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Detecting the turbulent/non-turbulent interface is a challenging topic in turbulence
research. In the present study, machine learning methods are used to train detectors
for identifying turbulent regions in the flow past a circular cylinder. To ensure that the
turbulent/non-turbulent interface is independent of the reference frame of coordinates
and is physics-informed, we propose to use invariants of tensors appearing in the
transport equations of velocity fluctuations, strain-rate tensor and vortical tensor as
the input features to identify the flow state. The training samples are chosen from
numerical simulation data at two Reynolds numbers, Re = 100 and 3900. Extreme
gradient boosting (XGBoost) is utilized to train the detector, and after training, the
detector is applied to identify the flow state at each point of the flow field. The trained
detector is found robust in various tests, including the applications to the entire fields
at successive snapshots and at a higher Reynolds number Re = 5000. The objectivity of
the detector is verified by changing the input features and the flow region for choosing
the turbulent training samples. Compared with the conventional methods, the proposed
method based on machine learning shows its novelty in two aspects. First, no threshold
value needs to be specified explicitly by the users. Second, machine learning can treat
multiple input variables, which reflect different properties of turbulent flows, including
the unsteadiness, vortex stretching and three-dimensionality. Owing to these advantages,
XGBoost generates a detector that is more robust than those obtained from conventional
methods.

Key words: wakes, turbulent transition

1. Introduction

Turbulent and non-turbulent (or weak-turbulent) regions coexist in many flows, such
as boundary-layer flow, jet flow and flow past a bluff body. The turbulent/non-turbulent
interface is usually unsteady, and the turbulence around the interface is strongly
intermittent. Detecting the turbulent/non-turbulent interface is a challenging research topic

† Email address for correspondence: yangzx@imech.ac.cn
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with a long history of investigations. Various criteria have been proposed to identify such
interfaces based on different characteristics of turbulent flows.

The vorticity criterion was proposed to detect the turbulent region based on the fact
that turbulence consists of a hierarchy of eddies at various scales (Corrsin & Kistler 1954;
Bisset, Hunt & Rogers 2002; Borrell & Jimémez 2016; Lee & Zaki 2018). This criterion
performs well in the flow region without strong influences of solid walls, such as the
far wake region of a boundary-layer flow. However, in the near-wall region, the vorticity
associated with the near-wall shear has large magnitude, leading to a misidentification
of the non-turbulent region as turbulent. Another important characteristic of turbulent
flow is unsteadiness, which motivates the use of velocity fluctuations to detect the
turbulent region. In jet flow, the streamwise velocity fluctuation was used as a detector
of the turbulent/non-turbulent interface (Anand, Boersma & Agrawal 2009). The kinetic
energy of velocity fluctuations is also an option for detecting the turbulent region in a
boundary-layer flow (de Silva et al. 2013; Chauhan et al. 2014). To eliminate the influence
of streaky structures diffused from the upstream non-turbulent region in a transitional
boundary-layer flow, the magnitude of the wall-normal and spanwise velocity fluctuations
was used as a criterion for identifying turbulence (Nolan & Zaki 2013). Rehill et al.
(2013) investigated the performances of different criteria in identifying turbulent spots
in transitional boundary layers. They examined the criteria based on the instantaneous
wall-normal velocity, instantaneous spanwise velocity, value of Q (Hunt, Wray & Moin
1988), value of λ2 (Jeong & Hussain 1995) and gradient of the finite time Lyapunov
exponent (Green, Rowley & Haller 2007). They showed that the turbulent region identified
by different criteria are in general consistent, if the threshold values are chosen carefully.

Although the conventional criteria can make a reasonable identification of the
turbulent/non-turbulent interface, they have two common limitations. First, as pointed
out by Wu et al. (2019b), the choice of threshold value in these criteria is subjective,
and, consequently, is highly dependent on the experience of users. Furthermore, most
convectional criteria are developed based on one single variable, which usually reflects
the turbulent motions at specific characteristic scales. For example, the kinetic energy is
mainly contributed by turbulent motions at large scales, while the vorticity is dominated
by turbulent motions at smaller scales. However, turbulence is a multiscale physical
phenomenon. Therefore, an ideal criterion should contain a combination of multiple flow
quantities as the input.

To avoid the above two limitations in the conventional methods, the machine learning
method is useful. In recent years, machine learning has been used to study many problems
in fluid mechanics, including turbulence modelling (Ling & Templeton 2015; Ma, Lu
& Tryggvason 2015; Ling, Kurzawski & Templeton 2016b; Parish & Duraisamy 2016;
Xiao et al. 2016; Gamahara & Hattori 2017; Vollant, Balarac & Corre 2017; Wang, Wu
& Xiao 2017; Wang et al. 2018; Wu, Xiao & Paterson 2018; Duraisamy, Iaccarino &
Xiao 2019; Wu et al. 2019a; Zhou et al. 2019), flow field reconstruction and prediction
(Maulik & San 2017; Maulik et al. 2018; Fukami, Fukagata & Taira 2019; Huang, Liu &
Cai 2019; Lee & You 2019) and, more relevant to the present study, flow field identification
(Colvert, Alsalman & Kanso 2018; Alsalman, Colvert & Kanso 2019; Wu et al. 2019b).
To solve the identification problems, there are two main machine learning approaches,
namely, classification and clustering. The classification approach is a supervised machine
learning method. The training samples are given together with a label to train the classifier.
The label provides the classification based on human experiences. Once the training
process is finished, the classifier can be used to classify a given sample automatically.
An example of the application of the classification method in fluid mechanics is the
classifier of wake pattern in the flow past an airfoil by Colvert et al. (2018) and Alsalman
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et al. (2019). They used a neural network to train the classifier for classifying the wake
pattern generated by different motions of the airfoil. The second approach, clustering
method, is an unsupervised machine learning method. Unlike the classification method,
the clustering method does not need any label as the input information. The clustering
algorithm defines the ‘distance’ among input samples in the state space, and clusters
them into a specified number of groups. Wu et al. (2019b) used a self-organizing map
(SOM) algorithm to cluster the flow field of a transitional boundary layer into turbulent
and non-turbulent regions. They showed that these two regions identified by the clustering
method are consistent with the visual appearance.

Compared with the conventional methods for turbulence detection, the machine learning
method has the advantage of being able to avoid specifying any threshold values explicitly
(Wu et al. 2019b), which results in a more objective identification. Another advantage of
machine learning lies in its capability in processing multiple input variables. As noted
by Wu et al. (2018), most machine learning algorithms are able to handle inputs with
more than 1000 features in an efficient manner. In other words, the aforementioned two
limitations in the conventional methods for turbulence detection can be well addressed by
machine learning.

Inspired by the pioneering work of Wu et al. (2019b), we propose to use machine
learning to detect the turbulent region in the wake flow behind a circular cylinder. The
present problem is challenging due to the presence of flow separation and unsteady vortex
shedding. Because the mean flow direction changes with the location in the flow past a
circular cylinder, we propose to use the invariants of the flow as the input of the detector
to avoid specifying the reference frame of coordinates. This differs from the choice of the
components of velocity and velocity gradients by Wu et al. (2019b) in the boundary-layer
flow. The importance of using invariants in machine learning is elucidated in previous
studies of turbulence modelling by Ling, Jones & Templeton (2016a) and Wu et al. (2018).
Extreme gradient boosting (XGBoost), a supervised classification method, is used to train
the detector, which is applied to identify the turbulent/non-turbulent interface in the wake
of a cylinder. The robustness and objectiveness of the trained detector are verified through
systematic tests. The XGBoost also shows its novelty in terms of assisting in data analyses.
Through the investigation of the feature importance given by XGBoost, the key invariants
for quantifying the important transport processes of turbulent flows are further identified.

The remainder of this paper is organized as follows. In § 2, the database used for training
and validating the detector is introduced. The training methods are described in § 3. The
test results and discussions on the performances of the detectors are presented in § 4.
In § 5, physical processes corresponding to the key invariants for turbulence detection
are discussed through further analyses of the machine learning results, followed by the
conclusions in § 6.

2. Database

2.1. Parameters of numerical simulation
The detector of the turbulent region in the flow past a circular cylinder is trained and
validated using the data obtained from direct numerical simulation (DNS) and large-eddy
simulation (LES). Figure 1 illustrates the computational domain and coordinates of the
simulations. As shown, x , y and z denote the streamwise, cross-flow and spanwise
directions, respectively. In the x–y plane, the origin of the coordinates is located at the
centre of the cylinder. The computational domain size is Lx × Ly × Lz = 50D × 30D ×
3.2D, where D is the diameter of the cylinder. The inlet of the computational domain is
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FIGURE 1. Computational domain and coordinate system of DNS and LES of flow past a
circular cylinder. (a) Three-dimensional view and (b) two-dimensional view in an x–y plane
near the cylinder. The boxes in panel (b) show the regions where training samples are chosen.
The samples for the non-turbulent state are chosen from the dashed box for Re = 100 and
the dash-dotted box for Re = 3900. The turbulent samples are chosen from the solid box for
Re = 3900.

13.5D away from the centre of the cylinder. The number of grid points is Nx × Ny × Nz =
768 × 512 × 256. Around the cylinder, 80 grid points are used within each diameter of the
cylinder in the x- and y-directions, giving a resolution of Δx = Δy = 1.25 × 10−2D. The
region with the finest grid resolution is shown using the dashed box in figure 1(b). To show
the refined region clearly, only part of the computational domain is plotted in figure 1(b).
The grid is stretched gradually to the ends of the computational domain in the x–y plane.
In the z-direction, the grid is evenly spaced, and the resolution is Δz = 1.25 × 10−2D.

The simulations were conducted by solving the Navier–Stokes equations for
incompressible flows using DNS and LES. In the x-direction, the inflow velocity is
uniform, and a convective condition is applied at the outlet. The boundary conditions
in the y- and z-directions are free-slip and periodic, respectively. A second-order central
difference scheme is utilized for spatial discretization, and a second-order Runge–Kutta
method is employed for time integration. A sharp-interface immersed-boundary method
is used to capture the geometry of the cylinder. The details of the numerical methods are
given in Cui et al. (2018).

We have run simulations of two cases for Re = UD/ν = 100 and 3900, respectively,
where U is the inflow velocity and ν is the kinematic viscosity. The flow for Re = 100
is non-turbulent, while the wake region of the flow for Re = 3900 is turbulent. Owing to
the coexistence of turbulent and non-turbulent regions at Re = 3900, this case is suitable
for examining the proposed method for turbulence detection. The dynamic Smagorinsky
model (Germano et al. 1991; Lilly 1992) is used to calculate the subgrid-scale stresses in
the case for Re = 3900, while no subgrid-scale model is needed in the case for Re = 100.
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FIGURE 2. Transverse profiles of the mean square of streamwise velocity fluctuations u′u′ at
three downstream locations in the wake of a circular cylinder at Re = 3900.

We note here that while DNS is ideal for generating the data, it is unfeasible to conduct
DNS for the Re = 3900 case due to the limitation in the computational power. However,
the data for training the detectors are all chosen inside the dashed box in figure 1(b),
where the grid resolution is high. Specifically, the value of Δ/η is smaller than 2.0 inside
the dashed box, where Δ = (ΔxΔyΔz)

1/3 is the grid size and η is the Kolmogorov length
scale. We have also examined the value of the subgrid-scale eddy viscosity inside the
box, and found it to be two orders of magnitude smaller than the kinematic viscosity,
indicating that the simulation inside the box is essentially DNS. Previous numerical studies
of flow past a circular cylinder also indicate that LES can make reliable predictions on
the dominant large-scale physical processes, including vortex shedding and transition
(Kravchenko & Moin 2000). Therefore, we believe that the data resolution is sufficient
to capture the main flow physics in the wake of a circular cylinder. Actually, in many flows
in nature, such as oceanic and atmospheric flows, the data obtained from either numerical
simulation or field measurement cannot resolve the Kolmogorov length scale. Therefore,
detecting turbulence with under-resolved data is an important research topic, which is
rather challenging due to the lack of information of small-scale turbulent motions and the
uncertainty in the flow data. Haller (2002) proposed methods for detecting Lagrangian
structures using the Okubo–Weiss criterion and finite-time Lyapunov exponents, and
found that even though a large error may exist in the flow data, the predictions on
Lagrangian coherent structures are reliable. In the present study, we focus on turbulent
detection with well-resolved data as in most previous studies in the context of Eulerian
approaches.

2.2. Validation of LES data
Before proceeding to apply the machine learning method for turbulence detection, it is
necessary to examine the quality of the LES data. The turbulent statistics are validated
against the experimental results of Lourenco & Shih (see Ma, Karamanos & Karniadakis
2000) and numerical results of Kravchenko & Moin (2000). Figure 2 shows the profiles of
the mean square of streamwise velocity fluctuations u′u′ at three locations, x/D = 1.06,
1.54 and 2.02, respectively, in the wake of a circular cylinder at Re = 3900. The prime
denotes fluctuations, defined as φ′ = φ − φ̄, where φ is an arbitrary physical variable, and
the overline represents time averaging. It is seen from the figure that the present results are
in agreement with previous numerical and experimental results. We have also examined

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

72
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.725


905 A10-6 B. Li, Z. Yang, X. Zhang, G. He, B.-Q. Deng and L. Shen

other quantities including the mean streamwise velocity ū and mean cross-flow velocity v̄.
The results are also in good agreement with previous results. We note here that the novelty
of the numerical scheme for conducting DNS and LES is not the focus of the present
study. We choose the second-order spatial discretization scheme with the incorporation of
the immersed-boundary method because of its high computational speed. As we use a fine
grid resolution that resolves the Kolmogorov length scale near the cylinder, we generate
reliable data of flow field for the present study of turbulence detection.

3. Detector training

3.1. Input features
In the present study, we propose to use flow invariants as the input features for turbulence
detection. The input vector X consists of eight features,

X = [X0, X1, . . . . . . , X7]

= [k, I2(S′), I3(S′), I2(Ω
′),

I2(S′ · S′), I3(S′ · S′), I2(Ω
′ · Ω ′), I2(S′ · Ω ′ + Ω ′ · S′)], (3.1)

where k = u′
iu

′
i/2 is the kinetic energy of instantaneous velocity fluctuations; Ii( ) denotes

the i-th invariant of a tensor; S′ = (A′ + A′T)/2 and Ω ′ = (A′ − A′T)/2 are the fluctuations
of the strain-rate tensor and rotation-rate tensor, respectively, with A′ = ∇u′ being the
gradient tensor of velocity fluctuations. The superscript ‘T’ represents the transpose of
a matrix. Note that we have considered all invariants of the first- and second-order
algebraic polynomials of S′ and Ω ′. However, each input sample includes only eight
features, because some invariants are trivial. Specifically, the values of some invariants
are zero (for example, I1(S′) ≡ 0) and some invariants are not independent (for example,
I1(S′ · S′) ≡ −2I2(S′)). Each feature is normalized by its standard deviation over all
samples. Besides the eight input features, a supervising label L is needed as an input in
the supervised classification methods. If the flow state is known as ‘non-turbulent’ or
‘turbulent’, the value of L is given as 0 or 1, respectively.

3.2. Mathematical background of the choice of input features
The input features are chosen based on flow physics. In this section, we introduce the
physical background of the choice of input features. To capture characteristic physical
processes of turbulent flows, we determine the input features according to the following
governing equation of the velocity fluctuation:

∂u′

∂t
= −u′ · ∇ū − ū · ∇u′ − ∇ · (u′u′) + ∇ · u′u′ − ∇p

ρ
+ νΔu′, (3.2)

where p represents the pressure, ρ and ν are the density and kinetic viscosity of the fluid,
respectively, and Δ = ∇ · ∇ is the Laplacian operator. In (3.2), there are two important
tensors u′u′ and u′u′. The former one, u′u′, has one non-trivial invariant, i.e. the first
invariant I1(u′u′) = 2k. As a result, the kinetic energy of the velocity fluctuation k is
chosen as an input feature. The latter one, u′u′, is not considered for turbulence detection,
because it is a time-averaged quantity, but the flow state should be time dependent. For
the same reason, the gradient of the mean flow ∇ū is not considered. Further from (3.2),
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it is understood that the fluctuation of the velocity gradient tensor ∇u′ also participates in
the transport of the velocity fluctuation. To choose the invariants corresponding to ∇u′,
we decomposed it into the symmetric part S′ and anti-symmetric part Ω ′. Therefore, the
invariants of S′ and Ω ′ are chosen as the input features. To choose more input features, we
consider the transport equations of S′ and Ω ′, which can be written, respectively, as

DS′

Dt
= −u′ · ∇S̄ − (S̄ · S′ + S′ · S̄) − (Ω̄ · Ω ′ + Ω ′ · Ω̄) − S′ · S′ − Ω ′ · Ω ′

+ ∇ (∇ · u′u′) − ∇(∇p)

ρ
+ νΔS′ (3.3)

and

DΩ ′

Dt
= −u′ · ∇Ω̄ − (S̄ · Ω ′ + Ω ′ · S̄) − (Ω̄ · S′ + S′ · Ω̄) − (S′ · Ω ′ + Ω ′ · S′)

+ νΔΩ ′. (3.4)

It is seen that the symmetric tensors S′ · S′ and Ω ′ · Ω ′ occur in the transport equation
of S′, while the anti-symmetric tensor S′ · Ω ′ + Ω ′ · S′ occurs in the transport equation
of Ω ′. Therefore, the non-trivial invariants of S′ · S′, Ω ′ · Ω ′ and S′ · Ω ′ + Ω ′ · S′ are
chosen as the input features. The tensors corresponding to fluid flow are actually unlimited
due to the turbulence closure problem. For example, beyond the above second-order
algebraic polynomials, the third-order algebraic polynomials S′ · S′ · S′, S′ · Ω ′ · Ω ′ +
Ω ′ · Ω ′ · S′, Ω ′ · S′ · Ω ′, S′ · S′ · Ω ′ + Ω ′ · S′ · S′, Ω ′ · Ω ′ · Ω ′ and S′ · Ω ′ · S′ occur on
the right-hand side of the transport equations of S′ · S′, Ω ′ · Ω ′ and S′ · Ω ′ + Ω ′ · S′.
From the test results shown in § 4.5, it is understood that the inclusion of the invariants
of the third-order algebraic polynomials of S′ and Ω ′ does not alter the detected
turbulent/non-turbulent interface. Therefore, we confine our choice of the tensors up to
the second-order algebraic polynomials of S′ and Ω ′.

3.3. Training samples
The turbulence detector is trained using XGBoost, a supervised classification method. The
samples used for training and validating the detector must be chosen from the flow region
where the flow is known as ‘turbulent’ or ‘non-turbulent’. The samples of non-turbulent
flow are chosen from both the Re = 100 case and the Re = 3900 case. It is known that
at Re = 100, the entire flow field is non-turbulent, while at Re = 3900, the flow field in
the upstream of the cylinder is also non-turbulent. Therefore, we choose the flow field
in the boxes for (x, y) ∈ ([−1.0D, 3.0D], [−1.5D, 1.5D]) (the dashed box in figure 1b) at
Re = 100 and (x, y) ∈ ([−1.0D, 0.5D], [−1.5D, 1.5D]) (the dash-dotted box in figure 1b)
at Re = 3900 as the samples of non-turbulent flow state. The samples of turbulent flow
state are all chosen from the case for Re = 3900. According to previous studies of the flow
past a circular cylinder at Re = 3900 (see e.g. Kravchenko & Moin 2000), the transition
takes place after flow separation, extending for approximately one cylinder diameter. To
choose the samples representing the turbulent flow state, we focus on the wake flow around
the centreline of the cylinder for (x, y) ∈ ([2.0D, 3.0D], [−0.5D, 0.5D]) (the solid box
in figure 1b), where the flow is known as turbulent. We note here that the turbulent
region is actually much larger than the solid box. However, there are two restrictions
in the choice of turbulent samples. The first is that the box should be away from the
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turbulent/non-turbulent interface. If the box is too close to the interface, the non-turbulent
samples would be mixed into the turbulent samples due to the wake meandering.
The second restriction is the grid resolution. As described in § 2, the grid is refined
near the cylinder, and the simulation is essentially DNS in the dashed box in figure 1(b).
Therefore, the turbulent samples are confined in the dashed box to minimize the influences
of subgrid-scale model. Considering these two restrictions, the solid box is chosen as the
representation of the turbulent flow region. We have examined the impact of the choice
of turbulent samples on the results of the detected turbulent/non-turbulent interface. It
is found that if the flow region for turbulent samples is doubled or halved, the detected
turbulent/non-turbulent interface remains almost unchanged. This indicates that the choice
of turbulent samples imposes little influence on the detector obtained from the machine
learning methods. The details of the test results are shown in § 4.4. We have also tested
other machine learning methods, including the full-connected neural network (FCN)
and SOM. It is found that XGBoost provides the most reasonable turbulence detection
among various machine learning methods. Therefore, in the main content of this paper,
we focus on analysing the results of XGBoost, while those of FCN and SOM are given
in appendix A.

Once the training process is finished, the detector can be applied at each grid point to
identify the flow state at that point. Such a point-by-point method of turbulence detection
is similar to Wu et al. (2019b). In some situations, the point-based method may produce
small ‘patches’ (unphysical small turbulent regions in non-turbulent flow, see appendix A).
Another type of method that is potentially useful for flow identification is a region-based
one, which is used by Ströfer et al. (2019) to identify the vortices in the wake of an airfoil.
The region-based method treats flow structures as objects, and as such it does not generate
the ‘patches’. However, a region-based method does not provide a sharp edge to the object
as the point-based method does; instead, it outputs an approximate region that contains
the flow structures of interest.

3.4. Cost function
In the training process, the following cost function is minimized:

E = H(L, L̂) + 1
2 ||w||2, (3.5)

where H(L, L̂) is the cross-entropy between the values of the supervising label L (which
is either 0 or 1) and the identification label L̂(s) (which is the output of the model, ranging
from 0 to 1), defined as

H(L, L̂) = −
∑

s

[
L(s) log(L̂(s)) + (1 − L(s)) log(1 − L̂(s))

]
, (3.6)

where s represents the sample index, and the summation is performed over all training
samples. Because the value of L is either 0 or 1, the cross-entropy can also be expressed as

H(L, L̂) =
{− log(1 − L̂(s)), if L = 0,

− log(L̂(s)), if L = 1.
(3.7)

From the expression for H(L, L̂), it is known that its value decreases as the value of L̂(s)
approaches that of L(s). The second part of the cost function E is used to penalize the
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complexity of the model. Specifically, w = [w1, w2, . . .] is a vector consisting of trainable
variables wi in the model. The value of wi is randomly initialized, and is trained to
minimize the cost function E. The details of the model are described in Chen & Guestrin
(2016).

The supervised machine learning method, to some extent, mimics the human learning
process. In conventional methods of flow state identification, the flow statistics are first
studied. The main differences between the turbulent and non-turbulent regions are then
summarized. Based on these investigations, some variables that look the most different
between the turbulent and non-turbulent regions, such as kinetic energy or vorticity of
velocity fluctuations, together with specified threshold values, are proposed as the criteria
for identifying the turbulent/non-turbulent interface. In a supervised machine learning
method, the first step is to choose training samples. To minimize the human interference
with the machine learning process, the supervising label value of the training samples
(L = 0 and 1 for non-turbulent and turbulent samples, respectively) should be given
without ambiguity. Therefore, as introduced in § 3.3, the training samples in this study are
chosen in the flow region away from the turbulent/non-turbulent interface, where the flow
state is exactly known according to the knowledge gained from previous studies. After
choosing the training samples, the machine learning method is used to train a detector,
which outputs an identification label L̂ ranging from 0 to 1. To apply the detector, the input
features at an arbitrary location in the flow field are given to the detector. If the value of
the identification label L̂ is greater than 0.5, it means that the machine learning method
‘thinks’ that the flow at that location is ‘closer’ to the turbulent state; otherwise, the flow
state is identified as non-turbulent.

From the above descriptions of the detector, it is understood that the machine learning
algorithm essentially identifies the flow state by examining if the testing sample is closer
to the turbulent or non-turbulent training samples in the feature space. Although there
must exist a threshold between the turbulent and non-turbulent samples, this threshold
does not need to be specified explicitly as in the conventional criteria, while instead, it
depends implicitly on the samples used for training the detector, of which the flow state
is determined according to the knowledge gained from previous studies. Furthermore, the
machine learning method can treat multiple input features (eight in the present study) as a
combination, while the conventional method is usually proposed based on one or two flow
quantities. In these senses, the criteria obtained from machine learning methods are more
objective.

3.5. Implementation and hyperparameters of XGBoost
The XGBoost algorithm is compiled into an open source package, of which the Python
version is used in the present study. The hyperparameters of XGBoost are summarized
in table 1. Note that we only list some of the hyperparameters. If a hyperparameter does
not appear in the table, its default value preset in the package is used. The definitions
of the hyperparameters of XGBoost are introduced in Chen & Guestrin (2016). In the
present study, the hyperparameters are specified to result in the best training accuracy.
To be specific, we found that the performance of the detector is mainly influenced by the
learning rate, number of trees and the maximum depth of an individual tree. After testing
various values of these three hyperparameters, we found an ideal combination of them as
listed in table 1, which results in a high training accuracy.

The training accuracy can be examined using the confusion matrix as shown in figure 3.
The row and column of the matrix represent the labelled and predicted flow states,
respectively. The diagonal and off-diagonal entries show the percentages of consistent and
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Learning objective Booster Learning rate Number of trees Maximum tree depth

Binary logistic Gbtree 0.01 300 4

TABLE 1. Hyperparameters of XGBoost applied in the present study.
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FIGURE 3. Accuracy of the detector trained by XGBoost. Diagonal entries show percentages of
consistent classification and off-diagonal entries show percentages of inconsistent classification.

inconsistent classifications, respectively. For example, the entry value of the first row and
second column gives the percentage of the samples labelled as the non-turbulent state but
identified as the turbulent state. It is seen from the figure that the percentage of consistent
identifications is greater than 99 %, indicating a high training accuracy.

4. Results

4.1. Application to the entire flow field
Using the trained detectors, the instantaneous flow at every grid point can be
identified as being in either a turbulent or non-turbulent state. Figure 4 shows the
turbulent/non-turbulent interface at Re = 100 and Re = 3900 identified by the XGBoost
detector. The contours of instantaneous spanwise vorticity ωz showing the vortex street
are superimposed. In figure 4(a), the vortex shedding at Re = 100 is evident from the
spanwise vorticity, which, however, should not be identified as turbulent flow. As expected,
no turbulent/non-turbulent interface is detected. Figure 4(b) shows that at Re = 3900, the
flow on the upstream side of the cylinder is identified as the non-turbulent state. This result
is reasonable, as it is known that the transition takes place after the flow separation at this
Reynolds number. Downstream, the turbulent region is approximately symmetric about
the centreline of the cylinder near the cylinder (x/D < 3), while away from the cylinder
(x/D > 3), the turbulent region shows a meandering behaviour.

Figure 5 further displays successive snapshots of the identified turbulent/non-turbulent
interface (solid line) to examine the robustness of detector. The contours of instantaneous
spanwise vorticity ωz are also shown. It is seen that in the core region of the wake, the
flow is identified as turbulent at every time instant, indicating that the detector is robust
in terms of not producing unphysical switching between turbulent and non-turbulent flow
states. Near the interface, the flow state alternates between turbulent and non-turbulent
due to the wake meandering, a physical process that is evident from the contours of the
instantaneous spanwise vorticity.
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FIGURE 4. Turbulent/non-turbulent interface (solid line) at (a) Re = 100 and (b) Re = 3900
identified by the XGBoost detector. Contours of instantaneous spanwise vorticity ωz are
superimposed for comparison.

t = 0D/U t = 1.0D/U t = 2.0D/U t = 3.0D/U
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 5. Successive snapshots of turbulent/non-turbulent interface (solid line) identified by
the XGBoost detector and contours of instantaneous spanwise vorticity ωz at Re = 3900. See
figure 4 for the legend of contours.

4.2. Application to a higher Reynolds number
The detector is also examined at a higher Reynolds number Re = 5000. Although it is
desired to examine the performance of the detector in a case at Re > 3.5 × 106 with
the transition occurring before the flow separation (Williamson 1996), generating high
quality data for such a high Reynolds number is unfeasible due to the limitation in the
computer power for wall-resolved LES as discussed in § 2. However, because the testing
Reynolds number Re = 5000 is higher than the two training Reynolds numbers Re = 100
and 3900, this test to some extent examines the ‘extrapolation robustness’ (with respect to
the Reynolds number) of the machine learning method in identifying the turbulent region.

Figure 6 compares the turbulent/non-turbulent interfaces at Re = 3900 and 5000. The
wake pattern of a circular cylinder varies with the Reynolds number. The two Reynolds
numbers under investigation fall into the same subrange (Williamson 1996). Therefore,
it is expected to observe similar wake patterns at these two Reynolds numbers. From
the figure, it is seen that in the upstream of x/D = 3, the turbulent region is almost
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FIGURE 6. Turbulent/non-turbulent interface at Re = 3900 (black solid line) and Re = 5000
(red dotted line) identified by the XGBoost detector.

symmetric about the centreline (y/D = 0) of the cylinder, indicating that near the cylinder,
the effect of wake meandering on the turbulent/non-turbulent interface is relatively weak.
In other words, the turbulent/non-turbulent interface is relatively stable. As a result, the
interfaces at the two Reynolds numbers almost collapse. In the downstream of x/D = 3,
the two interfaces start to separate due to the wake meandering. However, the widths of
the turbulent region at the two Reynolds numbers are generally consistent. It is noted
in previous studies of the jet flow that the growth speed of the turbulent region is
independent of the Reynolds number (Bisset et al. 2002; Westerweel et al. 2009). For the
flow past a bluff body, the wake width is found to depend on the local Reynolds number
(Johansson & George 2003). However, the wake flow is not necessarily turbulent, and
further investigations are needed to understand the effect of the Reynolds number on the
growth rate of the turbulent/non-turbulent interface, which is not the research topic of
the present study. Nevertheless, because the two tested Reynolds numbers are close, it is
reasonable to observe that the widths of the turbulent region grow at a similar rate.

4.3. Comparison with other detection methods
To further demonstrate the novelty of the machine learning method, the XGBoost
detector is compared with two detection methods without using the machine learning
method, based on the vorticity modulus ω = √

ωiωi (Bisset et al. 2002) and cross-stream
fluctuation intensity |v′| + |w′| (Nolan & Zaki 2013), respectively, where ωi is the vorticity
in the i-direction, and | · | denotes the absolute value of a real number.

Figure 7 shows the contours of ω and |v′| + |w′| at Re = 3900. The turbulent/
non-turbulent interface identified by the XGBoost detector is superimposed as the solid
line for comparison. The contours for ω < 0.1U/D and |v′| + |w′| < 0.1U are clipped. In
other words, if ω = 0.1U/D or |v′| + |w′| = 0.1U is specified as the threshold value in the
conventional criterion, the flow state inside the coloured region in figure 7 is identified as
turbulent. It is seen from figure 7 that the edge of the coloured area is in general consistent
with the solid line. Inside the solid line, the values of ω and |v′| + |w′| are relatively large.
However, focusing on the region near the turbulent/non-turbulent interface, it is seen that
the spatial variations of both ω and |v′| + |w′| are small near the solid line. This indicates
that a small change in the threshold values of ω and |v′| + |w′| may cause a significant
change in the location of the detected turbulent/non-turbulent interface. This issue is well
addressed in the machine learning method, in which the threshold value does not need to
be specified.
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FIGURE 7. Contours of (a) vorticity modulus ω and (b) cross-stream fluctuation intensity
|v′| + |w′| at Re = 3900. The solid line shows the turbulent/non-turbulent interface identified
by the XGBoost detector. Contours for ω < 0.1U/D and |v′| + |w′| < 0.1U are clipped.

To further investigate the behaviour of XGBoost in response to the supervision (or, the
label), we have trained another detector, in which the turbulent and non-turbulent samples
are no longer chosen from a region with known flow state. Instead, we choose the samples
from the dashed box in figure 1(b), where the flow can be either turbulent or non-turbulent.
The conventional criterion |v′| + |w′| is used to label the samples. Specifically, samples
with |v′| + |w′| ≥ 0.1U and |v′| + |w′| < 0.1U are labelled as turbulent and non-turbulent
states, respectively. For convenience of presentation, we denote this detector as detector B,
while the one described in § 3 is denoted as detector A.

Figure 8(a) shows the confusion matrix of detector B. By contrasting figure 8(a) against
figure 3, it is seen that the off-diagonal values of the confusion matrix of detector B
(8.5 % and 2.7 %, respectively) are significantly larger than those of detector A (smaller
than 0.1 %). The difference in the confusion matrix between the two detectors is mainly
caused by the choice of the training samples. The training can be regarded as a process for
seeking an interface between turbulent and non-turbulent states in the feature space (which
has eight dimensions in the present cases). The turbulent and non-turbulent samples for
detector A are chosen from separate areas in the physical space (figure 1b). Therefore, it
can be expected that the interface in the feature space can be relatively ‘sharp’, and as a
result the percentages of inconsistent identifications are low. In contrast, the turbulent and
non-turbulent samples for detector B are connected in the physical space, and as such the
interface in the feature space is ‘smeared’, which leads to larger percentages of inconsistent
identifications.

Figure 8(b) compares the turbulent/non-turbulent interface identified by detectors A
and B. As shown, the two detectors make similar identifications of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

72
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.725


905 A10-14 B. Li, Z. Yang, X. Zhang, G. He, B.-Q. Deng and L. Shen

0
–4

–2

0

2

T

T

NT

NT

4

L
ab

el
le

d

Predicted

8.5

2.7

91.5

97.3

5 10
0

0.1

0.2

0.3

0.4

0.5

x/D

y/D

(b)(a) |v′|+|w′|

FIGURE 8. Results of detector B. (a) Confusion matrix (see figure 3 for definition); (b) detected
turbulent/non-turbulent interface (dashed line). In panel (b), the turbulent/non-turbulent interface
identified by detector A as described in § 3 (solid line) and the contours of |v′| + |w′| at
Re = 3900 are superimposed for comparison.

turbulent/non-turbulent interface near the cylinder (x/D < 3). However, in the
downstream (x/D > 3), the turbulent region identified by detector B is wider than that
identified by detector A. It is also seen from figure 8(b) that inside the dashed line, there
are some regions with relatively small values of |v′| + |w′| (< 0.1U, where the contours
are clipped). The flow states in these regions are identified as turbulent, inconsistent with
the label. This is the reason that a relatively large value appears in the off-diagonal entry
of the confusion matrix (figure 8a).

It is evident from figure 8 that the turbulent/non-turbulent interface identified by the
XGBoost detector is affected by the label of the training samples, indicating that the labels
should be given in a rational manner to yield an objective detector. Because an artificial
criterion is used to label the samples for training detector B, the results of detector A
are more objective. Furthermore, to ensure that the influences of the artificial choices for
training the detector are minimized, we have examined the effects of the training samples
and input features on the predictive result of the turbulent/non-turbulent interface. The
results are shown in §§ 4.4 and 4.5, respectively.

4.4. Effect of training samples on the detected turbulent/non-turbulent interface
As noted in § 3.3, the turbulent samples used for detector training are chosen from
a box in the core region of the wake (the dashed box in figure 1b). To further
investigate the effect of the choice of turbulent samples on the predictive result of the
turbulent/non-turbulent interface, we have trained other two detectors, based on smaller
and larger boxes, respectively. Figure 9 compares the turbulent regions identified by the
XGBoost detector based on different boxes for turbulent samples. The identified turbulent
region based on the original box (solid box in the figure) is shown as the coloured area.
The turbulent/non-turbulent interface based on a smaller or larger box (dashed boxes in
figure 9) is shown as the solid line. It is seen that if the turbulent samples are chosen from
a shrunk or expanded region, the detected turbulent region remains almost unchanged. The
results shown in figure 9 indicate that the detector is insensitive to the flow region size for
choosing the turbulent training samples.

4.5. Effect of input features on the detected turbulent/non-turbulent interface
As noted in § 3.2, the numbers of tensors and their invariants are unlimited. Here, we use
the advantage of the machine learning method in processing multiple input features to test
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FIGURE 9. Effect of the training samples on the turbulent region detected by the XGBoost
detector. The coloured area shows the detected turbulent region with the turbulent samples
chosen from the solid box as described in § 3.3. The solid lines in panels (a) and (b) represent the
detected turbulent/non-turbulent interface with the turbulent samples chosen from smaller and
larger regions, respectively, as denoted by the dashed boxes in the figure.

if the inclusion of more invariants alters the detected turbulent/non-turbulent interface.
For this purpose, we define two new input vectors

X ∗ = [X , X (a)] (4.1)

and

X ∗∗ = [X , X (b)], (4.2)

where X is given by (3.1), while X (a) and X (b) consist of eight invariants of the
second-order algebraic cross-polynomials between the mean strain-rate tensor S̄ (or mean
rotation-rate tensor Ω̄) and fluctuating strain-rate tensor S′ (or fluctuating rotation-rate
tensor Ω ′) and 12 invariants of the third-order algebraic polynomials of S′ and Ω ′,
respectively. The definitions of X (a) and X (b) are given, respectively, as

X (a) = [X8, . . . . . . , X15]

= [I1(S̄ · S′ + S′ · S̄), I2(S̄ · S′ + S′ · S̄), I3(S̄ · S′ + S′ · S̄),

I1(Ω̄ · Ω ′ + Ω ′ · Ω̄), I2(Ω̄ · Ω ′ + Ω ′ · Ω̄), I3(Ω̄ · Ω ′ + Ω ′ · Ω̄),

I2(S̄ · Ω ′ + Ω ′ · S̄), I2(Ω̄ · S′ + S′ · Ω̄)] (4.3)
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FIGURE 10. Effect of input features on the turbulent region detected by the XGBoost detector.
The coloured area shows the detected turbulent region using X (3.1) as the input vector, which
consists of eight features, without including the invariants of third-order algebraic polynomials
of S′ and Ω ′. The solid line in panels (a) and (b) represents the detected turbulent/non-turbulent
interface using X ∗ (4.1) and X ∗∗ (4.2), respectively, as the input vector.

and

X (b) = [X16, . . . . . . , X27]

= [I1(S′ · S′ · S′), I2(S′ · S′ · S′), I3(S′ · S′ · S′),

I1(Ω
′ · Ω ′ · S′ + S′ · Ω ′ · Ω ′), I2(Ω

′ · Ω ′ · S′ + S′ · Ω ′ · Ω ′),

I3(Ω
′ · Ω ′ · S′ + S′ · Ω ′ · Ω ′), I1(Ω

′ · S′ · Ω ′), I2(Ω
′ · S′ · Ω ′), I3(Ω

′ · S′ · Ω ′),

I2(Ω
′ · Ω ′ · Ω ′), I2(S′ · Ω ′ · S′), I2(S′ · S′ · Ω ′ + Ω ′ · S′ · S′)]. (4.4)

Figure 10 compares the detected turbulent regions using X (3.1), X ∗ (4.1) and X ∗∗

(4.2) as the input vector. The coloured area represents the turbulent region detected
using X with eight input features. The solid lines in figures 10(a) and 10(b) show the
turbulent/non-turbulent interfaces detected using X ∗ with 16 input features and X ∗∗ with
20 input features, respectively. From both figures 10(a) and 10(b), it is seen that the solid
lines are almost coincident with the edges of the coloured areas, indicating that including
the invariants of either the second-order algebraic cross-polynomials between S̄ (or Ω̄) and
S′ (or Ω ′) or the third-order algebraic polynomials of S′ and Ω ′ imposes little influence
on the predictive results of the turbulent/non-turbulent interface. Therefore, it is sufficient
to consider the first- and second-order polynomials of S′ and Ω ′ for turbulence detection
in the present study.
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Note that XGBoost can further output the importance of each feature in the identification
of the flow state. Table 2 lists the value of each feature importance in vectors X , X ∗ and
X ∗∗. The feature importance can be deemed as an indicator showing how different this
feature is between the turbulent and non-turbulent flow states. If the feature importance is
large, such as k, I2(S′ · Ω ′) and I3(S′ · S′), this feature is found to be significantly different
between the turbulent and non-turbulent flow states. It is seen from table 2 that the feature
importance values of k, I2(S′ · Ω ′ + Ω ′ · S′) and I3(S′ · S′) rank top three in either X , X ∗

or X ∗∗. This means that k, I2(S′ · Ω ′) and I3(S′ · S′) are the three key invariants for the
robustness of the detector, and as a result, it is necessary to include second-order algebraic
polynomials of S′ and Ω ′ for turbulent detection. It is noted that although the inclusion of
the second-order algebraic cross-polynomials between S̄ (or Ω̄) and S′ (or Ω ′) imposes
little influence on the identification of the turbulence/non-turbulence interface, the feature
importance value of I2(S′ · Ω̄ + Ω̄ · S′) is comparable to those of k, I2(S′ · Ω ′) and
I3(S′ · S′), indicating that I2(S′ · Ω̄ + Ω̄ · S′) also shows a significant difference between
turbulent and non-turbulent flows. The physical processes corresponding to these four
invariants are further discussed in § 5. Furthermore, all invariants of third-order algebraic
polynomials have smaller order of magnitude in feature importance than k, I2(S′ · Ω ′)
and I3(S′ · S′), indicating that it is sufficient to use the first- and second-order algebraic
polynomials of S′ and Ω ′ to train an objective detector of the turbulent/non-turbulent
interface.

5. Physical processes corresponding to the key input features

So far this paper has focused on the performance of the trained detector on the
identification of the turbulent/non-turbulent interface in the flow past a circular cylinder at
low Reynolds numbers. It is understood that XGBoost suggests k, I2(S′ · Ω ′ + Ω ′ · S′),
I3(S′ · S′) and I2(Ω̄ · S′ + S′ · Ω̄) as the dominant invariants that are significantly
different between turbulent and non-turbulent flow states. In this section, we further
investigate the physical processes corresponding to these invariants. For this purpose,
their contours are displayed in figure 11. The detected turbulent/non-turbulent interface
is superimposed as the solid line.

It is well understood that unsteadiness is a characteristic feature of turbulent flows.
Therefore, it is reasonable that the kinetic energy of the velocity fluctuations k is identified
as the most important feature for turbulence detection. As shown in figure 11(a), the
magnitude of k is relatively large inside the solid line. On the other hand, if the fluctuation
is weak, the flow state is identified as non-turbulent.

The second most important feature is I2(S′ · Ω ′ + Ω ′ · S′). This invariant is equivalent
to the norm of the vortex stretching ω′ · S′, which is known as an important process in
turbulent flows. It can be shown that I2(S′ · Ω ′ + Ω ′ · S′) = ||ω′ · S′||2/4 holds strictly,
where ω = ∇ × u is the vorticity vector and || · || denotes the norm of a vector.
Figure 11(b) shows that in the turbulent flow region, the value of I2(S′ · Ω ′ + Ω ′ · S′) is in
general larger than that in the non-turbulent flow region. In the conventional methods of
turbulence identification, the norm of vorticity is considered as one of the criteria (Bisset
et al. 2002), but the vortex stretching is overlooked. However, as shown in table 2, the
feature importance of I2(S′ · Ω ′ + Ω ′ · S′) is larger than that of I2(Ω

′) = ||ω′||2/4. This
indicates that between turbulent and non-turbulent flow states, the difference in the vortex
stretching is more significant than that in the vorticity, and as a result, the vortex stretching
is a more effective criterion than the vorticity modulus for turbulence detection.
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Invariant Feature importance

X X ∗ X ∗∗

X0 = k 0.3538 0.2335 0.3445
X1 = I2(S′) 0.0515 0.0380 0.0092
X2 = I3(S′) 0.0321 0.0177 0.0226
X3 = I2(Ω

′) 0.1106 0.0556 0.0838
X4 = I2(S′ · S′) 0 0 0
X5 = I3(S′ · S′) 0.1774 0.1055 0.1693
X6 = I2(Ω

′ · Ω ′) 0 0 0
X7 = I2(S′ · Ω ′ + Ω ′ · S′) 0.2880 0.1337 0.2716
X8 = I1(S̄ · S′ + S′ · S̄) — 0.0314 —
X9 = I2(S̄ · S′ + S′ · S̄) — 0.0266 —
X10 = I3(S̄ · S′ + S′ · S̄) — 0.0443 —
X11 = I1(Ω̄ · Ω ′ + Ω ′ · Ω̄) — 0.0233 —
X12 = I2(Ω̄ · Ω ′ + Ω ′ · Ω̄) — 0.0717 —
X13 = I3(Ω̄ · Ω ′ + Ω ′ · Ω̄) — 0.0660 —
X14 = I2(S̄ · Ω ′ + Ω ′ · S̄) — 0.0387 —
X15 = I2(Ω̄ · S′ + S′ · Ω̄) — 0.1006 —
X16 = I1(S′ · S′ · S′) — — 0.0235
X17 = I2(S′ · S′ · S′) — — 0
X18 = I3(S′ · S′ · S′) — — 0.0193
X19 = I1(Ω

′ · Ω ′ · S′ + S′ · Ω ′ · Ω ′) — — 0.0050
X20 = I2(Ω

′ · Ω ′ · S′ + S′ · Ω ′ · Ω ′) — — 0.0159
X21 = I3(Ω

′ · Ω ′ · S′ + S′ · Ω ′ · Ω ′) — — 0
X22 = I1(Ω

′ · S′ · Ω ′) — — 0
X23 = I2(Ω

′ · S′ · Ω ′) — — 0.0151
X24 = I3(Ω

′ · S′ · Ω ′) — — 0.0042
X25 = I2(Ω

′ · Ω ′ · Ω ′) — — 0
X26 = I2(S′ · Ω ′ · S′) — — 0.0151
X27 = I2(S′ · S′ · Ω ′ + Ω ′ · S′ · S′) — — 0.0008

TABLE 2. Feature importance in the XGBoost detectors trained using X (3.1), X ∗ (4.1) and
X ∗∗ (4.2) as the input feature vector.

Although the third most important feature I3(S′ · S′) is not directly connected with a
physical quantity that is broadly investigated in the literature, it can be shown that if the
straining is confined in a two-dimensional plane (for example, S′

i3 = S′
3i = 0 in the case

of Re = 100), the value of I3(S′ · S′) is zero. In contrast, if the straining takes place in
three dimensions, the value of I3(S′ · S′) is non-zero. Therefore, the value of I3(S′ · S′)
can be regarded as an indicator of the three-dimensionality of the flow. It is seen from
figure 11(c) that the value of I3(S′ · S′) is relatively large in the turbulent region. Similar to
I2(S′ · Ω ′ + Ω ′ · S′), I3(S′ · S′) has not been used in conventional criteria for identifying
turbulence. This evidently shows the strong capability of the machine learning method in
seeking important invariants that have been overlooked in previous studies.

The fourth invariant I2(Ω̄ · S′ + S′ · Ω̄) is equivalent to the norm of ω̄ · S′, the vortex
stretching induced by the interaction between the mean vorticity ω̄ and the fluctuating
strain-rate tensor S′. From the comparison between figures 11(b) and 11(d), it is seen
that near the cylinder, the magnitude of I2(Ω̄ · S′ + S′ · Ω̄) is comparable to that of
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FIGURE 11. Contours of invariants: (a) k, (b) I2(S′ · Ω ′ + Ω ′ · S′), (c) I3(S′ · S′) and
(d) I2(Ω̄ · S′ + S′ · Ω̄). Contours corresponding to k < 10−3U2, I2(S′ · Ω ′ + Ω ′ · S′)
< 10−5U4/D4, I3(S′ · S′) < 10−7U6/D6 and I2(Ω̄ · S′ + S′ · Ω̄) < 10−5U4/D4 are clipped.
The solid line represents the detected turbulent/non-turbulent interface.

I2(S′ · Ω ′ + Ω ′ · S′), indicating the coexistence of two vortex stretching processes
associated with mean vorticity and vorticity fluctuations, respectively. However, away
from the cylinder, where the magnitude of the mean vorticity is small, the value of
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I2(Ω̄ · S′ + S′ · Ω̄) is smaller than that of I2(S′ · Ω ′ + Ω ′ · S′). This indicates that if
I2(Ω̄ · S′ + S′ · Ω̄) is used solely as the criterion, the turbulent region is underestimated.
From the above comparison between the contours of I2(Ω̄ · S′ + S′ · Ω̄) and I2(S′ ·
Ω ′ + Ω ′ · S′), it is understood that I2(Ω̄ · S′ + S′ · Ω̄), to some extent, characterizes
the difference between turbulent and non-turbulent states in the flow region with strong
mean vorticity, while if the mean vorticity is weak, I2(Ω̄ · S′ + S′ · Ω̄) is unimportant
for turbulence detection. This point is evident from the feature importance value of
I2(Ω̄ · S′ + S′ · Ω̄), which is relatively large among all invariants, but is smaller than
that of I2(S′ · Ω ′ + Ω ′ · S′) (table 2). Furthermore, the feature importance values of
I2(Ω̄ · S′ + S′ · Ω̄) and I3(S′ · S′) are close. This is because I2(Ω̄ · S′ + S′ · Ω̄) also
diminishes in a two-dimensional flow as I3(S′ · S′) does. From the above analyses, it
is understood that the role of I2(Ω̄ · S′ + S′ · Ω̄) in the turbulence detection can be
well covered by the combination of I2(S′ · Ω ′ + Ω ′ · S′) and I3(S′ · S′), and as such the
turbulent/non-turbulent interfaces identified using X and X ∗ as input features almost
collapse.

From the above analyses of the key invariants, it is understood that XGBoost
suggests turbulent flows be characterized by unsteadiness, vortex stretching and
three-dimensionality. Although these characteristics of turbulence are broadly accepted,
no criterion has been developed based on the combination of these properties for
turbulence detection, because of the following two challenges. First, to develop a criterion,
these characteristics need quantitative representations, but the ideal choice based on
previous studies is inconclusive. For example, the vortex structures can be estimated by
either vorticity or vortex stretching. Owing to its capability in processing multiple input
features, XGBoost well solves this problem. There is no need to specify a quantity to
represent a characteristic of turbulence. Instead, as is done in the present study, all possible
choices can be used together to train the detector, and the XGBoost algorithm is able
to identify their importance automatically. The second challenge lies in the threshold
value. Taking the kinetic energy of velocity fluctuation k as an example, as shown in
figure 11(a), if k = 0.1U2 is specified as the threshold value, the area of the turbulent
region is underestimated. If this value is decreased, the identified turbulent region tends to
expand, but this causes the misidentification of the flow state of non-turbulent samples as
turbulent at the lower Reynolds number Re = 100 (not shown in the figure). In other words,
the threshold value needs to be adjusted with the Reynolds number to obtain reasonable
results, and as such the identification process is highly subjective. The solution to this
problem is to include other features in the training process to improve the robustness of
the detector, which yields objective and reasonable identifications of the flow states at both
Re = 100 and Re = 3900 (figure 4).

6. Conclusions

In the present study, XGBoost is used to train a detector to identify the
turbulent/non-turbulent interface in the wake of a circular cylinder at low Reynolds
numbers. To obtain a detector that is independent of the reference frame of coordinates,
we propose to use invariants of the flow field as the input features to train the detector.
The invariants include the instantaneous kinetic energy of velocity fluctuations, and
the non-trivial invariants of the first- and second-order polynomials of the fluctuating
strain-rate and rotation-rate tensors.

To train the detector, we conduct DNS and LES of the flow past a circular cylinder at
Re = 100 and 3900, respectively. The non-turbulent samples are chosen from the wake
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region of the cylinder at Re = 100 and in the upstream of the cylinder at Re = 3900.
The turbulent samples are chosen in the core region of the wake, where the flow is known
as a turbulent state. After training, the detector is used to identify the flow state point
by point. The entire flow field for Re = 100 is identified as a non-turbulent region. This
is a desired outcome of a detector for not misidentifying the non-turbulent flow state as
the turbulent flow state. The turbulent region for Re = 3900 identified by the XGBoost
detector is also reasonable, which shows the wake flow meandering. The detector is
found robust in the applications to successive snapshots of the flow field and to a higher
Reynolds number Re = 5000. The objectiveness of the method is verified through the
examination of the effect of training samples and input features on the predictive results
of the turbulent/non-turbulent interface.

Compared with conventional turbulence detection methods, machine learning shows
its advantage in two aspects. First, no explicitly specified threshold value is needed in
the machine learning method. This reduces the influence of any subjective choice on
the results. Second, machine learning is able to handle multiple input variables as a
combination, which is particularly important for turbulence detection, because turbulence
transport is a multiscale physical process. Owing to these two advantages, machine
learning makes more objective and robust identifications of the turbulent/non-turbulent
interface.

The XGBoost also shows its capability in identifying important physical processes in
turbulent transport. The feature importance given by XGBoost indicates that the three
most important invariants that vary distinctively between turbulent and non-turbulent flows
are k = I1(u′u′)/2, I2(S′ · Ω ′ + Ω ′ · S′) and I3(S′ · S′), which characterize unsteadiness,
vortex stretching and three-dimensionality of turbulent flows, respectively. Furthermore,
the feature importance of I2(S′ · Ω ′ + Ω ′ · S′) = ||ω′ · S′||2/4 is larger than that of
I2(Ω

′) = ||ω||2/4, indicating that the vortex stretching is a more objective criterion for
turbulence detection than the vorticity modulus as used in the conventional methods.

As a final remark of this paper, it should not be expected that the detector trained
using data at low Reynolds numbers can be used to identify the turbulent/non-turbulent
interface in the cylinder wake at a much higher Reynolds number. The present study
focuses on how to obtain a detector that is more objective than conventional criteria, while
machine learning is found to be an effective tool for achieving this goal. In this regard,
the present work provides an executable method to generate a detector for identifying the
turbulent/non-turbulent interface. If reliable data for much higher Reynolds numbers are
available (which is unfeasible at the current stage due to the limitation in the computer
power), one can first choose new training samples with known flow states from the new
data. A new detector can be then trained and applied to the entire flow field to find the
turbulent/non-turbulent interface. The same approach can be also extended to turbulence
detection of other flows, such as the transitional boundary layer and jet flows.
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FCN

Hidden layers Units Activation Loss function Optimizer Batch size
3 32 ReLU Cross-entropy Adam 64

SOM

Neighbourhood Initial neighbourhood Learning Maximum
function radius rate iteration
Gaussian 1.0 0.01 1000

TABLE 3. Hyperparameters of FCN and SOM applied in the present study.
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FIGURE 12. Confusion matrices of (a) FCN and (b) SOM.

Appendix A. Detection using other machine learning methods

In the main content of this paper, we present the results of XGBoost. We have also
tested other machine learning methods, including FCN and SOM. Similar to XGBoost,
FCN is also a supervised classification method, while SOM is an unsupervised clustering
method. The input features and training samples of FCN and SOM are the same as those
of XGBoost as described in §§ 3.1 and 3.3, respectively. The set-up hyperparameters of
FCN and SOM are summarized in table 3. Similar to XGBoost, the hyperparameters of
FCN and SOM are chosen to give the best possible training accuracy. To be specific, we
found that the training accuracy of FCN is mainly influenced by the number of hidden
layers and the number of units in each layer. The present choice of three hidden layers and
32 units in each layer results in a high training accuracy (higher than 99 %, see figure 12).
The training accuracy of SOM is sensitive to the initial neighbourhood radius and learning
rate. We have tested the values of these two hyperparameters ranging from 0.1 to 3.0 and
from 0.005 to 0.5, respectively. The adopted values 1.0 and 0.01 listed in table 3 result in
the highest accuracy among various combinations of these two hyperparameters.

Figure 12 shows the confusion matrices of the detectors trained by FCN and SOM.
Note that SOM is an unsupervised clustering method, and usually the confusion matrix
is unavailable. However, in the present study, the detector is special for being trained
using samples with known flow states. Although the known flow states are not applied
in the training process, they can be used to verify the accuracy of the detector. It is seen
from the figure that the percentages of inconsistent identification by the FCN detector
is smaller than 1 %, indicating that it performs well in identifying the flow state. The
training accuracy of the SOM detector is less satisfactory than the XGBoost (figure 3) and
FCN detectors. Particularly, the off-diagonal entries of the confusion matrix of the SOM
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FIGURE 13. Turbulent/non-turbulent interface (solid line) at (a) Re = 100 and (b) Re = 3900
identified by FCN. Contours of instantaneous spanwise vorticity ωz are superimposed for
comparison.

detector are 12.4 % and 7.8 %, respectively, indicating that the misidentification rate of the
SOM detector is much higher than those of the XGBoost and FCN detectors.

Figures 13 and 14 display the turbulent/non-turbulent interface identified by FCN
and SOM, respectively. The contours of the instantaneous spanwise vorticity ωz are
superimposed. It is seen from figure 13(a) that at Re = 100, the performance of the
FCN detector is satisfactory near the cylinder (x/D < 5), but the flow state at some
locations away from the cylinder (around x/D = 10) is misidentified by the FCN detector
as turbulent. Figure 13(b) shows that the turbulent/non-turbulent interface at Re = 3900
identified by the FCN detector is in general consistent with the result of XGBoost
(figure 4b).

The performance of SOM is less satisfactory than XGBoost and FCN. As shown
in figure 14(a), the SOM detector misidentifies part of the wake flow at Re = 100 as
turbulence. At Re = 3900, the turbulent region identified by the SOM detector is smaller
than those identified by the XGBoost and FCN detectors. This is consistent with the
results of confusion matrix (figures 3 and 12), which show that the off-diagonal values
of the confusion matrix of the SOM detector are higher than those of the XGBoost and
FCN detectors. The comparison among the results of three machine learning methods
indicates that the supervised learning methods (XGBoost and FCN) are more reliable than
the unsupervised learning method (SOM) in the present case.

To further investigate the reason that the SOM detector makes considerable
misidentifications, we examine the feature coefficients given by SOM. As noted by Wu
et al. (2019b), SOM outputs the coordinates of the two cluster centres in the feature space.
The mid-hyperplane between these two cluster centres separates the feature space into two
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FIGURE 14. Turbulent/non-turbulent interface (solid line) at (a) Re = 100 and (b) Re = 3900
identified by SOM. Contours of instantaneous spanwise vorticity ωz are superimposed for
comparison.

Invariant Feature coefficient ai

X0 = k 1.8167
X1 = I2(S′) −0.0436
X2 = I3(S′) −0.2683
X3 = I2(Ω

′) 0.5007
X4 = I2(S′ · S′) 0.0007
X5 = I3(S′ · S′) 0.0438
X6 = I2(Ω

′ · Ω ′) 0.1325
X7 = I2(S′ · Ω ′ + Ω ′ · S′) 0.1774

TABLE 4. Feature coefficients in the SOM detector for the mid-hyperplane of the cluster
centres of turbulent and non-turbulent states in the feature space.

parts, which can be expressed as

a · X − 1 = 0, (A 1)

where a = [a1, a2, . . . . . . , a8] is the coefficient vector. The values of ai are given in
table 4. Note that the coefficients given by SOM are conceptually different from the feature
importance given by XGBoost in the sense that the values of ai can be either positive or
negative, but the feature importance is non-negative. However, the absolute values of ai
also reveal the importance of the corresponding feature in the detector. It is seen from
table 4 that the value of a1 is larger than those of other components of ai, indicating
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that X1 = k is treated as the most important feature by SOM in identifying the turbulent
and non-turbulent states. However, in the wake flow for Re = 100, the magnitude of k is
non-negligible due to the unsteady vortex shedding. This leads to the misidentification of
part of the wake flow for Re = 100 as turbulence (figure 14a). It is shown in the previous
study of the boundary-layer flow that the turbulent/non-turbulent interface identified by the
SOM detector is consistent with the visual experiences; however, in the present study of the
flow past a circular cylinder, the performance of the SOM detector is less satisfactory. This
indicates that the present case is more challenging, and appropriate human experiences are
needed.
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