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SUMMARY
Three-DOF manipulators were employed for juggling of polygonal objects in order to have full
control over object’s configuration. Dynamic grasp condition is obtained for the instances that the
manipulators carry the object on their palms. Manipulation problem is modeled as a nonlinear
optimal control problem. In this optimal control problem, time of free flight is used as a free
parameter to determine throw and catch times. Cost function is selected to get maximum covered
horizontal distance using minimum energy. By selecting third-order polynomials for joint motions,
the problem is changed to a constrained parameter selection problem. Adaptive particle swarm
optimization method is consequently employed to solve the optimization problem. Effectiveness of
the optimization algorithm is verified by a set of simulations in MSC. ADAMS.

KEYWORDS: Dynamic object manipulation; Dynamic grasp; Dynamic catch; Multirobot object
manipulation; Nonlinear optimization; Adaptive PSO algorithm.

1. Introduction
Nonprehensile manipulation is an attractive research topic in the field of object manipulation.
Nonprehensile manipulation means manipulation without grasp. In nonprehensile manipulation,
simple manipulators are employed to work along with the geometry and dynamics of the object and the
environment,1 instead of using complicated and dexterous manipulators to fight the dynamics.2 In fact
the robot is considered as a tool to shape the dynamics of the environment and the object.3 Object’s
geometry and robot’s geometry are both important for nonprehensile manipulation. Geometry of
the object is critical in determining the controllability of the object. Geometry of the robot and its
kinematics are important to establish how the robot can contact the object and apply appropriate
forces.4

Nonprehensile manipulation methods are divided into two major categories including quasi static
and dynamic manipulation methods.4 In quasi-static manipulation, motions are considered slow
enough to neglect inertial forces. This requires that the object always be in contact with the robot.
Manipulation by pushing5,6 and manipulation by sliding7,8 are examples of quasi-static manipulation.
In dynamic manipulation, on the contrary, object may loss contact with manipulator in some portions
of manipulation period. Some parts of object’s motion are determined in relation to manipulator’s
motion and the rest are exclusively determined by the dynamics of object.9 The most well-known
example of dynamic manipulation is juggling10–19 where the object is thrown and then is caught in a
specific configuration.

Juggling manipulation using a single 1-DOF manipulator arm was initially demonstrated by Lynch
and his colleagues.10,11 In ref. [12] they showed that by a negative offset in arm, the object enters a
stable limit set after some iterative throws with an appropriate constant velocity. Control problems of
juggling were studied in refs. [13, 14]. Some planning methods for manipulation of polygonal objects
on the arm’s surface were introduced in ref. [15]. Reist and D’Andrea presented a blind vertical
juggling by 1-DOF robot composed of paddle actuated with a linear motor.16 In refs. [10–16] the
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(a)                                                      (b)                                                       (c) 

Fig. 1. (Colour online) Schematic representation of juggling by two 3-DOF manipulators: (a) throwing, (b) free
flight and (c) catching.

focus of studies was on juggling by a single 1-DOF manipulator where the catching manipulator was
the throwing one. In the other words, the object’s goal configuration was not located in the outside of
manipulator’s workspace.

Tabata and Aiyama studied a tossing problem.17 In their work, a 1-DOF manipulator tosses a
circular object out of its workspace into a desired position where no catching manipulator exist.
To this end a high release velocity is required which results in a large catching impact. In ref. [18]
a catching manipulator was employed at the goal position to catch the object with low impact by
reducing relative velocities between the manipulator and the object. Idea of employing an array of
1-DOF arms for manipulation of polygonal objects was presented in ref. [19] where the manipulation
task is sequentially distributed among 1-DOF manipulators.

All of the abovementioned juggling mechanisms utilized 1-DOF manipulators. Although making
the structure very simple, using 1-DOF manipulators reduces flexibility of the mechanism. Nguyen
and S. Olaru employed 2-DOF manipulators for ball juggling task20 and proposed a predictive
impact control approach for catch time. Nevertheless, in ref. [20], no consideration was provided for
simultaneous planning of throwing and catching.

To provide more flexible manipulation by juggling, it is necessary to employ manipulators with
more degrees of freedom. In manipulation by 3-DOF manipulators vertical and horizontal linear
velocities and angular velocity of object can be independently controlled. Therefore, ensuring success
of manipulation will be easier, more feasible initial-goal configurations can be found and better
manipulation plans can be achieved. Here an optimal planning technique is needed to find the best
manipulation plan. Human-like multifingered hand-arm is used for the robotic juggling in ref. [21]
where the authors achieved two-ball juggling using robotic hand-arm, which has three general purpose
fingers, and stereo vision. In ref. [22] reinforcement learning was employed to teach 3-DOF robots to
perform juggling task. In ref. [23] planar circular objects were manipulated by two 3-DOF hand-like
manipulators. The manipulators were able to rotate the object with a desired angular velocity while
keeping it inside kinematical workspace of the manipulators. Paddle juggling of a ball by a racket
attached to a robot manipulator with two visual camera sensors was established in ref. [24]. In refs.
[21–24] 3-DOF manipulators were employed to manipulate a circular object (ball). As the settling of
a circular object in a desired orientation is practically impossible, these works remained limited to
position control.

In addition to above points, no analytical model and optimal planning scheme was proposed for
juggling by 3-DOF manipulators in the literature.

In a preliminary work of this paper, we studied a manipulation of polygonal objects by juggling
using two 3-DOF manipulators.25 A schematic demonstration of different phases of manipulation
task, studied in ref. [25], is shown in Fig. 1. Assume that the object is located on the palm of the
first manipulator. The manipulator must throw the object into kinematical workspace of the second
manipulator. Kinematical workspaces of the manipulators are not necessarily overlapped. The second
manipulator must catch the object properly. Motion and path planning of the manipulators should be
done in such a way that dynamic grasp is secured, catch is successfully established and manipulation
is properly performed. Following ref. [25], in ref. [26] we studied behavioral resemblance of juggling
and hopping and extended a detailed mathematical analogy between them.
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Fig. 2. (Colour online) Initial configuration of system.

In ref. [25] we obtained dynamic grasp conditions and boundary conditions to decrease catching
impact. In this paper, will model the motion planning problem as a nonlinear optimal control problem
and we will use an adaptive swarm optimization algorithm to solve it. We will use the well-known
independent joint control strategy to control manipulators during manipulation task.

The rest of this paper is organized as follows. In the next section, the manipulation problem is
modeled where conditions of dynamic grasp and boundary conditions of catching time are provided.
Manipulation problem is modeled as an optimal control problem in Section 3 and it is solved by
adaptive particle swarm optimization method in Section 4. Fifth section includes simulation results.
Conclusions and future works are presented in the last section.

2. Problem Modeling
Two similar 3R planar manipulators are assumed as simple models of two hands as it is shown
in Fig. 2. First two links are in lengths l1 and l2, respectively. Length of third link (which can be
considered as palm) is l3 and its width is 2h. mi and Ii are mass and inertia of the link i, i = 1,2,3.

An x–y frame F is located at the base point of the left manipulator and the base point of the
right manipulator is located at coordination (L, 0) in F . Joint angles of manipulators are denoted
by θL = (θ1L, θ2L, θ3L)T and θR = (θ1R, θ2R, θ3R)T . Wrist positions are defined as (xeL, yeL)and
(xeR, yeR) in F and configuration vectors of palms are illustrated as CeL = (xeL, yeL, ϕeL)T and
CeR = (xeR, yeR, ϕeR)T where ϕeL and ϕeR are orientations of palms relative to horizontal axis.

A polygonal homogenous object with mass mo and maximum edge length 2d < l3 is initially
located on the palm of the left manipulator. Without loss of generality in the rest of the paper we will
consider a square object (n = 4). A x’–y’ frame F’ is defined at the center of gravity (CoG) of the
object. Then, the orientation of the object φ can be shown by the angle between axis x and x’. Let
C = (x, y, φ)be the configuration vector of the object. The aim of manipulation task is to move the
object from an initial configuration Ci = (xi, yi, ϕi) to a goal configuration Cg = (xg, yg, ϕg) where
ϕg = k π

2 + ϕi . ϕi and ϕg are limited by friction and k π
2 part of ϕg should be satisfied during free flight

phase.
Dynamics of manipulators can be represented by following equations:

M(θL)θ̈L + V(θL, θ̇L) + G(θL) = τL (1)

M(θR)θ̈R + V(θR, θ̇R) + G(θR) = τR, (2)

where M3×3 is inertia matrix, V3×1 comprises centrifugal and Coriolis forces, G3×1 is the vector
of gravity and τL = (τ1L, τ2L, τ3L)T and τR = (τ1R, τ2R, τ3R)T are joint torque vectors. If the mass
and inertia of the object is negligible in comparison to those of the manipulators, dynamics of the
manipulators in all phases of manipulation task is given by Eqs. (1) and (2).
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Fig. 4. (Colour online) Forces and accelerations of object on the palm of the left manipulator.

We divide manipulation time into two phases including throwing phase and free flight phase (see
Fig. 3). In throwing phase, the left manipulator moves into a specific configuration while the object
is located on it. Then at release time tr the palm decelerates fast and releases the object. During free
flight phase (that lasts tf = tc–tr seconds) the object moves under gravity force and its CoG travels
along a parabolic path determined by release velocity while rotating with release angular velocity. At
the end of free flight phase tc, the object is caught by the right manipulator.

To perform the manipulation task successfully, we should solve the following major problems:

1. In the throwing phase there should be no relative motion between the object and the palm, i.e.
dynamic grasp should be held.

2. Release position and velocity should be properly selected so that the object reaches a specific
position and orientation at catch location.

3. Catching impact must be reduced.

In next subsections we address these problems.

2.1. Dynamic grasp
Assume the case in which the object has settled on the palm of the left manipulator. Acceleration of
the palm at time t is given by C̈eL(t) = (ẍeL(t), ÿeL(t), ϕ̈eL(t))T . Figure 4 illustrates the exerted forces
to the object and corresponding accelerations. We decompose the perpendicular force of the surface
into two forces N1 and N2 applied to the vertices of object’s resting edge. Coulomb friction force is
denoted by f.

At a given time t we have:

⎧⎨
⎩

N1 · sin (ϕ) + N2 · sin (ϕ) − f · cos (ϕ) = moẍeL

N1 · cos (ϕ) + N2 · cos (ϕ) + f · sin (ϕ) − mog = moÿeL

d · N1 − d · N2 − d.f = (
1
6mo(2d)2

)
ϕ̈eL,

(3)
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where g = 9.81 is gravitational acceleration. In Eq. (3) argument t is omitted to simplify formulation.
These equations yield to:

⎡
⎣N1

N2

f

⎤
⎦ = 1

2

⎡
⎣− cos(ϕ) + sin(ϕ) cos(ϕ) + sin(ϕ) d

cos(ϕ) + sin(ϕ) cos(ϕ) − sin(ϕ) −d

−2 cos(ϕ) 2 sin(ϕ) 0

⎤
⎦

⎡
⎣ moẍeL

mo(ÿeL + g)
2
3moϕ̈eL

⎤
⎦ . (4)

Now, to hold dynamic grasp we should have:

⎧⎨
⎩

−N1 < 0
−N2 < 0
f − μ(N1 + N2) < 0

, (5)

where μ is the static friction coefficient. Substituting N1, N2 and f from Eq. (4) we will have:

⎡
⎣ 3 cos(ϕ) − 3 sin(ϕ) −3 cos(ϕ) − 3 sin(ϕ) −2d

−3 cos(ϕ) − 3 sin(ϕ) −3 cos(ϕ) + 3 sin(ϕ) 2d

−6 cos(ϕ) − 6μ sin(ϕ) 6 sin(ϕ) − 6μ cos(ϕ) 0

⎤
⎦

⎡
⎣ ẍeL

ÿeL + g

ϕ̈eL

⎤
⎦ <

⎡
⎣0

0
0

⎤
⎦ . (6)

Since ϕ = θ1L + θ2L + θ3L, Eq. (6) can be rewritten as:

D(θL)(C̈eL − g) < 0, (7)

where g = (0, −9.81, 0)T . Finding C̈eLin terms of θ̇L and substituting in Eq. (7) we will have

D(θL)(J(θL)θ̈L + J̇(θL, θ̇L)θ̇L − g) < 0, (8)

where J(θL) is Jacobean matrix of ĊeLwith respect to θ̇L. Now, by substituting θ̈L from Eq. (1) we
obtain (see ref. [25] for details):

R(θL)τL + S(θL, θ̇L) + Q(θL) < 0, (9)

where

R(θL) = D(θL)J(θL)M−1(θL)
S(θL, θ̇L) = −D(θL)J(θL)M−1(θL)V(θL, θ̇L) + D(θL)J̇(θL, θ̇L)θ̇L

Q(θL) = −D(θL)J(θL)M−1(θL)G(θL) − D(θL)g.

(10)

Now we have obtained dynamic grasp conditions for left manipulator in its joint space.

2.2. Catch time boundary conditions
Without loss of generality, it is assumed that the palm is horizontal at the beginning of the motion.
During throwing phase, left palm moves to the following state:

CeL(t = tr ) = (xeL(tr ), yeL(tr ), ϕeL(tr ))T

ĊeL(t = tr ) = (ẋeL(tr ), ẏeL(tr ), ϕ̇eL(tr ))T
(11)

and then decelerate fast to release the object. Condition (9) must be held during this motion. Release
time tr can be considered as a free parameter to satisfy the dynamic grasp condition.

The right manipulator must be prepared to catch the object. In order to easily ensure stable catch,
we assume that the catch occurs when the right palm is horizontal, i.e. ϕeR = 0. Let the right arm
start moving at time t = t0 ≥ 0 from configuration CeR(t = t0) = (xeR(t0), yeR(t0), 0)T and reach to
the following state at catching time (tc = tr + tf ):

CeR(t = tr + tf ) = (xeR(tr + tf ), yeR(tr + tf ), 0)T

ĊeR(t = tr + tf ) = (ẋeR(tr + tf ), ẏeR(tr + tf ), ϕ̇eR(tr + tf ))T .
(12)
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The object is caught at the end of the free flight phase (see Fig. 1). In order to reduce joint torque
at the wrist, it is planned that the wrist of the right manipulator be exactly under CoG of the object at
catch time. In addition, to minimize the impact, linear and angular velocities of the palm should be
as close as to linear and angular velocities of the object. On the other hand, object’s goal orientation
φg = k π

2 must be satisfied at catching time. These requirements, using free flight equations, impose
the following relations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xeR(tr + tf ) = ẋeL(tr )tf + xeL(tr )

yeR(tr + tf ) = −0.5gt2
f + ẏeL(tr )tf + yeL(tr )

ϕeR(tr + tf ) = ϕ̇eL(tr )tf = k π
2

ẋeR(tr + tf ) = ẋeL(tr )

ẏeR(tr + tf ) = −gtf + ẏeL(tr )

ϕ̇eR(tr + tf ) = ϕ̇eL(tr )

. (13)

Equation (13) can be used to properly determine release state for the left palm and catch state of
the right palm. After that, θL(0), θ̇L(0), θL(tr ) and θ̇L(tr ) for the left manipulator and θR(t0), θ̇R(t0),
θR(tr + tf ) and θ̇R(tr + tf ) would be simply calculated from kinematics of the manipulators.

In practice, because of uncertainties in the mechanism, the velocities of the object and the palm
are not equal at the catch time. For that reason, palm surface is covered with a high friction and low
restitution fabric. (This is usual in such researches, for example, see refs. [12, 17, 19, 26].)

2.3. Physical limits
There are some physical constraints that should be taken in account in modeling. Constraints of joint
limits, velocity limits and torque limits are as follows:

θmin < θR < θmax (14)

θ̇min < θ̇R < θ̇max (15)

τmin < τR < τmax. (16)

3. Manipulation Problem as Optimal Control Problem
In this section, motion planning problem of manipulation task will be modeled as an optimal control
problem. We define state and control vectors as:

X = (X1, X2, . . . X12)T = (
θT

L, θT
R, θ̇

T

L, θ̇
T

R

)T

� = (τ1, τ2, . . . , τ6)T = (
τ T

L, τ T
R

)T
.

(17)

Let the beginning time of the right manipulator’s motion, which can be considered as a free
parameter in modeling, be t0 = tf . Now if we mathematically insert a time shift of tf seconds in the
right manipulator, i.e., we theoretically suppose that it starts motion at t = 0, then the catching time
or final time of right manipulator’s motion will be tr and Eq. (13) will be changed to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xeR(tr ) = ẋeL(tr )tf + xeL(tr )

yeR(tr ) = −0.5gt2
f + ẏeL(tr )tf + yeL(tr )

ϕeR(tr ) = ϕ̇eL(tr )tf = k π
2

ẋeR(tr ) = ẋeL(tr )

ẏeR(tr ) = −gtf + ẏeL(tr )

ϕ̇eR(tr ) = ϕ̇eL(tr )

. (18)

Now, final time for both manipulators is tr and it could be final time of our optimal control problem.
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Essentially, by exploiting free flight time as a free parameter and making a synthetic time shift, we
have used a mathematical dexterity to unify planning of the manipulators. According to this unification
and abovementioned constraints, object manipulation problem can be modeled as following optimal
control problem:

min J (X, �, t) (19.1)

Subject to:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ẋi = Xi+6 i = 1, . . . , 6
(Ẋ7, Ẋ8, Ẋ9)T = (τ1, τ2, τ3)T − M−1(X1, X2, X3)V(X1, X2, X3, X7, X8, X9)

−M−1(X1, X2, X3)G(X1, X2, X3)
(Ẋ10, Ẋ11, Ẋ12)T = (τ4, τ5, τ6)T − M−1(X4, X5, X6)V(X4, X5, X6, X10, X11, X12)

−M−1(X4, X5, X6)G−1(X4, X5, X6)

(19.2)

R(X1, X2, X3) · (τ1, τ2, τ3)T + S(X1, X2, X3, X7, X8, X9) + Q(X1, X2, X3) < 0 (19.3)

Xi(min) < Xi < Xi(max) i = 1, . . . , 12 (19.4)

τi(min) < τi < τi(max) i = 1, . . . , 6 (19.5)

Initial conditions:

X(t = 0) = X0 = (θR10, θR20, θR30, θL10, θL20, θL30, 0, 0, 0, 0, 0, 0)T (19.6)

Terminal conditions:

X(t = tr ) = Xr = (Xr1, Xr2, . . . , Xr12)T . (19.7)

Equation (19.1) is a cost function and should be selected according to design requirements.
Equations (19.2) are dynamical equations of the manipulators (1) and (3) that are written in terms
of state variables. Equation (19.3) is dynamic grasp condition (9), Eq. (19.4) is joint and velocity
limits (14) and (15) and (19.5) is torque limits (16). Terminal conditions (19.7) must satisfy following
constraints:

l1(cos Xr4 − cos Xr1) + l2(cos(Xr4 + Xr5) − cos(Xr1 + Xr2))

+ kπ

2

l1Xr7 sin Xr1 + l2(Xr7 + Xr8) sin(Xr1 + Xr2)

Xr7 + Xr8 + Xr9
= 0 (20.1)

l1(sin Xr4 − sin Xr1) + l2(sin(Xr4 + Xr5) − sin(Xr1 + Xr2))

− kπ

2

l1Xr7 cos Xr1 + l2(Xr7 + Xr8) cos(Xr1 + Xr2)

Xr7 + Xr8 + Xr9

+ k2π2

8

g

(Xr7 + Xr8 + Xr9)2
= 0 (20.2)

l1Xr7 sin Xr1 + l2(Xr7 + Xr8) sin(Xr1 + Xr2)

− l1Xr10 sin Xr4 − l2(Xr10 + Xr11) sin(Xr3 + Xr4) = 0 (20.3)

l1Xr7 cos Xr1 + l2(Xr7 + Xr8) cos(Xr1 + Xr2) − l1Xr10 cos Xr4

− l2(Xr10 + Xr11) cos(Xr3 + Xr4) − kπ

2

g

Xr7 + Xr8 + Xr9
= 0 (20.4)
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Xr7 + Xr8 + Xr9 − Xr10 − Xr11 − Xr12 = 0. (20.5)

These constraints can be easily obtained by representation of Eq. (17) in joint space using
kinematics of manipulators and then rewriting it in terms of state variables. In Eq. (20) Xri

meansXi(tr ), i = 1, . . . 12.

There are different choices for cost function (19.1). In this study, we will try to plan the manipulation
task in such a way that maximum manipulation distance is achieved by consuming minimum energy.
Then we select the cost function as:

J = min

(
k

∫ tr

t=0
WT |�(t)|2dt + (1 − k)x−1

tf

)
, (21)

where xtf is covered horizontal distance during free flight phase. Minimizing Eq. (17) would yield
to maximum covered horizontal distance using minimum energy. 0 < k < 1 is a factor to determine
relative importance of energy and displacement in the cost function. W is a scaling vector that scales
energy term of cost function to be comparable in quantity with second term of cost function x−1

tf
.

Meanwhile, W can be used to determine weight of each joint in energy term. As a classic approach,
optimization problem (19) can be subject of nonlinear optimal control studies. Nonetheless, in this
study we employ a different approach that will be described in the next section.

4. Adaptive PSO Algorithm to Solve the Optimization Problem
In optimal motion planning problem (19), joint angles of manipulators should be planned to minimize
Eq. (21). As it is usual in motion planning of manipulators, to achieve a smooth motion, we consider
third-order polynomial trajectories for joint angles:

[θL; θR] =

⎡
⎢⎢⎣

p1 p2 p3 p4

p5 p6 . . . :
: :

. . . p23 p24

⎤
⎥⎥⎦

⎡
⎢⎢⎣

t3

t2

t1

1

⎤
⎥⎥⎦ . (22)

Then our optimization problem will be reduced to optimal parameter selection problem in terms of
vector p = [p1, . . . , p24]T . However, even with this reduction, solving nonlinear constraint optimal
control problem (19) by analytical methods is not possible.

Particle swarm optimization (PSO), firstly introduced in 1995,27,28 is one of the popular
evolutionary algorithms which has been employed in solving real-world optimization problems
(see, for example, refs. [29–35]). However, similar to other population-based algorithms, PSO can be
inefficient in terms of large number of iterations or getting trapped in local minima. Different variants
of PSO have been introduced in the literature (ex [36–39]) to improve performance of the algorithm,
however, most of them focus on one of the above problems. Adaptive PSO introduced in ref. [40] is
an esteemed idea that significantly reduces numbers of iteration and meanwhile is less likely to get
stuck in local minima. In this paper, we employ a simplified form of adaptive PSO introduced in ref.
[40] to solve optimization problem (19). One can find performance analysis of the algorithm in ref.
[40].

To solve optimization problem (19) coefficients of third-order polynomials described in Eq. (22),
as potential solutions, are defined as swarm of particles. Velocity and position vectors of each particle
are defined as Vi = [

v1
i v2

i . . . v24
i

]
and pi = [

p1
i p2

i . . . p24
i

]
. Velocity and position vectors are

randomly initialized and then velocity and position of particle i on dimension d are updated as:

vd
i = ωvd

i + c1randd
1

(
pBestdi − pd

i

) + c2randd
2

(
pBestd − pd

i

)
(23)

pd
i = pd

i + vd
i , (24)

where ω is the inertia weight, c1 and c2 are the acceleration parameters, randd
1 and randd

2 are two
independent random numbers within [0, 1] range with uniform distribution. pBesti is the position
with the best fitness found so far for the ith particle, and nBest is the best position in the neighborhood.
Velocity of particles is limited by a predefined threshold Vd

max.
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Inertia weight ω is one of the most important parameters regarding performance of the algorithm.
It is well known that the inertia weight should have a large value in exploration phase and it should be
decreased to smaller values in exploitation phase. Most of the researchers decrease ω with iterative
generations using linear or nonlinear functions (see, for example, refs. [41, 42]). As the convergence
rate of the algorithm is not the same for different problems, decreasing of ω with respect to time
could be inefficient. Adaptive PSO decreases ω according to progress of the algorithm. To this aim,
at the current position, the mean distance of particle i to other particles are calculated as:40

di = 1

N − 1

N∑
j=1,j �=i

√√√√ 24∑
k=1

(xk
i − xk

j )2, (25)

where N is the population size. Then evolutionary factor is defined as:

f = dg − dmin

dmax − dmin
, (26)

where dg is di of the globally best particle. The values of f, as driven from population characteristics,
represent the rate of convergence of the algorithm. Inertia weight is updated as a function of f using
a sigmoid mapping:

ω = 1

1 + 1.5e−2.6f
∈ [0.4, 0.9], f ∈ [0, 1]. (27)

The other parameters those have much influence on performance of algorithm are acceleration
factors c1 and c2. c1 corresponds to self-cognition and drags the particle to its own historical best
position while c2 corresponds to social influence that drives the swarm to move towards the current
globally best region.43,44 c1 should be increased during exploration period and should be decreased
during exploitation period. Conversely, c2 should be decreased during exploration period and should
be increased during exploitation period. At the same time, the sum of two parameters should be
bounded to a number between 3.0 and 4.0.40,45 In ref. [40] fuzzy inference with four membership
functions are employed to increase and decrease acceleration parameters; however, in this paper we
employ simpler strategy and update c1 and c2 according to following exponential functions:

c1 = 0.8 + 2e−|f −0.5|, f ∈ [0, 1] (28)

c2 = 3.2 − 2e−|f −0.5|, f ∈ [0, 1] (29)

those yield to c1 + c2 = 4.
In summary, the PSO algorithm described by Eqs. (23) and (24) is employed to solve optimization

problem (19) where parameters ω, c1, c2 are adapted according to the evolutionary factor using
Eqs. (27), (28) and (29). It is noteworthy to mention that at each population, particles those satisfy
constraints of Eq. (19) are selected.

5. Simulation Results
We organize our simulations in three subsections. In Subsection 5.1, we perform a validity test where
we show that by the proposed method we can find appropriate plans for motions of the manipulators
in such a way that the manipulation task is done and the constraints are satisfied. In Subsection 5.2,
we verify the sensitivity of the proposed algorithm to relative importance of the energy and distance
in the cost function. If reasonable results are obtained by changing k in cost function (19), then we
can infer that the problem modeling and solution method are accurate enough. Finally in Subsection
5.3, in order to check the effectiveness of the A-PSO algorithm in solving our problem, we compare
its results with three other optimization methods.
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5.1. Validity
We considered two similar manipulators with l1 = l2 = 1meter and l3 = 0.25meter and 2h = 0.03meters.
Masses of links are m1 = m2 = 2.6 kg, m3 = 1.3 kg. Upper surface of palms are covered by a low
restitution and high friction fabric with stiffness and damping coefficients 1e + 8N/m and 1e + 4N.S/m

respectively. Static friction coefficient between the upper surface of the palm and wooden object is
μ = 0.6. The object is a cube with edge length 2d = 0.16meters and mo = 0.7kg. Bases of manipulators
are in distance L = 0.5meters from each other.

At the initial state, palms are located at CeL(0) = (xeL(0), yeL(0), ϕeL(0))T = (1, 1.664, 0)T and
CeR(0) = (xeR(0), yeR(0), ϕeR(0))T = (1.5, 1.664, 0)T and the object rests on the left palm. We
selected k = 0.2 and W = (0.03, 0.02, 0.01, 0.03, 0.02, 0.01)T in our first simulation example. State
and control limits were selected as: Xi(min) = (−π/2, −π/2, −π/2, −2π, −2π, −2π)T , Xi(max) =
(π/2, π/2, π/2, 2π, 2π, 2π)T , τi(min) = (−500, −250, −50)T N.m, τi(max) = (500, 250, 50)T N.m.
Goal orientation of object is assumed to be zero. Considering third-order polynomials for joint
motions, optimization problem was solved by adaptive PSO method in MATLAB. The algorithm
has run 50 times and the best answers are selected. Solving the problem by A-PSO yields release
and flight times as tr = 0.388sec, tf = 0.462sec and following motions for joints during throwing and
catching process:

θL =
⎛
⎝−21.3655t3 + 9.655t2 + 0.7854

39.931t3 − 16.1372t2 + 0.48
18.5655t3 − 6.4727t2 + 1.2654

⎞
⎠ (30)

θR =
⎛
⎝17.7117(t − 0.462)3 − 13.4177(t − 0.462)2 + 0.7854

−25.3398(t − 0.462)3 + 14.1163(t − 0.462)2 + 0.48
−7.6281(t − 0.462)3 + 0.6986(t − 0.462)2 + 1.2654

⎞
⎠ (31)

Joint torques can be easily obtained by dynamical Eqs. (1) and (2). According to this solution
minimum cost is J = 2.057.

Complete joint angles and velocities for both manipulators are depicted in Figs. 5–8. It can
be seen that all constraints related to joint limits are satisfied. To verify the results, mechanical
structure was constructed in MSC. ADAMS. Simple independent joint control strategy is employed
to control manipulators. Some snapshots of manipulation process are illustrated in Fig. 9. Path
of object’s CoG and end-effectors of both manipulators in x–y plane are shown in Fig. 10.
It is easy to verify that manipulation task is done successfully. Obtained joint torques from
MSC.ADAMS are illustrated in Figs. 11 and 12 and it is easily verified that torque limits are
satisfied.

Before we finish this subsection, we should clarify three issues about simulation results:

1. The motion of the right manipulator after throwing and the motion of the left manipulator after
stable catch are not included in the optimization problem. Nevertheless, in simulations we had
to exert some motions to manipulators in all portions of simulation times. After throwing, the
only limitation in the left manipulator’s motion is not to collide with flying object, and it can be
easily done by considering object’s path. After catching, the right manipulator has a decelerating
motion. To do motion planning for this stage we considered third-order polynomials for joint
motions, as well.

2. It can be seen from Fig. 9 that the manipulators have crossed in 2-dimensional view at t = 0.6613.
This intersection can be easily avoided by considering some constraints in modeling.

3. In this paper, a central planning approach is assumed where a central system controls
both manipulators. If the juggling is done in a distributed manner, a sensing mechanism
(like vision mechanism proposed in ref. [21]) is needed for catching manipulator to predict
the path of the object. Alternatively, communication between the manipulators can be
useful.

5.2. Sensitivity
To study effect of weight factor k in cost function (25), we changed it to 0.5 and 0.8 and for
each one we solved the optimization problem. Final configurations of system for k = 0.2, k = 0.5,
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Time (sec)
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θ2L (rad) 

θ3L (rad) 
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0 0.2 0.4 0.6 0.8 1 1.2 1.4

1.2

1.4

1.6

tc = 0.85sec 

free flight time 

tr = 0.388sec 

Fig. 5. (Colour online) Joint angles of left manipulator during manipulation task. Angles are limited to be in
range of [−π/2, π/2]rad.
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θ3R (rad) 
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0.8
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tr = 0.388sec tc = 0.85sec 

free flight time 

Fig. 6. (Colour online) Joint angles of right manipulator during manipulation task. Angles are limited to be in
range of [−π/2, π/2]rad.
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ω 1L (rad/s) 

ω 2L (rad/s) 

ω 3L (rad/s) 
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0 0.2 0.4 0.6 0.8 1 1.2 1.4
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-4
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tr = 0.388sec  tc = 0.85sec 

free flight time 

Fig. 7. (Colour online) Joint angular velocities of left manipulator during manipulation task. Velocities are
limited to be in range of [−2π, 2π ]ras/s.
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Fig. 8. (Colour online) Joint angular velocities of left manipulator during manipulation task. Velocities are
limited to be in range of [−2π, 2π ]ras/s.
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t = 0s    t = 0.2860s    t = 0.4173s  

t = 0.6613s     t = 0.7433s    t = 0.9093s     

t = 0.9774s     t = 1.6340s    t = 2.0000s    

Fig. 9. (Colour online) Some snapshots of manipulation task. System is constructed in MSC. ADAMS.

1 1.5 2 2.5
0

0.4

0.8

1.2

1.6

Y (meters) Release point 

X (meters) 

Catch point 

Fig. 10. (Colour online) Paths covered by object and palm of manipulators during manipulation task. Solid-
Green: object’s COM; Dotted-Red: Left manipulator’s wrist point; Dashed-Blue: Right manipulator’s wrist
point.

k = 0.8 is shown in Fig. 13 and corresponding energy values and covered horizontal distances of
object’s CoG are depicted in Table I. It can be seen that more k values cause less energy and longer
horizontal manipulation.
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free flight time 

Fig. 11. Joint torques of left manipulator during manipulation task. Torque limits are:
τL1ε[−500, 500]N.m, τL2ε[−250, 250]N.m, τL3ε[−50, 50]N.m.
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Fig. 12. Joint torques of right manipulator during manipulation task. Torque limits are:
τR1ε[−500, 500]N.m, τR2ε[−250, 250]N.m, τR3ε[−50, 50]N .
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Table I. Energy and covered horizontal distance
corresponding to three values of weighting factor k in cost
function for manipulation tasks constructed in ADAMS.

Energy (j) Horizontal distance (m)

k = 0.2 1.645 2.313
k = 0.5 1.121 1.442
k = 0.8 0.783 1.875

Table II. Comparison of performance of A-PSO with three other optimization
problems.

A-PSO PSO GA SQP

Minimum cost 2.057 2.162 2.342 4.789
Iterations 45 113 781 2016
Achievements 42 29 15 2

k = 0.2 k = 0.5 k = 0.8 

Fig. 13. (Colour online) Final configuration of manipulation system for different relative importance of energy
and distance in cost function. k = 0.2: Covered horizontal distance is more important than energy; k = 0.5:
Covered horizontal distance is as important as energy; k = 0.8: Covered horizontal distance is less important
than energy.

5.3. Effectiveness
In order to evaluate effectiveness of adaptive PSO in comparison to other numerical methods, we
solved our optimization problem (with k = 0.2 in cost function) by three other algorithms including
classic PSO, genetic algorithm (GA) and sequential quadratic programming (SQP). Each algorithm
was run 50 times and some performance indices are compared in Table II. The performance indices
are as the sequel:

− Minimum cost: Shows minimum value of cost function obtained in 50 runs.
− Iterations: Illustrates number of iterations of the algorithm when converging to abovementioned

minimum cost value.
− Achievements: Shows how many times the algorithm has converted to a value close to minimum

cost.

From Table II, one can observe that minimum costs obtained by A-PSO, PSO and GA are relatively
although A-PSO has a slightly better performance. It seems that SQP has got stuck in local minima
even in its best solution (cost = 4.789).

According to two other criteria, performance of A-PSO is much better. The convergence of A-PSO
is faster than the other methods (45 iteration in comparison to 133, 781 and 2016). In addition, the
results of A-PSO are more reliable as it has converged to minimum cost in 82% (42/50) of runs. This
ratio is 56%, 30% and 4% for PSO, GA and SQP, respectively.
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6. Conclusions
Juggling of polygonal objects using two 3R manipulators was modeled as a nonlinear optimal control
problem. Mathematical conditions are adopted from our previous work25 and rewritten in new form of
state-space description. We selected a cost function to achieve maximum covered horizontal distance
by using minimum control energy. The optimal control problem was solved by adaptive PSO method.
In the adaptive PSO method inertia and acceleration functions are adapted according to progress
factor of the algorithm. These adaptations improve the algorithm in terms of fast convergence and
avoiding local minima.

Main advantages of the proposed mechanism can be described as the sequel:

1. Previously presented juggling mechanisms can be categorized in two groups. Some mechanisms
use 1-DOF manipulators and they have limited control on object’s configuration because of lack
of sufficient degrees of freedom in the manipulation tool. In other mechanisms, the focus was on
manipulation of circular objects and has no consideration about control of object’s orientation.
The proposed mechanism in this paper uses two 3-DOF manipulators to throw and catch the
object hence it has full control on configuration (position and orientation) of the object.

2. By exploiting free flight time as free parameter, a mathematical trick is made by a virtual time
shift in the catching manipulator. By this technique, motion planning of both manipulators was
unified so that their motions were planned simultaneously.

3. The motion planning of the manipulators was modeled as a nonlinear optimal control theory. This
would help control theory experts to analyze the problem using methods developed in optimal
control theory. This can be considered as one of the future works of this research as we did not
used control theory to analyze our developed model.

4. Adaptive particle swarm optimization method was employed to find optimal motions of the
manipulators. The algorithm tries to minimize a cost function so that maximum covered distance
of the object is achieved by consuming minimum energy. Validity, sensitivity and effectiveness
of the algorithm were verified by some simulations in MATLAB and MSC. ADAMS.
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