∈ C ∧ hQj ∈ M̄ ∧ hQj �∈ STC (M̄), or

(b) ∃h, Qj | Qj ∈ C ∧ hQj �∈ M̄ ∧ hQj ∈ STC (M̄).

If condition (a) occurs, then, for each rule r ∈ Qj, s.t. head (r) = h or head (r) =

okay(h), it results that body(r) is false w.r.t. M̄, because hQj �∈ STC(M̄ (recall

Definition 9).

Now, since h ∈ F and F ∈ AFP (Qj), according to Definition 22, it holds that

for each rule r ∈ Qj, s.t. head (r) = h or head (r) = okay(h), the SC [n − 1, n − 1]h

(introduced by the transformation σ) is false for Qj w.r.t. M̄.

Thus, according to Definition 8, there exists k (1 � k �= j � n) s.t. hQk �∈ M̄.

Now, we have obtained that hQj ∈ M̄ and hQk �∈ M̄. Since M̄ =
⋃

1�i�n(F)Qi and

F ∈ JFP (P1, . . . ,Pn), by virtue of Lemma 7, we have reached a contradiction. This

concludes the proof of case (2), when condition (a) holds.

Consider, now, that condition (b) is true for case (2). According to Definition 9,

there exists r ∈ Qj s.t. head (r) = h or head (r) = okay(h) and body(r) is true w.r.t.

M̄. As a consequence and according to Definition 22, [n − 1, n − 1]h is true for Qj
w.r.t. M̄. Now, according to Definition 8, for each k (1 � k �= j � n), hQk ∈ M̄ and

hQj �∈ M̄. Since M̄ =
⋃

1�i�n(F)Qi and F ∈ JFP (P1, . . . ,Pn), by virtue of Lemma 7,

we have reached a contradiction. This concludes the proof of case (2).

(⊆). Now we show that ∀M̄ ∈ SOS(Q1, . . . , Qn), it holds that both
(1) M̄ = {

⋃
1�i�n(F

i)Qi | ∀i, j (1 � i �= j � n), Fi = Fj} and

(2) ∀i (1 � i � n), Fi ∈ JFP (P1, . . . ,Pn).
First observe that condition (1) follows directly from Lemma 7.

Now we prove that condition (2) is true. Assume, by contradiction, that F �∈
JFP (P1, . . . ,Pn), where F = F1 = F2 = · · · = Fn (thanks to condition (1)). As a

consequence, there exists j (1 � j � n) s.t. F �∈ FP (P̂j) (recall that Pj is a COLP

program). Now, by virtue of Lemma 6, F �∈ AFP (Qj), where Qj = σn(Pj). Thus,

according to Definition 10, FQj �⊆ M̄, because FQj is not an autonomous fixpoint of

Qj . This result contradicts condition (1), which is true, stating that FQj ⊆ M̄. �

6 Complexity results

In this section, we introduce some relevant decision problems with respect to the

social semantics and discuss their complexity. The analysis is done in case of positive

programs. The extension to the general case is straightforward.

First, we consider the problem of social model existence for a collection of SOLP

programs.

PROBLEM SOSn (social model existence):

Instance: An SOLP collection C = {P1, . . . ,Pn}.
Question: Is SOS(P1, . . . ,Pn) �= ∅, i.e., do the programs P1, . . . ,Pn have any social

model?

Theorem 4

The problem SOSn is NP-complete.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

668 F. Buccafurri and G. Caminiti

Proof

(1) Membership. In order to verify that a set of positive SOLP programs admits a

social model, it suffices to guess a candidate social interpretation Ī for C and then

to check that STC(Ī) = Ī . Since the latter task is feasible in polynomial time, then

the problem SOSn is in NP.

(2) Hardness. Observe that the problem SOSn generalizes the problem JFP

(Buccafurri and Gottlob, 2002), which has been proved to NP-complete. Indeed, in

Definition 22 a polynomial-time reduction from JFP to SOSn, i.e. σn(P), has been

introduced. Moreover, Theorem 3 states that any instance of the problem JFP can be

reduced to an equivalent instance of SOSn, i.e. on those instances the both problems

have the same answers. Thus, we have proven that the problem SOSn is NP-hard.

Then the problem SOSn is NP-complete. �

Indeed, the case of nonpositive programs is straightforward: since it is NP-

complete to determine whether a single nonpositive program has a fixpoint, it is

easy to see that the same holds for nonpositive SOLP programs and autonomous

fixpoints. Thus, checking whether an SOLP collection containing at least one

nonpositive SOLP program has a social model is trivially NP-hard. Moreover,

since this problem is easily seen to be in NP, it is NP-complete.

Now, we introduce several computationally interesting decision problems associ-

ated with the social semantics. Each of them corresponds to a computational task

involving labeled atom search inside the social models of an SOLP collection.

The traditional approach used for classical nonmonotonic semantics of logic

programs, typically addresses the following two problems:

(a) Skeptical reasoning, i.e. deciding whether an atom x occurs in all the models

of a given program P;

(b) Credulous reasoning, i.e. deciding whether an atom x occurs in some model of

a given program P.

Since a social model is a social interpretation, i.e. a set of labeled atoms, we

have to extend the above problems (a) and (b) by introducing a further search

dimension, expressing the sociality degree of the agents represented by the SOLP

collection. More informally, we are also interested in how many SOLP programs a

given atom—occurring as a labeled atom in a social model—is entailed by.

As a consequence, given a collection C = {P1, . . . ,Pn} of SOLP programs, a social

model M̄ of P1, . . . ,Pn and an atom x, we distinguish two cases. Either

(1) for each P in C , ∀i (1 � i � n), xPi ∈ M̄, or

(2) for some P in C , ∃i | 1 � i � n ∧ xPi ∈ M̄.

In other words, in case (1) the agents corresponding to the SOLP collection C

exhibit a greater sociality degree—since all of them choose the atom x inside the

social model M̄—than in case (2), where at least one agent is required to choose x

and thus we observe a more individual agent behavior.

By combining the problems (a) and (b) with the traditional reasoning tasks (1) and

(2), we obtain the following four decision problems relevant to the social semantics:

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 669

1. PROBLEM SS-SOSn (socially skeptical reasoning):

Instance: An SOLP collection C = {P1, . . . ,Pn} and an atom x.

Question: Does it hold that, for each M̄ ∈ SOS(P1, . . . ,Pn), {xP1
, . . . , xPn} ⊆ M̄,

i.e. ∀i (1 � i � n), xPi ∈ M̄?

In case the answer to such a problem is positive, then it holds that all the agents

always (i.e., in each social model) choose x, since xP occurs in M̄, for each social

model M̄ and for each SOLP program P. For instance, this kind of reasoning could

be applied by the government of a given country in order to know if all citizens,

modeled as a collection of SOLP programs, pay taxes.

2. PROBLEM IS-SOSn (individually skeptical reasoning):

Instance: An SOLP collection C = {P1, . . . ,Pn} and an atom x.

Question: Does it hold that, for each M̄ ∈ SOS(P1, . . . ,Pn), ∃i | 1 � i � n

∧ xPi ∈ M̄?

In case the answer to such a problem is positive, then it holds that always (i.e.,

in every social model) there is at least an agent choosing x, since xP occurs in M̄,

for each social model M̄ and for some SOLP program P. This kind of reasoning is

useful, for instance, to test if a given action, represented by x, is always performed

by at least one agent, no matter who the agent is. For example, consider a family

(modeled as an SOLP collection) sharing a car. The above kind of reasoning could

be used in order to check whether someone gets gasoline each time the car is used.

3. PROBLEM SC-SOSn (socially credulous reasoning):

Instance: An SOLP collection C = {P1, . . . ,Pn} and an atom x.

Question: Does it hold that, there exists M̄ ∈ SOS(P1, . . . ,Pn), such that for each

i (1 � i � n), xPi ∈ M̄, i.e. {xP1
, . . . , xPn} ⊆ M̄?

In case the answer to such a problem is positive, then at least one social model

exists whereas all the agents choose x, since xP occurs in M̄, for some social model

M̄ and for each SOLP program P. As a consequence, a common agreement on

x by the agents may be reached at least in one case (i.e. in one social model).

For instance, this kind of reasoning could be applied in order to check whether

some chance exists that the European Council of Ministers (modeled as an SOLP

collection) unanimously accepts a country as a new member of the European Union.

4. PROBLEM IC-SOSn (individually credulous reasoning):

Instance: An SOLP collection C = {P1, . . . ,Pn} and an atom x.

Question: Does it hold that, there exist M̄ and j such that (i) M̄ ∈ SOS(P1, . . . ,Pn)
and (ii) it holds that 1 � j � n ∧ xPj ∈ M̄?

In case the answer to such a problem is positive, then it holds that at least one

social model exists whereas at least one agent chooses x, since xP occurs in M̄, for

some social model M̄ and for some SOLP program P. In such a case, although

there is no common agreement on x by the agents, it holds that x is chosen by some

of them, at least once (i.e. in one social model). For example, the above reasoning

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

670 F. Buccafurri and G. Caminiti

could be used by a company in order to check whether a given product is never

bought by a group of potential customers (represented by SOLP programs).

The computational complexity of the above problems is stated by the following

theorems.

Theorem 5

The problem SS-SOSn is coNP-complete.

Proof

It suffices to prove that the complementary problem of SS-SOSn is NP-complete.

Such a problem may be described as follows:

Instance: An SOLP collection C = {P1, . . . ,Pn} and an atom x.

Question: Does it hold that there exist M̄ and j such that (i) M̄ ∈ SOS(P1, . . . ,Pn)
and (ii) 1 � j � n ∧ xPj �∈ M̄?

(1) Membership. We need to guess a candidate social interpretation M̄ for C

and, then, to verify that

(i) M̄ ∈ SOS(P1, . . . ,Pn), and

(ii) ∃j | 1 � j � n ∧ xPj �∈ M̄.

Verifying the above items is feasible in polynomial time. Thus, the complementary

problem of SS-SOSn is in NP.

(2) Hardness. Now we prove that a reduction from the NP-complete problem

SOSn to the complementary problem of SS-SOSn is feasible in polynomial time.

Consider an atom x such that, for each i (1 � i � n), x �∈ Var(Pi). It is easy to see

that SOS(P1, . . . ,Pn) �= ∅ iff there exists M̄ ∈ SOS(P1, . . . ,Pn) such that {xP1
, . . . ,

xPn} �⊆ M̄. Moreover, in case {xP1
, . . . , xPn} �⊆ M̄, it results that ∃j | 1 � j �

n ∧ xPj �∈ M̄. Thus, SOSn is polynomially reducible to the complementary problem

of SS-SOSn. �

Theorem 6

The problem IS-SOSn is coNP-complete.

Proof

It suffices to prove that the complementary problem of IS-SOSn is NP-complete.

Such a problem may be described as follows:

Instance: An SOLP collection C = {P1, . . . ,Pn} and an atom x.

Question: Does it hold that there exists M̄ ∈ SOS(P1, . . . ,Pn) such that ∀j (1 �
j � n), xPj �∈ M̄, i.e. {xP1

, . . . , xPn} �⊆ M̄?

(1) Membership. We need to guess a candidate social interpretation M̄ for C

and, then, to verify that

(i) M̄ ∈ SOS(P1, . . . ,Pn), and

(ii) {xP1
, . . . , xPn} �⊆ M̄.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 671

Verifying the above items is feasible in polynomial time. Thus, the complementary

problem of IS-SOSn is in NP.

(2) Hardness. Now we prove that a reduction from the NP-complete problem

SOSn to the complementary problem of IS-SOSn is feasible in polynomial time.

Consider an atom x such that, for each i (1 � i � n), x �∈ Var(Pi). It is easy to see

that SOS(P1, . . . ,Pn) �= ∅ iff there exists M̄ ∈ SOS(P1, . . . ,Pn) such that {xP1
, . . . ,

xPn} �⊆ M̄. Thus, SOSn is polynomially reducible to the complementary problem of

IS-SOSn. �

Theorem 7

The problem SC-SOSn is NP-complete.

Proof

(1) Membership. We need to guess a candidate social interpretation M̄ for C and,

then, to verify that

(i) M̄ ∈ SOS(P1, . . . ,Pn), and

(ii) {xP1
, . . . , xPn} ⊆ M̄.

Verifying the above items is feasible in polynomial time. Thus, the problem SC-

SOSn is in NP.

(2) Hardness. Now we prove that a reduction from the NP-complete problem

SOSn exists and it is feasible in polynomial time. Consider the SOLP collection

C ′ = {τ(P1), . . . , τ(Pn)}, where, for each i (1 � i � n), τ(Pi) is an SOLP program

obtained from Pi as follows:

τ(Pi) = Pi ∪ {x←},

where it holds that, for each i (1 � i � n), x �∈ Var(Pi). It is easy to see that

SOS(P1, . . . ,Pn) �= ∅ iff for each M̄ ∈ SOS(P1, . . . ,Pn), there exists M̄ ′ ∈
SOS(τ(P1), . . . , τ(Pn)) such that M̄ ′ = M̄ ∪ {xP1

, . . . , xPn}. Thus, SOSn is poly-

nomially reducible to SC-SOSn. �

Theorem 8

The problem IC-SOSn is NP-complete.

Proof

(1. Membership). We need to guess a candidate social interpretation M̄ for C and,

then, to verify that

(i) M̄ ∈ SOS(P1, . . . ,Pn), and

(ii) ∃j | 1 � j � n ∧ xPj ∈ M̄.

Verifying the above items is feasible in polynomial time. Thus, the problem IC-

SOSn is in NP.

(2. Hardness). Now we prove that a reduction from the NP-complete problem

SOSn exists and it is feasible in polynomial time. consider the SOLP collection

C ′ = {τ(P1), . . . , τ(Pn)}, where, for each i (1 � i � n), τ(Pi) is an SOLP program

obtained from Pi as follows:

τ(Pi) = Pi ∪ {x←},

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

672 F. Buccafurri and G. Caminiti

where it holds that, for each i (1 � i � n), x �∈ Var(Pi). It is easy to see that

SOS(P1, . . . ,Pn) �= ∅ iff for each M̄ ∈ SOS(P1, . . . ,Pn), there exists M̄ ′ ∈
SOS(τ(P1), . . . , τ(Pn)) such that M̄ ′ = M̄ ∪{xP1

, . . . , xPn}. Moreover, since {xP1
, . . . ,

xPn} ⊆ M̄ ′, there exists j (1 � j � n) such that xPj ∈ M̄ ′. Thus, SOSn is polynomially

reducible to IC-SOSn. �

7 Knowledge representation with SOLP programs

In this section, we provide interesting examples showing the capability of our

language of representing common knowledge.

Example 14 (Seating)

We must arrange a seating for a number n of agents (representing, for instance,

people invited to the wedding party introduced in Example 1), with m tables and a

maximum of c chairs per table. Agents who like each other should sit at the same

table; agents who dislike each other should not sit at the same table. Moreover, an

agent can express some requirements w.r.t. the number and the identity of other

agents sitting at the same table. Assume that the Ith agent is represented by a

predicate agent(I) and his knowledge base is enclosed in a single SOLP program.

Each program will include both a set of common rules encoding the problem and

the agent’s own requirements. The predicate like(A) [resp. dislike(A)] means that

the agent A is desired (resp. not tolerated) at the same table. table(T) represents a

table (1 � T � m) and at(T) expresses the desire to sit at table T . For instance, the

program P1 (which is associated with the agent 1) could be written as follows:

r1 : agent(1)←
r2 : ← at(T1), at(T2), T1 <> T2

r3 : at(T)← [c,]{at(T), agent(P)}, like(P), table(T)

r4 : ← at(T), [1,]{at(T), agent(P)}, dislike(P)

r5 : ← like(P), dislike(P)

r6 : like(2)←
r7 : dislike(3)←
r8 : okay(like(4))←
r9 : ← at(T), [3,]{at(T)}

where the rules from r1 to r5 are common to all the programs (of course, the

argument of the predicate agent() in r1 is suited to the enclosing program) and the

rules r6–r9 express the agent’s own requirements. In detail, the rule r2 states that

any agent cannot be seated at more than one table, the rule r3 means that agent 1

sits at a particular table T if at least c agents he likes are seating at that table (c is

a given constant). The rule r4 states that it is forbidden that agent 1 shares a table

with at least one or more agents he dislikes.

The rule r5 provides consistency for the predicates like and dislike, while examples

of such predicates are reported in rules r6 and r7. The rule r8 is used to declare that

agent 1 tolerates agent 4, i.e. agent 4 possibly shares a table with agent 1, and finally

the rule r9 means that the agent 1 does not want to share a table with 3 agents or

more. Observe that while the rule r3 generates possible seating arrangements, the

rules r2, r4, and r9 discard those which are not allowed.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 673

Example 15 (Room arrangement)

Consider a house having m rooms. We have to distribute some objects (i.e. furniture

and appliances) over the rooms in such a way that we do not exceed the maximum

number of objects, say c, allowed per room. Constraints about the color and/or

the type of objects sharing the same room can be introduced. We assume that each

object is represented by a single program encoding both the properties and the

constraints we want to meet. Consider the following program:

r1 : name(cupboard)←
r2 : type(furniture)←
r3 : color(yellow)←
r4 : ← at(R1), at(R2), R1 <> R2

r5 : at(R)← [, 2]{at(R), type(appliance), color(yellow),

[1, 1]{name(fridge)}}, room(R)

r6 : at(R)← [, c− 3]{at(R), type(furniture)}, room(R)

r7 : ← at(R), [1,]{at(R), color(green)},

where the properties of the current object are encoded as predicates representing

the name (fridge, cupboard, table, etc.), the type (furniture or appliance), the color,

and so on (see rules r1–r3). In particular, the rule r4 states that an object may not be

in more than one room, while by means of the rule r5, we allow no more than two

yellow appliances to share the room with the cupboard, provided that one of them

is a fridge. The rule r6 means that we want the cupboard to be in the same room

with any other pieces of furniture, but no more than c − 3, where c (representing

the maximum number of objects per room) is given. Finally, the rule r7 states that

the cupboard cannot share the room with any green object.

Example 16 (FPGA Design)

In this example, we represent an extended version of a well-known problem belonging

to the setting of FPGA (field programmable gate arrays) design, namely, placement.

FPGAs are generic, programmable digital devices providing, in a single system, a

way for digital designers to access thousands or millions of logic gates arranged in

multilevel structures, referred to as modules, and to program them as desired by the

end user. Placement consists in determining the module positions within the design

area according to given constraints.

Consider a team of n electronic engineers, jointly working on a common FPGA

design. Each of them is responsible for placing a given number of modules inside

the chip design area, which is represented by a square grid of cells. In particular,

each designer must meet a number of constraints concerning either (resp. both) his

own modules or (resp. and) the modules of other designers. Moreover, the total chip

area which is occupied by the modules must either match a given value or be less

than a given value.

This setting can be encoded by a collection of SOLP programs9 C = {Q1, . . . , Qn,

P }, where for each i (1 � i � n), Qi describes designer i’s requirements, and P

9 Observe that, according to the implementation of the language that relies on DLV (Leone et al., 2002);
(Dell’Armi et al., 2003), individual programs of our SOLP collection adopt the syntax of DLV, allowing
both built-in predicates and standard aggregate functions.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

674 F. Buccafurri and G. Caminiti

represents an agent aimed to find admissible solutions to the placement problem.

Such solutions are included into the social models of the SOLP collection C . In the

following paragraphs we describe such programs in detail.

We assume that each module is rectangular-shaped and it is described by a

predicate mod(M,X, Y), where M is an identifier and X (resp. Y) is the horizontal

(resp. vertical) module size measured in grid cells. First, we describe the program Qi
(corresponding to rules r1–r28), encoding designer i’s placement constraints.

We distinguish among hard and soft constraints, respectively. Hard constraints are

common to each program Qi (1 � i � n) and describe the placement problem. Soft

constraints represent both requirements of a single designer on his own module’s

properties and requirements on the properties of modules owned by another designer.

Hard Constraints. The following rules encode the placement problem:

r1 : grid(n, n)←
r2 : ← place(B,X, Y), unplaced(B,X, Y)

r3 : place(B,X, Y)← not unplaced(B,X, Y), mod(B, ,),#int(X),

#int(Y), X < XG, Y < Y G, grid(XG,Y G)

r4 : unplaced(B,X, Y)← not place(B,X, Y), mod(B, ,),#int(X),

#int(Y), X < XG, Y < Y G, grid(XG,Y G)

r5 : ← place(B,X, Y), mod(B,XB, Y B), grid(XG,Y G),

XT > XG,+(X,XB,XT)

r6 : ← place(B,X, Y), mod(B,XB, Y B), grid(XG,Y G),

Y T > Y G,+(Y , Y B, Y T)

r7 : ← #count{B : place(B, ,), mod(B, ,), B = B1} = 0,

mod(B1, ,)

r8 : ← place(B,X, Y), place(B,X1,Y1), X <> X1

r9 : ← place(B,X, Y), place(B,X1,Y1), Y <> Y1

r10 : ← cell(B,X, Y), cell(B1, X, Y), B <> B1

r11 : cell(B,X, Y)← mod(B,XB, Y B), place(B,X1,Y1),#int(X),

#int(Y), X1 � X,X < SX,+(X1, XB, SX),

Y1 � Y , Y < SY ,+(Y1, Y B, SY)

r12 : ← cell(B,X, Y), [1,]{cell(B1, X1,Y1)}, X = X1, Y = Y1

First, the grid sizes are declared (rule r1) and then, after candidate module positions

are guessed (rules r2–r4), several requirements are checked: (i) a module cannot be

placed outside the chip design area (rules r5andr6); (ii) all modules must be placed

(rule r7); (iii) each module cannot be placed more than once (rules r8andr9); (iv)

modules owned by the same designer cannot overlap (rule r10). By means of rule

r11 the predicate cell(B,X, Y) is true if module B covers the grid cell at coordinates

X,Y . Finally, the intended meaning of the social rule r12 is to avoid overlapping of

modules owned by different designers.

Soft Constraints. The following rules describe examples of constraints that designer

i can specify on his own module’s properties, i.e. setting either the absolute module

position (rule r13) or that relative to other modules (rules r14–r17). For instance,

rules r14 and r15 specify that both modules 1 and 3 must be placed (a) on the same

row (represented by the coordinate Y), and (b) such that module 1 is on the left of

module 3. Finally, rules r16 and r17 require that module 1 is placed either 0 or 1 cell

far from module 3. Note that the predicate place(B,X, Y) sets the upper-left corner

coordinates of module B to X,Y .

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 675

r13 : place(1, 3, 4)←
r14 : ← place(1, X, Y), place(3, X1,Y1), Y <> Y1

r15 : ← place(1, X, Y), place(3, X1,Y1), X � X1

r16 : ← place(1, X, Y), place(3, X1,Y1),#int(X),

mod(1, XB, Y B),+(X,XM,X1),+(XB,D,XM), D < 0

r17 : ← place(1, X, Y), place(3, X1,Y1),#int(X),

mod(1, XB, Y B),+(X,XM,X1),+(XB,D,XM), D > 1

In addition, it is possible to encode, by means of social rules, the dependence of

designer i’s module properties from those of other designers. For instance, given an

integer d, by means of the following rules designer i requires that module 4 is placed

on the same row (rule r18) as designer j’s module 1 and such that a distance of

exactly d cells exists between them (rules r19, r20).

r18 : ← place(4, X4, Y 4), [Qj]{place(1, X1,Y1)}, Y 4 <> Y1.

r19 : ← place(4, X4, Y 4), [Qj]{place(1, X1,Y1)}, D <> d,+(X4, XM,X1),

X4 � X1,+(XB4, D, XM), mod(4, XB4, Y B4)

r20 : ← place(4, X4, Y 4), [Qj]{place(1, X1,Y1)}, D <> d,+(X1, XM,X4),

X1 � X4,+(XB1, D, XM), mod(1, XB1, Y B1)

In order to ensure that all modules are properly spaced, rules r21–r24 (resp. rules

r25–r28) require that modules owned by designer i (resp. owned by designers i and j

such that j �= i) are mutually spaced by at least k cells, where k is a given integer

constant.

r21 : ← cell(B,X, Y), cell(B1, X1,Y1), B <> B1,#int(D),+(X,D,X1), D < k

r22 : ← cell(B,X, Y), cell(B1, X1,Y1), B <> B1,#int(D),+(X1, D, X), D < k

r23 : ← cell(B,X, Y), cell(B1, X1,Y1), B <> B1,#int(D),+(Y ,D,Y1), D < k

r24 : ← cell(B,X, Y), cell(B1, X1,Y1), B <> B1,#int(D),+(Y1, D, Y), D < k

r25 : ← cell(B,X, Y), [1,]{cell(B1, X1,Y1)},#int(D),+(X,D,X1), D < k

r26 : ← cell(B,X, Y), [1,]{cell(B1, X1,Y1)},#int(D),+(X1, D, X), D < k

r27 : ← cell(B,X, Y), [1,]{cell(B1, X1,Y1)},#int(D),+(Y ,D,Y1), D < k

r28 : ← cell(B,X, Y), [1,]{cell(B1, X1,Y1)},#int(D),+(Y1, D, Y), D < k

Now we describe the SOLP program P (rules r29–r38), representing an agent which

collects from the designers admissible solutions to the placement problem. Moreover,

by means of additional rules (r39 and r40), P possibly requires that the placement

layout area either is less than or matches a given value.

r29 : pcell(X,Y)← [1,]{cell(, X1,Y1)}, X = X1, Y = Y1

r30 : exists x lt(W)← pcell(W,), pcell(W1,),W1 < W

r31 : lowest x(X)← pcell(X,), not exists x lt(X)

r32 : exists y lt(W)← pcell(,W), pcell(,W1),W1 < W

r33 : lowest y(Y)← pcell(, Y), not exists y lt(Y)

r34 : exists x ht(W)← pcell(W,), pcell(W1,),W1 > W

r35 : highest x(X)← pcell(, X,), not exists x ht(X)

r36 : exists y ht(W)← pcell(,W), pcell(,W1),W1 > W

r37 : highest y(Y)← pcell(, Y), not exists y ht(Y)

r38 : design area(A)← ∗(B,H, A),+(X1, B, X2),+(Y1, H,Y2), lowest x(X1),

highest x(X2), lowest y(Y1), highest y(Y2)

Social rule r29 collects admissible solutions to the placement problem. The rules

from r30 to r37 are used to represent the smallest rectangle enclosing all the placed

modules. Then, the actual design area is computed by rule r38.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

676 F. Buccafurri and G. Caminiti

In case an an upper bound b to be satisfied (resp. an exact value s to be matched)

is given, then the following rule r39 (resp. r40) may be added:

r39 : ← design area(A), A > b

(resp. r40 : ← design area(A), A <> s)

Example 17 (Contextual Reasoning)

It is interesting to observe that SOLP programs can represent a form of contextual

reasoning (Ghidini and Giunchiglia, 2001).

Although many definitions of the notion of context exist in the Artificial Intelli-

gence literature (McCarthy, 1993; Brézillon, 1999; Ghidini and Giunchiglia, 2001),

we can informally say that a context is an environment (i.e. a set of facts and the

logic rules to perform inference with) in which the reasoning takes place.

In particular, in Ghidini and Giunchiglia (2001) two key principles of contextual

reasoning are stated: locality (the reasoning task uses only a subset of the total

knowledge available) and compatibility (additional constraints among different

contexts may be specified to declare those which are mutually compatible).

Under this perspective, we are interested in representing this feature of common-

sense reasoning, that is, given a problem to be solved, (i) bounding the reasoning to

the knowledge which is strictly needed, the so-called context of the problem, and (ii)

in case the original context is not suitable to reach a solution, enabling the use of

new information provided by other contexts.

It is interesting to note that SOLP programs are well suited to represent contexts,

since each of them enables reasoning which takes place both locally, i.e. at the level

of the program knowledge base, and at the level of the other programs’ knowledge

bases. Thus, it is easy to model reasoning which involves several different contexts.

For instance, consider an SOLP program P0 (representing the context of the agent

A0) including a social rule of the form

action← [P1]b1, . . . , [Pn]bn,

meaning that the agent A0 infers the term action if each term bi (1 � i � n) is

inferred by the corresponding agent Ai, i.e. bi is part of an autonomous fixpoint of

Pi. This way, the notion of locality is realized by representing each different context

in a separate SOLP program, and the compatibility principle is pursued by suitably

using SCs where member selection conditions identify contexts.

As an example, consider the well-known “Three Wise Men Puzzle,” first introduced

in Konolige (1984).

A king wishes to determine which of his three wise men is the wisest. He arranges them

in a circle so that they can see and hear each other and tells them that he will put a white

or a black spot on each of their foreheads but that at least one spot will be white. He then

repeatedly asks them, “Do you know the colour of your spot?”. What do they answer?

We represent by means of SOLP programs a slightly simpler version of the puzzle,

where only two wise men are involved

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 677

r1 : color(white)←
r2 : color(black)←

King (agent K)

r3 : wise man(1..2)←
r4 : put spot(A, black)← not put spot(A,white), wise man(A)

r5 : put spot(A,white)← not put spot(A, black), wise man(A)

r6 : ← #count{S : put spot(S, black)} = N,

#count{A : wise man(A)} = N,#int(N)

r7 : ask question(1)←
r8 : ask question(T2)← ask question(T1),#succ(T1, T2),#int(T1),#int(T2)

not [1,]{answer(white, T1), answer(black, T1)},

Wise man 1 (agent W1)

r9 : forehead(C)← [K]{put spot(1, C)}, color(C)

r10 : answer(white, 1)← [K]{ask question(1)}, [W2]{forehead(black)}
r11 : answer(black, 1)← [K]{ask question(1)}, [W2]{forehead(white),

answer(white, 1)}
r12 : answer(white, 2)← [K]{ask question(2)}, [W2]{forehead(white),

not answer(white, 1), not answer(black, 1)}

Rules r1 and r2 are common to each SOLP program. Such rules set the admissible

spot colors. Rules r3–r8 represent the king. Rule r3 sets the number of wise men (two

in this case). By means of rules r4 and r5, the king nondeterministically puts a spot

on each wise man’s forehead. Rule r6 represents the king’s statement “At least one

spot is white.” The king asks the question for the first time (rule r7) and, after he

has asked the question, if no agent gives an answer, then he asks the question again

(rule r8). Rule r9 is used to store into the predicate forehead the information about

the color of the corresponding wise man’s spot. Observe that since each wise man

cannot look at his own forehead, then the predicate forehead is further referenced

in SCs only. Rules r10 and r11 represent the case of exactly one white spot: After

the first time the king asks the question, if the first wise man sees a black spot on

the other wise man’s forehead, then he concludes that his spot is white (rule r10).

Otherwise, if the second wise man both has a white spot on his forehead and he

answers “white,” then the first wise man can conclude that the other wise man has

seen a black spot on his forehead. Thus, the first wise man answers “black.” Finally,

rule r12 represents the case of two white spots. In such a case, after the first question,

no wise man can conclude anything about the color of his own spot. After the

second time the king asks the question, each wise man can answer “white” in case

he sees a white spot and the other wise man has not answered the king’s previous

question. The correctness of such a statement can be proved by contradiction: If a

wise man had a black spot on his forehead, then the other wise man would have

seen it and, thus, he also would have answered “white” after the king’s first question.

The SOLP program representing the second wise man (program W2) is easily

obtained from W1 by exchanging the role of the two wise men, i.e. by replacing

each occurrence of the program identifier W2 by W1.

For the sake of the simplicity we have considered a simple scenario, i.e. two wise

men. It is possible to extend the reasoning encoded in the above programs, in order

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

678 F. Buccafurri and G. Caminiti

to write a general program for n wise men, by exploiting the nesting feature of the

social conditions in such a way that reasoning on both the content and the temporal

sequence of the wise men’s statements is enabled.

8 Related work

Contextual Reasoning. As pointed out in Section 7, a relationship exists between our

work and Ghidini and Giunchiglia (2001), where the local model semantics (LMS) is

proposed to reason about contexts.

A survey covering the use of contexts in many fields of Artificial Intelligence can

be found in Brézillon (1999). An approach concerning contextual reasoning and

agent-based systems can be found in De Saeger and Shimojima (2006).

In McCarthy (1993), the author discusses the notion of context in Artificial

Intelligence in order to solve the problem of generality, that is every logic theory

is valid within the bounds of a definite context and it is possible to design a more

general context where such a theory is not valid anymore.

Other approaches have been proposed in Buvač and Mason (1993) and Ghidini

and Giunchiglia (2001). Moreover, these two works are compared in Serafini and

Bouquet (2004). In the former work, the authors introduce the propositional logic of

context, a modal logic aiming at formalizing McCarthy’s ideas.

An approach which is more closely related to ours is proposed in Ghidini

and Giunchiglia (2001), where the authors consider a set of logic languages,

each representing a different context, and a suitable semantics is used to select

among sets of local models, i.e. models pertaining to a single language, those which

satisfy a given compatibility condition. Moreover, a proof-theoretical framework for

contextual reasoning, called multicontext systems, is introduced where the notions of

locality and compatibility are respectively captured by inference rules, whose scope

is the single language, and bridge rules establishing relationships among different

languages.

Observe that, in the previous section, we have shown that such a machinery

can be represented by social rules where the body includes only member-selection-

condition-based SCs, each corresponding to a different context to be included into

the reasoning task. As a consequence, we argue that social rules are more general

than bridge rules, since the former provide also (possibly nested) cardinal-selection-

condition-based SCs. Since our work is not aimed to reason on contexts, a direct

comparison with Ghidini and Giunchiglia (2001) cannot be done, although some

correspondences may be found between the model-theoretical formalizations of

both the local model semantics and the social semantics. In particular, we feel that

the latter could be easily adapted to fully enable contextual reasoning inside logic

programming. This is left for future work.

Logic-based multiagent systems. A related approach, where the semantics of a

collection of abductive logic agents is given in terms of the stability of their

interaction can be found in Bracciali et al. (2004) where the authors define the

semantics of a multiagent system via a definition of stability on the set of all actions

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 679

performed by all agents in the system, possibly arising from their communication

and interaction via observation. According to the authors, a set of actions committed

by different agents is stable if, assuming that an “oracle” could feed each of the

agents with all the actions in the set performed by the other agents, each agent

would do exactly what is in the set. We believe that such a machinery is similar

to our fixpoint-based approach since we guess candidate social interpretations and

select those which are compatible with the SCs of the SOLP collection.

In our work, we focused on the formalization of the semantics, assuming a perfect

communication among the agents in such a way that each agent is able to know

the mental state of the others. Using a different approach from ours, in Satoh and

Yamamoto (2002), in order to face the possible incompleteness of information due

to communication failures or delays in a multiagent system, a default hypothesis is

used as a tentative answer and the computation continues until a reply is received

which contradicts with the default.

Another interesting work is the MINERVA agent architecture (Leite et al., 2002),

based on dynamic logic programming (Alferes et al., 2000). MINERVA is a

modular architecture, where every agent is composed of specialized subagents

that execute special tasks, e.g., reactivity, planning, scheduling, belief revision,

and action execution. A common internal knowledge base, represented as one

or more multidimensional dynamic logic programs (MDLP) (Alferes et al., 2002),

is concurrently manipulated by its specialized subagents. The MDLPs may encode

object-level knowledge, or knowledge about goals, plans, intentions, etc.

The DALI project (Costantini and Tocchio, 2002) is a complete multiagent

platform written entirely in Prolog. A DALI program results in an agent which

is capable of reactive and proactive behavior, triggered by several kinds of events.

The semantics of a DALI program is defined in terms of another program, where

reactive and proactive rules are reinterpreted as standard Horn Clause rules.

Laima (De Vos et al., 2005) agents are represented as ordered choice logic

programs (OCLP) (De Vos, 2003) for modeling their knowledge and reasoning

capabilities. Communication between the agents is regulated by unidirectional

channels transporting information based on their answer sets.

IMPACT (Subrahmanian et al., 2000) is an agent platform where programs may

be used to specify what an agent is either obliged to do, may do, or cannot do on

the basis of deontic operators of permission, obligation, and prohibition. IMPACT

is grounded on a solid semantic framework based on the concept of feasible status

set, which describes a set of actions dictated by an agent program that is consistent

with the obligations and restrictions on the agent itself. Agent programs define

integrity constraints, which must be satisfied in order to provide a feasible status

set. The adoption of a logic-programming-based formalism, and the use of integrity

constraints to define a feasible status set, guarantee agents to behave in a way that

some desired properties hold.

Societies Of ComputeeS (SOCS) (Alberti et al., 2004) is a project that was funded

by European Union. The idea is to provide a computational logic model for the

description, analysis, and verification of global and open societies of heterogeneous

computees. The computee model is proposed as a full-fledged agent model, based on

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

680 F. Buccafurri and G. Caminiti

extended logic programming, allowing to define and study properties that can be

enforced by its operational model.

Since our approach relies on the general notion of social behavior, it is of course

interesting to illustrate how this concept is dealt with in the related field of intelligent

agents, in order to make evident that—even in such context—this notion takes an

important role. Indeed, beside autonomy, intelligent agents (Wooldridge and Jennings,

1995; Wooldridge, 2000) may be required to have social ability. The meaning of this

concept is twofold: (1) the presence of a common language for communication, and

(2) the capability of reasoning on the content of communication acts. Concerning

item (1), KQML (Mayfield and Finin, 1995), and FIPA ACL (Cost et al., 2001),

both based on the speech act theory (Cohen and Levesque, 1990), represent the

main efforts done in the last years. The state-of-the-art literature on item (2) is

represented by (Wooldridge, 2000; van der Hoek and Wooldrige, 2003; Mascardi

et al., 2004). Social ability allows thus the agent individuals to have beliefs, desires,

and intentions (BDI) (Rao and Georgeff, 1995; Rao, 1996) as a result of both the

mutual communication and the consequent individual reasoning.

9 Conclusions and future work

In this paper, we have proposed a new language, social logic programming (SOLP),

which extends compromise logic programming and enables social behavior among a

community of individuals whose reasoning is represented by logic programs. A rich

set of examples shows that the language has very nice capabilities of representing

such a kind of knowledge. Moreover, we have given a translation from SOLP to

logic programming with aggregates and discussed the computational complexity of

several decision problems related to the social semantics.

Basically, the present paper gives the theoretical core for a multiagent oriented

software environment, including suitable specialized features, like information hiding,

speech-act mechanisms, security, and so on. However, these issues are interesting

directions of our future work.

For instance, information hiding can be implemented as follows. Given an SOLP

collection C , we make the following assumption: by default each agent cannot see

into other agents’ mind, that is all atoms in each SOLP program are viewed only

by the program itself, i.e. they are private. In order to make some atom public we

could add a suffix, say P , to such an atom, i.e. a is meant as private, while aP is

meant as the public version of a. Then, by means of a suitable modification of our

translation machinery, any social condition can be activated only on public atoms.

An agent communication machinery can be conceived that relies on the above

feature. In case an agent wants to send a message to another agent, then the former

could make public a suitable set of atoms in such a way that they are visible only to

the latter. This approach could be easily extended to the scenario where one agent

wants to send a message to either a group of agents or to the whole community.

Another feature we intend to include into future extensions of SOLP is the

representation of evolving agent mental states. We believe that a collection of SOLP

programs could be easily managed by some existing logic framework which is

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 681

tailored to program update or belief revision tasks, such as, for instance, dynamic

logic programming (DLP) (Alferes et al., 2000). The resulting system should work

in a cyclic fashion: (i) social models of the SOLP collection are computed, (ii)

by exploiting DLP, the SOLP programs within the collection are possibly updated

according to the intended evolution of agent beliefs and intentions, (iii) the cycle

restarts. Starting from the basic approach proposed in Section 7 (Example 16),

another interesting issue to investigate is the capability of the language, in the general

case, of representing cooperative approaches to solving combinatorial optimization

problems, possibly by introducing some suitable extensions.

Finally, we plan to enhance the language of SOLP by adding both classical

negation and rule-head disjunction. We expect the former to be easy to implement,

while the integration of latter requires some preliminary study, as the introduction

of disjunction in logic programming always results in a growth of the language

expressivity toward higher levels in the computational complexity hierarchy.

Appendix A

In order to improve the overall readability of the paper, a number of lemma and

theorem proofs are described in this section.

Lemma 1 (see page 660) Given an SOLP collection SP = {P1, . . . ,Pn}, an integer j

(1 � j � n), an SOLP program Pj ∈ SP , a social interpretation Ī for SP , and an SC

s ∈ MSCPj , it holds that s is true for Pj w.r.t. Ī iff ∃M ∈ SM(C(P1, . . . ,Pn) ∪ Q)

s.t. ρ(s)Pj ∈M, where Q = {a←| a ∈ Ī}.

Proof

Before starting with the proof, let us denote the set of all the SCs occurring in s

(plus the SC s itself) by N(s), and the LPA program C(P1, . . . ,Pn) by C̄ .

(⇒). We have to prove that if s is true for Pj w.r.t. Ī , then there exists a stable

model M of the logic program C̄ ∪ Q s.t. the atom ρ(s)Pj , corresponding to s by

means of the translation, is included inM. We proceed by induction on the maximum

nesting depth (see p. 11) of the SCs in N(s), d = maxs′∈N(s){depth(s′)} (d � 0).

(Basis). In case d = 0, then N(s) = {s} and depth(s) = 0 (recall the definition of

the function depth on p. 11). Since |N(s)| = 1, s is a simple SC, i.e. skel(s) = ∅.
Now, assume by contradiction that s is true for Pj w.r.t. Ī and that for each

M ∈ SM(C̄ ∪Q), ρ(s)Pj �∈M. Observe now that it may occur either in the following

cases: (1) cond(s) = [Pk](1 � k � n), or (2) cond(s) = [l, h].

In case (1), according to Definition 13, there exists a set S = {r1, r2} ⊆ C̄ ∪Q such

that

r1 : ρ(s)Pj ← (g(s))(k)Pj
r2 : (g(s))(k)Pj ←

∧
b∈content(s) bPk

and for each r ∈ (C̄ ∪ Q) \ S , head(r) �= r1 ∧ head(r) �= r2.

Since we have assumed that ρ(s)Pj �∈ M, it is easy to see that both body(r1) and

body(r2) are false w.r.t. M. Moreover, it holds that for each M ∈ SM(C̄ ∪Q), Ī ⊆M,

as Q = {a←| a ∈ Ī}. As a consequence, body(r2) is false w.r.t. Ī .

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

682 F. Buccafurri and G. Caminiti

Since the elements occurring in body(r2) are labeled literals, we have proven that

cond(s) = [Pk] and that the condition ∀a ∈ content(s), a is true for Pk w.r.t. Ī does

not hold. Such a result, according to Definition 8, contradicts the hypothesis that s is

true for Pj w.r.t. Ī and, therefore, concludes the proof of the basis of the induction,

in case (1).

In case (2), since skel(s) = ∅, according to Definition 13, there exists a set of rules

S = {r1} ∪ {si | 1 � i �= j � n} ⊆ (C̄ ∪ Q) such that

r1 : ρ(s)Pj ← l � #count{K : (g(s))(K)Pj , K �= j} � h

si : (g(s))(i)Pj ←
∧
b∈content(s) bPi (1 � i �= j � n).

Moreover, for each r ∈ (C̄ ∪ Q) \ S and for each t ∈ S , head(r) �= head(t).

Now, since ρ(s)Pj �∈M, body(r1) is false w.r.t. M. Since body(r1) = l � #count{K :

(g(s))(K)Pj , K �= j} � h, according to the definition of aggregate functions Dell’Armi

et al. (2003), for each D ⊆ {i | 1 � i �= j � n} (l � |D| � h), there exists k

s.t. 1 � k �= j � n and (g(s))(k)Pj is false w.r.t. M. Thus, there exists a rule

sk ∈ C̄ ∪ Q s.t. sk : (g(s))(k)Pj ←
∧
b∈content(s) bPk and head(sk) is false w.r.t. M. Since

∀r ∈ (C̄ ∪ Q) \ {sk}, head(r) �= head((sk), body(sk) is false w.r.t. M, i.e.
∧
b∈content(s) bPk

is false w.r.t. M. Now, since Ī ⊆M,
∧
b∈content (s) bPk is false w.r.t. Ī .

Thus, we have proven that for each set D ⊆ {i | 1 � i �= j � n} s.t. l � |D| � h,

there exists some k ∈ D and some x ∈ content(s) s.t. x is false for Pk w.r.t. Ī . This

result, according to item (2) of Definition 8, contradicts the hypothesis that s is true

for Pk w.r.t. Ī .

(Induction). Assume that the statement holds for maxs′∈N(s){depth(s′)} = d > 0 and

consider the case maxs′∈N(s){depth(s′)} = d + 1. First, observe that s is not simple,

because skel(s) �= ∅. Since s is well formed, cond(s) = [l, h]. Thus, according to

Definition 13, there exists a set of rules S = {r1} ∪ {si | 1 � i �= j � n} ⊆ (C̄ ∪Q) s.t.

r1 : ρ(s)Pj ← l � #count{K : (g(s))(K)Pj , K �= j} � h

si : (g(s))(i)Pj ←
∧
b∈content(s) bPi ∧

∧
s′∈skel(s) ρ(s

′)Pj (1 � i �= j � n).

Now, observe that

(1) For each s′ ∈ skel(s), maxσ∈N(s′){depth(σ)} = d, and

(2) Since s is true for Pk w.r.t. Ī , according to Definition 8, for each s′ ∈ skel(s), s′
is true for Pj w.r.t. Ī .

On the basis of the above observations and the induction hypothesis, it holds that

for each s′ ∈ skel(s), ρ(s′)Pj ∈M.

Since s is true for Pj w.r.t. Ī and cond (s) = [l, h], according to Definition 8

there exists D ⊆ SP \ {Pj} s.t. l � |D| � h and ∀a ∈ content(s), ∀P ∈ D,

a is true for P w.r.t. Ī .

Thus, it holds that, for each 1 � i � n such that both i �= j and Pi ∈ D,∧
b∈content(s) bPi ∧

∧
s′∈skel(s) ρ(s

′)Pj is true w.r.t. M, as Ī ⊆ M. Since M is a stable

model of C̄ ∪Q, according to the definition of the set S , for each i s.t. 1 � i �= j � n

and s.t. Pi ∈ D, (g(s))(i)Pj is true w.r.t. M.

Since l � |D| � h, there exists a set of literals D′ = {(g(s))(i)Pj | 1 � i �= j � n} s.t.

l � |D′| � h and s.t. for each element d ∈ D′, d is true w.r.t. M.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 683

Now, according to the definition of aggregate functions (Dell’Armi et al. 2003),

body(r1) is true w.r.t. M and, since M is a stable model of C̄ ∪ Q, head(r1) is true

w.r.t. M, i.e. ρ(s)Pj is true w.r.t. M. Such a result concludes the only-if part (⇒) of

the proof.

(⇐). We have to prove that if ∃M ∈ SM(C̄ ∪Q) | ρ(s)Pj ∈M, then s is true for Pj
w.r.t. Ī . We proceed by induction on the maximum nesting depth of the elements in

N(s), d = maxs′∈N(s){depth(s′)} (d � 0).

(Basis). In case d = 0, then N(s) = {s} and depth(s) = 0. Since |N(s)| = 1, s is a

simple SC, i.e. skel(s) = ∅. Observe now that it may occur either in the following

cases: (1) cond(s) = [Pk](1 � k � n), or (2) cond(s) = [l, h].

In case (1), according to Definition 13, there exist two rules in C̄ ∪ Q of the form

r1 : ρ(s)Pj ← (g(s))(k)Pj
r2 : (g(s))(k)Pj ←

∧
b∈content(s) bPk

and such that ∀r ∈ (C̄ ∪ Q) \ {r1, r2}, head(r) �= head(r1) ∧ head(r) �= head(r2).

As a consequence, since ρ(s)Pj ∈ M, body(r1) is true w.r.t. M. Now, since M is a

stable model of C̄ ∪ Q, body(r2) is true w.r.t. M.

Now, observe that according to Definitions 12 and 13, for each b ∈ content(s),
bPk �∈ (M\ Ī), because M\ Ī includes only literals that are auxiliary to the translation.

As a consequence, body(r2) is true w.r.t. Ī , i.e. for each b ∈ content(s), b is true for

Pk w.r.t. Ī .

Now, we have proven that cond(s) = [Pk](1 � k � n) and there exists Pk ∈ SP
s.t. for each a ∈ content(s), a is true for Pk w.r.t. Ī , thus, s is true for Pk w.r.t. Ī . This

concludes the proof of the basis of the induction, in case (1).

In case (2), since skel(s) = ∅, according to Definition 13, there exists a set of rules

S = {r1} ∪ {si | 1 � i �= j � n} ⊆ (C̄ ∪ Q) such that

r1 : ρ(s)Pj ← l � #count{K : (g(s))(K)Pj , K �= j} � h

si : (g(s))(i)Pj ←
∧
b∈content(s) bPi (1 � i �= j � n).

Moreover, for each r ∈ (C̄ ∪ Q) \ S and for each t ∈ S , head(r) �= head(t).

Since M is a stable model of C̄ ∪ Q and ρ(s)Pj ∈ M, body(r1) is true w.r.t. M.

According to the definition of aggregate functions Dell’Armi et al. (2003), there

exists a set of integers D s.t. l � |D| � h, for each i, i �= j and Pi ∈ SP and, finally,

for each i ∈ D, (g(s))(i)Pj is true w.r.t. M.

As a consequence, there exists a set of rules D′ = {si | i ∈ D ∧ head(si) =

(g(s))(i)Pj} ⊆ S \ {r1} s.t. for each rule si ∈ D′, body(si) is true w.r.t. M. Since

Ī ⊆ M, it holds that for each si ∈ D′, body(si) is true w.r.t. Ī . Now, observe

that l � |D′| = |D| � h and that, according to Definition 13, for each si ∈ D,

body(si) =
∧
b∈content(s) bPi . We have obtained that there exists a set D s.t. l � |D| � h,

for each i ∈ D, i �= j and Pi ∈ SP . Finally, it holds that for each b ∈ content(s)
and for each i ∈ D, b is true for Pi w.r.t. Ī . Now, it results that there exists a set

Δ = {Pi | i ∈ D ∧ Pi ∈ SP } s.t. Δ ⊆ SP \ {Pj}, l � |Delta| = |D| � h and for each

b ∈ content(s), and for each P ∈ Δ, b is true for Pi w.r.t. Ī .

According to Definition 8 we have proven that s is true for Pj w.r.t. Ī . Such a

result concludes the proof of the basis of the induction.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

684 F. Buccafurri and G. Caminiti

(Induction). Assume that the statement holds for maxs′∈N(s){depth(s′)} = d > 0.

and consider the case maxs′∈N(s){depth(s′)} = d+1. First, observe that s is not simple.

Since s is well formed, cond(s) = [l, h]. Thus, according to Definition 13, there exists

a set of rules S = {r1} ∪ {si | 1 � i �= j � n} ⊆ (C̄ ∪ Q) s.t.

r1 : ρ(s)Pj ← l � #count{K : (g(s))(K)Pj , K �= j} � h

si : (g(s))(i)Pj ←
∧
b∈content(s) bPi ∧

∧
s′∈skel(s) ρ(s

′)Pj (1 � i �= j � n).

Moreover, for each r ∈ (C̄ ∪ Q) \ S and for each t ∈ S , head(r) �= head(t).

Now, observe that, since ρ(s)Pj ∈M and M is a stable model of C̄ ∪Q, according

to the definition of aggregate functions Dell’Armi et al. (2003), there exists a set

Δ′ ⊆ {(g(s))(i)Pj | 1 � i �= j � n} s.t. l � |Δ′| � h and ∀x ∈ Δ′, x is true w.r.t.

M. Thus, there exists Δ′′ ⊆ S \ {r1} s.t. l � |Δ′′| = |Δ′| = |Δ| � h and s.t. for

each si ∈ Δ′′, head(si) is true w.r.t. M. Since M is a stable model of C̄ ∪ Q, for

each si ∈ Δ′′, body(si) is true w.r.t. M. Now, note that for each i s.t. si ∈ Δ′′,

body(si) =
∧
b∈content(s) bPi ∧

∧
s′∈skel(s) ρ(s

′)Pj .

Thus, for each i s.t. si ∈ Δ′′,
∧
b∈content(s) bPi is true w.r.t. M and

∧
s′∈skel(s) ρ(s

′)Pj is

true w.r.t. M.

Now, since Ī ⊆ M and according to Definition 13, for each i s.t. si ∈ Δ′′,∧
b∈content(s) bPi is true w.r.t. Ī . Since for each i s.t. si ∈ Δ′′, bPi is a literal labeled w.r.t.

Pi, it is easy to see that for each i s.t. si ∈ Δ′′ and for each b ∈ content(s), b is true

for Pi w.r.t. Ī . Moreover, by induction hypothesis, for each s′ ∈ skel(s), s′ is true for

Pj w.r.t. Ī .

Thus, we have obtained that cond(s) = [l, h] and there exists a set D ⊆ {i | 1 � i �=
j � n} s.t. l � |D| � h and for each i ∈ D s.t. Pi ∈ SP and for each a ∈ content(s),
it holds that a is true w.r.t. P and for each s′ ∈ skel(s), s′ is true for Pj w.r.t.

Ī . According to Definition 8, we have proven that s is true for Pj w.r.t. Ī . This

concludes the proof of the lemma. �

Theorem 2 (see page 664)

Given an SOLP collection SP = {P1, . . . ,Pn}, it holds that A = B, where

A = SM(P ′u ∪ C(P1, . . . ,Pn)) and

B = {F̄ ∪ Ḡ ∪ H̄ |
(1) F̄ =

⋃
1�i�n(F

i)Pi ∧ Fi ∈ AFP (Pi) ∧ F̄ ∈ SOS(P1, . . . ,Pn) ∧
(2) Ḡ =

⋃
1�i�n(G

i)Pi ∧ (Gi)Pi = [Fi]Pi \ (Fi)Pi ∧
(3) H̄ =

⋃
1�i�n(H

i)Pi ∧ (Hi)Pi =
⋃
s∈MSCPi SAT

Pi
F̄

(s)}.

Proof

Before starting with the proof, let us denote C(P1, . . . ,Pn) by C̄ .

(⊆). By contradiction, assume that ∀X ∈ A,X �∈ B. Observe that, according to

Definitions 14, 17, and 20, it holds that X = F̄ ∪ Ḡ ∪ H̄ such that F̄ ∩ Ḡ = ∅,
Ḡ ∩ H̄ = ∅, F̄ ∩ H̄ = ∅. Thus, we prove that either condition (1), (2), or (3) is false.

We consider each condition separately.

Condition (1). In case condition (1) is false, it holds that F̄ �∈ SOS(P1, . . . ,Pn). It

follows that either

(a) ∃i | (Fi)Pi ⊆ F̄ ∧ Fi �∈ AFP (Pi), or

(b) ∃i, r | (Fi)Pi ⊆ F̄ ∧ Fi ∈ AFP (Pi) ∧ r ∈ Pi ∧ STC (F̄) �= F̄ .

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 685

In case (a), by virtue of Lemma 5, it holds that (Fi)Pi �⊆ SM(Pu). As a consequence,

it is easy to see that (Fi)Pi �⊆ SM(P ′u∪C̄). Since (Fi)Pi ∈ X, then we have thus reached

a contradiction.

If item (b) occurs, it holds that either

(b1) ∃a,Pi | Pi ∈ C ∧ aPi ∈ F̄ ∧ aPi �∈ STC (F̄), or

(b2) ∃a,Pi | Pi ∈ C ∧ aPi �∈ F̄ ∧ aPi ∈ STC (F̄).

In case (b1), the following conditions are true

(i) ∀r ∈ Pi, body(r) is true w.r.t. F̄ ⇒ head (r) �= a, and

(ii) ∀r ∈ Pi, body(r) is true w.r.t. F̄ ∧ a is true for Pj w.r.t. F̄ ⇒ head (r) �= okay(a).

In case (i) of item (b1), it holds that, according to Definitions 15 and 16, for

each r′ ∈ S ′2(P̂i), s.t. body(r′) is true w.r.t. X, it results that head (r′) �= saPi . Thus,

saPi �∈ X. As a consequence, according to the definition of S ′3(P̂i) (see Definition 16),

it holds that aPi �∈ X. Since the hypothesis requires that aPi ∈ F̄ and F̄ ⊆ X, we

have reached a contradiction.

Consider now case (ii) of item (b1). It holds that, according to Definitions 15

and 16, for each r′ ∈ S ′2(P̂i) s.t. aPi ∧ body(r′) is true w.r.t. X, it results that

head (r′) �= saPi . Thus, saPi �∈ X. According to the definition of S ′3(P̂i), it holds that

aPi �∈ X. Since the hypothesis requires that aPi ∈ F̄ and F̄ ⊆ X, we have reached a

contradiction. This concludes the part of the proof concerning item (b1) above.

Consider now item (b2). In this case at least one of the following conditions holds:

(i) ∃r ∈ Pi | body(r) is true w.r.t. F̄ ∧ a is true for Pj w.r.t. F̄ ∧ head (r) = okay(a),

(ii) ∃r ∈ Pi | body(r) is true w.r.t. F̄ ∧ head (r) = a.

If case (i) of item (b2) occurs, it holds that aPi ∈ F̄ . Now, the contradiction is thus

reached, since according to the hypothesis, aPi �∈ F̄ .

Consider now case (ii) of item (b2). Let r be of the form a ← b1, . . . bν , s1, . . . , sm
(we do not lose in generality because r is any social rule). According to Def-

initions 15 and 16, there exists a rule r′ ∈ S ′2(P̂i) such that r′ has the form

saPi ← b1
Pi , . . . , b

ν
Pi , ρ(s1)Pi , . . . ρ(sm)Pi .

Now, since body(r) is true w.r.t. F̄ and on the basis of results of Lemma 1, it

holds that body(r′) is true w.r.t. X and head (r′) = saPi . According to the definition

of S ′3(P̂i) (see Definition 16), since aPi �∈ X, then it holds that saPi �∈ X. Thus,

body(r′) is true w.r.t. X and head (r′) is false w.r.t. X. As a consequence, there exists

a rule r′ in P ′u ∪ C̄ such that r′ is false w.r.t. the model X [X ∈ SM(P ′u ∪ C̄)] which

is a contradiction. The proof of condition (1) is thus concluded. Now let us prove

condition (2).

Condition (2). In case condition (2) is false, there exists i s.t. (Gi)Pi �= [Fi]Pi \ (Fi)Pi .

Thus, (Fi)Pi ∪ (Gi)Pi �= [Fi]Pi and then, according to Definition 20, (Fi)Pi ∪ (Gi)Pi �⊆⋃
F∈AFP (Pi){[F]Pi}. Now, by virtue of Lemmas 3 and 5, (Fi)Pi ∪ (Gi)Pi �⊆ SM(Pu)

(recall that Pu =
⋃

1�i�n Γ′(A(P̂i))). According to Definitions 14, 16, and 17, it is easy

to see that (Fi)Pi ∪ (Gi)Pi �⊆ SM(P ′u ∪ C̄). Since (Fi)Pi ∪ (Gi)Pi ∈ X, we have reached

a contradiction. Consider now the last case.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

686 F. Buccafurri and G. Caminiti

Condition (3). If condition (3) is false, then there exists i such that Hi
Pi is not equal

to
⋃
s∈MSCPi SAT

Pi
F̄

(s). Thus, it holds that either

(a) ∃h ∈ (Hi)Pi | h �∈
⋃
s∈MSCPi SAT

Pi
F̄

(s), or

(b) ∃h ∈
⋃
s∈MSCPi SAT

Pi
F̄

(s) | h �∈ (Hi)Pi .

In case (a), according to Definition 21, since h �∈
⋃
s∈MSCPi SAT

Pi
F̄

(s), it holds that

∀M ∈ SM(C̄ ∪ Q) s.t. Q = {a ←| a ∈ F̄}, it results that h �∈ M. As a consequence,

according to Definition 17, we have that ∀M ∈ SM(P ′u ∪ C̄), h �∈ M. Now, we have

reached a contradiction.

In case (b), according to Definition 21, h is either an auxiliary ρ-atom or a g-

predicate and it holds that h �∈ (Hi)Pi . Since H̄ =
⋃

1�k�n(H
k)Pk , and h is labeled

w.r.t. Pi, h �∈ H̄ .

Now we have reached a contradiction, because h ∈ X \ H̄ = F̄ ∪ Ḡ and F̄ ∪ Ḡ does

not include, according to conditions (1) and (2) of the theorem statement, either

ρ-atoms or g-predicates.

(⊇). By contradiction, assume that ∀X ∈ B,X = F̄ ∪ Ḡ ∪ H̄ and both conditions

(1), (2), and (3) of the theorem statement hold and further X �∈ A (recall that

A = SM(P ′u ∪ C̄)).

As a consequence, either

(a) ∃r ∈ P ′u ∪ C̄ | r is false w.r.t. X, i.e. head (r) is false w.r.t. X and body(r) is true

w.r.t. X, or

(b) ∃X ′ ⊂ X | ∀r ∈ P ′u ∪ C̄, r is true w.r.t. X ′.

In case (a), according to Definition 16, there exist Pi, r′ s.t. Pi ∈ SP , r′ ∈ Pi, r′ is
a social rule a← b1, . . . bν , s1, . . . , sm and r, according to the definition of S ′2(P̂i), has

the form saPi ← b1
Pi , . . . , b

ν
Pi , ρ(s1)Pi , . . . ρ(sm)Pi .

Now, since body(r) is true w.r.t. X and X = F̄ ∪ Ḡ∪ H̄ , for each k (1 � k � ν), bkPi
is true w.r.t. F̄ . Therefore, for each k (1 � k � ν), b is true for Pi w.r.t. F̄ .

By virtue of Lemma 1, for each l (1 � l � m), sl is true for Pi w.r.t. F̄ . Thus, it

holds that body(r′) is true w.r.t. F̄ . Moreover, according to the definition of S ′3(Pi)
(see Definition 16), head (r′) is false w.r.t. F̄ , since head (r) is false w.r.t. F̄ .

As a consequence, the social rule r′ ∈ Pi is false w.r.t. F̄ . Therefore, F̄ is not a

social model of P1, . . . ,Pn. Now, we have reached a contradiction.

In case (b), at least one of the following conditions holds, either

(α) (X \X ′) ∩ F̄ �= ∅, or

(β) (X \X ′) ∩ Ḡ �= ∅, or

(γ) (X \X ′) ∩ H̄ �= ∅.

If condition (α) occurs, according to both the hypothesis and Definition 16, then

there exist Pi, r, a s.t Pi ∈ SP , r ∈ S ′1(Pi), aPi ∈ (X \ X ′) ∩ F̄ , and r has the form

a′Pi ←not aPi . Now, since aPi ∈ (X \ X ′) ∩ F̄ , it holds that aPi ∈ X and a′Pi �∈ X
(otherwise, according to r, X would not be a model of P ′u ∪ C̄). Now, since X ′ ⊆ X,

it holds that a′Pi �∈ X
′. Therefore, there exists a social rule r ∈ P ′u ∪ C̄ s.t. r is false

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 687

w.r.t. X ′. As a consequence, X ′ is not a model of P ′u ∪ C̄ and we have reached a

contradiction. This concludes the proof of case (b), condition (α).

In case (b), if condition (β) holds, then according to both the hypothesis and

Definition 16, either

(i) there exist Pi, r, a′ s.t. Pi ∈ SP , r ∈ S ′1(Pi), a′Pi ∈ (X \ X ′) ∩ Ḡ, and r has the

form aPi ←not a′Pi , or

(ii) there exist Pi, r, a s.t. Pi ∈ SP , r ∈ S ′3(Pi), aPi ∈ X̄, saPi ∈ (X \X ′) ∩ Ḡ, and r

has the form failPi ←not failPi , aPi ,not saPi .

If item (i) is true, then r is false w.r.t. X ′, since a′Pi �∈ X
′ and aPi �∈ X ′. Thus, X ′ is

not a model of P ′u ∪ C̄ and we have reached a contradiction.

If item (ii) holds, then r is false w.r.t. X ′, since, according to the hypothesis,

saPi ∈ X. Therefore, aPi ∈ X. As a result, saPi �∈ X ′ and aPi ∈ X ′. Thus, X ′ is not a

model of P ′u ∪ C̄ and we have reached a contradiction. This concludes the proof of

case (b), condition (β). Now we give the proof when condition (γ) holds.

In case (b), if condition (γ) holds, then there exist Pi, h s.t. Pi ∈ SP and hPi ∈
(X \ X ′) ∩ H̄ . Since X ′ is a model of P ′u ∪ C̄ , according to Definitions 12 and 21,

there exists some aPi in F̄ ∪ Ḡ s.t. aPi ∈ (X \ X ′). Therefore, either condition (α)

or condition (β) of case (b) occurs and it is easy to see that we have reached a

contradiction. Now we have concluded the proof of the theorem. �

List of Symbols and Abbreviations

[]P Operator that produces a set of auxiliary atoms labeled w.r.t. P
and used in the translation process

Γ′() The mapping from SOLP programs to traditional logic programs

P̂ A logic program obtained from P after a rewriting of the

tolerance rules occurring in it

LPA The nondisjunctive fragment of logic programming with

aggregates supported by the DLV system

SOS(P1, . . . ,Pn) The set of all social models of P1, . . . ,Pn
U(P1, . . . ,Pn) The set of all the possible combinations of autonomous fixpoints

of the SOLP programs P1, · · · ,Pn
OKAY (P) The set of okay rules of the COLP program P
ΨP(s) The translation of a single SC s of an SOLP program P
ρ(s), g(s) Atoms and predicates associated with the social condition s

σn(P) The translation of a COLP program P into an SOLP program

A() The autonomous reduction operator

AFP (P) The set of all autonomous fixpoints of P
C(P1, . . . ,Pn) The LPA program resulting from the translation of all the SCs

included in the SOLP collection {P1, · · · ,Pn}
FP (P) The set of all fixpoints of P
IC-SOSn The decision problem “individually credulous reasoning”

IS-SOSn The decision problem “individually skeptical reasoning”

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

688 F. Buccafurri and G. Caminiti

JFP (P1, . . . ,Pn) The set of the joint fixpoints of the COLP programs P1, . . . ,Pn
MSCP The set of all the SCs (with depth 0) occurring in P
MSC〈P,r,n〉 The set of all the SCs having a given depth n and occurring in

a social rule r of an SOLP program P
P ′u The traditional program resulting from the translation of all the

SOLP programs in an SOLP collection, where the SCs are

replaced by ρ-atoms

SAT A set of ρ-atoms and g-predicates associated with the social

conditions true for a given SOLP program w.r.t. a social

interpretation

SC-SOSn The decision problem “socially credulous reasoning”

SM(P) The set of all the stable models of P
SOSn The decision problem “social model existence”

SS-SOSn The decision problem “socially skeptical reasoning”

STC () The social immediate consequence operator, applied to the

SOLP collection C

TP(r) The translation of the SCs included in a social rule r of P
TP() The immediate consequence operator, applied to the program P
TR(P) The set of tolerance rules in the program P
USCP The set of all the SCs (at any nesting depth) in P
Var(P) The set of atoms appearing in P
WP The translation of the SCs included in P
(n-)SC (n-)Social condition

COLP Compromise logic programming

JFP Joint fixpoint semantics

NAF Negation as failure

SOLP Social logic programming

References

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P. and Torroni, P. 2004. The

SOCS computational logic approach to the specification and verification of agent societies.

In Global Computing. LNCS. Springer, Berlin/Heidelberg, 314–339.

Alferes, J. J., Leite, J. A., Pereira, L. M., Przymusinska, H. and Przymusinski,

T. C. 2000. Dynamic updates of non-monotonic knowledge bases. Journal of Logical

Programming 45 (1–3), 43–70.

Alferes, J. J., Leite, J. A., Pereira, L. M., Przymusinska, H. and Przymusinski, T. C.

2002. A language for multi-dimensional updates. Electronic Notes in Theoretical Computer

Science 70 (5), 20–38.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, Cambridge, UK.

Bracciali, A., Mancarella, P., Stathis, K. and Toni, F. 2004. On modelling multi-agent

systems declaratively. In Declarative Agent Languages and Technologies DALT, J. Leite,

A. Omicini, P. Torroni and P. Yolum, Eds. Lecture Notes in Computer Science, vol. 3476.

Springer, Berlin/Heidelberg, 53–68.

Brézillon, P. 1999. Context in problem solving: A survey. The Knowledge Engineering

Review 14 (1), 1–34.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

Logic programming with social features 689

Buccafurri, F. and Caminiti, G. 2005. A social semantics for multi-agent systems. In

Proceedings of 8th International Conference, LPNMR 2005, Diamante, Italy, C. Baral,

G. Greco, N. Leone, and G. Terracina, Eds. LNAI, vol. 3662. Springer-Verlag, Berlin

Heidelberg, 317–329.

Buccafurri, F. and Gottlob, G. 2002. Multiagent Compromises, Joint Fixpoints, and Stable

Models. LNCS and LNAI, vol. 2407. Springer, Berlin/Heidelberg.

Buvač, S. and Mason, I. 1993. Propositional logic of context. In Proceedings of the Eleventh

National Conference on Artificial Intelligence, R. Fikes and W. Lehnert, Eds. American

Association for Artificial Intelligence, AAAI Press, Menlo Park, California, 412–419.

Cohen, P. R. and Levesque, H. 1990. Rational interaction as the basis for communication.

In Intentions in Communication. MIT Press, Cambridge, MA.

Cost, R. S., Finin, T. and Labrou, Y. 2001. Coordinating Agents Using ACL Conversations.

In Coordination of Internet Agents: Models, Technologies, and Applications. 183–196.

Costantini, S. and Tocchio, A. 2002. A logic programming language for multi-agent systems.

In Proceedings of the European Conference on Logics in Artificial Intelligence, (JELIA

2002). LNCS. Springer, Berlin/Heidelberg, 1–13.

Dell’Armi, T., Faber, W., Ielpa, G., Leone, N. and Pfeifer, G. 2003. Aggregate functions

in disjunctive logic programming: Semantics, complexity, and implementation in DLV. In

IJCAI-03, Proceedings of the 18th International Joint Conference on Artificial Intelligence,

Acapulco, Mexico, 847–852.

De Saeger, S. and Shimojima, A. 2006. Contextual reasoning in agent systems. In Proceedings

of Computational Logic in Multi-Agent Systems (CLIMA-VII), Hakodate, Japan.

De Vos, M. 2003. An ordered choice logic programming front-end for answer set solvers. In

Proceedings of International Joint Conference on Declarative Programming (APPIA-GULP-

PRODE). LNCS. Springer, Berlin/Heidelberg, 362–373.

De Vos, M., Crick, T., Padget, J., Brain, M., Cliffe, O. and Needham, J. 2005. LAIMA:

A multi-agent platform using ordered choice logic programming. In Proceedings of

the International Workshop Declarative Agent Languages and Technologies (DALT 2005).

LNCS. Springer, Berlin/Heidelberg, 72–88.

Eiter, T., Gottlob, G. and Mannila, H. 1997. Disjunctive Datalog. ACM Transactions on

Database Systems 22 (3), 364–418.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In

5th Conference on Logic Programming. MIT Press, Cambridge, MA, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive

databases. New Generation Computation 9 (3/4), 365–386.

Ghidini, C. and Giunchiglia, F. 2001. Local models semantics, or contextual reasoning =

locality+ compatibility. Artificial Intelligence 127 (2), 221–259.

Konolige, K. 1984. A Deduction Model of Belief and its Logics. Ph.D. Thesis, Stanford

University CA.

Leite, J. A., Alferes, J. J. and Pereira, L. M. 2002. MINERVA: A dynamic

logic programming agent architecture. In Proceedings of ATAL-2001. LNAI, Springer,

Berlin/Heidelberg, 141–157.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello, F. 2002.

The DLV System for Knowledge Representation and Reasoning. ArXiv Computer Science

e-prints , 11004–+.

Mascardi, V., Martelli, M. and Sterling, L. 2004. Logic-based specification languages for

intelligent software agents. Theory and Practice of Logic Programming 4 (4), 429–494.

Mayfield, J., Yannis, L. and Finin, T. 1995. Evaluation of kqml as an agent communication

language. In Proceedings of the 2nd International Workshop on Agent Theories, Architectures,

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

690 F. Buccafurri and G. Caminiti

and Languages (ATAL’95), M. J. P. Wooldridge, M. and M. Tambe, Eds. Number 1037 in

LNAI. Springer-Verlag, Berlin/Heidelberg, 347–360.

McCarthy, J. 1993. Notes on formalizing contexts. In Proceedings of the Thirteenth

International Joint Conference on Artificial Intelligence, R. Bajcsy, Ed. Morgan Kaufmann,

San Mateo, California, 555–560.

Rao, A. S. 1996. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language.

In Agents Breaking Away, W. Van de Velde and J. W. Perram, Eds. vol. 1038. LNAI.

Springer-Verlag, Berlin/Heidelberg, 42–55.

Rao, A. S. and Georgeff, M. 1995. Bdi agents: From theory to practice. In Proceedings of

the 1st International Conference on Multi Agent Systems (ICMAS’95), V. Lesser, Ed. AAAI

Press, Cambridge, MA, 312–319.

Satoh, K. and Yamamoto, K. 2002. Speculative computation with multi-agent belief revision.

In The First International Joint Conference on Autonomous Agents & Multiagent Systems.

ACM Press, New York, 897–904.

Serafini, L. and Bouquet, P. 2004. Comparing formal theories of context in ai. Artificial

Intelligence 155 (1–2), 41–67.

Subrahmanian, V., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Ozcan, F. and Ross, R. 2000.

Heterogeneous Agent Systems. MIT Press/AAAI Press, Cambridge, MA.

van der Hoek, W. and Wooldrige, W. 2003. Towards a logic of rational agency. Logic

Journal of the IGPL 11 (2), 135–159.

Wooldridge, M. 2000. Reasoning about Rational Agents. Intelligent Robots and Autonomous

Agents. MIT Press, Cambridge, MA.

Wooldridge, M. and Jennings, N. R. 1995. Intelligent agents: Theory and practice. The

Knowledge Engineering Review 2 (10), 115–152.

https://doi.org/10.1017/S1471068408003463 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003463

