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An analysis is made of the sound generated by the time-dependent throttling of a
nominally steady stream of air through a small orifice into a flow-through resonant
cavity. This is exemplified by the production of voiced speech, where air from the
lungs enters the vocal tract through the glottis at a time-variable volume flow rate
Q(t) controlled by oscillations of the glottis cross-section. Voicing theory has hitherto
determined Q from a heuristic, reduced complexity ‘Fant’ differential equation. A new
self-consistent, integro-differential form of this equation is derived in this paper using
the theory of aerodynamic sound, with full account taken of the back-reaction of
the resonant tract on the glottal flux Q. The theory involves an aeroacoustic Green’s
function (G) for flow–surface interactions in a time-dependent glottis, so making the
problem non-self-adjoint. In complex problems of this type, it is not usually possible
to obtain G in an explicit analytic form. The principal objective of this paper is to
show how the Fant equation can still be derived in such cases from a consideration of
the equation of aerodynamic sound and from the adjoint of the equation governing
G in the neighbourhood of the ‘throttle’. The theory is illustrated by application to
the canonical problem of throttled flow into a Helmholtz resonator.

Key words: aeroacoustics, flow–structure interactions, general fluid mechanics

1. Introduction
Omnidirectional ‘monopole’ sound is generated by the unsteady discharge of air

into the atmosphere from a wall aperture or nozzle (Rayleigh 1945; Morse & Ingard
1968; Crighton et al. 1992; Howe 1998). When the sound radiates unimpeded in all
directions from the source, the velocity potential ϕ at large distances r is

ϕ ≈ −Q(t − r/co)

4πr
, (1.1)

where Q(t) is the volume velocity of the air leaving the source at time t and co is the
speed of sound in the ambient air.

The monopole strength Q depends on the type of source flow, such as that produced
in the vocal tract by contraction of the lung cavity (Fant 1960; Flanagan 1972; Stevens
1998) or by volumetric expansion produced by unsteady burning in the combustion
chamber of a gas turbine or furnace (Strahle 1971, 1978; Crighton et al. 1992; Poinsot
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& Veynante 2005). In addition, however, the actual variations of Q(t) depend on the
acoustic properties of the system upstream of the exit, on the influence of unsteady
‘jetting’ at the exit and on possible ‘throttling’ of the flow by time-dependent variations
in the nozzle exit cross-sectional area. Jetting and throttling can also occur within
the flow upstream of the exit – in the vocal tract, these occur notably at the glottis
whose cross-section continually changes during ‘voiced speech’ because of vibrations
of the vocal folds. Then, the glottis itself behaves as a monopole of the corresponding
strength Q(t), which now radiates into a resonant chamber formed by the supraglottal
vocal tract.

In complex, confined flows of this type, the source strength Q has been determined
in two distinct ways. The first dates back to Fant’s (1960) pioneering treatment of the
voicing problem, involving a ‘lumped parameter’ approximation in which Rayleigh’s
(1945) representation of the inertia of unsteady flow through an aperture is balanced
against a constant subglottal overpressure psg , nonlinear pressure forces (estimated
from Bernoulli’s equation) associated with turbulence losses, and viscous forces at the
walls. This argument yields the equation of motion

LdQ

dt
+

Q2

2Ag

+ R′Q =
Agpsg

ρo

, (1.2)

where L, Ag ≡ Ag(t) are respectively the ‘inductance’ and cross-sectional area of the
glottis at its narrowest section, ρo is the mean air density, and the coefficient R′

represents the effects of viscous losses. A similar empirical model was proposed
independently by Cummings (Cummings 1984, 1986; Howe 1998; Luong, Howe &
McGowan 2005) for studying the dissipation of sound by vorticity production in
small apertures. The solution of (1.2) is used in (1.1) to determine the radiated sound;
for confined systems like the vocal tract, the calculated source strength is inserted into
an appropriate source-filter transmission formula that relates Q to the sound heard
by a listener in free space (Fant 1960; Flanagan 1972; Rothenberg 1981; Stevens
1998; Titze 2008).

In reality, of course, there is no actual monopole source. For voiced speech the
physical sources of sound are contraction of the lung cavity and the subsequent
appearance of aeroacoustic volume and surface sources in and near the glottis,
including frictional drag, shed vorticity and oscillatory motions of the vocal folds
driven by the unsteady pressure. In this case, the second and more fundamental
method of calculating the radiation is therefore by direct numerical simulation
of the entire structural and compressible motion (Zhang et al. 2002; Zhao et al.
2002; Hofmans et al. 2003; Thomson, Mongeau & Frankel 2005; Duncan, Zhai &
Scherer 2006) or, alternatively, because the flow is low Mach number, by a numerical
determination of the aeroacoustic sources using equations for incompressible flow
(Zhao et al. 2002) followed by their substitution into an acoustic prediction formula
derived from Lighthill’s acoustic analogy theory (Lighthill 1952; Howe 1998; Howe
& McGowan 2007). Both of these numerical approaches tend to be computationally
intensive and often cannot be run in a timely manner for more than one or two
voicing cycles.

For routine purposes, there is a very much greater need for a ‘reduced complexity’
treatment of the kind provided by the Fant equation (1.2). A systematic derivation
of this equation has been formulated by Howe & McGowan (2007). This makes
use of two independent predictions of the sound furnished by (i) the linear acoustic
theory of sound production by a monopole of strength Q(t), and (ii) Lighthill’s
acoustic analogy representation of the sound in terms of tissue-surface sources and
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vortex sources within the flow. A corrected and fully self-consistent form of Fant’s
approximation (1.2), inclusive of hydroacoustic back-reactions from the supraglottal
tract, is then obtained by equating the results of these two calculations. The procedure
as described is actually tractable only in the simple case of a nominally infinitely long
supraglottal tract (Howe & McGowan 2011), for which reflections from the mouth
and surface appendages can be neglected.

All computational fluid dynamical treatments have hitherto ignored supraglottal
resonances (‘formants’), and the possibly large back-reaction on the glottis of these
resonances. The sound generated at the glottis is assumed to radiate towards the
mouth with negligible reflections. Many estimates of the back-reaction consist of
ad hoc approximations of the coupling of the sound and surface tissue in the glottis
(e.g. Flanagan & Landgraf 1968; Gupta, Wilson & Beavers 1973; Zanartu, Mongeau
& Wodicka 2007; Titze 2008). In the simplest, first approximation, elementary source-
filter theory can be used (Titze 1988), but it fails at voicing frequencies approaching the
first formant, for example, at which the back-reaction is apparently strong enough to
cause the voicing monopole to produce undesirable, involuntary and abrupt changes
in frequency (Titze & Story 1995; Austin & Titze 1997; Joliveau, Smith & Wolfe
2004; Titze 2008).

A theory of throttled flow into a resonant chamber that does not depend on a
weak interaction approximation is proposed in this paper. This is an extension of
the self-consistent method of Howe & McGowan (2007) for radiation into an infinite
duct, which made use of an analytical representation of an aeroacoustic Green’s
function tailored to the time-dependent geometry of the system. However, for the more
complicated resonant systems to be considered in this paper, an explicit derivation
of the corresponding Green’s function is difficult or impracticable. Our objective is
to show how, nevertheless, the system of equations defining Green’s function can be
manipulated along with Lighthill’s equation of aerodynamic sound to supply the Fant
equation. The principal conclusion of the paper is that Fant’s equation is precisely
the inhomogeneous adjoint equation (driven by all of the aeroacoustic sources) of the
equation that governs the behaviour of Green’s function within the time-dependent
‘throttle’. To fix ideas, the discussion is framed in terms of the problem of voiced
speech, although no attempt is made here to model precisely the full mechanics
of the vocal tract. However, the theory is applicable more generally, for example,
to combustion-generated noise within a resonant furnace and to similar resonant,
aeroacoustic systems.

The new approach is discussed (§ 2) for the basic problem of the direct radiation
of sound from the glottis into free space, in the absence of a supraglottal tract,
i.e. for sound production by throttling of nominally steady flow from a nozzle of
time-dependent cross-section. Green’s function is known explicitly for this problem,
and this permits immediate validation of the adjoint equation procedure. Extension
is then made to two cases involving throttled flow into a resonant cavity. The
first (§ 3) is the canonical problem of flow into a Helmholtz resonator, which is
the simplest possible approximation to a supraglottal tract having one dominant
resonant frequency. Feedback from the resonant response of the cavity leads to a
modified Fant equation, which becomes an integro-differential equation involving
an integration over the entire history of the glottal oscillations. Numerical results
discussed in § 4 clarify the importance of these back-reactions to the glottal flow.
Finally, an outline derivation is given in the Appendix of the Fant equation
governing an improved model of the supraglottal tract, having multiple resonance
frequencies.
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Lung
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Subglottal tract

x1 = –�q

f (τ – y1/co)
O

x1 = 0
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Figure 1. (a) Direct monopole radiation into free space produced by the throttling of
nominally steady, low-Mach-number flow by a small aperture (the ‘glottis’) of time-dependent
cross-sectional area Ag . (b) Components of the ‘advanced potential’ Green’s function
propagating as a function of ( y, τ ) towards an observer at x in free space and evanescent for
τ > t .

2. Radiation from throttled flow into free space
2.1. Formal representation of the sound

Consider sound radiation from the idealised configuration illustrated in figure 1(a).
The subglottal tract is modelled by a hard walled, semi-infinite, circular cylindrical
duct of cross-sectional area AL; the supraglottal tract is absent, and communication
with atmospheric free space is assumed to occur directly through a small axisymmetric
opening (the ‘glottis’) whose time-dependent cross-sectional area at its narrowest point
is Ag . Take the origin of coordinates x =(x1, x2, x3) at the nominal midpoint of the
glottis, with the negative x1 axis extending axially into the duct. Let voicing be initiated
by steady contraction of the ‘lungs’, represented in the model of figure 1(a) by uniform
peripheral contraction of a short section of the subglottal tract (centred on x1 = −�q)
that behaves as a volume source of constant overall strength q , say. Sound production
occurs when the overpressure produced by this contraction reaches the glottis, which
opens as the vocal folds are forced apart by the elevated pressure. The subsequent
vibration of the folds causes the pulsing of fluid through the glottis forming of an
unsteady jet (indicated schematically in the figure). In a first approximation, the
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acoustic energy that travels towards the lungs is absorbed by the subglottal system.
Thus, the sound that radiates to x1 = −∞ within the subglottal tract is assumed to
be absorbed without reflection within the lung complex. This is a simplified version
of the problem treated by Howe & McGowan (2009) of the excitation of waves in a
finite-length model of the subglottal system.

Vortex sound theory (Howe 1998, 2002, 2008) will be used to obtain a formal
representation of the sound for an observer in free space at x at time t . Sound is
produced by moving boundaries, by vorticity within the jet and elsewhere, and by the
interaction of vorticity with boundaries. In a first approximation, the dominant aspects
of speech production occur homentropically at low Mach number, with dissipation
confined to regions of strong shear at the boundaries, whereas in the body of the fluid,
sound propagates as if the fluid were inviscid. In these circumstances, the pressure
p can be regarded as a function of the fluid density ρ alone, and the vortex sound
equation takes the simplified form (Howe 2002; Howe & McGowan 2007)(

1

c2
o

∂2

∂t2
− ∂2

∂x2
j

)
B = div(ω ∧ v), (2.1)

where v is the velocity, ω = curl v is the vorticity, B =
∫

(dp/ρ) + (v2/2) is the total
enthalpy, co is the speed of sound (assumed to be uniform throughout the fluid), and
the repeated subscript j implies summation over j = 1, 2, 3. In acoustic regions of the
flow (where ω = 0), B = −∂ϕ/∂t and the pressure fluctuation p = −ρo∂ϕ/∂t , where ϕ

is an appropriate velocity potential.
The solution B(x, t) of (2.1) subject to appropriate boundary conditions will be

expressed in terms of an ‘advanced potential’ Green’s function G(x, y, t, τ ), which
satisfies (

1

c2
o

∂2

∂τ 2
− ∂2

∂y2
j

)
G = δ(x − y)δ(t − τ ), G = 0 for τ > t, (2.2)

where y = (y1, y2, y3). Here G represents ‘incoming’ waves as a function of ( y, τ )
that vanish after convergence onto the source δ(x − y)δ(t − τ ) at τ = t . The specific
functional form of G is chosen to satisfy ∂G/∂yn = 0 on the moving solid boundary
S(τ ) at time τ , where yn is a local normal coordinate on S(τ ) directed into the fluid.

Equations (2.1) and (2.2) are combined in the usual way (Morse & Feshbach 1953;
Howe & McGowan 2007; Howe 2008) using Green’s theorem, the radiation condition
and the momentum equation, to supply the causal solution of (2.1) at low Mach
numbers in the form

B(x, t) =

∫ ∞

−∞

∮
S(τ )

[
G

∂v

∂τ
− ν

∂G

∂ y
∧ ω

]
· dS( y) dτ −

∫ ∞

−∞

∫
V (τ )

∂G

∂ y
· ω ∧ v d3 y dτ,

(2.3)
where the vector surface element dS on S(τ ) is directed into the fluid, V (τ ) denotes
the spatial region occupied by the fluid at time τ , and ν is the kinematic viscosity of
the fluid. Viscous dissipation is absent from the vortex sound equation (2.1), which
describes propagation within the body of the fluid. However, frictional effects can be
important at solid boundaries, and this accounts for the appearance of viscosity (via
the momentum equation) in the surface integral of (2.3).

The first term in the surface integral (involving ∂v/∂τ ) corresponds to the direct
‘monopole’ radiation produced by lung contraction and by similar sources associated
with volumetric changes of the vibrating vocal folds. The viscous term is a surface drag
dipole that is concentrated principally within the glottis. It is typically small compared
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with the sound generated by the vortex source ω ∧ v of the volume integral. This is
also of dipole type, and its main contribution is from the jet produced downstream of
the glottis by the lung overpressure; its strength is modulated by the variations in the
glottis area Ag produced by fold vibration. In all cases the oscillation frequencies are
such that the relevant acoustic wavelengths are much larger than the duct diameter
and the axial length of the glottis. The sound can therefore be calculated by use of
the compact approximation to the Green’s function (Howe 1998, 2002).

2.2. The lung overpressure

Without loss of generality, it may be assumed that the axial extent of the constant
strength source q is very much smaller than the acoustic wavelength and that lung
contraction begins at time t = −�q/co. By putting q =2ALpI/ρoco, where pI denotes
a constant pressure, the effect of this source is equivalent to a distribution of normal
velocity vn on the duct wall (directed into the fluid), where

vn =
2ALpI

�pρoco

H

(
t +

�q

co

)
δ(x1 + �q), (2.4)

H ( · ) is the Heaviside step function and �p is the duct perimeter.
The pressure wave produced by this source is given by the first term in the square

brackets of the surface integral of (2.3), involving ∂v/∂τ . In particular, the form of
this wave in the subglottal tract prior to its arrival at the glottis is calculated by taking
for G the compact approximation for radiation in an infinite duct of cross-section AL

(Howe 1998, 2002):

G(x, y, t, τ ) =
co

2AL

H

(
t − τ − |x1 − y1|

co

)
. (2.5)

Using this to calculate the pressure wave p(t − x1/co) propagating towards the glottis
(where x1 > −�q), we find

p = pIH

(
t − x1

co

)
. (2.6)

The pressure pI is therefore just equal to the amplitude of the overpressure incident
on the glottis (at x1 � 0) from the lungs, the arrival of which at t � 0 initiates motion
of the glottis and the production of sound.

2.3. Compact Green’s function for free space radiation

Let the observation point x in free space (figure 1b) be at a large distance |x| �
√

AL

from the glottis. When the glottis and duct diameter are acoustically compact,
the advanced potential converging onto y = x at time τ = t is dominated by the
corresponding free space Green’s function (Howe 2002), i.e.

G � 1

4π|x − y| δ

(
t − τ − |x − y|

co

)
. (2.7)

Near the glottis, where | y| ∼ O(
√

AL) � |x|, this becomes

G � 1

4π|x| δ([t] − τ ), (2.8)

where [t] = t − |x|/co is the retarded time for propagation from the glottis.
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Within and in the immediate neighbourhood of the glottis, the compact form of
Green’s function reduces to a solution of Laplace’s equation, of the form

G = α(τ ) + β(τ )Y ( y, τ ), (2.9)

where α(τ ) and β(τ ) are functions to be determined, ∇2Y ( y, τ ) = 0, and Y ( y, τ ) denotes
the velocity potential of flow at unit speed within the duct out through the glottis
such that the normal derivative ∂Y/∂yn = 0 on the instantaneous surface S(τ ) of the
glottis and the neighbouring duct, so that

Y ( y, τ ) ∼
{

−AL/4π| y|, | y| �
√

Ag in free space,

y1 − �̄(τ ), |y1| �
√

AL within the duct.
(2.10)

The length �̄(τ ) is a time-dependent ‘end correction’, defined in terms of the Rayleigh
conductivity Kg ≡ Kg(τ ) (� 2

√
Ag/π) of the glottis and the duct cross-sectional area

AL by

�̄(τ ) =
AL

Kg(τ )
(2.11)

(Rayleigh 1945; Howe 1998).
Within the duct at distances |y1| �

√
AL from the glottis, the advanced potential G

reduces to a plane, incoming wave of the form

G = f

(
τ − y1

co

)
. (2.12)

The functions α, β and f are found by equating the representations (2.8), (2.9)
and (2.12) of G correct to O( y) in the overlap regions

√
Ag � | y| � co/ω and

−co/ω � y1 � −
√

AL respectively outside and inside the duct, where ω ∼ ∂/∂τ is a
characteristic frequency. This procedure yields the equations (with use of the relations
(2.10))

α(τ ) = δ([t] − τ )/4π|x|,
f (τ ) = α(τ ) − β(τ )�̄(τ ),

f ′(τ ) = −coβ(τ ),

⎫⎪⎬
⎪⎭ (2.13)

where the prime denotes differentiation with respect to τ .
Therefore,

∂

∂τ
(�̄β) − coβ =

∂α

∂τ
, (2.14)

and the function β(τ ) (vanishing for τ > [t]) is readily found to be given by

β(τ ) =
1

4π�̄([t])|x|

(
δ([t] − τ ) − co

�̄(τ )
H ([t] − τ ) exp

[
−

∫ [t]

τ

co dξ

�̄(ξ )

])
. (2.15)

2.4. Monopole radiation from the glottis

Consider the representation (2.3) of the sound radiated from the glottis to a point x
in the free space far field. To avoid unnecessary complications, attention is confined
to the case in which the volume of the vocal fold tissue is constant during vibration
and the viscous drag within the glottis is negligible. The first integral in (2.3) is then
restricted to the section of the subglottal tract where vn given by (2.4) is non-zero,
and the vortex source integral is confined to the unsteady jet just downstream of the
glottis. Then, B � Bq + Bω, where
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Bq =

∫ ∞

−∞

∮
S(τ )

G
∂vn

∂τ
dS( y) dτ =

∫ ∞

−∞

∮
S(τ )

f

(
τ − y1

co

)
∂vn

∂τ
dS( y) dτ

=
2ALpI

ρo

∫ ∞

−∞
β(τ )H (τ ) dτ, (2.16)

where the final result is obtained from (2.4) after integration by parts with respect
to τ (noting that vn, f respectively vanish at τ = ∓∞) and by use of the third of
equations (2.13), and the vortex contribution is

Bω = −
∫ ∞

−∞

∫
V (τ )

∂G

∂ y
· ω ∧ v d3 y dτ = −

∫ ∞

−∞

∫
V (τ )

β(τ )
∂Y

∂ y
· ω ∧ v d3 y dτ, (2.17)

where the volume integral is over the jet vorticity.
The overall radiation B = Bq + Bω at large distances from the glottis accordingly

becomes (by use of (2.15))

B(x, t) �
∫ ∞

−∞
β(τ )F(τ ) dτ (2.18a)

=
1

4π�̄([t])|x|

(
F([t]) −

∫ [t]

−∞

coF(τ )e−
∫ [t]
τ

co dξ/�̄(ξ )

�̄(τ )
dτ

)
, |x| → ∞, (2.18b)

where [t] = t − |x|/co and

F(τ ) =
2ALpI

ρo

H (τ ) −
∫

V (τ )

∂Y

∂ y
· ω ∧ v d3 y. (2.19)

The acoustic wave B(x, t) exhibits the expected omnidirectional characteristics of a
monopole field, and is fully determined when the source strength Q is known. The
magnitude of Q depends on the incident wave pI, on the temporal variations of
the glottis cross-sectional area Ag , and on the glottis–jet interaction. This dependence
is governed by the Fant equation, which is derived from the condition that the
far-field aeroacoustic solution (2.18) should be consistent with the acoustic formula
B(x, t) = −∂ϕ/∂t , where the velocity potential ϕ is given in terms of Q by (1.1), with
r replaced by |x|.

Hence,

B(x, t) � 1

4π|x|
∂Q

∂t
([t]) =

∫ ∞

−∞
β(τ )F(τ ) dτ, (2.20)

which from (2.18b) implies the explicit relation

�̄(t)
dQ

dt
(t) = F(t) −

∫ t

−∞

coF(τ )e−
∫ t

τ
co dξ/�̄(ξ )

�̄(τ )
dτ. (2.21)

The integrated term in this formula is removed by elimination between (2.21) and the
equation obtained by differentiation with respect to t , to obtain

d

dt

(
�̄
dQ

dt

)
+ co

dQ

dt
=

dF
dt

. (2.22)

Integrating once, using the initial condition Q = F = 0 for t < 0, and introducing the
representation (2.19) for F, then yields the required Fant equation

�̄
dQ

dt
+ coQ +

∫
V (t)

∂Y

∂ y
· ω ∧ v d3 y =

2ALpI

ρo

H (t), (2.23)

where the integrand is evaluated at time t .
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This determines the evolution of Q after the arrival at time t = 0 of the pressure
wave pI . The linear term coQ accounts for damping produced by radiation back into
the lungs (radiation losses into free space are negligible, and are omitted from the
Green’s function approximation of § 2.3); the nonlinear, integrated term represents
the back-reaction on the glottis of vorticity produced by ‘jetting’ of the flow out of
the glottis. The equation must be solved simultaneously with the elastic equation
of motion of the vocal folds, which determines the changes in the glottal minimum
cross-section Ag(t) and also accounts for the coupling of the fold motion with the
flow (cf. Ishizaka & Flanagan 1972; Fulcher et al. 2006; Zanartu et al. 2007; Howe
& McGowan 2010).

2.5. Fant equation derived from the adjoint Green’s function equation

The Fant equation (2.23) was obtained by use of the explicit Green’s function formula
(2.15) determined by (2.13). The corresponding equations for more complicated
systems involving one or more resonant cavities are not usually amenable to a
closed-form solution. In those cases, the Fant equation must be derived by suitable
adaptation of the following formal argument.

Substitute for α in (2.14) from the first of (2.13):

∂

∂τ
(�̄β) − coβ =

−1

4π|x| δ′([t] − τ ), (2.24)

where the prime denotes differentiation with respect to the argument of the δ-function.
It may be remarked that the right-hand side of this equation is just equal to ∂Go/∂τ ,
where Go ≡ Go(x, t − τ ) is the free space acoustic Green’s function for a point source
just downstream of the glottis when the latter is closed.

Form the Fant equation (2.23) by writing down the adjoint of differential equation
(2.24),

�̄
dQ

dt
+ coQ = F(t), Q = 0 for t < 0, (2.25)

driven by the volume-integrated aeroacoustic sources F(t) defined as in (2.19).
The following alternative proof is required to establish the validity of this procedure.

Multiply (2.24) by Q(τ ), replace t by τ in (2.25) and multiply by β(τ ). Add the resulting
equations and integrate over all source times −∞ <τ < ∞ to obtain

[
�̄βQ

]∞
−∞ − 1

4π|x|

∫ ∞

−∞
Q(τ )

∂

∂τ
(δ([t] − τ )) dτ =

∫ ∞

−∞
β(τ )F(τ ) dτ. (2.26)

The first term on the left vanishes identically, because Q(τ ) = β(τ ) = 0 respectively at
τ = ∓∞, so that

1

4π|x|
∂Q

∂t
([t]) =

∫ ∞

−∞
β(τ )F(τ ) dτ (2.27)

which confirms that Q defined by (2.25) coincides with the acoustic formula (2.20),
and is therefore the required volume flux.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

61
17

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010006117


Production of sound by unsteady throttling 437

n

SJ

Jet Uσ

Figure 2. Streamsurfaces of the potential function Y ( y, τ ) intersecting the vortex sheet
boundary of the idealised jet.

2.6. Interpretation of the Fant equation

Fant’s (1960) original equation (1.2) is similar to the analogous Cummings equation
(Cummings 1984, 1986), both of which were derived by heuristic arguments. They
can be reconciled with the general Fant equation (2.23) by the following argument of
Howe & McGowan (2007) which estimates the value of the vortex integral in (2.23)
using a quasi-static, ‘free-streamline’ model of the jet.

The jet vorticity is assumed to be confined to a free streamsurface at the outer
edge of the jet, as indicated in figure 2. The vortex lines are peripheral circles
with ω = Uσδ(s⊥)θ̂ , where Uσ is the jet velocity just inside the shear layer, s⊥ is
distance measured in the direction of the outward unit normal n from the jet, and
θ̂ is a unit azimuthal vector in the clockwise sense when viewed along the direction
of motion of the jet. Vorticity on the jet boundary is convected at half the local
jet velocity, so that ω ∧ v = 1

2
U 2

σ δ(s⊥)n. In a steady, free-streamline approximation,
Uσ is equal to the uniform flow speed in the downstream, uniformly contracted
section of the jet (Birkhoff & Zarantonello 1957; Gurevich 1965; Batchelor 1967;
Milne-Thomson 1968).

Figure 2 also displays a meridional section of the family of streamlines of the
instantaneous flow through the glottis defined by the velocity potential Y ( y, τ ).
Evidently, the main contribution to the vortex integral of (2.23) is from the section
of the jet close to the glottis, where these streamlines cut across the edge of the jet.
The velocity Uσ does not vary significantly over this short distance (∼O(A1/2

g )) along

the jet, provided the Strouhal number ∼fo

√
Ag/Uσ is small (where fo is the glottal

frequency), which is typically the case for normal voiced speech, so that

∫
V (t)

∂Y

∂ y
· ω ∧ v d3 y ≈ U 2

σ (t)

2

∮
SJ

∂Y

∂ y
· n dS ≡ ALU 2

σ

2
, (2.28)
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where the second integral is over the curved surface SJ of the jet at time t , and the
normalisation condition (2.10) of Y has been used. Hence∫

V (t)

∂Y

∂ y
· ω ∧ v d3 y ≈ AL

2A2
g

Q2

σ 2
, (2.29)

because Q = σAgUσ , where σ ∼ σ (t) is the (area) contraction ratio of the jet relative
to its cross-section Ag(t).

Equation (2.23) may now be recast in the form of Fant’s original equation (1.2):

ρo�
dQ

dt
+

ρoQ
2

2σ 2Ag

= AgpIH (t) + Ag

[
pIH (t) − ρocoQ

AL

]
, (2.30)

where � =Ag/Kg ≡ (Ag/AL)�̄ is the effective length of the slug of fluid within and near
the glottis that contributes to the inertia of the unsteady glottal flow (Rayleigh 1945).
The quadratic term on the left represents the influence on the glottis of vorticity in
the jet, and its explicit reduction to a form consistent with Fant’s (1960) use of the
Bernoulli equation depends on the low-Strouhal-number assumption fo

√
Ag/Uσ � 1.

The terms on the right are respectively the pressure forcing of the glottal motion over
its effective cross-section Ag produced by the incident overpressure pI from the lungs
and the pressure wave of amplitude pI − ρocoQ/AL reflected back towards the lungs.
When the motion is excited by a small amplitude sound wave incident from x1 = −∞,
so that terms quadratic in Q can be discarded, the inertia term ‘end correction’ �

determines the phase of the wave reflected back towards the lungs. In the more
general case, this term is usually small except near glottal closure, when � becomes
very large. In the absence of the jet and glottal inertia, the glottis behaves like an
‘open end’, at which the lung wave is reflected with a reflection coefficient of −1 and
the free space monopole source strength Q =2pI/ρoco. The linear and quadratic terms
ρoco(Ag/AL)Q and ρoQ

2/2σ 2Ag are likely to be of comparable magnitudes, because,
typically,

ρoQ
2/2σ 2Ag

ρoco(Ag/AL)Q
=

Mσ

2σ (Ag/AL)
∼ O(1), (2.31)

where Mσ = Uσ/co is the jet Mach number, which can attain a maximum of about
0.1 in voiced speech.

3. Throttled flow into the cavity of a Helmholtz resonator
Consider next the problem illustrated schematically in figure 3, where the flow

from the glottis enters the cavity of a Helmholtz resonator of volume V which
communicates with the atmosphere via a mouth of Rayleigh conductivity Km � Kg .
This arrangement is a simplified model for determining the influence on sound
production of a supraglottal tract with a single resonance frequency.

The problem now is to express the sound radiated from the mouth in terms of
the unsteady glottal volume flux Q(t). The characteristic frequencies of the unsteady
motions are assumed to be sufficiently small that all relevant acoustic wavelengths are
large compared with the scale ∼V 1/3 of the cavity. This would occur in practice, for
example, for a small female vocal tract when the lips are partially closed, where the
first formant of the supraglottal tract (identified here with the Helmholtz resonance
frequency) ∼500 Hz and the characteristic vibration frequency of the vocal folds
∼125 Hz. It may be assumed, therefore, that the dominant pressure fluctuations
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Lung
contraction

Glottis

Subglottal tract

x1 = –�q

AL

SC

x1 = 0

Jet
Q

y

x

Mouth

Sound

V

Figure 3. Free space radiation produced by throttled flow into the cavity of a Helmholtz
resonator. The Fant equation is derived by consideration of the sound produced at an
arbitrary point x within the body of the cavity.

forced by the throttled flow into the Helmholtz resonator are uniform across the
cavity.

This interior pressure fluctuation can be written −ρo∂Φ/∂t , where the potential
function Φ = Φ(t) is uniform across the cavity. When Φ has been obtained in terms
of the glottal flux Q (using the appropriate Fant equation), the volume flux from the
mouth of the resonator Qm, say, then is

Qm(t) ≈ −KmΦ(t), (3.1)

and the far-field sound is supplied by (1.1) with Q replaced by Qm.

3.1. Green’s function

The Fant equation is derived using the compact Green’s function equations for an
observer at x within the body of the cavity. The formal representations (2.9) and (2.12)
of G at the glottis and in the subglottal tract are unchanged in terms of appropriate
functions α, β and f . Within the cavity G = Ḡ(t, τ ), a function of t and τ , except in
the immediate vicinity of the source point, glottis and mouth, so that when (2.2) is
integrated (with respect to its dependence on y) over the interior of the cavity, we
find

V

c2
o

∂2Ḡ

∂τ 2
+

∮
Sc

∂G

∂ y
· dS = δ(t − τ ), (3.2)

where Sc is the interior surface of the cavity, extended to include the inner faces of the
glottis and mouth, and dS is directed into the cavity. The surface integral determines
the Green’s function flux into the cavity from the glottis and mouth, equal respectively
to ALβ(τ ) and KmḠ. The matching of expression (2.9) with Green’s function within
the cavity requires that Ḡ =α(τ ), so that (3.2) becomes

V

c2
o

(
∂2

∂τ 2
+ Ω2

)
α = −ALβ + δ(t − τ ), (3.3)

where Ω =
√

Kmc2
o/V may be interpreted as the resonance frequency of the resonator

provided Km � Kg (Rayleigh 1945; Howe 1998). This yields the following formula for
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α(τ ) in terms of β:

α(τ ) =
c2
o

ΩV

(
H (t − τ ) sin[Ω(t − τ )] − AL

∫ ∞

−∞
β(ξ )H (ξ − τ ) sin[Ω(ξ − τ )] dξ

)
,

(3.4)

where β(ξ ) = 0 for ξ > t .

3.2. The Fant equation

The application of the Green’s function formulae as in § 2 yields the aeroacoustic
representation of B(x, t) within the cavity in the form

B(x, t) ≡ −∂Φ

∂t
�

∫ ∞

−∞
β(τ )F(τ ) dτ, (3.5)

where F is defined as in (2.19), and β is determined from (2.14) and (3.4) by the
integro-differential equation:

∂

∂τ
(�̄β)−coβ − c2

oAL

V

∫ ∞

−∞
β(ξ )H (ξ −τ ) cos[Ω(ξ −τ )] dξ = −c2

o

V
H (t −τ ) cos[Ω(t −τ )].

(3.6)
The right-hand side of this equation is equal to ∂Go/∂τ , where Go = (c2

o/ΩV )H (t −
τ ) sin[Ω(t − τ )] is the compact cavity acoustic Green’s function when the glottis is
closed.

The Fant equation is derived by consideration of the adjoint equation driven by
the aeroacoustic source term F(t):

�̄
∂Q̄

∂t
+ coQ̄ +

c2
oAL

V

∫ ∞

−∞
Q̄(ξ )H (t − ξ ) cos[Ω(t − ξ )] dξ = F(t), Q̄ = 0 for t < 0.

(3.7)
To show that Q̄ ≡ Q and that (3.7) with Q̄ replaced by Q is the desired Fant

equation, replace t by τ in (3.7) and form the sum of (3.6) × Q̄(τ ) and (3.7) × β(τ ).
Integration of the result over −∞ <τ < ∞ (as in the second method of § 2.5) then
supplies, using (3.5),

∂Φ

∂t
= −c2

o

V

∫ ∞

−∞
Q̄(τ )H (t − τ ) cos[Ω(t − τ )] dτ. (3.8)

However, when the uniform potential Φ(t) within the cavity is ascribed to a monopole
source of strength Q at the glottal opening, in accordance with elementary acoustic
theory, integration of the wave equation over the cavity interior yields

Q = −V

c2
o

(
∂2

∂t2
+ Ω2

)
Φ. (3.9)

Hence, (3.8) implies that

∂Q

∂t
=

(
∂2

∂t2
+ Ω2

) ∫ ∞

−∞
Q̄(τ )H (t − τ ) cos[Ω(t − τ )] dτ

= −
∫ ∞

−∞
Q̄(τ )

∂

∂τ
(δ(t − τ )) dτ =

∂Q̄

∂t
. (3.10)

This confirms that Q̄ ≡ Q and that (3.7) is the Fant equation.
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The substitution from (2.19) of the explicit expression for F(t) yields

�̄
dQ

dt
+ coQ +

∫
V (t)

∂Y

∂ y
· ω ∧ v d3 y +

c2
oAL

V

∫ t

−∞
Q(τ ) cos[Ω(t − τ )] dτ =

2ALpI

ρo

H (t),

(3.11)
where Q =0 for t < 0. The two integrals in this equation respectively represent the
back-reactions of the jet vorticity and the resonator pressure on the motion in the
glottis. Equation (3.8) and the approximation (2.29) reduce (3.11) to the following
modification of the non-resonator equation (2.30):

ρo�
dQ

dt
+

ρoQ
2

2σ 2Ag

= Ag

[
2pIH (t) − ρocoQ

AL

]
+ Agρo

∂Φ

∂t
, (3.12)

where the two terms on the right-hand side respectively represent the pressure forces
over the subglottal and supraglottal endfaces of the glottal slug of length ∼�.

4. Predictions of the glottal flux and radiated sound
4.1. The governing equations

Consider the simplified case where the quasi-static approximation (2.29) is applicable.
Then, the substitutions

Q1(t) =

∫ t

−∞
Q(τ ) cos[Ω(t − τ )] dτ, Q2(t) =

dQ1

dt
(t) − Q(t) (4.1)

permit the integro-differential Fant equation (3.11) to be replaced by the differential
system

dQ
dt

=

(
2ALpI

ρo
− coQ − ALQ2

2σ 2A2
g

− c2
oALQ1

V

) /
�̄

dQ1

dt
= Q + Q2

dQ2

dt
= −Ω2Q1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

t > 0, (4.2)

where Q =Q1 = Q2 = 0 at t = 0.
The solution of this system supplies both the glottal flux Q(t) and (from (1.1), (3.1)

and (3.8) with Q̄= Q) the free space acoustic pressure

p(x, t) � ρoΩ
2

4πr
Q1

(
t − r

co

)
, (4.3)

where r is distance from the mouth of the resonator to the free space observer
position x.

During voiced speech, the vocal folds are controlled by unsteady pressure and
friction forces and by muscular restoring forces. These are responsible for self-
sustaining oscillations of the glottis and the throttling of the nominally steady flow
from the lungs. A full discussion of the application of (4.2) to voicing therefore
involves the simultaneous consideration of equations describing these fluid–tissue
interactions. We shall not attempt to do this, however, because our objective is to
examine the dependence of the radiated sound on the oscillation frequency fo of the
glottis, which cannot necessarily be controlled in a nonlinearly coupled system. It will
therefore be assumed that the time dependence of the glottal area Ag is prescribed in
a manner consistent with observations, in what Titze (2008) calls a ‘Level I’ model.
This approach ignores hydroacoustic feedback on the movement of the vocal folds,
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and is a familiar approximation during an initial application of a new methodology
to voicing theory (see e.g. Zhao et al. 2002; Howe & McGowan 2007). Thus, it will
be assumed that

Ag

AL

= a0 + a1{1 − cos(ωot)}, (4.4)

where the coefficients a0, a1 and the glottal radian frequency ωo ≡ 2πfo are constant.
The corresponding slug length �̄ will be approximated by Rayleigh’s formula (for an
aperture in a thin wall, Rayleigh 1945; Howe 1998)

�̄ =
AL

2

√
π

Ag

. (4.5)

4.2. Numerical results

The nominal Helmholtz resonance frequency Ω/2π will be identified with the first
formant f1, say, of the human supraglottal tract. This and other vocal tract and
glottis parameters will be assigned the following values:

f1 = 500 Hz, Km = 0.5 cm, AL = π cm2, a0 = 0.001, a1 = 0.05, co = 340 m s−1.

(4.6)

The value Km = 0.5 cm for the conductivity of the resonator mouth (communicating
with free space) is equivalent to that of a circular opening of radius 0.25 cm in a thin
wall. These values also imply that the cavity volume V ∼ 58 cm3, and are typical of
those for a small adult female. The values of a0, a1 determine sinusoidal variations
of Ag between 0.001AL and 0.1AL at radian frequency ωo = 2πfo. The very small but
non-zero value of a0 implies that there will always be some ‘leakage’ through the
glottis. However, this effect is negligible and our choice for a0 is actually governed
by the need to avoid instabilities associated with the numerical integration of the
equations. The lung overpressure is taken to be pI = 5 cm of water, so that the
maximum subglottal overpressure ∼2pI = 10 cm of water (∼1 kPa), which is typical
of measured values (Fant 1960; Flanagan 1972; Stevens 1998).

The validity of the assumption that 2πf1 = Ω ≡
√

c2
oKm/V is easily checked by

consideration of the homogeneous, linear acoustic approximation to the system (4.2),
in which each of Q, Q1, Q2 varies like e−iωt . To do this, it must be assumed that
the glottis cross-section Ag is constant, so that the end-correction �̄= �̄o, say, is also
constant. This yields the characteristic frequencies

ω � ±Ω

(
1 +

AL�̄o

V

)1/2

− icoAL

2V
. (4.7)

The first term on the right-hand side represents the cavity resonance frequency,
which fractionally exceeds Ω by about AL�̄o/2V � 1. The imaginary term determines
the damping of resonator oscillations produced by radiation into the lungs. A
corresponding very much smaller loss from the mouth of the resonator has been
neglected by use of the approximation (3.1) for the volume flux Qm from the mouth
(involving a real -valued conductivity Km). The damping experienced by sound in
the human supraglottal tract is in practice very much larger, however. In particular,
dissipative tissue compliance can greatly increase damping and also modify the
resonant frequencies. The effect will be to broaden considerably acoustic resonance
peaks relative to those predicted by the present model.
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Figure 4. Numerical predictions of (4.2)–(4.4) for conditions (4.6) when pI = 0.5 kPa, typified
by the non-special case where fo/f1 = 0.6: (a) the glottal volume flux Q normalised by
Q′ = 2pIAL/ρoco; (b) the glottis area ratio Ag/AL; (c) the monopole, far-field acoustic pressure
at distance r from the mouth.

It is known that the jet contraction ratio σ actually varies with time during the
opening and closing phases of the glottis (Pelorson et al. 1994; Park & Mongeau 2007;
Zanartu et al. 2007; Howe & McGowan 2010). A referee has emphasised that these
variations can influence strongly the characteristics of voiced speech, although model
calculations (Howe & McGowan 2010) indicate that a time-dependent σ modifies
principally only the fine details of the predicted acoustic waveform. However, these
waveform changes depend on the precise functional form of σ (t) and on the assumed
geometry of the glottis, and it will therefore be convenient to ignore them in the
present discussion and make use of the classical approximation σ = 0.62 (Howe 1998)
in the quasi-static term ALQ2/2σ 2A2

g , which accounts for the vortex back-reaction in
the first of (4.2).

The system of (4.2), (4.3) and (4.5) has been solved using a fourth-order Runge–
Kutta procedure (Abramowitz & Stegun 1970). Results are first presented for
conditions (4.6) in the most general, non-special case typified by an imposed glottal
oscillation frequency fo =0.6f1. Figure 4(a) depicts two cycles of the calculated non-
dimensional volume flux Q/Q′, where Q′ =2pIAL/ρoco is the nominal flux associated
with the maximal subglottal pressure. The plots in this and subsequent figures
represent predictions after the decay of transients triggered by the arrival of the lung
overpressure at the glottis, so that the time origin (fot =0) is chosen for convenience,
and does not correspond to the actual start of the glottal motion. In practice, steady-
state voicing is achieved only after many cycles, depending on damping and the mouth
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Figure 5. Dependence of the volume flux ratio Q/Q′ on glottal frequency fo near the cavity
resonance frequency f1 for the conditions of figure 4: (a) fo/f1 = 1 (———), 0.95 (– – – –), 0.997
(—— — —), 1.003 (· · · · · · ); (b) fo/f1 = 1 (———), 1.0003 (– – – –).

and glottal conductivities. During each cycle, the volume flux profile exhibits a single
maximum that is in phase with the corresponding variation of the glottal area ratio
Ag/AL shown in figure 4(b); this is typical of all cases in which the glottal frequency
fo is not close to a subharmonic of the resonance frequency f1. The corresponding
free space sound pressure (figure 4c) is forced, periodic at the glottis frequency fo (in
agreement with Titze’s (2008) numerical treatment of a duct-like model of the vocal
tract).

The shape of the volume flux waveform changes rapidly when the glottal frequency
fo is very close to the resonator frequency f1. At fo/f1 = 0.95, the predicted variation
of Q/Q′ (figure 5a) is similar to that in figure 4 for fo/f1 = 0.6. As fo increases
or decreases towards f1, however, it is clear by inspection of the curves for
fo/f1 = 0.997 and 1.003 in figure 5(a) that the component of Q of frequency fo

is increasingly suppressed, and that ultimately the motion is dominated by volume
flux oscillations at twice the frequency (2fo = 2f1). This is analogous to the situation
in which the cavity is used to filter sound of frequency f1 – under ideal circumstances
a wave of this frequency incident from x1 = −∞ on a constant area glottis would
be totally reflected (Lighthill 1978). In the present case of a constant subglottal
overpressure 2pI, throttling of the steady mean flow at fo = f1 causes pulsatile entry
of air into the cavity at frequency 2fo. Actually, the solid-line curve in figure 5(b)
indicates that the volume flux waveform is not precisely periodic at frequency 2fo

when fo = f1. This presumably reflects changes in the effective resonance frequency
of the cavity produced by nonlinearity and its weak dependence on the glottis cross-
section Ag and slug length �̄. Also, according to (4.7) the linear acoustic resonance
frequency does exceed Ω . This appears to be confirmed by the broken-line plot in
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Figure 6. Volume flux ratio Q/Q′ and the free space acoustic wave profile pcor/pIf1AL

for the subharmonic frequencies fo/f1 = 1/3, 1/2 for the conditions of figure 4: (a) Q/Q′:
fo/f1 = 1/3 (———); fo/f1 = 1/2 (– – – –). (b) pcor/pIf1AL: fo/f1 = 1/3 (———); fo/f1 = 1/2
(– – – –).

figure 5(b) for fo = 1.0003f1 ≡ 1.0003Ω/2π; the volume flux is now noticeably more
periodic at frequency 2fo.

In this special case in which fo = f1, the acoustic radiation is dominated by the
contribution from the cavity resonance frequency, the amplitude being very large
because of the resonant growth of the pressure fluctuations within the cavity. A
similar resonant enhancement of the sound occurs for excitation at subharmonics of
the resonance frequency, i.e. for fo = f1/2, f1/3, f1/4, . . . , when f1 is a harmonic of
the glottal frequency fo. Then, the overall sound pressure is periodic at the glottal
frequency fo, but nonlinearity causes a transfer of energy to the resonance frequency
of the cavity, and the resulting energy storage within the cavity causes the sound
to be dominated by this source. This is illustrated in figure 6 for the principal
subharmonics fo/f1 = 1/3, 1/2. The near-triangular waveform of the variations of Q

in figure 6(a) for fo/f1 = 1/2 (as compared, for example, with the more characteristic
rounded waveform in figure 4a) indicates the presence of strong nonlinear interactions.
Figure 6(b) confirms that the corresponding acoustic pressure (dashed line) is periodic
with frequency fo, although the sound is dominated by fluctuations at the resonance
frequency f1 = 2fo. Nonlinear effects change rapidly with frequency when fo is close
to f1/2; this causes the peak in the symmetric triangular form of the volume flux
profile in figure 6(a) to be skewed to smaller/later times accordingly as fo

<
> f1/2

(cf. Titze 2008). The same sort of interactions dominate the production of sound at
fo/f1 = 1/3, although nonlinearity is now much less important, and figure 6(b) shows
that the acoustic amplitude is very much reduced.

This type of skewing has been noted in numerical studies by Titze (2008), but over a
much broader range of frequencies in the neighbourhoods of formant subharmonics.
The broadening is presumably a consequence of the elevated and more realistic
levels of tissue-related damping considered in Titze’s analysis, which controls both
the heights and widths of resonance peaks. The present results show, however, that
skewing of the volume flux wave profile is not necessary to generate voice harmonics,
which arise purely as a result of the nonlinearity of the Fant equation.
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Figure 7. The peak free space acoustic pressure level 10 log10{|p|maxcor/pIf1AL} (dB) with
(———) and without (– – – –) the cavity resonator, for the conditions of figure 4. The peaks
visible to the left of the main peak for the resonator case occur at the subharmonics
fo/f1 = 1/4, 1/3, 1/2.

The solid-line curve in figure 7 provides an overall picture of the efficiency
of sound generation at different frequencies. This is a plot against fo/f1 of the
maximum sound pressure level 10 log10(|p|maxcor/pIf1AL) (dB) in the far field at
distance r from the cavity mouth. The curve is peaked at fo = f1 and at the visible
subharmonic frequencies, at which the sound is dominated by the contribution from
the cavity resonance. The widths of these peaks are determined by damping of the
cavity oscillations; this is a combination of radiation losses into the lung complex
and nonlinearity in the glottal flow. The peaks would be broadened in practice
by additional tissue-related dissipative mechanisms. At all other frequencies, the
dominant sound occurs at the forcing frequency fo of the glottal oscillations, but the
amplitude is still influenced by cavity back-reaction.

The dashed curve is the corresponding maximum sound pressure level when the
cavity resonator is removed, i.e. for the configuration of figure 1 where the sound is
always forced at the glottal frequency fo. The calculation for this case is performed by
replacing the system (4.2) by (2.30) for the volume flux Q, and the acoustic pressure
p = −ρo∂ϕ/∂t is calculated at distance r from the glottis using (1.1). This comparison
illustrates the extent to which the back-reaction of the cavity on the glottis acts to
increase acoustic levels over a wide range of non-subharmonic frequencies. The effect
disappears at very low frequencies, for fo � 0.2f1, say, when the cavity has little or
no influence on the radiation, and the unsteady flux from the resonator mouth is in
phase and equal to that from the glottis.

5. Conclusion
Unsteady flow from an orifice into free space is a source of ‘monopole’ sound. The

source strength Q(t) is equal to the volume flux from the orifice. When the orifice
exhausts into a through-flow cavity, the subsequent radiation from the cavity exit is
‘filtered’ by cavity resonances. Classical acoustics represents the sound pressure (in
free space for the case discussed in § 2, or within the cavity for the resonators of §§ 3,
4 and the Appendix) directly as the linear functional

p(x, t)

ρo

= −
∫ ∞

−∞
Q(τ )

∂Go

∂τ
(x, t − τ ) dτ, (5.1)
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where Go denotes the acoustic ‘source-filter’ Green’s function for a source just
downstream of the throttle when the latter is closed. Voicing theory determines
Q from the ‘reduced complexity’ Fant equation, which is similar to the Cummings
equation used to solve throttling problems in engineering acoustics. Our theory of
Fant’s equation is based on Lighthill’s theory of aerodynamic sound, which supplies
a representation of the sound pressure (as in (2.3)) in terms of the mean flow, the
throttling mechanism and the back-reactions on the orifice flow of cavity resonances
and ‘jetting’. A self-consistent Fant equation is obtained by equating this alternative
representation to the right-hand side of (5.1).

When the throttle is time dependent, the aerodynamic sound problem is non-self-
adjoint and the Green’s function G required to solve Lighthill’s equation must be
determined as an advanced potential solution of the wave equation. For complex
systems, it is not possible to implement directly the procedure of the previous
paragraph because G cannot be obtained in a convenient analytical form. In these
circumstances,

p(x, t)

ρo

=

∫ ∞

−∞
β(τ )F(τ ) dτ, (5.2)

where F(τ ) is given in terms of the aeroacoustic sources, and β(τ ) governs the
behaviour of G in the neighbourhood of the throttle and is the solution of

L(τ )β(τ ) =
∂Go

∂τ
(x, t − τ ), (5.3)

here L(τ ) being a known time-dependent, linear integro-differential operator.
Equations (5.1)–(5.3) and causality then yield Fant’s equation in the form

L̂(t)Q(t) = −F(t), (5.4)

where L̂ is the adjoint of L.
Two interesting conclusions have emerged from the application of (5.4) to voicing

and to the canonical problem of throttled flow into a Helmholtz resonator that have
hitherto been largely unremarked in speech science. First, there can be a substantial
loss into the subglottal tract when it is assumed to be completely non-reflecting,
although it may still be small compared to tissue-related damping. Second, and as
pointed out by Titze (2008), nonlinearity of the Fant equation implies that a skewed
glottal pulse is not a necessary prerequisite for the generation of voice harmonics.

This work was supported by a subaward of grant 1R01 DC009229 from the
National Institute on Deafness and other Communication Disorders to the University
of California, Los Angeles.

Appendix. Throttled flow into a circular cylindrical resonator
A summary overview is given here of the application of the ‘adjoint’ method

of § 3 to the configuration of figure 8, where the resonant cavity is a rigid-walled
circular cylinder of length L and cross-sectional area A, with axisymmetric openings
at x = 0, L corresponding respectively to the glottis and mouth of §§ 3 and 4. Consider
an ‘open’ mouth characterised by an end correction that increases the effective length
of the tract to x1 = L̄ > L, at which the acoustic pressure may be assumed to vanish.

Fant’s equation is derived by calculating the sound at an arbitrary point x in the
supraglottal tract by the method of linear acoustics for a given monopole source Q at
the glottis, and by application of Lighthill’s theory. The compact approximations (2.9)
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Figure 8. Throttled flow into the supraglottal tract modelled by a cylindrical tube of interior
length L and cross-section A. The Fant equation is derived by consideration of the sound
produced at an arbitrary point x within the body of the tract.

and (2.12) for the advanced potential Green’s function for positions y respectively
near and in the glottis and within the subglottal tract are still applicable. Within the
resonator the compact approximation is

G =
AL

2πA

∫∫ ∞

−∞

sin[ko(y1 − L̄)]

ko cos(koL̄)
β(ξ )e−iω(ξ−τ ) dω dξ

− 1

2πA

∫ ∞

−∞

{
H (x1 − y1) cos(koy1) sin[ko(x1 − L̄)]

+ H (y1 − x1) cos(kox1) sin[ko(y1 − L̄)]
}e−iω(t−τ ) dω

ko cos(koL̄)
, (A 1)

where ko = ω/co, and the integrations with respect to ω are taken along paths that
pass above singularities in the ω-plane. Matching of the glottal and supraglottal
formulae for G requires that G given by (A 1) should equal α(τ ) as y1 → +0, so that

α(τ ) = − AL

2πA

∫∫ ∞

−∞

sin(koL̄)

ko cos(koL̄)
β(ξ )e−iω(ξ−τ ) dω dξ

− 1

2πA

∫ ∞

−∞

sin[ko(x1 − L̄)]

ko cos(koL̄)
e−iω(t−τ ) dω. (A 2)

By evaluating the ω-component of the first integral on the right-hand side, and
substituting into (2.14), we find that β is determined by

∂

∂τ
(�̄β) − coβ − 2ALc2

o

AL̄

∞∑
n=0

∫ ∞

−∞
β(ξ )H (ξ − τ ) cos

[(
n +

1

2

)
πco

L̄
(ξ − τ )

]
dξ

= − ico

2πA

∫ ∞

−∞

sin[ko(x1 − L̄)]

cos(koL̄)
e−iω(t−τ ) dω. (A 3)

The term on the right-hand side is equal to ∂Go/∂τ , where Go(x1, t −τ ) is the compact
cavity acoustic Green’s function for a source just downstream of the glottis when the
latter is closed (i.e. the second term on the right-hand side of (A 1) as y1 → +0).

It may now be asserted, as before, that the required Fant equation is

�̄
∂Q

∂t
+ coQ +

2ALc2
o

AL̄

∞∑
n=0

∫ ∞

−∞
Q(ξ )H (t − ξ ) cos

[(
n +

1

2

)
πco

L̄
(t − ξ )

]
dξ = F(t),

(A 4)

where F(t) is defined as in (2.19).
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The proof (by the procedure described in § 3.2 for (3.7)) depends on showing that
Q determined by

ico

2πA

∫∫ ∞

−∞

Q(τ ) sin[ko(x1 − L̄)]

cos(koL̄)
e−iω(t−τ ) dω dτ =

∫ ∞

−∞
β(τ )F(τ ) dτ (A 5)

corresponds to the unsteady glottal flux. In other words, that the left-hand side of
(A 5) is just the acoustic field of a monopole source at y1 = 0 predicted according to
linear acoustics.

The right-hand side of (A 5) is the acoustic field B(x1, t) within the supraglottal
tract produced by lung contraction and the jet vorticity. When this field is represented
by the plane wave velocity potential Φ(x1, t) produced by the glottal monopole flow,
then (A 5) implies that

∂Φ

∂t
(x1, t) = − ico

2πA

∫∫ ∞

−∞

Q(τ ) sin[ko(x1 − L̄)]

cos(koL̄)
e−iω(t−τ ) dω dτ, (A 6)

from which it follows that

lim
x1→+0

A
∂2Φ

∂t∂x1

=
∂

∂t

(
1

2π

∫∫ ∞

−∞
Q(τ ) e−iω(t−τ ) dω dτ

)
=

∂Q

∂t
, (A 7)

and therefore that Q(t) is indeed the glottal flux.
The explicit form of the Fant equation (A 4) is

�̄
∂Q

∂t
+ coQ +

∫
V (t)

∂Y

∂ y
· ω ∧ v d3 y

+
2ALc2

o

AL̄

∞∑
n=0

∫ t

0

Q(τ ) cos

[(
n +

1

2

)
πco

L̄
(t − τ )

]
dτ =

2ALpI

ρo

H (t). (A 8)
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