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Abstract

Between the accelerator and fusion chamber, the heavy ion beams are subject to a dramatic but vital series of manipu-
lations, some of which are carried out simultaneously and involve large space charge forces. The beams’quality must be
maintained at a level sufficient for the fusion application; this general requirement significantly impacts beam line
design, especially in the considerations of momentum dispersion. Immediately prior to final focus onto a fusion target,
heavy ion driver beams are compressed in length by typically an order of magnitude. This process is simultaneous with
bending through large angles to achieve the required target illumination configuration. The large increase in beam
current is accommodated by a combination of decreased lattice period, increased beam radius, and increased strength of
the beamline quadrupoles. However, the large head-to-tail momentum tilt~up to 5%! needed to compress the pulse
results in a very significant dispersion of the pulse centroid from the design axis. General design features are discussed.
A principal design goal is to minimize the magnitude of the dispersion while maintaining approximate first order
achromaticity through the complete compression0bend system. Configurations of bends and quadrupoles, which achieve
this goal while simultaneously maintaining a locally matched beam-envelope, are analyzed.
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1. INTRODUCTION

Conceptual heavy ion driver systems for inertial fusion en-
ergy generally require multiple high power ion pulses of
very short duration on the fusion target to achieve an effi-
cient implosion of the fusion capsule. Typically, this might
be made up of 84 separate beams of 2.5 GeV Cs1, each with
2.0 kA and 10 ns duration. Such short pulses cannot be
accelerated effectively using induction linac technology, so
drift compression by about an order of magnitude between
the linac and the final focus system is employed. Several
novel features of beam dynamics arise simultaneously in
this compression zone. The high currents are confined by
quadruples in a FODO configuration, with bends located in
the drift sections or in combined function to achieve the
desired system configuration. Bends are included in a driver
between the accelerator and target for several reasons. These
include achieving symmetric illumination, separating beams
for final focus, removing line-of-sight neutrons, and to lay
out delay lines if needed. In this article we address some

dynamical and design features associated with the bend sys-
tems involved in transporting the beams from the accelera-
tor to the vicinity of the fusion chamber. This section typically
may be 400 m in length and include about 100 bend magnets
per beam channel. Bending is primarily in the horizontal
plane and typically includes both positive and negative arcs,
which add up to a net 908 turn ~see Fig. 1!. Pulse compres-
sion in time proceeds throughout the driver system, primar-
ily due to acceleration, while pulse length as measured in
meters typically only decreases by a factor of about four
in the linac. These features of the driver system are apparent
in Figure 2. The beam is typically 5.0 m in length at the end
of the linac and must be further compressed to about 0.5 m
before final focus.

To compress a beam pulse, a head-to-tail velocity tilt of
several percent is applied during the final stages of acceler-
ation in the linac~de Hoonet al., 2003!. The initial magni-
tude of the tiltt 5 ~yT 2 yH !0y0 is approximately equal to
the ratio of the initial pulse length~in meters! to the drift
distance. This ratio is typically in the range 0.02# t # 0.1.
The larger figure is associated with high perveance beams
~see Eq.~1!! that are associated with short drift compression
lengths and bend arcs with small radii of curvature. In these
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circumstances we expect dispersion of the beams’ centroids
to be a very significant feature of the dynamics~Leeet al.,
1987!. Current rises steadily during compression and this
requires either the beam radius to increase or the lattice
period length to decrease simultaneously. Quadrupole field
strength at the beam edge also increases along the system.
Roughly, the dimensionless generalized perveance Q is re-
lated to the lattice period length~P! and the mean beam
edge radius~ Sa! by the space charge limit:

2qI

4p«0~bg!3mc3 [ Q ' 1.4
Sa2

P2 , ~1!

where we have taken the undepressed lattice tune to bes05
728 per period. HereI is the beam current,q is the ion charge,
m is the ion mass,bgmc is the ion momentum, and«0 is the
permittivity of free space. IfP is held at a low constant value
to limit dispersion, thenSa is seen to increase asI 102.

Any segment of a beam pulse has momentum deviation
D # t02. Bends kick the segment away from the design orbit
by incremental angleD,B0r, where,B is the bend length
andr is the radius of curvature of the design orbit within the
bend.

Quadrupoles, on the average, push the beam segment
back toward the design orbit. A rough measure of the side-
ways displacement of the beam centroid~x! is obtained
from the matched smooth limit formula where

0 5 x '' 5 2Ss0

P
D2

x 1
D

^r&
, ~2!

^r& is the local curvature of the design orbit andD is local
fractional momentum deviation. For example:r 5 50 m,
D 5 0.02,s0 5 728, andP5 3.0 m yields the matched value
x 5 2.3 mm. A critical question is whether the dispersion
x~z! of a beam segment remains in a matched state with only
small amplitude oscillations while the lattice and beam pa-
rameters change. Furthermore, it is desirable that the entire
pulse enters the final focus system essentially on axis, that
is, the system is globally achromatic. There is no simple
principle of design that will guarantee these features for a
single segment of a pulse, let alone for the entire pulse.
However, we find ample evidence from numerical analysis
that an “adiabatic” variation of lattice features will suffice.
That is, if^r&, I, andP vary slowly on the scale of a betatron
wavelength, the dispersion, as well as the beam envelope
may remain in a nearly matched condition. Since there does
not appear to be a developed mathematical basis for this
strategy, it must be verified by numerical examples.

Equations~1! and~2! suggest several design principles.
First, there is a strong economic motive to makeP short
when Q is large since this makes the beam radius small.
However, high quadrupole field strength generally puts a
lower limit on P in this case. We also see that the ratiox0a
is proportional toP0!Q; this suggests the desirability of
smallP early in compression. Small, constantP throughout
the entire bend0compression system is therefore a reason-
able design strategy, which we adopt, in the numerical ex-
amples in this work.

There has been very little previous study of dispersion in
HIF driver scale final compression systems and little is known
about the resulting aberrations and emittance growth. The
features of large perveance and large, variable tilt make
existing single particle formalism~Wenget al., 1989! and
codes largely inapplicable. To make a start on this topic we
adopt a “point model” for a beam segment that includes the
main forces acting on it in an approximate fashion~Sec-
tion 2!. In this study of the beam centroid dispersion and
envelope during drift compression in bends, model equa-
tions are integrated using a simple Mathematicat code. The
model assumptions are:~1! KV envelope equations for beam
radii in the x ~i bend plane! and y ~vertical! directions;
~2! a centroid equation, which includes: image forces, off-
momentum slices from velocity tilt, and non-linearity inD;
~3! a longitudinal envelope equation based on a constant
g-factor model for calculating the longitudinal space charge
force; ~4! Discrete bend and quadrupole elements. The lat-
tice period, focusing strength and perveance are allowed to
vary withz. The goal is to try to minimize dispersion through-
out the bend system and particularly the final centroid val-
ues ofx andx ' at exit of the bend system. For this study, the
parameters were those typical of a Heavy Ion Fusion~HIF!
“driver” ~see Table 1!.

Fig. 1. Induction linac system.

Fig. 2. Schematic layout of three half-lattice periods of the example pulse
compression line. Note that the beam and pipe radius as well as the bending
strength vary along the beamlines. We have adopted combined quadrupole
and bend elements in this study.
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2. MODEL EQUATIONS AND EXAMPLE
PARAMETERS

Four simultaneous equations are solved:

d2,

dz2 5
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Here, is the bunch length,x is the centroid position,a, b are
the envelopes in thex, y directions,q is the ion charge,m is
the ion mass,v0, p0,g are the central ion velocity, momen-
tum, and Lorentz factor;p is the particular ion momentum of
the segment;r0 is the instantaneous radius of curvature of
the design orbit,G is the quadrupole gradient;R is the pipe
radius;kL is the longitudinal focusing coefficient~kL van-
ishes in the drift section!, «N is the normalized emittance,
C is the total charge in each beam, and«0 is the permit-
tivity of free space. We assume that the pulse evolves self-
similarly with a parabolic line charge densityl satisfying
l 5 3C~1 2 4z20,2!0~2,! for 6z0~,02!6 # 1 and slice mo-
mentum satisfiesp0p0 5 1 1 , 'z0,, wherez is the slice
position relative to the bunch center, withz0, constant for
each beam segment.

3. BEND STRATEGIES

We consider three design strategies for placing bends in a
drift compression lattice:~1! Abrupt bends, in which all
bends are full strength. This is the simplest configuration
from which to compare improved designs.~2! Matched
bends. Here we choose bends of half-strength over a dis-
tance equal to one-half of the undepressed betatron period.
The centroid will enter the full-strength section at the peak
of the amplitude of a half-strength bend centroid betatron
orbit, with x ' ' 0 ~in the smooth focusing approximation!.
This will be close to the matched condition for a full-
strength bend, and hence subsequent bends are at full
strength.~3! Adiabatic bend. In this design strategy, a grad-
ual ramp-up of bend strength over several betatron periods
is carried out, keeping centroid and envelope oscillations
“matched” at low amplitude. Figure 2 illustrates three ge-
neric half-lattice periods for all three design strategies.

Table 1. Parameters used in this study

Parameter Value

Charge state~q0e! 1
Ion mass~amu! 132.9
Ion energy~GeV! 2.43
Initial current per beam at accel. exit~A! 103.4
Final current beam~A! 2254
Compression factor 21.8
Final perveance Q 0.000181
Velocity tilt ~Dv0v! 20.031
Total drift length~m! 502.3
Beam radius evolution a ;!Q0Q0

Lattice period evolution L ; constant

Parameters are typical of what is expected for an HIF “driver.”

Fig. 3. Inverse instantaneous radius of curvature~m21! as a function of
axial distance~m! for ~a! an abrupt bend,~b! a matched bend, and~c! an
adiabatic bend, using driver parameters of Table 1. Peak strength is shown,
with bend occupancy of 0.65.
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4. COMPARISON OF THE BEND STRATEGIES

Figure 3a–c illustrates the layout of instantaneous radius of
curvature of the bend centroid using bend strategies 1–3,
respectively. The bunch length, is undergoing compression
in all three scenarios and is found by integration of Eq.~3!.
Figure 4 illustrates the evolution of, with z.

The evolution of the centroid for an off-momentum seg-
ment of the beam varies according to which bend scenario is
selected. Since bunch compression intrinsically requires the
velocity of the beam to systematically vary from tail to head,
systematic velocity dispersion is an essential feature of bunch
compression; it is assumed that the thermal spread of veloc-
ities is insignificant. From Figure 5, it is apparent that the
abrupt turn-on of the bend has greatest dispersion and larg-
estx ' upon exit from the bend, whereas the “matched” and
“adiabatic” designs have smaller excursions and terminate
the bend with little residual centroid displacement or angle.

5. SUMMARY AND CONCLUSIONS

In this article, we have shown the effect of three different
bending scenarios on the beam centroid for different longi-
tudinal slices of the beam~and hence different longitudinal
velocities!.

An abrupt turn-on of the bend induces a centroid mis-
match for off-momentum slices, and does not return the slice
to the center of the beamline upon exit of the bend.This would
increase the requirement on pipe radius throughout the drift
compression section and would lead to an enlargement of the
spot on target if not corrected using time-dependent steering.

Matched designs in which the bend ramps at about half-
strength for half of a betatron period reduce both maximum
pipe radius and final centroid displacement, as do adiabatic
designs in which the bend strength ramps up and down over
several betatron periods. Adiabatic designs appear more
robust, however, allowing greater flexibility in choice of
tune and beam parameters, with minimal penalty in bend
length or bend strength.
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