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Supply interruptions resulting from unpredictable events, such as machine break-
downs, order cancellations, unscheduled maintenance, and labor strikes can pro-
duce adverse effects on the production0inventory system+ In this article,we consider
a periodic-review inventory system subject to random demand and unreliable sup-
ply+ The availability of supply is modeled as an alternating renewal process with
general distributions for the durations of the UP and DOWN cycles+We consider the
lost-sales case and also discuss the backorder case, for both the discounted and
long-run average cost criteria+ For the linear cost model, we derive the structural
properties and bounds of the optimal policy+ We also propose the “end-of-cycle”
inventory return contract and show that it may be mutually beneficial to both the
firm and the supplier+

1. INTRODUCTION

We study the effect of random supply interruptions on the performance of a periodic-
review inventory system with stochastic demand+ Our objective is to develop opti-
mal and near-optimal ordering policies and to understand the impact of supply
interruptions on the performance of inventory0production systems+

For “just-in-time” producers, losses from unpredictable events such as machine
breakdown, unscheduled maintenance, order cancellations, labor strikes, and fires
can be severe+ For the small firm, it is painful to undergo cyclic supply interruptions
when the supplier chokes off its orders in a period of high demand+Pettit@12# reports
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that Exar, a NASDAQ-listed small firm, eliminated one of its production lines due to
“supply interruptions+” The following are some excerpts from theWall Street Jour-
nal on significant losses resulting from supply interruptions in recent years:

Shortages of injectable or intravenous antibiotics are forcing doctors to scramble to
find substitute regimens, and the drug-supply interruptions could put hospital pa-
tients at risk, a new survey of infectious-disease experts warns+ @1#

Output at the nation’s factories,mines and utilities plunged more in June than in any
month in the past five years as the General Motors Corp+ strikes and the financial
crisis in Asia took their toll on the industrial sector+ Overall industrial production
fell 0+6% in June after a revised 0+3% gain in May, the Federal Reserve reported+ @4#

On February 1, 1997, a fire at Aishin Seiki, Co+ Ltd+, a Toyota subsidiary, inciner-
ated the main source of a crucial brake valve that Toyota buys from Aishin and uses
in most of its cars+Most Toyota domestic plants kept only a four-hour supply of this
valve and without it, Toyota had to shut down its 20 auto plants in Japan, which
build 14,000 cars a day+ @13#

In this article, we consider a periodic-review inventory system with random
demand and an unreliable supplier whose availability is modeled as an alternating
renewal process+ The alternating renewal process is said to be UP when supply is
available and DOWN otherwise+ The durations of the UP and DOWN cycles are
generally distributed+ The firm is fully informed of the availability of supply at the
beginning of each period+ At the beginning of an UP period, the firm can replenish
inventory up to its target level+However, the firm cannot place any order in a DOWN
cycle and must wait until the alternating renewal process returns to the UP state,
which is the beginning of the next replenishment cycle+ The procurement, holding,
and shortage costs are all assumed linear with respect to the quantities+ Demands in
different periods are independent and identically distributed~i+i+d+! random vari-
ables+ We consider the lost-sales case and generalize the results to the backorders
case+ It is worth mentioning that the stationary costs and i+i+d+ demand assumptions
are not necessary in our models; they can be dependent on the state of the supplier+
We imposed them here mainly for notational and expositional simplicity+

The inventory production system with supply interruptions has received increas-
ing attention from researchers in recent years+ Parlar and Berkin@9# , Parlar and
Perry@10# , and Moinzadeh and Aggarwal@7# considered continuous-review inven-
tory systems with deterministic demand, where supply availability is modeled as an
alternating renewal process,with exponentially distributed ON~available! and OFF
~unavailable! cycles+ Parlar, Wang, and Gerchak@11# , Song and Zipkin@18# , and
Ozekici and Parlar@8# analyzed periodic-review inventory systems with backorders
in a random supply environment modeled as a Markov chain+ They showed that,
among other things, an environment-dependent base-stock policy is optimal in the
linear-cost model+ However, unlike these models, here we examine a periodic-
review system with stochastic demand and unreliable supply whose availability is
observable and modeled as generally distributed UP and DOWN cycles+This setting
could be more general than certain Markov environments for supply availability and
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can be advantageous from the modeling, analysis, and computational aspects+ In
addition, we focus on the lost-sales case, which has not been thoroughly examined
in the literature+

Our model differs from the random yield models~Gerchak,Vickson, and Parlar
@3#; Hening and Gerchak@5# !, which assume that yields are i+i+d+ random variables+
Theyieldsin our model are not i+i+d+ across different periods, but equal to the target
levels that depend on the failure rate of the UP cycle, as we assume that the firm is
fully informed of the availability of supply at the beginning of each period+

Our results,which hold for both the lost-sales and backorder cases, can be sum-
marized as follows:

• We formulate the problem as a dynamic program and show that the optimal
ordering policy is a state-dependent base-stock policy whose base-stock level
in an UP period depends on the remaining life of the UP cycle and the duration
of the DOWN cycle+ The optimal base-stock levels increase as the remaining
life of the UP cycle becomes stochastically smaller or the life of the DOWN
cycle becomes stochastically larger+

• To overcome the difficulty in computing the optimal base-stock levels for the
infinite-cycle model,we define, for given agei in an UP cycle, a cost function
for itsorder periodthat contains the expected total costs incurred between the
current and next order periods+ ~Recall that we cannot place orders during a
DOWN cycle+! We show that the optimal base-stock level for the order period
at agei ~hereafter referred to as the myopic base-stock level at agei ! can be
computed in closed form and constitutes an upper bound of the optimal base-
stock level at agei + Our numerical examples show that the myopic bound is
very tight+

• We show that the above-described myopic policy is, in fact, optimal when the
UP cycle has a nondecreasing failure rate and the firm is protected under the
“end-of-cycle” inventory return contract, which specifies that the firm can
return to the supplier any unwanted inventory at the purchasing cost at the end
of a DOWN cycle+We demonstrate that not only can the return contract as-
sumption lighten the computational burden and shed light on the structure of
the optimal policy, but also such a contract can, in fact, be mutually beneficial
to both the firm and the supplier+

We gain the following insights from the analysis:

1+ Supply interruptions have a significant impact on the inventory0production
system+ It is better to model such a supply uncertainty than to ignore it+ The
firm can recover significant cost savings by incorporating supply uncer-
tainty into its inventory planning+

2+ A firm facing supply interruptions is well advised to keep higher stock levels
than otherwise, which is, of course, intuitive+ The effectiveness of such a
policy depends on the accurate estimation of the distributions of the UP and
DOWN cycles, because it allows the “just-in-time” firm to raise the inven-
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tory level at the right time and to the right amount and, hence, balance its
needs to keep thin inventory while preventing shortages during the DOWN
cycle+

3+ The “end-of-cycle” return contract can help the supplier in providing incen-
tives to the buying firm to purchase more of the product in the slack season+

The rest of this article is organized as follows+ Section 2 reviews the literature+
Section 3 introduces the model and presents a dynamic programming formulation+
Section 4 obtains the structural properties of the optimal ordering policy+ Section 5
proposes the “end-of-cycle” inventory return contract and studies the myopic policy+
Section 6 derives the bounding relationship between the myopic and optimal base-
stock levels+ Section 7 gives several numerical examples, and Section 8 concludes
the article+

2. LITERATURE REVIEW

We summarize the important articles and discuss them here+ Parlar and Berkin@9#
developed an EOQ model with exponentially distributed ON and OFF durations
based on the renewal reward theorem~see Ross@14, p+ 52# !+ Parlar and Perry@10#
analyzed the reorder point, order quantity~r,Q! inventory system with deterministic
demand, and two sources of supply with ON and OFF durations exponentially dis-
tributed+ Moinzadeh and Aggarwal@7# studied an unreliable production0inventory
system with exponential ON durations, constant OFF durations, fixed setup costs,
and constant production and demand rates+ They developed a procedure for finding
the optimal~s, S! policy as well as a simple heuristic algorithm+

Random yield models are also related to our model+Yano and Lee@22# provided
an excellent literature review of lot sizing with random yield+The majority of studies
on random yield considerstochastically proportional yieldmodels, which treat the
defective rate as a random variable with a differentiable distribution+ Gerchak et al+
@3# analyzed a periodic-review inventory model with zero setup cost, uncertain de-
mand, and i+i+d+ random yield rates+ They provided a complete analysis of the final
period problem and explored the properties of the penultimate period problem, for
which the solution is not myopic+ Hening and Gerchak@5# generalized the earlier
work of Gerchak et al+ @3# and showed that there exists a critical reorder point for
each period such that an order should be placed if the on-hand inventory at the
beginning of the period is below a critical reorder point+However, the order quantity
is a complicated function of the system parameters and the initial inventory levels+
In other words, the “order-up-to” type of policy is no longer optimal+Ciarallo,Akella,
and Morton@2# modeled the yield as a function of random production capacity and
showed that for the single-period model, the optimal order-up-to quantity is inde-
pendent of the distribution of capacity+ They also showed that, for the multiple-
period problem, the optimal ordering policy is a modified myopic base-stock policy+

Palar et al+ @11# considered a backlogging, periodic-review inventory system
with a finite planning horizon, with the UP and DOWN cycles geometrically dis-
tributed+ A basic setup cost will be incurred whenever an order is placed, and a
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secondary setup cost will be assessed only when the order is filled+With this order-
ing structure, they showed that the optimal policy for multiperiod problems is an
~s, S! policy+ They also showed that for each period, S* is independent of the supply
availability of previous periods, but thats* is increasing in the probability that the
current order will be supplied+ Song and Zipkin@18# developed a backorder model
with an exogenous Markovian supply system, where the lead time may depend on
the status of the supply system+With zero ordering and linear penalty and holding
costs, Song and Zipkin showed that the optimal policy is a base-stock policy and
provided the upper and lower bounds of the base-stock level+They also provided the
sufficient condition under which the optimal base-stock level is monotonic+Ozekici
and Parlar@8# considered a periodic-review backorder model with an unreliable
supplier in a Markov environment+The demand–supply availability and cost param-
eters change with respect to the Markov environment+ It is assumed that whereas the
firm can observe the state of the environment, it cannot observe the availability of
supply+ Ozekici and Parlar showed that an environment-dependent base-stock pol-
icy is optimal when the order cost is linear in the order quantity+

3. DYNAMIC PROGRAMMING FORMULATION

We consider an infinite horizon, periodic-review inventory system with stochastic
demand and a supplier subject to periodic breakdowns+ We model supply uncer-
tainty via an alternating renewal process~see Wolff @21, p+ 62# !+ The alternating
renewal process is said to be UP if supply is available and DOWN otherwise+ The
durations of UP and DOWN cycles are denoted by independent and integer-valued
random variablesNU andND, respectively+A replenishment cycle consists of an UP
and a DOWN cycle,with total cycle lengthNU 1ND+We assume that the firm is fully
informed of the availability of supply at the beginning of each period+At the begin-
ning of an UP period, the firm replenishes inventory up to its target level~i+e+, the
lead time is negligible!+However, the firm cannot place an order in a DOWN period
and must wait until the alternating renewal process returns to the UP state, which is
the beginning of the next replenishment cycle+

We define the “age” of an UP cycle as the number of periods that the current UP
cycle has continued since the last supply interruption+ Let di be the conditional
probability that the supply is interrupted at the~i 11!st period, given that the current
UP cycle is at agei + Then,

di 5 P~NU 5 i 6NU $ i ! 5
P~NU 5 i !

P~NU $ i !
for i 5 1,2, + + + + (3.1)

Thus, $di , i $1% is thefailure rate functionof NU ~see Ross@16, p+ 193# !+ If di # di11,
then the supply availability deteriorates at agei + On the other hand, if di . di11, it
means that the supply can improve its reliability level at agei ~e+g+, via age-
dependent maintenance!+When$di , i $ 1% is a nondecreasing sequence, we say that
the UP cycle has a nondecreasing failure rate function+ This notion captures the
scenario that the “older” an UP cycle, the larger the likelihood of supply interruption
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in the following period+Many commonly used distributions, such as the geometric,
the uniform, the Erlang, and the binomial, have nondecreasing failure rate functions+
We generally do not require$di , i $1% to be monotone to derive structural properties
of the optimal policy+

For expositional simplicity, we assume stationary demand distribution and cost
functions, although most of our results still hold if they depend on the states of the
UP and DOWN cycles+ Denote the demand in periodi by Di , i 51,2, + + + , and letDi

be i+i+d+ random variables with cumulative and density functionsF~x! and f ~x!,
respectively+There is no economy of scale for replenishment+The purchase procure-
ment cost is a linear function of the quantity ordered~i+e+, the setup cost is zero!,with
a unit purchasing costc+At the end of each period, a unit holding costh is incurred
for the remaining inventory and a unit penalty costp is charged for unsatisfied
demand+ Demand is filled by existing inventory whenever possible, and unmet de-
mand is lost+

Our objective is to determine an optimal ordering policy that minimizes the total
discounted or long-run average cost over an infinite horizon, for both the lost-sales
and backorder cases+We will mainly discuss the lost-sales case for the discounted-
cost criterion+ The long-run average cost results follow those of the discounted case
after letting the discount factorl r 1+ In Section 6, we show that all of the results
can be extended to the backorder case+

Let L~Q! be the expected total holding and penalty cost in an UP period, given
that inventory is successfully replenished up toQ+ Then,

L~Q! 5 hE~Q 2 D!1 1 pE~D 2 Q!1

5 2pQ1 ~ p 1 h!E
0

Q

F~t ! dt 1 pE~D!, (3.2)

where~x!15max~0, x!+ Let 0# l , 1 be the discount factor+ If we purchaseQunits
at the beginning of a period and treat leftover inventory as an asset, then the expected
total cost incurred in the single period is

h~Q! 5 cQ1 L~Q! 2 lcE@~Q 2 D!1#

5 ~c 2 p!Q 1 ~ p 1 h 2 cl!E
0

Q

F~t ! dt 1 pE~D!+ (3.3)

It is well known thath~Q! is convex+ Taking the derivative ofh~Q! and setting it to
zero, we recover the celebrated newsvender solution:

F~ oQ! 5
p 2 c

p 1 h 2 cl
+ (3.4)

Here, oQ is understood as the optimal base-stock level for the lost-sales case over
the infinite planning horizon without supply interruptions~see Lee and Nahmias
@6, p+ 26# !+
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For convenience, let D ~k! 5 (t51
k Dt + The density and cumulative distribution

functions ofD ~k! are denoted byf ~k! andF ~k! , respectively+ Let us first develop an
expression for the expected discounted cost in a DOWN cycle+Given that the current
period is UP~and the firm successfully replenishes the inventory up toQ! and that
the next period is DOWN, the starting inventory of the DOWN cycle is~Q 2 D!1+
If a DOWN cycle lasts at leastkperiods, then the on-hand inventory at the beginning
of thekth period of a DOWN cycle is~Q2 D ~k! !1+ Thus, the expected total holding
plus penalty costs in periodk of a DOWN cycle isL~~Q 2 D ~k! !1!, whereL is
defined in~3+2!+ Summing up the holding and penalty costs over the DOWN cycle
that starts with initial inventory~Q 2 D!1, we obtain

EF(
k51

ND

lkL~~Q 2 D ~k! !1!G 5 (
k51

`

P~ND $ k!lkE @L~~Q 2 D ~k! !1!# + (3.5)

The above expression can be evaluated by conditioning onD ~k! 5 d+ If Q . d, then
L~Q 2 d! is evaluated by~3+2!+ If Q # d, thenL~0! 5 pE~D!+

We use~i, x! to describe the system state, wherei is the age of the current UP
cycle andx is the initial inventory of the current UP period+ Let V~i, x! be the min-
imum expected total discounted cost over the infinite planning horizon starting with
state~i, x!+ From ~3+2! and ~3+5!, the discounted dynamic programming recursion
gives us

V~i, x! 5 min
Q$x

Hc~Q 2 x! 1 L~Q! 1 di (
k51

`

P~ND $ k!lkE @L~~Q 2 D ~k! !1!#

1 di l (
k51

`

lkP~ND 5 k!E @V~1, ~Q 2 D ~k11! !1!#

1 l~12 di !E @V~i 1 1, ~Q 2 D!1!#J + (3.6)

We interpret~3+6! as follows+The first term is the procurement cost+The second term
is the expected penalty and holding costs incurred in the current UP period+The third
and fourth terms are the expected DOWN cycle cost and the expected cost from the
next UP cycle onward, respectively, given that supply is interrupted in the next
period+ The fifth term is the cost from the next period onward, given that supply is
available in the next period+

Because the term2cx in ~3+6! is not affected by the decision variableQ, we let,
following Veinott @20# ,

W~i, x! 5 V~i, x! 1 cx+ (3.7)

Here,W~i, x! is understood as the minimum expected total discounted cost starting
with state~i,0!, under the constraint that the inventory level after ordering must be
at leastx+ This is a commonly used, convenient cost accounting scheme that allows
us to receive the book value of leftover inventory, x units, at the end of each period,
under the constraint that we must procure at leastx units at the beginning of the next
period+ Then,
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E @V~i 1 1, ~Q 2 D!1!# 5 E @W~i 1 1, ~Q 2 D!1!# 2 cE@~Q 2 D!1# ,

E @V~1, ~Q 2 D ~k11! !1!# 5 E @W~1, ~Q 2 D ~k11! !1!# 2 cE@~Q 2 D ~k11! !1# +

Using~3+7! and the above expressions, the optimality equation~3+6! becomes

W~i, x! 5 min
Q$x

Hg~di ,Q! 1 ldi (
k51

`

lkP~ND 5 k!E @W~1, ~Q 2 D ~k11! !1!#

1 l~12 di !E @W~i 1 1, ~Q 2 D!1!#J
5 min

Q$x
$G~i,Q!%, (3.8)

whereg~i,Q! is the extended single-period costthat contains the expected dis-
counted cost incurred between the current and next orders, given that we are in state
~i,0! and orderQ units+ Then, we can expressg~i,Q! by

g~di ,Q! 5 cQ1 L~Q! 2 ~12 di !lcE@~Q 2 D!1#

1 di H(
k51

`

lkP~ND $ k!E @L~~Q 2 D ~k! !1!#

2 cl (
k51

`

lkP~ND 5 k!E @~Q 2 D ~k11! !1#J
5 ~12 di !h~Q! 1 di (

k50

`

lkP~ND $ k!E @h~~Q 2 D ~k! !1!# , (3.9)

whereh is the single-period cost as defined by~3+3!, D ~0! [ 0, andP~ND $ 0! 5
P~ND $ 1! 51+ Note that the number of periods between two consecutive orders is
either one~with probability 12 di ! or ND 1 1 ~with probability di !+ In the above
expression,we used the accounting scheme that allows the firm to return the leftover
inventory at the end of each DOWN period but buying back the same quantity at the
same cost at the beginning of the next period, provided that the next period is still
DOWN+

In contrast to the conventional dynamic programming formulation for the
periodic-review system in which the system transition occurs ineach period, in our
formulation each transition represents arandom number of periods, which corre-
sponds to the periods between two consecutive orders+ In other words, we “skip”
those DOWN periods during which the firm cannot replenish inventories and use the
extended single period~the order period! cost to cover that incurred during a DOWN
cycle+ This formulation is possible due to the structure of the alternating renewal
process and makes the value function more transparent and, as we will see, facili-
tates easy derivations of the structural properties and closed-form bounds+

To facilitate the analysis, it is useful to truncateW~i, x! to W~n!~i, x!, where
W~n!~i, x! is the minimum expected discounted cost starting in state~i, x! when there
aren ordersremaining+ Recall that the number of periods between two consecutive
orders is either one, if the next period is UP and we can immediately place another
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order, orND 11, if the next period is DOWN and we have to defer the next order until
the supply becomes available again+ No cost will be incurred after the end of then
orders+ For n 5 1, we have

W~1!~i, x! 5 min
Q$x

$g~di ,Q!% 5 min
Q$x

$G~1!~i,Q!%+ (3.10)

For n $ 2, we define, from ~3+8!, ~3+9!, and~3+5!, that

W~n!~i, x! 5 min
Q$x

Hg~di ,Q! 1 ldi (
k51

`

lkP~ND 5 k!E @W~n21!~1, ~Q 2 D ~k11! !1!#

1 l~12 di !E @W~n21!~i 1 1, ~Q 2 D!1!#J
5 min

Q$x
$G~n!~i,Q!%+ (3.11)

It is not difficult to show that asnr`,G~n!~i,Q! andW~n!~i, x! indeed converge to
G~i,Q! andW~i, x!, respectively+

For the long-run average-cost criterion withl51, the Bellman optimality equa-
tion ~the fundamental principle of dynamic programming, stating that the optimal
solution to annth-stage dynamic process must proceed from an optimal solution of
the~n2 1!th stage that begins with the optimal outcome of the first stage! becomes

g 1 W~i, x! 5 min
Q$x

Hg~i,Q! 1 di (
k51

`

P~ND 5 k!E @W~1, ~Q 2 D ~k11! !1!#

1 ~12 di !E @W~i 1 1, ~Q 2 D!1!#J + (3.12)

whereg is a constant andg~i,Q! is defined in~3+9! with l 51+We shall not specif-
ically discuss the long-run average case, except noting that, via standard limiting
arguments, our results for the discounted case remain valid for its long-run average
counterpart+

4. THE OPTIMAL ORDERING POLICY

Before characterizing the optimal ordering policy for our model,we first explore the
properties of the cost function for a single-order period, g~di ,Q!+

Lemma 1:

1+ g~di ,Q! is a convex function of Q for any given0 # di # 1.
2+ Let oQ and OQ be the smallest values that minimize g~0,Q! and g~1,Q!, re-

spectively. Then,oQ # OQ. In addition, g~di ,Q! is a subadditive function in
0 # di # 1 and oQ , Q # OQ.

3+ ]g~di ,Q!0]Q is decreasing in Q if P~ND $ k! becomes smaller for each k
(i.e., if ND becomes stochastically smaller).
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Proof:

1+ The expression ofg~di ,Q! is given in ~3+9!+ Recall that d2f ~g~x!!0
dx2 5 f ''~g~x!!@g'~x!# 2 1 f '~g~x!!g''~x!+ If f is convex inx andg''~x! 5 0
~i+e+, linear or piecewise linear!, then f ~g~x!! is convex in x+ There-
fore, E @h~~Q 2 D ~k! !1!# is convex inQ, since h is convex inQ, and
]2~Q 2 D!10]Q2 5 0+ Finally, g~di ,Q! is convex inQ, since the weighted
sum of convex functions is convex+

2+ Fordi 5 0, g~0,Q! 5 h~Q!+ Therefore, oQ satisfies~3+4!+ To prove oQ # OQ, we
show that]g~1,Q!0]Q # 0 for Q # oQ; then, the result follows from the
convexity ofg~1,Q!+We have

]g~1,Q!

]Q
5 (

k50

`

lkP~ND $ k!
dE@h~~Q 2 D ~k! !1!#

dQ
# 0, (4.1)

sinceh is convex, and forQ# oQ, dE@h~~Q2 D ~k! !1!#0dQ# 0+ This implies
that oQ # OQ+ Now, from ~3+9! and~4+1!, for any oQ # Q # OQ, we have

]g2~di ,Q!

]di ]Q
5 2

dh~Q!

dQ
1 (

k50

`

lkP~ND $ k!
]E @h~~Q 2 D ~k! !1!#

]Q

5 2
dh~Q!

dQ
1

]g~1,Q!

]Q
5 2

]g~0,Q!

]Q
1

]g~1,Q!

]Q
+ (4.2)

Due to the convexity ofh andg, both terms are nonpositive inoQ # Q # OQ+
3+ The partial derivative ofg~di ,Q! with respect toQ is

]g~di ,Q!

]Q
5 ~12 di !

dh~Q!

dQ
1 di (

k50

`

lkP~ND $ k!
dE@h~~Q 2 D ~k! !1!#

dQ
+

Clearly, ]g~di ,Q!0]Q decreases asP~ND $ k! decreases for eachk ~i+e+, ND

becomes stochastically smaller!+ This also implies thatQi
~1! , the smallest

minimizer ofg~di ,Q!, decreases asND becomes stochastically smaller+ n

For n $ 1, define

oQ~n! 5 arg minQ$G~n!~i,Q!6di 5 0%, (4.3)

OQ~n! 5 arg minQ$G~n!~i,Q!6di 5 1%, (4.4)

where oQ~1! [ oQ and OQ~1! [ OQ+ Using Lemma 1, we now derive the properties asso-
ciated with the value functionsW~n!~i,Q! andG~n!~i,Q!, n $ 1+

Theorem 1:

1+ G~n!~i,Q! is convex in Q for n$ 1 and is subadditive in0 # di # 1 and oQ #
Q # OQ~n!.

2+ W~n!~i, x! is increasing and convex in x for n$ 1 and is subadditive in0 #
di # 1 and0 # Q # OQ~n!.

3+ For n $ 1,

oQ~n! 5 oQ, (4.5)
oQ # OQ~n11! # OQ~n!+ (4.6)
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4+ Both ]G~n!~i,Q!0]Q and]W~n!~i,Q!0]Q decrease in Q if ND stochastically
decreases.

Proof: We prove parts 1–4 by induction onn, the total number of order periods+For
n51, part 1 holds true, sinceG~1!~i,Q! 5 g~di ,Q!, which is convex and subadditive
by Lemma 1+To prove part 2 forn51,we use~3+10!;W~1!~i, x! 5 minx#Q$g~di ,Q!% +
Clearly,W~1!~i, x! is increasing inx+ Its convexity and subadditivity follow directly
from the same properties ofg~di , x!+ Also, part 4 forn 51 follows from Lemma 1,
part 3+ It remains to verify part 3 forn51+ First, ~4+5! holds trivially forn51+Also,
the left inequality of~4+6! for n51 is shown in Lemma 1, part 2+ To prove the right
inequality of~4+6! for n 5 1, we note, for Q $ OQ~1! [ OQ,

]G~2!~i,Q!

]Q *
di51

5
]g~1,Q!

]Q
1 l (

k51

`

lkP~ND 5 k!
]E @W~1!~1, ~Q 2 D ~k11! !1!#

]Q

$
]g~1,Q!

]Q
$ 0,

where the first inequality follows becauseW~1! is convex and thus has a nonnegative
derivative; the second inequality holds becauseQ # OQ andg~1,Q! is minimized at
OQ+ The convexity ofg~1,Q! andW~1! then implies OQ~2! # OQ~1! 5 OQ+

Next, we prove parts 1–4 forn, based on the hypothesis that they are valid for
less thann+ Consider part 1 first, whereG~n!~i, x! is given in~3+11!+ By Lemma 1,
part 1, g~di ,Q! is convex inQ+ Since]~Q2 D!10]Q $ 0 and]2~Q2 D!10]Q2 5 0
and by our hypothesis, both E @W~n21!~ i 1 1, ~Q 2 D!1!# and E @W~n21!~1,
~Q2 Dk11!1!# are increasing and convex inQ+ This implies thatG~n!~i,Q! is a con-
vex function ofQ+ To proveGn~i,Q! is subadditive in 0# di #1 and oQ # Q # OQ~n! ,
we have

]G~n!
2 ~di ,Q!

]di ]Q
5

]g2~di ,Q!

]di ]Q
1 l (

k51

`

lkP~ND 5 k!
]E @W~n21!~1,Q 2 D ~k11! !1#

]Q

1 ldi (
k51

`

lkP~ND 5 k!
]2E @W~n21!~1,Q 2 D ~k11! !1#

]di ]Q

2 l
]E @W~n21!~i 1 1, ~Q 2 D!1!#

]Q

1 l~12 di !
]E @W~n21!~i 1 1,Q 2 D!1#

]di ]Q

# 2F dh~Q!

dQ
1 l

]E @W~n21!~i 1 1, ~Q 2 D!1!#

]Q
G

1
]g~1,Q!

]Q
1 l (

k51

`

lkP~ND 5 k!
]E @W~n21!~1,Q 2 D ~k11! !1#

]Q

5 2
]G~n!~i,Q!

]Q *
di50

1
]G~n!~i,Q!

]Q *
di51

+ (4.7)
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To derive the inequality here, we used~4+2! and our hypotheses of parts 2 and 3 for
n21,which state thatW~n21! is subadditive in 0# di #1 and oQ# Q# OQ~n! # OQ~n21! +
Since both terms of~4+7! are nonpositive foroQ# Q# OQ~n! , it implies thatG~n!~i,Q!
is subadditive in the specified region+ This completes the proof of part 1 forn+

Let Qi
~n! be the smallest value that minimizesG~n!~i,Q!+ From the subadditivity

of G~n!~i,Q!, we must haveoQ # Qi
~n!

# OQ~n! + Then,

W~n!~i, x! 5 HG~n!~i,Qi
~n! ! if x # Qi

~n!

G~n!~i, x! otherwise+
(4.8)

SinceG~n!~i,Q! is convex and subadditive,W~n!~i, x! is increasing and also inherits
convexity and subadditivity ofG~n!~i,Q!+ This validates part 2+

Next, we prove~4+5! by showing that oQ~n! # oQ and oQ~n! $ oQ, based on the
hypothesis oQ~n21! 5 oQ+ From the expression

]G~n!~i,Q!

]Q *
di50

5 2F dh~Q!

dQ
1 l

]E @W~n21!~i 1 1, ~Q 2 D!1!#

]Q
G ,

we observe that~]G~n!~i,Q!0]Q!*di50 is nonnegative forQ $ oQ, since oQ minimizes
h~Q! andW~n21! is increasing inQ+ This states thatoQ~n! # oQ+On the other hand, for
Q # oQ,

]G~n!~i,Q!

]Q *
di50

#
]h~Q!

]Q
1 l

]E @W~n21!~i 1 1, ~Q 2 D!1!#

]Q *
di1150

5
]h~Q!

]Q
# 0,

where the first inequality is due to part 2 forn21,which states that]E @W~n21!~i 11,
~Q 2 D!1!#0]Q is decreasing indi11+ The equality follows our hypothesis that for
@Q2 D#1 # oQ~n21! 5 oQ, the derivative ofW~n21! equals zero+ Therefore, oQ~n! $ oQ+
This, together with oQ~n! # oQ, yields~4+5!+

To verify the left inequality of ~4+6! for n, we use the expression
~]G~n!~i,Q!0]Q!6di51 given in~4+6!+ Since oQ~n21! 5 oQ, then for anyQ # oQ,

]G~n!~i,Q!

]Q *
di51

#
]g~1,Q!

]Q
1 l (

k51

`

lkP~ND 5 k!
]W~n21!~1, ~Q 2 D ~k11! !1!

]Q *
di50

5
]g~1,Q!

]Q
# 0,

which implies that OQ~n! $ oQ+ To prove the right inequality of~4+6! for n, we first
realize that both]G~n!0]Q and]W~n!0]Q are increasing functions ofn, which can be
shown by induction onn+ Then, ~]G~n11!~i,Q!!0]Q6di51 $ ~]G~n!~i,Q!!0]Q6di51 $ 0,
for Q $ OQ~n! +We then obtain OQ~n11! # OQ~n! + This completes the proof of part 3+
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Finally, supposeND $st END+We use Ig to denote the counterpart ofg, with the
DOWN cycle length END+ Let EG~n! and GW~n! be similarly defined+ From~4+3! and our
hypothesis of part 4 forn 2 1, we obtain

]G~n!~i,Q!

]Q
5

]g~di ,Q!

]Q
1 l~12 di !

]E @W~n21!~i 1 1, ~Q 2 D!1!#

]Q

1 ldi

]E @lNDW~n21!~1, ~Q 2 DND11!1!#

]Q

$
] Ig~di ,Q!

]Q
1 l~12 di !

]E @ GW~n21!~i 1 1, ~Q 2 D!1!#

]Q

1 ldi

]E @lND GW~n21!~1, ~Q 2 DND11!1!#

]Q

$
] Ig~di ,Q!

]Q
1 l~12 di !

]E @ GW~n21!~i 1 1, ~Q 2 D!1!#

]Q

1 ldi

]E @l END GW~n21!~1, ~Q 2 D END11!1!#

]Q

5
] EG~n!~i,Q!

]Q
,

where the first inequality follows from the hypothesis of part 4 forn 2 1 and the
second inequality holds because]W~n21!

2 0]Q is decreasing asND is stochastically
decreasing+ The above expression also means that both]W~n!0]Q andQi

~n! are de-
creasing ifND is stochastically decreasing+ This completes the proof of Theorem 1+

n

Theorem 1 allows us to derive the properties associated with the optimal order-
ing policy, as stated in Theorem 2+

Theorem 2:

1+ The optimal ordering policy is an age-dependent base-stock policy; that is,
there exist base-stock levels Qi

* , i 5 1,2, + + + , such that it is optimal to order
up to Qi

* units in state~i, x!.
2+ If $di , i $1% is nondecreasing in i, then$Qi

*, i $1% is also nondecreasing in i.
3+ For eachi $ 1, Qi

* decreases as ND stochastically decreases.

Proof:

1+ We have shown in Theorem 1, part 1 thatG~n!~i,Q! is convex inQ and is
minimized atQi

~n!+ Letting n r `, G~n!~i,Q! converges toG~i,Q!+ Evi-
dently, G~i,Q! is also a convex function ofQ+ Let Qi

* be the smallest value
minimizing G~i,Q!+ Then, Qi

* is the optimal base-stock level in state~i, x!,
i 5 1,2, + + + +
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2+ Similarly, as in part 1, one can show thatG~i,Q! is subadditive in 0#
di # 1 and oQ # Q # OQ*, where oQ minimizesG~i,Q!6di50 and OQ* minimizes
G~i,Q!6di51+ Therefore, if di11 $ di ,

]G~i 1 1,Q!

]Q *
Qi
*

#
]G~i,Q!

]Q *
Qi
*
5 0,

which means thatQi
*# Qi11

* +
3+ This is the limiting result of Theorem 1, part 4+ n

Observe thatoQ, defined in~3+4!, provides a global lower bound forQi
*, i $ 1,

and this lower bound is attainable whendi 5 0+ This implies that whereas the firm
should keep a higher safety stock level to safeguard itself from random supply break-
downs, it only needs to do so whendi is strictly positive+ For example, supposeND

has a failure rate function$di , i 5 1,2,3,4% 5 $0,0,0+5,0+5% + Then, in the first two
periods, the firm only needs to order up tooQ+ In other words, the firm does not need
to prematurely increase the safety stock levels in the first two periods+ It also un-
derscores the importance of an accurate estimate of the failure rate function, because
it allows the firm to increase the base-stock level at the right time and to the right
level+

5. SINGLE-CYCLE ANALYSIS AND MYOPIC POLICY

Theorem 2 indicates that the optimal ordering policy is a base-stock policy+ How-
ever, computing the optimal base-stock levels$Qi

*, i $ 1% is not an easy task~unless
di 5 0!+ Therefore, it is desirable to obtain an effective approximation ofQi

*, i $ 1+
In this section, we obtain an explicit expression for the myopic base-stock level,
Qi

~1! , whereQi
~1! minimizes theextended single-period cost g~di ,Q!, i $ 1+ In the

next section,we show thatQi
~1! in fact constitutes an upper bound forQi

*, i $1+ From
Lemma 1,we see that$Qi

~1! , i $1% possesses the structural properties of$Qi
*, i $1% +

For example,Qi
~1! increases ifdi increases orND becomes stochastically larger+Here,

we show that if the UP cycle has a nondecreasing failure rate function~i+e+, if
$di , i $ 1% is nondecreasing!, then $Qi

~1! , i $ 1% is optimal for the infinite-cycle
problem, but under the condition that the firm can return excess inventory at the
original purchasing cost at the end of a cycle+We term such a condition “the end-
of-cycle inventory return contract” or, simply, “the return contract+” Clearly, with
the return contract, the infinite-cycle problem is decomposed into a sequence of
identical single-cycle problems+ The following lemma derives the closed-form
solution forQi

~1! , i $ 1+

Lemma 2: Let

Qi
~1! 5 argmin$g~di ,Qi !%, i 5 1,2, + + + + (5.1)
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Then, Qi
~1! , i 5 1,2, + + + , can be explicitly computed as

F~Qi
~1! ! 5

p 2 c

p 1 h 2 lc
1 di (

k51

`

lkP~ND $ k!

3 F p 2 c

p 1 h 2 lc
F ~k! ~Qi

~1! ! 2 F ~k11! ~Qi
~1! !G+ (5.2)

Proof: In Lemma 1, part 1, we have shown thatg~di ,Q! is a convex function ofQ+
The first derivative ofg~di ,Q! with respect toQ satisfies

]g~di ,Q!

]Q
5 ~12 di !

dh~Q!

dQ
1 di (

k50

`

lkP~ND $ k!
dE@h~~Q 2 D ~k! !1!#

dQ
+ (5.3)

Applying the Leibniz rule and using the resultdh~Q!0dQ 5 ~c 2 p! 1 ~ p 1
h 2 lc!F~Q!, we obtain

]g~di ,Q!

]Q
5 ~12 di !@~c 2 p! 1 ~ p 1 h 2 lc!F~Q!# 1 di (

k50

`

lkP~ND $ k!

3 F ]

]Q
E

0

Q

h~Q 2 x! dF ~k! ~x! 1
]

]Q
E

Q

`

h~0! dF ~k! ~x!G
5 ~12 di !@~c 2 p! 1 ~ p 1 h 2 lc!F~Q!# 1 di (

k50

`

lkP~ND $ k!

3 E
0

Q

@~c 2 p! 1 ~ p 1 h 2 lc!F~Q 2 x!# dF ~k! ~x!

5 ~c 2 p! 1 ~ p 1 h 2 lc!F~Q!

1 di (
k51

`

lkP~ND $ k!@~c 2 p!F ~k! ~Q! 1 ~ p 1 h 2 lc!F ~k11! ~Q!# +

(5.4)

Then, ~5+1! and~5+2! follow by setting~5+4! to zero and reorganizing terms+ n

Next, we show that the myopic base-stock levels$Qi
~1! , i $ 1% , as given in

Lemma 2,are optimal if$di , i $1% is nondecreasing and the return contract is effective+

Theorem 3: If $di , i $ 1% is a nondecreasing sequence, then the optimal policy for
the single-cycle model with the return contract is specified by$Qi

~1! , i $ 1%.

Proof: Let Ws~i, x! be the expected cost from periodi until the end of the cycle,
which can be obtained from~3+8! as

Ws~i, xi ! 5 min
Qi$xi

$g~di ,Qi ! 1 l~12 di !E @Ws~i 1 1, ~Qi 2 Di !
1!#%+ (5.5)
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LetQj represent the base-stock level chosen by the firm in state~ j, xj !, j $ i +Clearly,
Qj must satisfy the following constraint:

Qj11 $ xj11 5 ~Qj 2 Dj !
1, j $ i+ (5.6)

Using the recursive expression given by~5+5!, subject to~5+6!, we can write~5+5! in
the form

Ws~i, xi ! 5 minHg~di ,Qi ! 1 (
k5i

`

lk2i11 )
j5i

k

~12 dj !g~dk11,Qk11!J , (5.7)

whereQj , j $ i , are decision variables and subject to constraint~5+6!+ It is easy to
verify that

)
j5i

k

~12 dj ! 5
P~NU $ k 1 1!

P~NU $ i !
, k $ i+

Hence, ~5+7! becomes

Ws~i, xi ! 5 minH 1

P~NU $ i ! (
k5i

`

P~NU $ k!lk2ig~dk,Qk!J , (5.8)

subject to constraints

Qi $ xi ,

Qj11 $ xj11 5 ~Qj 2 Dj !
1, j $ i+ (5.9)

If the sequence$di , i $1% is nondecreasing, then by Lemma 1, part 2, $Qi
~1! , i $1% is

a nondecreasing sequence+ Thus, $Qi
~1! , i $ 1% satisfy constraints~5+9!; here, we

assume, without loss of generality that thexi # Qi
~1!+ This implies that the myopic

policy $Qi
~1! , i $ 1% is optimal+

The following corollary considers a special case in which the UP cycle has a
constant failure rate+

Corollary 1: If the duration of the UP cycle is geometrically distributed with rate
d1, the optimal policy for the system with the return contract is identical to that of the
system without the contract, which is a stationary myopic base-stock policy whose
base-stock level,OQ1, can be explicitly computed by (5.2).

6. BOUNDS

Our results in the previous section show that the myopic base-stock level possesses
a closed-form solution+ In the following theorem, we establish the bounds for the
optimal base-stock levels+ We show that$Qi

~n! , n $ 1% forms a sequence of upper
bounds forQi

*, with Qi
~1! as the largest in the sequence+
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Theorem 4:

1+ (Upper bound) Qi
*# Qi

~n11!
# Qi

~n! , n $ 1. In particular, Qi
*# Qi

~1! , n $ 1.
2+ (Lower bound) Let Qi 0

~1! 5 min$Qi
~1! , i $ 1%. Then, Qi 0

~1!
# Qi 0

* . This result,
together with part1, implies Qi 0

~1! 5 Qi 0
* .

Proof:

1+ It is intuitively true, and indeed can be proven easily by induction onn, that
]G~n!~i,Q!0]Q is increasing inn+ As ]G~n!~i,Q!0]Q r ]G~i,Q!0]Q when
n r `, it implies thatQi

*# Qi
~n11!

# Q~n! , n $ 1+
2+ Let Qi 0

* 5 min$Qi
*, i 5 1,2, + + + % be the smallest optimal base-stock level+

We will prove by contradiction thatQi 0
* , Qi 0

~1! cannot be true+ Suppose
Qi 0
* , Qi0

~1! , which hypothesizes that the smallest optimal base-stock level is
smaller than the myopic base-stock level+ Then,

]G~i0,Q!

]Q
5

]g~di0,Q!

]Q
1 ~12 di0!l

]E @W~i0 1 1, ~Q 2 D!1!#

]Q

1 di0 l (
k51

n

lkP~ND 5 k!
]E @W~1, ~Q 2 D ~k11! !1!#

]Q

5
]g~di0,Q!

]Q
, (6.1)

since, from the definition ofQi0
* , it holds that~Qi0

* 2 D!1 # Qi011
* and ~Qi0

* 2
D ~k11! !1 # Q1

* for all k+
SinceQi0

* , Qi0
~1! andg~di ,Q! is convex inQ, the right-hand side of~6+1! must

be negative+ However, the left-hand side of~6+1! equals zero, sinceQi0
* minimizes

G~i0,Q!+ This contradiction impliesQi0
* $ Qi0

~1!+ n

In summary of Theorems 1 and 4, we have the following bounding relations:

oQ # Qi0
* 5 Qi0

~1!
# Qi

*# Qi
~n!

# Qi
~1!

# OQ, ∀ i, n+ (6.2)

In particular, if $di , i $ 1% is increasing, theni0 5 1 and we have

oQ # Q1
*5 Q1

~1!
# Qi

*# Qi
~n!

# Qi
~1!

# OQ, ∀ i, n+ (6.3)

Due to its explicit expression, Qi
~1! is an attractive, first-order upper bound ofQi

*+
However, by Theorem 4, one can tighten the bound by obtaining thenth-order upper
boundQi

~n! of Qi
*, at the expense of more intensive computations+ Because each

iteration represents an order period, we expect that this computational procedure is
more effective than the conventional successive approximation algorithm in which
each iteration represents a single period+

Theorems 3 and 4 also indicate that when$di , i $1% is increasing, then to ensure
the optimality of the myopic policy, the end-of-cycle inventory return contract should
be constructed with the critical numberQ1

*5 Q1
~1! such that the firm can return the
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inventory exceeding this value at the end of a DOWN cycle+Notice that the contract
is easy to construct, since we have the closed-form solution for the critical valueQ1

*+
It is evident that the minimum expected discounted cost with the contract is less than
that without the contract+ On the other hand, because the firm’s base-stock levels
under the myopic policy are higher, the supplier can benefit from selling more prod-
ucts to the firm during the UP cycle so as to offset any loss for providing the end-
of-cycle return protection+ In our numerical example,when~ p2 c!0h5 9, under the
contract with critical value 7, the firm will purchase 0+91 more units~net of return!
per cycle, which is a 5% increase in the total expected purchase cost per cycle+ For
the pricing issue related to the return contract, readers can refer to the literature
about supply chain contracts~Tsay, Nahmias, and Agrawal@19# and the references
therein!, and we will not pursue the details here+

All of the results stated in Sections 3–6 remain true for the backorder case,with
the myopic base-stock levelQi

~1! given by

F~Qi
~1! ! 5

p 2 ~12 l!c

p 1 h
1 di (

k51

`

lkP~ND $ k!

3 F p 2 ~12 l!c

p 1 h
F ~k! ~Qi

~1! ! 2 F ~k11! ~Qi
~1! !G (6.4)

and the global lower bound ofQi
~1! for the backorder case given by

F~ oQ! 5
p 2 ~12 l!c

p 1 h
+

Here, oQ is the optimal base-stock level for the backorder case over an infinite plan-
ning horizon without supply interruptions~see Silver,Pyke,and Peterson@17,p+385#!+

7. NUMERICAL EXAMPLES

We provide numerical examples to illustrate the structures of the optimal and the
myopic policies and to quantify the savings the firm can gain by taking supply
uncertainty into consideration+ The parameters for the numerical examples are the
following:

1+ Cost ratio: ~ p 2 c!0h takes on the values of 3, 9, and 19 andl 5 0+9+
2+ Demand: The demand follows a negative binomial distribution with param-

etern59 andp50+5,P~D5 i !5 S 9
i 2 1D0+59;which has a shape similar to the

Normal distribution+ The mean demand isE~D! 5 9 and the variance is
Var~D! 5 2+25+

3+ UP cycle: The distribution and failure rate function of the UP cycle are
given as
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4+ DOWN cycle:We assume thatP~ND 5 1! 5 P~ND 5 2! 5 0+5+

We compute the myopic base-stock levelsQi
~1! by ~5+2! and apply the value

iteration scheme as shown in~3+10! and~3+11! combined with the policy iteration
algorithm~Ross@15# ! to computeQi

*with the candidate base-stock levels satisfying
~6+3!+The results are summarized in Table 1+As seen in Table 1, both the myopic and
optimal base-stock levels increase as the failure rates increase+ For the first UP
period, both policies have the same base-stock level, as expected+ In this case, since
d1 5 d2 5 0, Q1

*5 Q2
*5 oQ+

Next, we compare the optimal and myopic policies with the optimal stationary
policy that does not take supply interruptions into consideration+ Table 2 summa-
rizes the results+ Note that the purchasing cost is set to zero, since a high purchasing
cost conceals the savings in implementing the nonstationary policy+ As reported in
Table 2, the cost reduction could be significant+Also, the performance of the myopic
policy is near-optimum+

As shown in Table 1, the gap between the myopic and optimal base-stock levels
is small+ The myopic levels can be easily computed using a commercial software
such as EXCEL or MATLAB+ Thus, practitioners could consider just using~5+2! or
~6+4! as an approximate solution+ Also, as we mentioned earlier, the myopic bound
can be improved upon by carrying out several iterations ofG~n!~i,Q!, n $ 1+

8. CONCLUSIONS

We investigated the effects of supply interruptions in a periodic review inventory
system+We demonstrated that the optimal ordering policy in an UPperiod is a failure-

i 1 2 3 4 5

P~NU 5 i ! 0 0 0+4 0+4 0+2
di 0 0 0+4 0+67 1+0

Table 1. Comparison of Myopic and Optimal Policies

i 1 2 3 4 5

di 0 0 0+4 0+67 1+0

~ p 2 c!0h 5 3 Myopic 7 7 9 11 12
Optimal 7 7 9 11 12

~ p 2 c!0h 5 9 Myopic 7 7 15 16 17
Optimal 7 7 14 15 16

~ p 2 c!0h 5 19 Myopic 8 8 17 18 18
Optimal 8 8 17 17 18
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rate-dependent base-stock policy+ The optimal base-stock levels are nondecreasing
if the UP cycle has a nondecreasing failure rate+We showed that the myopic base-
stock levels can be explicitly and separately solved and can serve as upper bounds
for the optimal base-stock policy+We also showed that if the duration of an UP cycle
is geometrically distributed, then the optimal and myopic policies coincide, where
the optimal base stock level is a constant and can be explicitly computed+ If the UP
cycle is generally distributed with an increasing failure rate, the myopic policy is
near-optimal+ In addition, we discussed the benefits of the “end-of-cycle” inventory
return contract for the firm and its supplier+Our results contribute to the literature on
the periodic-review system with unreliable supplies in which the unmet demand is
backlogged+
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