
TLP 15 (4–5): 681–695, 2015. C© Cambridge University Press 2015

doi:10.1017/S1471068415000319

681

Semantics of templates in a compositional
framework for building logics

INGMAR DASSEVILLE, MATTHIAS VAN DER HALLEN,

GERDA JANSSENS and MARC DENECKER

KU Leuven

(e-mail: firstname.lastname@cs.kuleuven.be)

submitted 29 April 2015; revised 3 July 2015; accepted 15 July 2015

Abstract

There is a growing need for abstractions in logic specification languages such as FO(·) and

ASP. One technique to achieve these abstractions are templates (sometimes called macros).

While the semantics of templates are virtually always described through a syntactical rewriting

scheme, we present an alternative view on templates as second order definitions. To extend the

existing definition construct of FO(·) to second order, we introduce a powerful compositional

framework for defining logics by modular integration of logic constructs specified as pairs of

one syntactical and one semantical inductive rule. We use the framework to build a logic of

nested second order definitions suitable to express templates. We show that under suitable

restrictions, the view of templates as macros is semantically correct and that adding them

does not extend the descriptive complexity of the base logic, which is in line with results of

existing approaches.

KEYWORDS: compositionality, modularity, templates, macros, semantics, second order logic

1 Introduction

Declarative specification languages have proven to be useful in a variety of applica-

tions, however sometimes parts of specifications contain duplicate information. This

commonly occurs when different instantiations are needed of an abstract concept.

For example, in an application, we may have to assert of multiple relations that they

are an equivalence relation, or multiple relations of which we need to define their

transitive closure. In most current logics, the constraints (e.g., reflexivity, symmetry

and transitivity) need to be reasserted for each relation.

In the early days of programming, imperative programming languages suffered

from a similar situation where code duplication was identified as a problem. The first

solution proposed to this was the use of macros, where a syntactical replacement

was made for every instantiation of the macro. For specification languages, the

analog for macros was introduced (e.g. in ASP), most often called templates. These

allow us to define a concept and instantiating it multiple times, without making the

language more computationally complex. Asserting that the two relations P and Q

are equivalence relations could be done using a template isEqRelation as follows:

https://doi.org/10.1017/S1471068415000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000319

682 I. Dasseville et al.

Example 1: This example defines an equivalence relation

{isEqRelation(F) ←
∀a : F(a,a).

∀a,b : F(a,b) ⇔ F(b,a).

∀a,b,c : (F(a,b) ∧ F(b,c)) ⇒ F(a,c).

}

isEqRelation(P) ∧ isEqRelation(Q).

In existing treatments of templates, their semantics is given in a transformational

way, essentially by translating them away as if they were macros. This appraoch

has its limitations. An intellectually more gratifying view, certainly in a declarative

setting, is that templates are higher order definitions. This allows for a much more

general treatment. In some interesting cases, these higher order template definitions

are recursive (see Example 4). In others, like the template symbol tc(P ,Q) specifying

P as the transitive closure of Q, the definiens is itself an inductive definition (see

Example 2) nested in the template definition of tc.

The goal of this work is to introduce a declarative template mechanism for the

language FO(·). This logic posesses an expressive first order definition construct in

the form of rules under well-founded semantics which was shown suitable to express

informal definitions of the most common types (Denecker and Vennekens 2014). We

want to extend FO(·)’s definition construc of to nested higher order definitions.

In the first part of this paper, we present a compositional framework for building

an infinite class of logics. This framework specifies a principled way for building

rule formalisms under well-founded and stable semantics from arbitrary logics, and

ways to compose and nest arbitrary language constructs including higher order

symbols, rule sets and aggregates. In the second part we use this framework to

build a template formalism. As a last contribution we show that under suitable

conditions, the standard approach of templates as rewriting macros also works in

this formalism, thus recovering the results of existing approaches.

2 Related work

Abstraction techniques have been an important area of research since the dawn of

programming (Shaw 1984). Popular programming languages such as C++ consider

templates as a keystone for abstractions (Musser et al. 2009). Within the ASP

community, work by Ianniet al. (Ianni et al. 2004) and Baralet al. (Baral et al.

2006) introduced concepts to support composability, called templates and macros

respectively. The key idea is to abstract away common constructs through the

definition of generic ‘template’ predicates. These templates can then be resolved

using a rewriting algorithm.

More formal attempts at introducing more abstractions in ASP were made. Dao-

Tranet al. introduced modules which can be used in similar ways as templates

(Dao-Tran et al. 2009) but has the disadvantage that his template system introduces

additional computational complexity, so the user has to be very careful when trying

to write an efficient specification.

https://doi.org/10.1017/S1471068415000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000319

Semantics of templates in a compositional framework for building logics 683

Previously, meta-programming (Abramson and Rogers 1989) has also been used

to introduce abstractions, for example in systems such as HiLog (Chen et al. 1993).

One of HiLogs most notable features is that it combines a higher-order syntax with

a first-order semantics. HiLogs main motivation for this is to introduce a useful

degree of second order yet remain decidable. While decidability is undeniably an

interesting property, the problem of decidability already arises in logic programs

under well-founded or stable semantics, certainly with the inclusion of inductive

definitions: the issue of undecidability is not inherent to the addition of template

behavior. As a result, in recent times deduction inference has been replaced by

various other, more practical inference methods such as model checking, model

expansion, or querying. Furthermore, for practical applications, we impose the

restriction of stratified templates for which an equivalent first-order semantics exists.

An alternative approach is to see a template instance as a call to another theory,

using another solver as an oracle. An implementation of this approach exists in

HEX (Eiter et al. 2011). This implementation however suffers from the fact that the

different calls occur in different processes. As a consequence, not enough information

is shared which hurts the search. This is analog to the approach presented in

(Tasharrofi and Ternovska 2011), where a general approach to modules is presented.

A template would be an instance of a module in this framework, however the

associated algebra lacks the possibility to quantify over modules.

Previous efforts where made to generalize common language concepts, such as the

work by Lifschitz (Lifschitz 1999) who extended logic programs to allow arbitrary

nesting of conjunction ∧, disjunction ∨ and negation as failure in rule bodies. The

nesting in this paper is of very different kind, by allowing the full logic, including

definitions itself, in the body.

3 Preliminaries

Symbols. We assume an infinite supply of (typed) symbols. A vocabulary Σ is a set

of (typed) symbols. For each symbol σ, τ(σ) is its type. For a tuple σ̄, τ(σ̄) denotes

the tuple of types.

An untyped logic is one with a single type. But for the purposes of this paper, it

is natural to use at least a simple form of typing, namely to distinguish between first

order symbols and the second order (template) symbols. We distinguish between

base types (some of which may be interpreted, e.g., �,�) and composite types. A

simple type system that suffices for this paper consists of the following types:

• base types δ and �; δ represents the domain;

• first order types: n-ary predicate types δn → � and function types δn → δ. As

usual, propositional symbols and constants are predicate and function symbols

of arity n = 0.

• second order types: n-ary predicate types (τ1, . . . , τn) → � with each τi a first

order type or δ.

This is the type system that we have in mind in this paper. It suffices to handle

untyped first order logic and second order predicates (no second order functions are

https://doi.org/10.1017/S1471068415000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000319

684 I. Dasseville et al.

needed). However, the framework below is well-defined for much richer type systems

(including higher order types, type theory).

(Partial) values. For interpreted base types, there is a fixed domain of values. E.g.,

the domain of the boolean type � isTwo = {t, f}. For other base types τ, the domain

of values is chosen freely. For composite types, the set of values is constructed from

the values of the base types.

For the simple type system above, the values of all types are determined by the

choice of the domain associated with δ. For any domain D, we can define the

domain τD of any type τ as follows:

• δD = D, �D =Two

• first order predicates: (δn → �)D is the set of all functions from Dn to Two (or

equivalently, the set of all subsets of Dn). For first order functions, (δn → δ)D is

the set of all functions from Dn to D.

• second order predicates: ((τ1, . . . , τn) → �)D is the set of all functions from

τ1
D × · · · × τn

D to Two.

To define the semantics of inductive definitions, partial values for predicates are

essential (since only predicates are defined in the logics of this paper, we do not

introduce partial values for functions). A partial set on domain D is a function from

D to Three = {t, u, f}. A partial value of a predicate type τ′ = (τ̄→ �) in domain D

is a partial set with domain τ̄D .Three extendsTwo and is equipped with two partial

orders: the truth order � is the least partial order satisfying f � u � t, the precision

order �p the least partial order satisfying u �p f , u �p t. The orders � and �p on

Three are pointwise extended to partial sets. u is seen as an approximation of truth

values, not as a truth value in its own right. A partial set that is maximally precise

has range Two and is called exact. A partial set S is seen as an approximation of

any exact set S for which S�p S .

(Partial) Interpretations. A partial Σ-interpretation I consists of a suitable domain

τI for every type τ in Σ (which is the set of partial sets on τd
I in case τ is a

predicate type with domain type τd), and for every symbol σ ∈ Σ of type τ a value

σI ∈ τI. An exact Σ-interpretation is one that assigns exact values. The class of

partial Σ-interpretations is denoted Int(Σ); the class of exact Σ-interpretations is

Int(Σ).

The precision order �p and truth order � are extended to partial interpretations

in the standard way: I�pI′ if I,I′ interpret the same vocabulary Σ, have the same

values for all types and non-predicate symbols, and PI�p P
I′ for every predicate

symbol P ∈ Σ. Likewise for the truth order �. We use I to denote a partial

interpretation (which may be exact) and I to denote an exact interpretation.

The restriction of a Σ-interpretation I to Σ′ ⊆ Σ is denoted as I|Σ′ . If I is a

partial Σ-interpretation, σ a symbol (that might not belong to Σ) and v a well-typed

value for σ, then I[σ : v] is the (Σ∪ {σ})-interpretation identical to I except that v

is the value of σ.

Given an interpretation I of at least the types of Σ, a domain atom of an n-

ary predicate symbol P ∈ Σ of type τ̄ → � in I is a pair (P , d) where d ∈ τ̄I.

https://doi.org/10.1017/S1471068415000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000319

Semantics of templates in a compositional framework for building logics 685

It is denoted as P (d). If I interprets P , a domain atom P (d) has a truth value

P (d)I = PI(d).

For any v ∈ Three and set X of domain atoms of partial interpretation I,

we denote I[X : t] the interpretation identical to I except that each A ∈ X is

true; similarly for I[X : u],I[X : f]. We may concatenate such notions and write

I[X : u][Y : f], with the obvious meaning (first revising X, next revising Y).

Logics Lυ . A logic is specified as a pair (L, υ) (denoted Lυ) such that L is a

function mapping vocabularies Σ to setsL(Σ) of expressions over Σ, and υ is a two-

valued or three-valued truth assignment. An expression ϕ of L(Σ) has free symbols

in Σ; it may contain other symbols provided they are bound by some scoping

construct in a subexpression of ϕ (e.g., a quantifier). If Σ ⊆ Σ′, then L(Σ) ⊆ L(Σ′).

A (three-valued) truth assignment υ maps tuples (ϕ,I) where I interprets all

free symbols of ϕ, to Three. This function satisfies the following properties:

(1) if ϕ ∈ L(Σ), Σ ⊆ Σ′ and I is a Σ′-interpretation, then ϕυ:I = ϕυ:I|Σ; (2)

exactness: ϕυ:I ∈ Two for every exact interpretation I; (3) �p -monotonicity: if

I�pI′ then ϕυ:I�p ϕ
υ:I′ . A two-valued truth assignment υ is defined only for

exact interpretations and satisfies (1) and (2).

Definition 3.1

We say that two formulas ϕ1 and ϕ2 over Σ1 and Σ2 respectively are Σ-equivalent,

with Σ ⊆ (Σ1 ∩Σ2), if for any interpretation I over Σ, there exists an expansion I1 to

Σ1 for which ϕυ:I1 = t iff there exists an expansion I2 of I to Σ2 for which ϕυ:I2 = t.

If in addition Σ1 = Σ2 = Σ, we call ϕ1 and ϕ2 equivalent; hey have the same truth

value in all Σ-interpretations.

4 Well-founded and stable semantics for L-rule sets

In this section, we show that for each logicLυ with a three-valued truth assignment

υ, it is possible to define a rule logic under a well-founded and under a stable

semantics. Let Lυ be such a logic.

Definition 4.1

An L-rule over Σ is an expression ∀x(P (x) ← ϕ) with P a predicate symbol in Σ,

x a tuple of “variable” symbols and ϕ ∈ L(Σ ∪ {x}). An L-rule set over Σ is a set

of L-rules over Σ. Rule sets will be denoted with Δ.

The set Def(Δ) is the set of predicate symbols P ∈ Σ that occur in the head of a

rule. Par(Δ) is the set of all other symbols that occur in Δ. Elements of Def(Δ) are

called defined symbols, the other ones are called parameters of Δ.

Definition 4.2

A context O of a L-rule set Δ is a Σ \ Def(Δ)-interpretation.

For a given context O, the set {I | I|Par(Δ) = O} of partial Σ-interpretations

expanding O is isomorphic to the set of partial sets of domain atoms of Def(Δ) in O.

Thus, given O, a partial set of domain atoms specifies a unique partial interpretation

I expanding O and vice versa.

https://doi.org/10.1017/S1471068415000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000319

686 I. Dasseville et al.

We call a set of domain atoms a t-set, respectively u-set, f -set of partial

interpretation I if its elements have truth value t, respectively u, f in I.

Definition 4.3

A partial interpretation I is closed under Δ if for any domain atom P (d) and rule

∀x(P (x)← ϕ) ∈ Δ, if ϕ[d]
υ:I

= t then P (d)
υ:I

= t.

Definition 4.4

An unfounded set of Δ in I is a u-set U of defined domain atoms in I, for which

every atom P (d) ∈ U and rule ∀x(P (x)← ϕ) ∈ Δ, ϕ[d]
υ:I[U:f]

= f .

Definition 4.5

A partial interpretation I extending context O is a partial stable interpretation of Δ

if

1. for each domain atom P (d), P (d)I = Max�{ϕ[d]
υ:I | ∀x(P (x)← ϕ) ∈ Δ};

2. (prudence) there exists no non-empty t-set T and no (possibly empty) u-set U of

I such that I[T : u][U : t] is closed under Δ;

3. (braveness) the only unfounded set of Δ in I is ∅.

Definition 4.6

We call a partial interpretation I a well-founded interpretation of Δ if I is the

�p -least partial stable model I′ of Δ such that I′|Par(Δ) = I|Par(Δ).

Definition 4.7

We call an (exact) interpretation I a stable interpretation of Δ if I is an exact partial

stable model of Δ.

Given that a stable I has only the empty u-set, conditions (2) and (3) simplify to

that there is no non-empty t-set T of I such that I[T : u] is closed under Δ.

Proposition 4.8

Let ϕ,ϕ′ be equivalent under υ (same truth value in all partial interpretations). Then

substituting ϕ for ϕ′ in the body of a rule of Δ preserves the class of partial stable

(hence, well-founded and stable) interpretations.

Proof

This is trivial, since the conditions of partial stable interpretation are defined in

terms υ, which cannot distinguish ϕ from ϕ′. �

Two logics. Using the above two concepts we define two rule logics. Expressions in

both logics are the same: finite sets of rules.

Definition 4.9

For logic Lυ , we define logic R(Lυ)w where R(Lυ)(Σ) is the collection of finite rule

sets over Σ and w the two-valued truth assignment defined as Δw:I = t if I is an

exact well-founded interpretation of Δ and Δw:I = f otherwise.

Definition 4.10

For logic Lυ , we define the logic R(Lυ)st where R(Lυ)(Σ) is as above and st is the

two-valued truth assignment defined as Δst:I = t if I is an exact stable interpretation

of Δ and Δst:I = f otherwise.

https://doi.org/10.1017/S1471068415000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000319

Semantics of templates in a compositional framework for building logics 687

For the logic FOk , with FO first order logic and k the 3-valued Kleene truth

assignment (Kleene 1952), the rule formalism R(FOk)w corresponds to the (formal)

definitions in the logic FO(ID) (Denecker 2000; Denecker and Ternovska 2008)

while the formalism R(FOk)st corresponds to the rule formalism in the logic ASP-

FO (Denecker et al. 2012).

In (Denecker and Vennekens 2014), the relation between the main forms of

(informal) definitions found in mathematical text, and rule sets in R(FOk)w was

analyzed. Not all rule sets of R(FO) express sensible (informal) definitions, but for

those that do, the well-founded interpretations are exact and correctly specify the

defined sets. Therefore, a rule set Δ was called a paradox-free or total definition

in an exact context O if its well-founded interpretation expanding O is exact. For

paradox-free rule sets, w and st coincide. Important classes of rule sets are always

paradox-free: non-recursive, monotone inductive rule sets, and rule sets by ordered

or iterated induction over some well-founded induction order as defined in (Denecker

and Vennekens 2014).

5 Compositional framework for building logics with definitions

This section effectively defines an infinite collection of logics. We define composi-

tional constructs which add new expressions, such as definitions, to an existing logic.

By iterating such extension steps, these constructs can be nested.

5.1 Approximating boolean functions

We frequently need to extend a boolean function defined on a domain X of exact

values (e.g., Two, exact sets, exact interpretations, or tuples including these) to the

domain X, �p of partial values. Examples are the boolean functions associated

with connectives ¬,∧, . . . , or the truth assigments w and st of R(Lυ) defined on

Int(Σ). Given such a function F : X → Two, we search for an approximation

F : X →Three such that:

• �p -montone: if x �p y ∈ X then F(x) �pF(y);

• exact and extending: for x ∈ X, F(x) = F(x).

Definition 5.1

We define the ultimate approximation F̃ : X → Three of F by defining F̃(x) =

glb�p
{F(x) | x �p x} ∈ Three.

Proposition 5.2

F̃ is the most precise �p -monotone exact extension of F .

https://doi.org/10.1017/S1471068415000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000319

688 I. Dasseville et al.

Proof

�p -monotonicity follows from the transitivity of �p . Exactness, from the fact that

elements of Int(Σ) are maximally precise. That F̃ is the most precise approximation

of F is clear as well. �

Several important examples follow. For a standard connective c ∈ {∧,∨,¬,⇒,⇔}
with corresponding boolean function c :Twon →Two, the function c̃ :Threen →
Three is the three-valued truth function used in the Kleene truth assignment k .

The semantics of quantifiers ∀, ∃ and generalized quantifiers such as aggregates

are given by functions on sets (or tuples including sets). E.g., for quantification over

domain D these are the boolean functions ∀D, ∃D defined ∀D(S) = t iff D ⊆ S , and

∃D(S) = t iff D ∩ S �= ∅. Two commonly used numerical aggregate functions are

cardinality # and sum (the latter mapping (finite) sets S of tuples d̄ to
∑

d̄∈S d1).

For every numerical aggregate function Agg and boolean operator ∼ ∈ {=, <,>}
on numbers, the boolean function Agg∼ maps tuples (S, n) to t iff Agg(S)∼n.

For all these higher order boolean functions F , F̃ is the most precise approximation

on three-valued sets. The three-valued aggregate functions Ãgg∼ were introduced

originally in (Pelov et al. 2007) to define stable and well-founded semantics for

aggregate logic programs. The functions ∀̃D, ∃̃D are used in the Kleene truth

assignment k : let D be τ(x)I, and S = {(d, ϕk :I[x:d]) | d ∈ D}, i.e. the three

valued set mapping domain elements d ∈ D to ϕk :I[x:d]), one defines (∀x ϕ)k :I =

∀̃D(S) = Min�{S(d) | d ∈ D} = Min�{ϕk :I[x:d]) | d ∈ D}.
For any two-valued truth assigment υ on L, υ̃ is a sound three-valued truth

assignment. In case of FO and its truth assignment υ, υ̃ was introduced in (van

Fraassen 1966) where it was called the supervaluation s . s is not truth functional,

for if pI = qI = u, then (p ∨ ¬p)s:I = t �= (p ∨ q)s:I = u while the components of

the two disjunctions have the same supervaluation. A truth-functional definition of

a three-valued truth assignment is obtained by using the ultimate approximations of

the boolean functions associated to connectives and quantifiers. This yields exactly

the Kleene truth assigment k . It is �p -monotone, exact and extending, and strictly

less precise than s as can be seen from (p ∨ ¬p)k :I = u: the supervaluation “sees”

the logical connection between p and ¬p in this tautology while k does not.

Other applications serve to extend, for arbitrary logic Lυ , the two-valued well-

founded and stable truth assignments w and st on R(Lυ) to three-valued extensions

w̃, s̃t. Here, it holds that Δw̃:I = t (respectively f) if every (respectively, no) instance

I of I is a well-founded interpretation of Δ.

5.2 Composing logics by combining logic constucts

A standard way of defining the syntax of a logic is through a set of often inductive

syntactical rules, typically described in Backus Naur Form (BNF). The truth

assignment υ is then defined by recursion over the structure of the expressions.

Below, we identify a language construct C with a pair of a syntactical and a

semantical rule. The rules below construct, for a language construct C , a new logic

C(Lυ)υ
′
with expressions obtained by applying C on subexpressions of Lυ and υ′

https://doi.org/10.1017/S1471068415000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000319

Semantics of templates in a compositional framework for building logics 689

a truth assignment for C(L). Afterwards, complex logics with multiple and nested

language constructs can be built by iterating these construction steps.

• Atom1 and Atom2: for first order predicates p and second order ones P

respectively. t is a tuple of terms, x of variables.

Atom1 ::= p(t) where p(t)υ
′:I = pI(tI1 , · · · , tIn)

Atom2 ::= P (x) where P (x)υ
′:I = PI(xI1 , · · · , xIn)

• N-ary connectives c ∈ {¬,∧,∨,⇒,⇔},

c(Lυ) ::= c(α1, . . . , αn) where c(α1, . . . , αn)
υ′:I = c̃(α1

υ:I, · · · , αnυ:I)

• Generalized quantifiers C ∈ {∀, ∃, Agg∼}. Below, C〈x, α, z〉 denotes the syntactic

expression, e.g., ∀〈x, α〉 is ∀x α; Agg∼〈x, α, z〉 is Agg{x : α}∼z.

C(Lυ) ::= C〈x, α, z〉 where (C〈x, α, z〉)υ
′:I = C̃({(d, αυ:I[x:d])|d ∈ τ(x)I}, zI)

• Definitions as rule sets (Rw) (similarly, one could define Rst):

Rw(Lυ) ::= R(L) where Δυ′:I = Δw̃:I

where w is the well-founded assignment of R(Lυ) as defined in Section 4.

Building logics. Using the above rules of language constructs, an (infinite) class of

logics with three-valued semantics can be built. Moreover, every combination of the

above rules gives rise to a valid three-valued truth assignment.

Proposition 5.3
Every (sub)set of the above language constructs (possibly closed under recursive

application) defines a logic with a proper three-valued truth assignment (i.e. it is

�p -monotone, exact and extending).

For example, given a logicLυ , we defineL′υ
′
= R(Lυ)w̃ by one application of Rw

onLυ . By iterating Rw , logics (R(Lυ)w̃)n with nested definitions are built. Every BNF

in terms of the above language constructs now implicitly defines a three-valued logic.

The definition of first order logic FOk with k the standard three-valued Kleene truth

assignment, can be descibed in BNF or more compactly as {Atom1,∧,∨,¬, ∀, ∃}∗
(here ∗ indicates recursive application of the construction rules). The logic FO(ID)

defined in (Denecker and Ternovska 2008) is the union of logics FOk and R(FOk)w̃ .

A further extension is the new logic FO(ID∗) = {Atom1,∧,∨,¬, ∀, ∃, Rw}∗ which has

definitions nested in formulas and definition rule bodies. A logic in which templates

can easily be embedded is SO(ID∗) = {Atom1, Atom2,∧,∨,¬, ∀, ∃, Rw}∗. It is a second

order extension of FO(ID) which allows for nesting of definitions in rule bodies.

6 Templates

We envision a library of application independent templates in the form of second

order definitions that encapsulate prevalent patterns and concepts and that can be

used as building blocks to compose logic specifications. Below, we formally define the

concepts and show that non-recursive templates do not increase the computational

complexity of FO(ID∗) and can be eliminated by a rewriting process.

https://doi.org/10.1017/S1471068415000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000319

690 I. Dasseville et al.

6.1 Definition and usage

We assume the existence of a set of template symbols. A template is a context-

agnostic second order definition of template symbols. As such it should define

and contain only domain independent symbols: interpreted symbols and template

symbols. A template might define a template symbol in terms of other template

symbols and interpreted predicates, but not in terms of user-defined symbols.

Definition 6.1

The template vocabulary ΣTemp is the vocabulary consisting of all interpreted symbols

(such as arithmetic symbols) and all template symbols.

Definition 6.2

A template is a second order definition Δ over ΣTemp such that Def(Δ) consists of

template symbols.

Thus the set of parameters Par(Δ) of a template consists only of interpreted symbols

and template symbols.

The concepts used in Example 1 are now fully defined. Another common example

is the template tc expressing that Q/2 is the transitive closure of P/2, as shown in

Example 2. Note that this example cannot be written without a definition in the

body of the template, so this further motivates our choice to allow definitions in the

bodies of other definitions in our recursive construction of the logic SO(ID∗).

Example 2: This template TC expresses that Q is the transitive closure of P

{tc(P,Q) ←
{Q(x,y) ← P(x,y) ∨(∃ z: Q(x,z)∧Q(z,y))}.

}

Another notable aspect of this approach to templates is that recursive templates

are well-defined. This enables us to write recursive templates, for example to define

a range:

Example 3: P is the range of integers from a to b

{range(P, a, b) ←
{P(a).

P(x) ← a < b ∧ (∃ Q : range(Q,a+1,b) ∧ Q(x)).

}

}

It is possible to rewrite Example 3 into a non-recursive template. Example 4

contains an example which is not rewritable in such a way.

Example 4: cur is a winning position in a two-player game

{win(cur ,Move , IsWon) ← IsWon(cur) ∨
∃ nxt : Move(cur ,nxt) ∧ lose(nxt ,Move ,IsWon).

lose(cur ,Move , IsWon) ← ¬IsWon(cur) ∧
∀ nxt : Move(cur ,nxt) ⇒ win(nxt ,Move ,IsWon).

}

https://doi.org/10.1017/S1471068415000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000319

Semantics of templates in a compositional framework for building logics 691

This template defining win and lose by simultaneous definition, is a monotone

second order definition and has a two-valued well-founded model. That it cannot

be rewritten without recursion over second order predicates follows from the fact

that deciding if a tuple belongs to a non-recursively defined second order predicate

is in PH while deciding winning positions in generalized games is harder (if the

polynomial hierarchy does not collapse) and this last problem corresponds to

deciding elementship in the relation win defined in Example 4.

Definition 6.3

A template library L is a finite set of templates satisfying (1) every template is

paradox-free; (2) every template symbol is defined in exactly one template; (3) the

set of templates is hierarchically stratified: there is a strict order < on template

symbols such that for each Δ ∈ L, if P ∈ Def(Δ), Q ∈ Par(Δ) then Q < P .

Proposition 6.4

For a template library L, each interpretation I not interpreting symbols of ΣTemp

has a unique two-valued expansion I ′ to ΣTemp that satisfies L.

Proof

By induction on the hierarchy < of L. �

6.2 The ΣT emp vocabulary restriction

The condition that templates should be built from ΣTemp and not from user-defined

symbols is to ensure that templates are domain independent ‘drop-in’ building

blocks. This restriction might seem too stringent, but we can show that many

template definitions for which it does not hold, can be rewritten as an equivalent

one for which it holds.

Let Δ be definition of second order predicates with Def(Δ) ∩ ΣTemp = ∅, and o

the tuple of all free (user-defined) symbols of Par(Δ) \ ΣTemp (arranged in some

arbitrary order). For such definitions, we define a templified version. For any rule or

formula Ψ, we define Ψo to be Ψ except that every atom P (t) in Ψ with P ∈ Def(Δ)

is replaced by P ′(t, o), with P ′ a new symbol extending P with new arguments

corresponding to o.

We say that a structure I corresponds to I ′ if I, I ′ interpret the free symbols of

Δ, respectively those of ΔTemp, they are identical on shared symbols and for each

P ∈ Def(Δ), P I =
{
d|(d, oI) ∈ P ′I

′
}

. Note that for each I ′ and each value do for o in

the domain of I ′, there is a unique interpretation I with oI = do that corresponds to

I ′.

Definition 6.5

We define the templified definition ΔTemp of Δ as the definition {∀o(Ψo) | Ψ ∈ Δ} and

we define Σ′Temp = ΣTemp ∪ {P ′ | P ∈ Def(Δ)}.

We assume that o consists only of first order predicate symbols. Under this condition,

the templified definition ΔTemp is a template over Σ′Temp.

https://doi.org/10.1017/S1471068415000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000319

692 I. Dasseville et al.

Proposition 6.6

Let I be a well-founded model of Δ and I ′ a well-founded model of ΔTemp such that

I and I ′ are identical on ΣTemp. Then it holds that

P I =
{
d|(d, oI) ∈ P ′

I ′
}

Stated differently, I corresponds to I ′. The templified definition captures the

original one, and hence, each theory can be rewritten in terms of the new templified

defined symbols.

Proof

Assume that I corresponds to I ′. It is easy to prove, by induction on the formula

structure, that for any formula ϕ in the vocabulary of Δ, it holds that ϕI = (ϕo)I
′[o:oI].

We call this the independency property since it shows that (ϕo)I
′[o:oI] is influenced

by only a small part of the interpretation of P ′, namely the values of domain atoms

P ′(d, oI).

The key property to prove is that I ′ is a partial stable interpretation of ΔTemp iff

for each value do for o, the unique I that corresponds to I ′ such that oI = do is a

partial stable interpretation of Δ. Intuitively, a partial stable interpretation of ΔTemp

is a kind of union of partial stable interpretations of Δ, one for each assignment of

values to o.

We prove this property only in one direction. The other direction is similar. Assume

that I ′ is a partial stable interpretation of ΔTemp satisfying the three conditions of

Definition 4.5. We need to show for every I that corresponds to I ′, that I is

a partial stable interpretation of Δ. Condition 1), that P (d)I = Max�{ϕ[d]I |
∀x(P (x)← ϕ[x]) ∈ Δ} follows from the fact that P ′(d, oI)I

′
satisfies the corresponding

equation for ΔTemp, that P (d)I = P ′(d, oI)I
′
, and that for each rule body ϕ for P ,

ϕ[d]I = (ϕo)I
′[o:oI] (by the independency property). The condition 2) follows from

the fact that when T ′ = {P ′(d, oI) | P (d) ∈ T }, and U ′ = {P ′(d, oI) | P (d) ∈ U}, then

T is a t-set and U a u-set of I such that I[T : u][U : t] is closed under Δ iff T ′ is

a t-set and U ′ a u-set of I ′ such that I ′[T ′ : u][U ′ : t] is closed under ΔTemp. This

follows from the independency property. Condition 3) is proven similarly.

It is easy to see that this property entails the proposition, since intuitively, it

entails that a well-founded model I ′ of ΔTemp, which is the glb�p
of all partial

stable interpretations of ΔTemp with the same context as I ′, contains for each value

do for o the glb�p
of the partial stable interpretations I of Δ in the context with

oI = do. �

6.3 Simple Templates

Extending a logic with arbitrary (recursive) templates may easily increase the

descriptive complexity of the logic. Below, we develop a simple but useful template

formalism for FO(ID) that does not have this effect. In addition, we show that

libraries of simple templates can be compiled away using them as macros.

In Figure 1 we define sublanguages FO(ID∗), ESO(ID∗) and ASO(ID∗) of SO(ID∗)

(by mutual recursion) consisting of atoms, negations, conjunctions, quantification,

https://doi.org/10.1017/S1471068415000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000319

Semantics of templates in a compositional framework for building logics 693

FO(ID∗) ϕ ::=

|s(t)(∈ Atom1)

|¬ϕ

|ϕ ∧ ϕ

|∃FO s : ϕ

|let {s(t) ← ϕ} in ϕ

|{s(t) ← ϕ}

(a) FO(ID∗)

ESO(ID∗) ε ::=

|S(t)(∈ Atom2)

|¬α

|ε ∧ ε

|∃FO s : ε

|let {s(t) ← ϕ} in ε

|{s(t) ← ϕ}
|∃SO s : ε

(a) SO(ID∗)

ASO(ID∗) α ::=

|S(t)(∈ Atom2)

|¬ε

|α ∧ α

|∃FO s : α

|let {s(t) ← ϕ} in α

|{s(t) ← ϕ}
|∀SO s : α

(a) ASO(ID∗)

Figure 1: The FO(ID∗), ESO(ID∗) and ASO(ID∗) subformalisms of SO(ID∗)

definitions and the let-construct. This last construct represents a second order

quantification, where the quantified symbol(s) S are defined in an accompanying

paradox-free definition Δ. Definitions of second order symbols in ESO(ID∗) and

ASO(ID∗) contain only (possibly nested) first order definitions. Since model checking

of (nested) first order definitions is polynomial, the descriptive complexity of FO(ID∗)

is P, of ESO(ID∗) is NP and of ASO(ID∗) is co-NP.

Definition 6.7

A simple template is a template of the form {∀x(P (x)← ϕP [x])} with P (x) ∈ Atom2

and ϕP ∈ FO(ID∗).

A simple template defines one symbol and contains one rule with an FO(ID∗) body.

Let L be a template library over ΣTemp consisting of non-recursive simple templates.

Such a library is equivalent to the conjunction the completion of its definitions

∀x(P (x) ⇔ ϕP [x]). We want to show that while using such libraries increases

convenience, reuse, modularity, it does not increase complexity nor expressivity.

Also, such libraries can be used in the common way, as macros.

Theorem 6.8

For Σ ∩ ΣTemp = ∅, let ϕ be a ESO(ID∗) formula over Σ ∪ ΣTemp that does not

contain definitions of template symbols. There exists a polynomially larger ESO(ID∗)

formula ϕ1 over Σ that is Σ-equivalent to {ϕ}∪L. There exists a polynomially larger

FO(ID∗) formula ϕ2 over an extension Σ1 of Σ that is Σ-equivalent to {ϕ} ∪ L.

Proof

The formula ϕ1 is obtained by treating L as a set of macros. We iteratively

substitute template atoms P (t) in ϕ by ϕP [t]. This process is equivalence preserving.

It terminates due to the stratification condition on L, and the limit is a polynomially

larger ESO(ID∗) formula ϕ1 in the size of ϕ (exponential in #(L)) that is Σ-equivalent

to {ϕ} ∪ L.

To obtain ϕ2, we apply the well-known transformation of moving existential

quantifiers to the front and skolemising them. Second order quantifiers can be

switched with first order ones using:

∀FO x : ∃SOP : ϕ⇔ ∃SOP ′ : ∀FO x : ϕ[P (t)\P ′(t, x)]

https://doi.org/10.1017/S1471068415000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000319

694 I. Dasseville et al.

This process preserves Σ-equivalence. As only a polynomial number of steps are

needed to transform the formula into this desired state, the size of the resulting

formula is polynomially larger. �

Previous results in (Ianni et al. 2004) indicated that the introduction of simple,

stratified templates does not introduce a significant performance hit. The above

theorem recovers these efficiency results.

7 Conclusion

In this paper we developed a new way to define language constructs for a logic.

New language constructs must combine a syntactical rule with a three-valued

semantic evaluation. This three-valued semantic evaluation is subject to certain

restrictions. Language constructs can then be arbitrarily combined to compose a

logic. In particular, we construct SO(ID∗): a second order language with inductive

definitions.

Using this language, it is easy to define templates as second order definitions. We

conclude our paper with a rewriting scheme to show that, given some restrictions,

templates do not increase the descriptive complexity of the host language.

In the future, we want to generalize our way of defining language constructs

to allow functions and provide a more comprehensive type system. On the more

practical side, we intend to bring our ideas into practice by extending the IDP(IDP

2013) system with simple templates.

References

Abramson, H. and Rogers, H. 1989. Meta-programming in Logic Programming. MIT Press.

Baral, C., Dzifcak, J., and Takahashi, H. 2006. Macros, macro calls and use of

ensembles in modular answer set programming. In Logic Programming, 22nd International

Conference, ICLP 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, S. Etalle and

M. Truszczynski, Eds. Lecture Notes in Computer Science, vol. 4079. Springer, 376–390.

Chen, W., Kifer, M., and Warren, D. S. 1993. Hilog: A foundation for higher-order logic

programming. The Journal of Logic Programming 15, 3, 187–230.

Dao-Tran, M., Eiter, T., Fink, M., and Krennwallner, T. 2009. Modular nonmonotonic

logic programming revisited. In Logic Programming, 25th International Conference, ICLP

2009, Pasadena, CA, USA, July 14-17, 2009. Proceedings, P. M. Hill and D. S. Warren, Eds.

Lecture Notes in Computer Science, vol. 5649. Springer, 145–159.

Denecker, M. 2000. Extending classical logic with inductive definitions. In Computational

Logic - CL 2000, First International Conference, London, UK, 24-28 July, 2000, Proceedings,

J. W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira,

Y. Sagiv, and P. J. Stuckey, Eds. LNCS, vol. 1861. Springer, 703–717.

Denecker, M., Lierler, Y., Truszczyński, M., and Vennekens, J. 2012. A Tarskian informal

semantics for answer set programming. In International Conference on Logic Programming

(Technical Communications), A. Dovier and V. S. Costa, Eds. LIPIcs, vol. 17. Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, 277–289.

Denecker, M. and Ternovska, E. 2008. A logic of nonmonotone inductive definitions. ACM

Trans. Comput. Log. 9, 2 (Apr.), 14:1–14:52.

https://doi.org/10.1017/S1471068415000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000319

Semantics of templates in a compositional framework for building logics 695

Denecker, M. and Vennekens, J. 2014. The well-founded semantics is the principle of

inductive definition, revisited. In Principles of Knowledge Representation and Reasoning:

Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-

24, 2014, C. Baral, G. De Giacomo, and T. Eiter, Eds. AAAI Press, 22–31.

Eiter, T., Krennwallner, T., and Redl, C. 2011. Hex-programs with nested program calls. In

Applications of Declarative Programming and Knowledge Management - 19th International

Conference, INAP 2011, and 25th Workshop on Logic Programming, WLP 2011, Vienna,

Austria, September 28-30, 2011, Revised Selected Papers, H. Tompits, S. Abreu, J. Oetsch,

J. Pührer, D. Seipel, M. Umeda, and A. Wolf, Eds. Lecture Notes in Computer Science,

vol. 7773. Springer, 269–278.

Ianni, G., Ielpa, G., Pietramala, A., Santoro, M. C., and Calimeri, F. 2004. Enhancing

answer set programming with templates. In 10th International Workshop on Non-Monotonic

Reasoning (NMR 2004), Whistler, Canada, June 6-8, 2004, Proceedings, J. P. Delgrande and

T. Schaub, Eds. 233–239.

IDP 2013. The IDP system. http://dtai.cs.kuleuven.be/krr/software.

Kleene, S. C. 1952. Introduction to Metamathematics. Van Nostrand.

Lifschitz, V. 1999. Answer set planning. In 16th International Conference on Logic

Programming, ICLP 1999, Las Cruces, New Mexico, USA, November 29 - December 4, 1999,

Proceedings, D. De Schreye, Ed. MIT Press, 23–37.

Musser, D. R., Derge, G. J., and Saini, A. 2009. STL tutorial and reference guide: C++

programming with the standard template library. Addison-Wesley Professional.

Pelov, N., Denecker, M., and Bruynooghe, M. 2007. Well-founded and stable semantics of

logic programs with aggregates. Theory Pract. Log. Program. 7, 3, 301–353.

Shaw, M. 1984. Abstraction techniques in modern programming languages. IEEE

Software 1, 4, 10–26.

Tasharrofi, S. and Ternovska, E. 2011. A semantic account for modularity in multi-

language modelling of search problems. In Frontiers of Combining Systems, 8th International

Symposium, FroCoS 2011, Saarbrücken, Germany, October 5-7, 2011. Proceedings, C. Tinelli

and V. Sofronie-Stokkermans, Eds. Lecture Notes in Computer Science, vol. 6989. Springer,

259–274.

van Fraassen, B. 1966. Singular terms, truth-value gaps and free logic. Journal of

Philosophy 63, 17, 481–495.

https://doi.org/10.1017/S1471068415000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000319

