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Supply interruptions resulting from unpredictable evesteh as machine break-
downs order cancellationsunscheduled maintenanand labor strikes can pro-
duce adverse effects on the productimventory systemin this article we consider

a periodic-review inventory system subject to random demand and unreliable sup-
ply. The availability of supply is modeled as an alternating renewal process with
general distributions for the durations of the UP and DOWN cybtMesconsider the
lost-sales case and also discuss the backorder faskoth the discounted and
long-run average cost criteri&or the linear cost modelve derive the structural
properties and bounds of the optimal poligye also propose the “end-of-cycle”
inventory return contract and show that it may be mutually beneficial to both the
firm and the supplier

1. INTRODUCTION

We study the effect of random supply interruptions on the performance of a periodic-
review inventory system with stochastic dema®dir objective is to develop opti-
mal and near-optimal ordering policies and to understand the impact of supply
interruptions on the performance of inventgpyoduction systems

For “just-in-time” producerdosses from unpredictable events such as machine
breakdownunscheduled maintenana@der cancellationdabor strikesand fires
can be severd-or the small firmit is painful to undergo cyclic supply interruptions
when the supplier chokes off its orders in a period of high demRetlit[ 12] reports

© 2004 Cambridge University Press  0269-9@8 $1600 33

https://doi.org/10.1017/50269964804181035 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804181035

34 Z Li, S. H Xu, and J. Hayya

that Exara NASDAQ-listed small firmeliminated one of its production lines due to
“supply interruptions The following are some excerpts from théall Street Jour-
nal on significant losses resulting from supply interruptions in recent years

Shortages of injectable or intravenous antibiotics are forcing doctors to scramble to
find substitute regimensnd the drug-supply interruptions could put hospital pa-
tients at riska new survey of infectious-disease experts warhls

Output at the nation’s factoriesines and utilities plunged more in June than in any
month in the past five years as the General Motors Cstrikes and the financial
crisis in Asia took their toll on the industrial sect@verall industrial production
fell 0.6% in June after a revised3o gain in Maythe Federal Reserve reportgd]

On February 11997, a fire at Aishin SeikjCo. Ltd., a Toyota subsidiarynciner-

ated the main source of a crucial brake valve that Toyota buys from Aishin and uses
in most of its carsMost Toyota domestic plants kept only a four-hour supply of this
valve and without it Toyota had to shut down its 20 auto plants in Jgpelmich

build 14000 cars a day13]

In this article we consider a periodic-review inventory system with random
demand and an unreliable supplier whose availability is modeled as an alternating
renewal processThe alternating renewal process is said to be UP when supply is
available and DOWN otherwis@he durations of the UP and DOWN cycles are
generally distributedThe firm is fully informed of the availability of supply at the
beginning of each periodt the beginning of an UP perigdhe firm can replenish
inventory up to its target levaHowever the firm cannot place any order ina DOWN
cycle and must wait until the alternating renewal process returns to the UP state
which is the beginning of the next replenishment cy@llee procurementolding
and shortage costs are all assumed linear with respect to the quabi@reands in
different periods are independent and identically distribitedl.) random vari-
ables We consider the lost-sales case and generalize the results to the backorders
case It is worth mentioning that the stationary costs amndli demand assumptions
are not necessary in our modglsey can be dependent on the state of the supplier
We imposed them here mainly for notational and expositional simplicity

The inventory production system with supply interruptions has received increas-
ing attention from researchers in recent yed&arlar and Berkif9], Parlar and
Perry[10], and Moinzadeh and Aggarwgl] considered continuous-review inven-
tory systems with deterministic demanehere supply availability is modeled as an
alternating renewal processith exponentially distributed Oavailablg and OFF
(unavailablé cycles Parlar Wang and Gerchak11], Song and Zipkir{18], and
Ozekici and Parldi8] analyzed periodic-review inventory systems with backorders
in a random supply environment modeled as a Markov chiliey showed that
among other thingsan environment-dependent base-stock policy is optimal in the
linear-cost modelHowever unlike these mode)shere we examine a periodic-
review system with stochastic demand and unreliable supply whose availability is
observable and modeled as generally distributed UP and DOWN cytisssetting
could be more general than certain Markov environments for supply availability and
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can be advantageous from the modeliagalysis and computational aspecis
addition we focus on the lost-sales cagéhich has not been thoroughly examined
in the literature

Our model differs from the random yield modé€@GerchakVickson and Parlar
[3]; Hening and Gerchalb]), which assume that yields aréd. random variables
Theyieldsin our model are notii.d. across different periodbut equal to the target
levels that depend on the failure rate of the UP cyatewe assume that the firm is
fully informed of the availability of supply at the beginning of each period

Our resultswhich hold for both the lost-sales and backorder casmsbe sum-
marized as follows

« We formulate the problem as a dynamic program and show that the optimal
ordering policy is a state-dependent base-stock policy whose base-stock level
in an UP period depends on the remaining life of the UP cycle and the duration
of the DOWN cycle The optimal base-stock levels increase as the remaining
life of the UP cycle becomes stochastically smaller or the life of the DOWN
cycle becomes stochastically larger

» To overcome the difficulty in computing the optimal base-stock levels for the
infinite-cycle modelwe defingfor given age in an UP cyclea cost function
for its order periodthat contains the expected total costs incurred between the
current and next order periodfRecall that we cannot place orders during a
DOWN cycle) We show that the optimal base-stock level for the order period
at age (hereafter referred to as the myopic base-stock level at Jaggn be
computed in closed form and constitutes an upper bound of the optimal base-
stock level at agé. Our numerical examples show that the myopic bound is
very tight

* We show that the above-described myopic poli¢yrisact, optimal when the
UP cycle has a nondecreasing failure rate and the firm is protected under the
“end-of-cycle” inventory return contractvhich specifies that the firm can
return to the supplier any unwanted inventory at the purchasing cost atthe end
of a DOWN cycle We demonstrate that not only can the return contract as-
sumption lighten the computational burden and shed light on the structure of
the optimal policybut also such a contract can fact, be mutually beneficial
to both the firm and the supplier

We gain the following insights from the analysis

1. Supply interruptions have a significant impact on the inventprgduction
systemltis better to model such a supply uncertainty than to ignorehié
firm can recover significant cost savings by incorporating supply uncer-
tainty into its inventory planning

2. Afirm facing supply interruptions is well advised to keep higher stock levels
than otherwisgwhich is of course intuitive. The effectiveness of such a
policy depends on the accurate estimation of the distributions of the UP and
DOWN cycles because it allows the “just-in-time” firm to raise the inven-
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tory level at the right time and to the right amount ahdnce balance its
needs to keep thin inventory while preventing shortages during the DOWN
cycle

3. The “end-of-cycle” return contract can help the supplier in providing incen-
tives to the buying firm to purchase more of the product in the slack season

The rest of this article is organized as follav&ection 2 reviews the literature
Section 3 introduces the model and presents a dynamic programming formulation
Section 4 obtains the structural properties of the optimal ordering p&usgtion 5
proposes the “end-of-cycle” inventory return contract and studies the myopic.policy
Section 6 derives the bounding relationship between the myopic and optimal base-
stock levelsSection 7 gives several numerical exampbesd Section 8 concludes
the article

2. LITERATURE REVIEW

We summarize the important articles and discuss them Remdar and Berkinf9]
developed an EOQ model with exponentially distributed ON and OFF durations
based on the renewal reward theoresae Ros$14, p. 52]). Parlar and Perrj/10]
analyzed the reorder poimrder quantityr, Q) inventory system with deterministic
demandand two sources of supply with ON and OFF durations exponentially dis-
tributed Moinzadeh and Aggarwdl’] studied an unreliable productigimventory
system with exponential ON duratigreonstant OFF duration§ixed setup costs
and constant production and demand ratéey developed a procedure for finding
the optimal(s, S) policy as well as a simple heuristic algorithm
Random yield models are also related to our modsho and Le¢22] provided
an excellent literature review of lot sizing with random yiélitie majority of studies
on random yield considetochastically proportional yieldhodels which treat the
defective rate as a random variable with a differentiable distribuGanchak et al
[3] analyzed a periodic-review inventory model with zero setup, costertain de-
mand and ii.d. random yield ratesThey provided a complete analysis of the final
period problem and explored the properties of the penultimate period prpfaem
which the solution is not myopiddening and Gerchals] generalized the earlier
work of Gerchak et al 3] and showed that there exists a critical reorder point for
each period such that an order should be placed if the on-hand inventory at the
beginning of the period is below a critical reorder pokibwever the order quantity
is a complicated function of the system parameters and the initial inventory.levels
In other wordsthe “order-up-to” type of policy is no longer optim&iarallg Akella,
and Morton[2] modeled the yield as a function of random production capacity and
showed that for the single-period mogdtie optimal order-up-to quantity is inde-
pendent of the distribution of capacitfhey also showed thafor the multiple-
period problemthe optimal ordering policy is a modified myopic base-stock policy
Palar et al[11] considered a backloggingeriodic-review inventory system
with a finite planning horizonwith the UP and DOWN cycles geometrically dis-
tributed A basic setup cost will be incurred whenever an order is plaaed a
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secondary setup cost will be assessed only when the order is i this order-

ing structure they showed that the optimal policy for multiperiod problems is an
(s, S) policy. They also showed that for each peri&d is independent of the supply
availability of previous periodsut thats® is increasing in the probability that the
current order will be suppliedSong and Zipkiri 18] developed a backorder model
with an exogenous Markovian supply systemnere the lead time may depend on
the status of the supply systelvith zero ordering and linear penalty and holding
costs Song and Zipkin showed that the optimal policy is a base-stock policy and
provided the upper and lower bounds of the base-stock.[€hely also provided the
sufficient condition under which the optimal base-stock level is monot@uekici

and Parlaf8] considered a periodic-review backorder model with an unreliable
supplier in a Markov environmerithe demand-supply availability and cost param-
eters change with respect to the Markov environmiéig assumed that whereas the
firm can observe the state of the environméintannot observe the availability of
supply Ozekici and Parlar showed that an environment-dependent base-stock pol-
icy is optimal when the order cost is linear in the order quantity

3. DYNAMIC PROGRAMMING FORMULATION

We consider an infinite horizqmperiodic-review inventory system with stochastic
demand and a supplier subject to periodic breakdowves model supply uncer-
tainty via an alternating renewal procesge Wolff[21, p. 62]). The alternating
renewal process is said to be UP if supply is available and DOWN otherWlise
durations of UP and DOWN cycles are denoted by independent and integer-valued
random variabledl, andNp, respectivelyA replenishment cycle consists of an UP
and a DOWN cyclewith total cycle lengthiNy + Np. We assume that the firm is fully
informed of the availability of supply at the beginning of each periidhe begin-
ning of an UP periogdthe firm replenishes inventory up to its target letied., the
lead time is negligible However the firm cannot place an order in a DOWN period
and must wait until the alternating renewal process returns to the UPstatd is
the beginning of the next replenishment cycle
We define the “age” of an UP cycle as the number of periods that the current UP

cycle has continued since the last supply interrupticet d; be the conditional
probability that the supply is interrupted at the- 1) st period given that the current
UP cycle is at agé. Then

d-=P(NU=i|NU2i)—P(NU D tori—12,.... (3.1)

' P(Ny =1) o

Thus {d;, i =1} is thefailure rate functiorof Ny (see Rosgl6, p. 193]).If d; = d. 4,
then the supply availability deteriorates at ag®n the other handf d, > d;, 4, it
means that the supply can improve its reliability level at adge.g., via age-
dependent maintenanc®hen{d,,i =1} is a nondecreasing sequenae say that
the UP cycle has a nondecreasing failure rate functidnis notion captures the
scenario that the “older” an UP cyclbe larger the likelihood of supply interruption
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in the following period Many commonly used distributionsuch as the geometric
the uniform the Erlangand the binomighave nondecreasing failure rate functions
We generally do not requikgl;, i = 1} to be monotone to derive structural properties
of the optimal policy

For expositional simplicitywe assume stationary demand distribution and cost
functions although most of our results still hold if they depend on the states of the
UP and DOWN cyclesDenote the demand in periody D;, i =1,2,..., and letD;
be ii.d. random variables with cumulative and density functié¢ix) andf(x),
respectivelyThere is no economy of scale for replenishm@&ie purchase procure-
ment cost is a linear function of the quantity orde(ieel, the setup cost is zeyowith
a unit purchasing cost At the end of each periga unit holding cosh is incurred
for the remaining inventory and a unit penalty cgsis charged for unsatisfied
demandDemand is filled by existing inventory whenever possilaled unmet de-
mand is lost

Our objective is to determine an optimal ordering policy that minimizes the total
discounted or long-run average cost over an infinite hotifmmboth the lost-sales
and backorder cased/e will mainly discuss the lost-sales case for the discounted-
cost criterionThe long-run average cost results follow those of the discounted case
after letting the discount factor — 1. In Section 6 we show that all of the results
can be extended to the backorder case

Let L(Q) be the expected total holding and penalty cost in an UP pggigdn
that inventory is successfully replenished ugtoThen

L(Q) =hE(Q—D)"+pE(D—-Q)*
Q
=-pQ+(p+ h)f0 F(t)dt+ pE(D), (3.2)

where(x)* = max(0, x). Let 0= A < 1 be the discount factdlf we purchase& units
atthe beginning of a period and treat leftover inventory as an,dksatthe expected
total cost incurred in the single period is

h(Q) = cQ+ L(Q) — AcE[(Q-D)"]

Q
= (C—p)Q-k(p+h—c)\)fO F(t)dt+ pE(D). (3.3)

Itis well known thath(Q) is convex Taking the derivative ofi(Q) and setting it to
zerq we recover the celebrated newsvender solution

p—c

p+h—cA’ (3.4)

F(Q) =

Herg Q is understood as the optimal base-stock level for the lost-sales case over
the infinite planning horizon without supply interruptiofeee Lee and Nahmias

[6, p. 26]).
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For conveniencdet D®¥ = 3¥ | D,. The density and cumulative distribution
functions ofD™ are denoted by® andF ¥, respectivelyLet us first develop an
expression for the expected discounted costin a DOWN c¢le=n that the current
period is UP(and the firm successfully replenishes the inventory uQ xand that
the next period is DOWNhe starting inventory of the DOWN cycle ( — D)™.

If a DOWN cycle lasts at lea&tperiodsthen the on-hand inventory at the beginning
of thekth period of a DOWN cycle is§Q — D®) ™. Thus the expected total holding
plus penalty costs in periokl of a DOWN cycle isL((Q — D™)™), whereL is
defined in(3.2). Summing up the holding and penalty costs over the DOWN cycle
that starts with initial inventoryQ — D)*, we obtain

Np oo

E| 2 X*L(Q-D®)")| = X P(No =KAE[L(Q-D®)")].  (35)

k=1 k=1
The above expression can be evaluated by conditionifg¥n= d. If Q > d, then
L(Q — d) is evaluated by3.2). If Q = d, thenL(0) = pE(D).

We use(i, x) to describe the system stateherei is the age of the current UP
cycle andx is the initial inventory of the current UP periodet V(i, x) be the min-
imum expected total discounted cost over the infinite planning horizon starting with
state(i, x). From (3.2) and (3.5), the discounted dynamic programming recursion
gives us

V(i,x) = rgin{C(Q —x) +L(Q) +d, i P(Np = K)A*E[L((Q -~ D™®)")]
k=1

=X

+diA i MP(Np =KE[V(L,(Q— D )"
k=1
+AA-d)E[V(i+1,(Q— D)*)]}. (3.6)

We interpret3.6) as follows The first term is the procurement coshe second term
is the expected penalty and holding costs incurred in the current UP p€hiethird
and fourth terms are the expected DOWN cycle cost and the expected cost from the
next UP cycle onwardrespectively given that supply is interrupted in the next
period The fifth term is the cost from the next period onwagd/en that supply is
available in the next period

Because the termcxin (3.6) is not affected by the decision variatilewe let
following Veinott[20],

W(i, x) = V(i, x) + cx. (3.7)

Here W(i, X) is understood as the minimum expected total discounted cost starting
with state(i,0), under the constraint that the inventory level after ordering must be
at leastx. This is a commonly use@donvenient cost accounting scheme that allows
us to receive the book value of leftover inventotynits at the end of each period
under the constraint that we must procure at lgastits at the beginning of the next
period Then
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E[V(Ii+1,(Q~-D)")]=E[W(i +1(Q-D)")]-cE[(Q-D)"],
E[V(L(Q— D" *)")] = E[W(L,(Q—D**¥)")] - cE[(Q - D"*¥)"].

Using(3.7) and the above expressigiie optimality equatiori3.6) becomes

W(i, x) = rgin{g(di,Q) + A4, % AP(Np = K)E[W(L,(Q — D" )")]
k=1

=X

+ A1 - d)E[W(i +1,(Q - D)*)]}
= min{G(i,Q)}, (3.8)

whereg(i, Q) is the extended single-period cos#ttat contains the expected dis-
counted cost incurred between the current and next argieen that we are in state
(i,0) and orderQ units Then we can expresg(i, Q) by

9(d;,Q) = cQ+ L(Q) — (1~ d)AcE[(Q—D)"]

‘d {ﬁ AP(No = KE[L(Q~ D®)*)]
k=1
—eA S, HP(Ny = KE(Q - DMH}
k=1
— (1-d)h(Q +d S AP(No = WE[N(Q-D®) )],  (3.9)
k=0

whereh is the single-period cost as defined (8/3), D© = 0, andP(Np = 0) =
P(Np = 1) = 1. Note that the number of periods between two consecutive orders is
either one(with probability 1— d;) or Ny + 1 (with probability d;). In the above
expressionwe used the accounting scheme that allows the firm to return the leftover
inventory at the end of each DOWN period but buying back the same quantity at the
same cost at the beginning of the next perimevided that the next period is still
DOWN

In contrast to the conventional dynamic programming formulation for the
periodic-review system in which the system transition occuesich periodin our
formulation each transition representsamdom number of periodsvhich corre-
sponds to the periods between two consecutive ordieisther wordswe “skip”
those DOWN periods during which the firm cannot replenish inventories and use the
extended single periadhe order perioglcost to cover thatincurred during a DOWN
cycle This formulation is possible due to the structure of the alternating renewal
process and makes the value function more transparentande will seefacili-
tates easy derivations of the structural properties and closed-form hounds

To facilitate the analysijsit is useful to truncaté/N(i, x) to W,(i, X), where
Win (i, X) is the minimum expected discounted cost starting in giak¢ when there
aren ordersremaining Recall that the number of periods between two consecutive
orders is either onef the next period is UP and we can immediately place another
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ordetorNp +1, if the next period is DOWN and we have to defer the next order until
the supply becomes available agdito cost will be incurred after the end of the
orders Forn =1, we have

W (i, %) = min{g(d;, Q)} = min{Ge (i, Q)}- (3.10)

Forn = 2, we define from (3.8), (3.9), and(3.5), that
Wiy (i, X) = rgin{g(di,Q) +Ad X AP(Np = K)E[Wn_1)(1,(Q — D*)*)]
=x k=1

+ AL = d)E[Wen-5(i +1,(Q — D)+)]}

ngiQ{G(n)(i,Q)}- (3.11)

It is not difficult to show that as — oo, G (i, Q) andWy(i, X) indeed converge to
G(i,Q) andW(i, x), respectively

For the long-run average-cost criterion witk 1, the Bellman optimality equa-
tion (the fundamental principle of dynamic programmisgating that the optimal
solution to amth-stage dynamic process must proceed from an optimal solution of
the(n — 1)th stage that begins with the optimal outcome of the first sSthgeomes

g+ W(i,x) = rgin{g(i,Q) +d io: P(Np = K)E[W(L,(Q — D**P)™)]
k=1

+ (1-d)E[W(i +1L(Q— D)*)]}. (3.12)

whereg is a constant and(i, Q) is defined in(3.9) with A = 1. We shall not specif-
ically discuss the long-run average casecept noting thatvia standard limiting
argumentsour results for the discounted case remain valid for its long-run average
counterpart

4. THE OPTIMAL ORDERING POLICY

Before characterizing the optimal ordering policy for our moude first explore the
properties of the cost function for a single-order perig(}, Q).

LEMMA 1:

1. g(d;,Q) is a convex function of Q for any givén=d, = 1.

2. Let Q andQ be the smallest values that minimiz@&) and g1,Q), re-
spectively. ThenQ = Q. In addition, dd;,Q) is a subadditive function in
0=d=1andQ<Q=Q.

3. 9g(d;,Q)/9Q is decreasing in Q if INp = k) becomes smaller for each k
(i.e., if N5 becomes stochastically smaller).
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PROOF:

1. The expression ofy(d;,Q) is given in (3.9). Recall thatd?f(g(x))/
dx2=f"(g(x)[g'(x)]?+ f'(g(x))g"(x). If fis convex inxandg”(x) =0
(i.e., linear or piecewise lineay then f(g(x)) is convex inx. There-
fore, E[h((Q — D™)™)] is convex inQ, sinceh is convex inQ, and
9%(Q — D)™/0Q? = 0. Finally, g(d;, Q) is convex inQ, since the weighted
sum of convex functions is convex

2. Ford, =0, g(0,Q) = h(Q). Therefore Q satisfieg3.4). To proveQ = Q, we
show thatdg(1,Q)/0Q = 0 for Q = Q; then the result follows from the
convexity ofg(1,Q). We have B

39(1 Q & dE[h((Q —D™®)*)]

2 *P(Np = k) ) =0, (4.1)

sincehis convexand forQ = Q, dE[h((Q — D™)*)]/dQ= 0. This implies
thatQ = Q. Now, from (3.9) and(4.1), for anyQ=Q= Q, we have

99*(d,Q) _ dh(Q OE[h((Q —D®)")]

k
ad; 0Q dQ i kEOA PN = 9Q
__dhQ , 991Q) _ 3900 A 391Q) 4.2)
do 9Q 9Q Q

Due to the convexity oh andg, both terms are nonpositive @ = Q = Q.
3. The partial derivative ofj(d;, Q) with respect tdQ is a
d9(di, Q) dh(Q) . dE[h((Q-D¥)")]
20 1-d) 0 +d kZO)\ P(Np = k) 0 .
Clearly dg(d;, Q)/0Q decreases a@(Np = k) decreases for eadt(i.e., Np
becomes stochastically smalleThis also implies thaQi(l), the smallest
minimizer ofg(d;, Q), decreases dsy becomes stochastically smallerl

Forn=1, define
Q™ = arg miny{G,(i,Q)|d; = 0}, (4.3)
Q"™ =arg mirb{G(n)(iaQ)|di =1}, (4.4)

whereQ® = Q andQ™® = Q. Using Lemma 1we now derive the properties asso-
ciated with the value function#/,,(i, Q) andG,(i,Q), n=1.

THEOREM 1:
1. Gy, (i,Q) is convexin Q for r= 1 and is subadditive i@ = d; =1andQ =
Q=Q™".

2. W) (i, x) is increasing and convex in x fora 1 and is subadditive i) <
d=1land0=Q=Qm.
3. Forn=1,

Q(n)

Q (4.5)
Q=Q

(D < Q) (4.6)
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4. Both G (i,Q)/dQ anddWy, (i,Q)/dQ decrease in Q if N stochastically
decreases.

Proor: We prove parts 1-4 by induction onthe total number of order periodsor
n=1, part 1 holds trugsinceG (i, Q) = g(d;, Q), which is convex and subadditive
by Lemma 1To prove part 2 fon =1, we usg3.10); Wy (i, X) = min,-o{g(d;, Q)}.
Clearly Wy (i, X) is increasing irx. Its convexity and subadditivity follow directly
from the same properties gfd;, x). Also, part 4 forn = 1 follows from Lemma 1
part 3 It remains to verify part 3 fon = 1. First, (4.5) holds trivially forn = 1. Also,
the left inequality 0f4.6) for n =1 is shown in Lemma,Jpart 2 To prove the right
inequality of(4.6) for n =1, we note for Q = Q' = Q,

E)G(Z)(I,Q) Q) A E )lkP(N k) aE[VV(l)(l,(Q — D(k+l))+)]
9Q  la-1 aQ ° 9Q
_91Q
==0 = 0,

where the first inequality follows becau®é;, is convex and thus has a nonnegative
derivative the second inequality holds becaw@es Q andg(1, Q) is minimized at
Q. The convexity ofg(1, Q) andW, then impliesQ® = QW = Q.

Next, we prove parts 1-4 fam, based on the hypothesis that they are valid for
less tham. Consider part 1 firstwhereG,, (i, X) is given in(3.11). By Lemma 1
part 1, g(d;,Q) is convex inQ. Sinced(Q — D)*/0Q = 0 andd?(Q — D) */0Q2 =0
and by our hypothesisboth E[W,_1)(i + 1,(Q — D)")] and E[Wn-1(1,
(Q—D¥*1)*")] are increasing and convex@ This implies thaG,(i,Q) is a con-
vex function ofQ. To proveG,(i, Q) is subadditive in 6= d, =1 andQ = Q= Q"

we have
G2, (d,, ag?(d;, OE[W_1)(1,Q — DKy *
B(.Q) | 1869 | & o M (1Q )]
ad; 0Q ad; 0Q k=1 9Q
& I2E[Wn-1(1,Q — D* V) *]
+ Ad, K =
Ad; Z}lA P(Np = k) 2,00

) IE[Win-1(i +1,(Q—D)")]

9Q
a1 g PEMent 210 D) )
_ _[ dh(Q | EMn»(i+1(Q- D)+)]]
- dQ 0Q
89(1 Q) . IE[Wn-1)(1,Q — D) "]

pre Ak21A P(Np = k) 0

_ 8G(r‘|)(i’Q) + aG(n)(i’ Q) (4 7)
aQ d;=0 aQ di:]-' .
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To derive the inequality heyave used4.2) and our hypotheses of parts 2 and 3 for
n— 1, which state that\f,,, is subadditivein6s d;=1andQ=Q=Q"W = Q" ¥,
Since both terms d#.7) are nonpositive foQ = Q = Q™, itimplies thatG (i, Q)
is subadditive in the specified regiofhis completes the proof of part 1 far

Let Qi(") be the smallest value that minimiz&g,(i, Q). From the subadditivity
of Gn)(i,Q), we must have) = Q™ = Q™. Then

i it v — M
vv<n><i,x>={G<“)("9' )= (4.8)

G(i,x)  otherwise

SinceGy,)(i, Q) is convex and subadditiy&V, (i, x) is increasing and also inherits
convexity and subadditivity d&,,(i,Q). This validates part.2

Next, we prove(4.5) by showing thaQ™ = Q andQ™ = Q, based on the
hypothesiQ"~* = Q. From the expression

3G (i,Q)
aQ

_ _[ dh(Q) ‘A IE[Wh- (i +1,(Q — D)ﬂ]]
4,=0 dQ 9Q ’

we observe thaG,,(i, Q)/aQ)\d —o Is nonnegative foQ = Q, sinceQ minimizes
h(Q) andW,_ 4 is increasing irQ. This states tha@™ = Q. On the other handor

Q=Q
Gw([Q|  _h(Q  EMey(+1Q-D))|  _hQ _,
aQ d=0  0Q aQ d,1=0 Q 7

where the firstinequality is due to part 2 for- 1, which states thatE [W,— 1, (i + 1,
(Q — D)")]/0Q is decreasing i, ;. The equality follows our hypothesis that for
[Q—-D]* = Q™Y = Q, the derivative of\,_,, equals zeroTherefore Q"™ = Q.
This, together withQW =< Q, yields (4.5).

To verify the left inequality of (4.6) for n, we use the expression
(3G (i,Q)/0Q)|q -1 given in(4.6). SinceQ"? = Q, then for anyQ = Q,

8G(n)(i’Q) 89(1 Q) ‘ \N(n—l)(l,(Q _ D(k+1))+)
8Q d,:1 a aQ A E A P(N ) aQ 40
_99(1,Q _
Qo

which implies thatQ™ = Q. To prove the right inequality of4.6) for n, we first
realize that botl G, /0Q anddW,,,, /dQ are increasing functions of which can be
shown by induction on. Then (G 1)(i,Q))/dQ]g4 -1 = (0G5 (i,Q))/0Q|4 -1 = 0,
for Q = Q™. We then obtairQ ™" = Q™. This completes the proof of part 3
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Finally, supposé\p = Np. We useg to denote the counterpart gf with the
DOWN cycle lengthNp. Let G,y andW,,,, be similarly definedFrom(4.3) and our
hypothesis of part 4 fon — 1, we obtain

9G»(1,Q) _ dg(d;,Q) IE[Win-1(i +1,(Q—D)")]

0 0 +A(1—d) 70
A IE[ANW,_1)(1,(Q — DNt 1) ™))
aQ
_ 99(d,Q) L EMWe(i+1,(Q=D)")]
> —aQ +A(1—d) 90
A IE[ AW, _1)(1,(Q — DNo*1)™)]
aQ
_ 99(d,Q) ~ IEWe-n (i +1,(Q—D)")]
=~ +A(1—-d) 90
X IE[AW, 1)(1,(Q — DNot1)*)]
Q
Q

where the first inequality follows from the hypothesis of part 41ior 1 and the

second inequality holds becaud®/3_,,/dQ is decreasing abl, is stochastically

decreasingThe above expression also means that 8, /0Q and Qi(") are de-

creasing ifi\p is stochastically decreasinghis completes the proof of Theorem 1
[ ]

Theorem 1 allows us to derive the properties associated with the optimal order-
ing policy, as stated in Theorem 2

THEOREM 2:

1. The optimal ordering policy is an age-dependent base-stock policy; that is,
there exist base-stock levels§ Q= 1,2,..., such that it is optimal to order
up to Q" units in state(i, X).

2. If {d,,i =1} isnondecreasing ini, thel@Q;",i = 1} is also nondecreasingin i.

3. Foreach =1, Q' decreases asd\stochastically decreases.

PRrROOF:

1. We have shown in Theorem fpart 1 thatG,(i,Q) is convex inQ and is
minimized atQ™. Letting n — o, Gn(i,Q) converges td3(i,Q). Evi-
dently G(i, Q) is also a convex function dd. Let Q; be the smallest value
minimizing G(i, Q). Then Q/ is the optimal base-stock level in stdiex),
i=12,....
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2. Similarly, as in part 1 one can show thaG(i,Q) is subadditive in 0=
d = 1 andQ = Q = Q*, whereQ minimizesG(i, Q)|4 o andQ* minimizes
G(i,Q)|4_1. Thereforeif di,; = dj,

IG(i +1,Q)
Q

which means tha®" = Q. ;.
3. This is the limiting result of Theorem, part 4 u

_ 96,9

= =0,
Qr 9Q

QI*

Observe thaQ, defined in(3.4), provides a global lower bound f@y*, i = 1,
and this lower bound is attainable whén= 0. This implies that whereas the firm
should keep a higher safety stock level to safeguard itself from random supply break-
downs it only needs to do so wheth is strictly positive For examplesupposeNy
has a failure rate functiofd;,i = 1,2,3,4} = {0,0,0.5,0.5}. Then in the first two
periods the firm only needs to order up ©@. In other wordsthe firm does not need
to prematurely increase the safety stock levels in the first two perlodtso un-
derscores the importance of an accurate estimate of the failure rate fyhett@use
it allows the firm to increase the base-stock level at the right time and to the right
level

5. SINGLE-CYCLE ANALYSIS AND MYOPIC POLICY

Theorem 2 indicates that the optimal ordering policy is a base-stock pblamy-
ever computing the optimal base-stock levély', i = 1} is not an easy taskinless

d; = 0). Thereforeit is desirable to obtain an effective approximationf, i = 1.

In this sectionwe obtain an explicit expression for the myopic base-stock Jevel
Q" , whereQ™ minimizes theextended single-period costdj,Q), i = 1. In the
next sectiopwe show thaQi(l) in fact constitutes an upper bound f@f, i = 1. From
Lemma 1 we see thafQ™, i = 1} possesses the structural propertiesQjf,i = 1}.

For exampIle1> increases ifl increases oNp becomes stochastically largetere
we show that if the UP cycle has a nondecreasing failure rate fungtian if
{di,i = 1} is nondecreasingthen{Q",i = 1} is optimal for the infinite-cycle
problem but under the condition that the firm can return excess inventory at the
original purchasing cost at the end of a cydlée term such a condition “the end-
of-cycle inventory return contract” psimply, “the return contract Clearly, with

the return contractthe infinite-cycle problem is decomposed into a sequence of
identical single-cycle problem§he following lemma derives the closed-form
solution forQ™", i = 1.

LEMMA 2: Let

QY = argmin{g(di,Q)}, i=12,.... (5.1)
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Then, @”,i=1,2,..., can be explicitly computed as
p _ o
FQY) = ———— +4, KP(Np = k
(QI ) p+h_)\C d|k§l)\ (D )
% [& FhQW) — F<k+1>(Q_<1>)}_ (5.2)
p+h-—Ac ' '

Proor: In Lemma 1 part 1 we have shown thaj(d;, Q) is a convex function o®.
The first derivative of(d;, Q) with respect tdQ satisfies

99(di, Q) dh(Q) & _ ., 9E[h(Q— D®)*)]
o - (1-d) = +d ZO/\kP(ND_k) i . (5.3)

Applying the Leibniz rule and using the reswh(Q)/dQ = (c — p) + (p +
h — Ac)F(Q), we obtain
99(a;, Q)
aQ

—(@-d)(c—p + (p+h— ADF(Q]+d S AP(Np = K
k=0

Jd Q J *
- _ ( 2
X [anO h(Q — x) dF W (x) + anQ h(O)dF“()(x)]

— (- d)c—p) + (p+h— AJF(Q] +d S AP(Ny = K)
k=0

Q
X f [(c—=p) + (p+h=2Ac)F(Q—x]dF¥(x)
=(—p+(p+h—-Ac)F(Q)
L4 S PNy = K(C— PFR(Q) + (p+h— ADFKI(Q)].
k=1

(5.4)
Then (5.1) and(5.2) follow by setting(5.4) to zero and reorganizing terms H

Next, we show that the myopic base-stock levé®”,i = 1}, as given in
Lemma 2are optimal if d;, i =1} is nondecreasing and the return contract is effective

THeoreM 3: If {d;,i =1} is a nondecreasing sequence, then the optimal policy for
the single-cycle model with the return contract is specified@?’,i =1},

Proor: Let W=(i, x) be the expected cost from periodintil the end of the cycle
which can be obtained froi(8.8) as

Ws(i, x) = gLiQ{g(diaQi) + A1 —d)E[WS(i +1,(Q — D))} (5.5)
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LetQ represent the base-stock level chosen by the firm in éfatg), j = i. Clearly,
Q; must satisfy the following constraint

Qj+1 = X1 = (Q] - Dj)t j=i (5.6)

Using the recursive expression given(®y5), subject ta5.6), we can writg(5.5) in
the form

j=i

Wi, x;) = min{ (di,Q) + E A< '”H(l d )g(dk+1,Qk+1)} (5.7)

whereQ;, j = i, are decision variables and subject to constrébr). It is easy to

verify that
k PIN=k+1
E(l—dj)=w, =1
Hence (5.7) becomes
Ws(i, %) = min{ L E P(Ny = k) Ak~ 'g(dk,Qk)} (5.8)
P(NU = k=i
subject to constraints
Qi = X,
Q1=X%41=(Q — D)7, j=i. (5.9)

If the sequencéd;, i =1} is nondecreasinghen by Lemma Jlpart 2 {Qi(l), i=1}is
a nondecreasing sequendédus {Qi(l),i = 1} satisfy constraint$5.9); here we
assumewithout loss of generality that the = Q. This implies that the myopic

policy {Q™,i = 1} is optimal

The following corollary considers a special case in which the UP cycle has a
constant failure rate

CoroLLARY 1: Ifthe duration of the UP cycle is geometrically distributed with rate

d,, the optimal policy for the system with the return contract is identical to that of the
system without the contract, which is a stationary myopic base-stock policy whose
base-stock leveR;, can be explicitly computed by (5.2).

6. BOUNDS

Our results in the previous section show that the myopic base-stock level possesses
a closed-form solutianin the following theoremwe establish the bounds for the
optimal base-stock level§Ve show thafQ™,n = 1} forms a sequence of upper
bounds forQ:, with Q"' as the largest in the sequence

https://doi.org/10.1017/50269964804181035 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804181035

PERIODIC-REVIEW INVENTORY SYSTEM 49

THEOREM 4:

L. (Upper bound) @= Q""" = Q", n=1.In particular, @ = Q”,n= 1.
2. (Lower bound) Let @' = min{Q™,i = 1}. Then, @’ = Q}5. This result
together with partl, implies @5’ = Q.

PrOOF:

1. Itis intuitively trug and indeed can be proven easily by inductiomothat
G (i,Q)/9Q is increasing im. As G (i,Q)/0Q — dG(i,Q)/dQ when
n — oo, it implies thatQ = Q™" = Q™ n=1.

2. Let Q% = min{Q/,i = 1,2,...} be the smallest optimal base-stock level
We will prove by contradiction thaQo < Qf? cannot be trueSuppose
Qi < QY which hypothesizes that the smallest optimal base-stock level is
smaller than the myopic base-stock levihen

9G(i0,Q)  99(di,,Q) B IE[W(io +1,(Q—-D)")]
o T TAmd o
n —_ PD(k+1)\+
£ A S AP(Ng = K) JE[W(L, (Q — D™ "))
=] aQ
_ ag(di(,’Q)

since from the definition ofQ;, it holds that(Q; — D)™ = Qf ., and (Q —
DK+ < Qs for all k.

SinceQ;;, < QY andg(d;, Q) is convex inQ, the right-hand side of6.1) must
be negativeHowever the left-hand side of6.1) equals zerpsinceQ;; minimizes

G(ip, Q). This contradiction implie€; = Q. [
In summary of Theorems 1 andwe have the following bounding relations
Q=Q;=Q,/)=Q'=Q"=Q"=Q  Oin (6.2)

In particular if {d;,i =1} is increasingtheniy = 1 and we have
Q=Qi=Q"=Q=Q"=Q"=4q, 0i, n. (6.3)

Due to its explicit expressiorQi(l) is an attractivefirst-order upper bound ofQ;".
However by Theorem 4one can tighten the bound by obtaining titlke-order upper
boundQ™ of Qr, at the expense of more intensive computatidscause each
iteration represents an order perjee expect that this computational procedure is
more effective than the conventional successive approximation algorithm in which
each iteration represents a single period

Theorems 3 and 4 also indicate that whdni = 1} is increasingthen to ensure
the optimality of the myopic poligyhe end-of-cycle inventory return contract should
be constructed with the critical numb@i = Qil) such that the firm can return the
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inventory exceeding this value at the end of a DOWN cyiietice that the contract
is easy to construgsince we have the closed-form solution for the critical vaje
Itis evident that the minimum expected discounted cost with the contractis less than
that without the contracOn the other handecause the firm's base-stock levels
under the myopic policy are highehe supplier can benefit from selling more prod-
ucts to the firm during the UP cycle so as to offset any loss for providing the end-
of-cycle return protectiorin our numerical examplevhen(p — c)/h=9, under the
contract with critical value ,the firm will purchase ®1 more unitgnet of return
per cycle which is a 5% increase in the total expected purchase cost per Eyele
the pricing issue related to the return contraetders can refer to the literature
about supply chain contract¥say Nahmiasand Agrawal[19] and the references
therein, and we will not pursue the details here

All of the results stated in Sections 3—6 remain true for the backorderwike
the myopic base-stock level™® given by

F(QY) = % +d, § AP(Np = K)
p—(1-Mc Dy _ ekt <1>}
x[ T FUQY -Fee) (6.4)

and the global lower bound @'" for the backorder case given by

p—(1-A)c
FQ=——""".

@ p+h
Herg Qs the optimal base-stock level for the backorder case over an infinite plan-
ning horizon without supply interruptiorisee SilverPyke and Petersofi7, p. 385]).

7. NUMERICAL EXAMPLES

We provide numerical examples to illustrate the structures of the optimal and the
myopic policies and to quantify the savings the firm can gain by taking supply
uncertainty into consideratiomhe parameters for the numerical examples are the
following:

1. Costratia (p — c)/htakes on the values of 9, and 19 and\ = 0.9.

2. Demand The demand follows a negative binomial distribution with param-
etern=9andp=0.5,P(D=i)= 1)0 5% which has a shape similar to the
Normal distribution The mean demand B(D) = 9 and the variance is
Var(D) = 2.25.

3. UP cycle The distribution and failure rate function of the UP cycle are
given as
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i 1 2 3 4 5
P(Ny=1) 0 0 04 0.4 0.2
d 0 0 04 0.67 10

4. DOWN cycleWe assume thd&(Np = 1) = P(Np = 2) = 0.5.

We compute the myopic base-stock Ievé]i%” by (5.2) and apply the value
iteration scheme as shown (8.10) and(3.11) combined with the policy iteration
algorithm(Rosq 15]) to computeQ;* with the candidate base-stock levels satisfying
(6.3). The results are summarized in Tablé§ seen in Table,both the myopic and
optimal base-stock levels increase as the failure rates increasehe first UP
period both policies have the same base-stock lewgkxpectedn this casesince
dh=d=0,Q=0Q:=Q

Next, we compare the optimal and myopic policies with the optimal stationary
policy that does not take supply interruptions into considerafiable 2 summa-
rizes the resultdNote that the purchasing cost is set to zsince a high purchasing
cost conceals the savings in implementing the nonstationary pékcyeported in
Table 2 the cost reduction could be significaAtso, the performance of the myopic
policy is near-optimum

As shown in Table lthe gap between the myopic and optimal base-stock levels
is small The myopic levels can be easily computed using a commercial software
such as EXCEL or MATLAB Thus practitioners could consider just usiffg2) or
(6.4) as an approximate solutioAlso, as we mentioned earlighe myopic bound
can be improved upon by carrying out several iterationSgf(i,Q), n = 1.

8. CONCLUSIONS

We investigated the effects of supply interruptions in a periodic review inventory
systemWe demonstrated that the optimal ordering policy in an UP period is a failure-

TaBLE 1. Comparison of Myopic and Optimal Policies

i 1 2 3 4 5
d 0 0 04 0.67 10

(p—c)/h=3 Myopic 7 7 9 11 12
Optimal 7 7 9 11 12

(p—c)/h=9 Myopic 7 7 15 16 17
Optimal 7 7 14 15 16

(p—c)/h=19 Myopic 8 8 17 18 18
Optimal 8 8 17 17 18
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TABLE 2. Percentage Savings by Considering Supply Interruptions

% Savings % Savings
Savings Under the Under the
per Cycle Myopic Policy Optimal Policy
(p—c)/h=3 $51 20% 20%
(p—c)/h=9 $137 55% 56%
(p—c)/h=19 $241 71% 71%

rate-dependent base-stock poli€he optimal base-stock levels are nondecreasing
if the UP cycle has a nondecreasing failure ralte showed that the myopic base-
stock levels can be explicitly and separately solved and can serve as upper bounds
for the optimal base-stock policye also showed that if the duration of an UP cycle

is geometrically distributedhen the optimal and myopic policies coincjdehere

the optimal base stock level is a constant and can be explicitly comgtited UP

cycle is generally distributed with an increasing failure yéte myopic policy is
near-optimalln addition we discussed the benefits of the “end-of-cycle” inventory
return contract for the firm and its suppli€ur results contribute to the literature on
the periodic-review system with unreliable supplies in which the unmet demand is
backlogged
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