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SUMMARY

Recent advances in simultaneous localization and mapping
permit robots to autonomously explore enclosed environ-
ments and, subsequently, navigate to selected positions
within them. But, for many tasks, it is more useful to
immediately navigate to goals in unexplored environments,
without a map. This is possible if a human director can
describe the ideal route to the robot using grounded symbols
that both parties can perceive directly.

In this paper, a mobile robot is autonomously navigated
to many locations in a cluttered laboratory environment
by a variety of routes. A series of topological navigation
instructions are provided in advance by the director, in a
form that can be expressed verbally and translates easily
to software representation. The instructions are based on
the perception of spatial affordances available to the robot,
namely nearby junctions and edges in a pruned Generalized
Voronoi Diagram. The operator can generate the instructions
by viewing or imagining the environment without any
measurements. Only three to five instructions are needed to
navigate anywhere in our laboratory. The instructions contain
only topology. No spatial measurements or environmental
data such as landmarks are provided to the robot.

KEYWORDS: Goal-directed; Navigation; Topological;
Exploration.

1. Introduction

This paper presents a new approach to navigation in an
unknown environment by exploiting knowledge readily
available to a human director, communicated to the robot
using a simple topological language. The scenario is as
follows. First, the human director views or imagines the
environment in question. The director then plans a route to
the goal, and explains this plan to the robot. Finally, the robot
executes the plan autonomously, with no further assistance
from the director and no additional information about the
environment, such as a map.

The viability of this concept depends on the language
chosen for communication and interpretation of the plan
by the robot. The language must be topological to make
it feasibly efficient to describe a long route. Importantly,
topological localization to the next landmark in a planned
sequence eliminates accumulated error, whereas the incre-
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mental interpretation of a metrical plan (e.g., move 10 m
forward, then 5 m right...) becomes increasingly uncertain.

It must also be easy for people to generate accurate
plans in the chosen language. Research into machine-
generated navigational instructions for human execution
(for example, car satellite navigation systems1), reveals that
humans prefer to communicate topological plans, matching
their invariably topological internal models of space.2−4

People find estimation of distances difficult, particularly from
memory of a place, so ideally topological plans would not
rely on assessments of distance (inaccurate) or measurements
(inconvenient).

A critical feature of the chosen language must, therefore,
be topological landmarks, that must be perceived reliably
in the real world, first by the human director, and later,
during navigation, by the robot. It is crucial that perception
of landmarks is mutual—in other words, both parties must
perceive the same landmarks, without omissions or additions.

Finally, for efficient planning and communication, the
landmark features must be sparse. However, landmarks must
naturally occur with sufficient frequency in all environments
you wish to navigate. This paper proposes a simple language
that meets all these criteria (Table III).

Since, in our scenario, the robot must execute topological
plans autonomously, it must detect topological landmarks
using only the data that it incidentally accumulates during
navigation. It has no prior map, and it cannot waste time
mapping the world before executing the plan. This explains
why empirical demonstration of topologically directed
navigation in a realistic environment could not occur before
the development of hybrid (metric-topological) autonomous
mapping systems capable of sensing topological landmarks
given only local spatial information. Only recently have
systems matching this specification been demonstrated.5−8

There is also evidence that people maintain egocentric
representations of the world,9 reconstructed incrementally
during navigation.

1.1. Exploration and mapping
This work stems from recent successes in Simultaneous
Localization and Mapping (SLAM) using stochastic
algorithms typically derived from the Kalman filter10−13 or
Expectation-Maximization (EM).14 Using these algorithms,
robust results were achieved in a wide variety of
scenarios and, more recently, attention has turned toward
improvements in the accuracy or speed of mapping7,15−19

and improvements in exploration technique20−23, so that
the environment can be mapped more efficiently. So,
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success in SLAM has turned the spotlight on other issues,
including how to direct exploration. It is widely but, perhaps,
erroneously accepted that exploration must precede goal-
directed navigation.24

Currently, many mapping experiments are conducted using
semiautonomous or manual navigation to ensure that the
desired locales are built into the map.25−27 Often, the human
navigator will employ his or her foresight to ensure small
loop closure and the avoidance of long uninteresting loops
and dead-ends. Manual navigation also fails to show that the
achieved mapping is sufficient for autonomous navigation.
In many autonomous exploration experiments, unless the
environment is enclosed, autonomous mapping will not
be completed within a reasonable period of time. This is
sometimes avoided by modifying the environment.16,21

Behind all SLAM lies the assumption that useful activities
will be undertaken once mapping is complete, which is
largely true: Within finite yet reasonably large, at least
partially known environments, efficient navigation can be
achieved using existing planning algorithms.28,29 Of course,
in some situations, the mapping is itself a useful outcome.

Originally this work was motivated by limitations in
existing SLAM techniques, that cannot exploit human
guidance concerning where to explore. In many cases,
mapping a complete environment is not desirable and
modification of the environment to enclose the robot is
inconvenient. Furthermore, in situations where mapping is
only a precursor to the desired task, it is preferable to map
only the route necessary for completion of the task.

Conventionally this sounds impossible, since how can
the ideal task-achieving route be known before the map is
complete? In fact, humans are able to navigate in unknown
environments very efficiently by exploiting the assistance of
better-informed individuals, via a shared language that allows
complex directions to be transferred verbally, or visually,
using signs. Even if the goal is mapping, it would be useful
to be able to describe the areas that need mapping in advance,
to permit efficient autonomous exploration.

1.2. Hybrid topological mapping
Hybrid (metric/topological)20,30−22 and (feature/topolo-
gical)26,33−35 mappings were developed because although
planning is efficient in topological models, continuous global
localization is required to build accurate and consistent global
maps using stochastic methods. In most of these works, the
topological model is continually rebuilt from geometric data
as the accuracy of the latter improves. Before completion
of the global geometric map, the topological model may
be poorly estimated.32,36 A few researchers have recently
demonstrated global topological mapping without global
geometric models.5−7 Instead, local or egocentric geometric
data is used to model local topology. It is a small step further
to use language to transfer topological information from
human to robot, perceive geometric data locally, and omit
the need for exploration altogether.

1.3. Existing goal-directed navigation strategies
Articles in the literature concerning goal-directed navigation
usually define goals as positions in a robot’s internal global
geometric map13,37 or vertices of a robot’s global topological

or hybrid map.16,20,35 The robot can then plan a path to
the goal in its internal map.13,28,38 Alternatively, a series
of waypoints defined by externally corrected odometry or
Global Positioning System (GPS) signals may describe the
path to the goal39,40 rather than the goal itself. The robot is,
then, responsible for execution of the supplied geometric
plan; when following the specified route, significant
diversions may be needed to avoid unexpected obstacles.

In this work, the robot is given topological directions
to the goal—equivalent to an incomplete topology—but
does not have a global topological map or any geometric
information with which to ground the provided topology.
It must, instead, acquire geometric data during navigation
in order to perceive topological landmarks and execute the
plan. The lack of geometric data in provided topological
instructions is deliberate—it is easy for people to perceive
and communicate topology verbally, but hard to do the
same with geometric models. In the literature, there are no
examples of topologically directed navigation in realistic
environments without a global map, although autonomous
execution of verbally delivered topological directions in a
simplified environment with artificial topological landmarks
was demonstrated in the IJCAI robot competitions of 1994
and 1995.41,42 In these examples, the robots were given a
global topological map as well as instructions.

The robot described here localizes topologically, but not
continually or relative to geometric landmarks. This allows
operation without global geometric data. The most similar
works to date are fully-autonomous global–topological
and local-geometric hybrid mapping techniques such as
in refs. [6], [7], [16] and [35], but these associate
local geometric data with global topological landmarks to
allow continuous localization and recognition of particular
topological vertices. The geometric data increases the
difficulty of communicating these maps.

1.4. The shared perception of spatial affordances
In this paper, we propose a simple language for topologically
directed navigation, based on only two concepts—junctions
and edges of the GVD as popularized by Choset.43−45

However, the GVD topology that is used in this paper is
heavily pruned and simplified, compared to accurate GVD
models. Only edges that the robot can physically traverse
are retained. Smaller gaps between obstacles, and minor
variations in obstacle contours, are not represented in the
topological model. In the next part of the paper, a method of
easily computing this pruned GVD is presented.

Use of the GVD can be imagined as an inversion of the
landmark selection problem. Concrete landmarks, such as
doorways, may not occur in all environments. But a suitably
pruned GVD can be considered a map of the navigational
options available to the robot, which, by definition, are always
available in all environments. By explicitly modeling the
effects of external features on the navigator, rather than
the features themselves, generality is assured. GVD-like
structures are often known as roadmaps.

Another crucial factor for the selection of the GVD as a
topological representation is that nearby edges and vertices
of the GVD can be perceived in the robot’s immediate

https://doi.org/10.1017/S026357470700375X Published online by Cambridge University Press

https://doi.org/10.1017/S026357470700375X


Topologically directed navigation 191

surroundings. This means that the robot can incrementally
and incidentally perceive topological landmarks—namely
GVD vertices—as it follows the topological plan provided
by the human director, without having to divert from
this task to detect landmarks with extra mapping. Other
topologies, particularly,6,7 employ complex characterizations
of places that may require dedicated navigational activity to
be accurately identified.

The GVD has other appealing characteristics. Where
navigation is required beyond the edges of the GVD, it is by
definition trivial since there will be no intervening obstacles.
From anecdotal experience, people can easily understand and
perceive the pruned GVD, in the real world, unassisted. It has
already been shown that robots can perceive the GVD in their
surroundings using a local or egocentric map.5−7

Using Gibson’s notion of affordances,46 we can describe
all the parameters for construction, pruning, and use of the
GVD in terms of the robot’s characteristics. From a human
perspective, a GVD pruned to remove all the edges the robot
cannot traverse is more intuitive and easily described without
technical definitions.

Humans are practiced at estimating the physical
affordances of other people, machines, and animals. It is
also very useful to have an overall principle to refer to when
deliberating the topology the robot should perceive. The
notion of affordances gives a consistent definition despite
variations in the accuracy and resolution of the robot’s
sensors, and changes in the robot’s physical size.

The high angular resolution of typical scanning-range
sensors can yield a very complex GVD. There will be many
gaps between sensed obstacles, and irregular surfaces with
concavities, into which the GVD extends branches. Typically,
dilation (see the following text), thinning,32 or pruning7,45 is
applied to this structure to simplify it. The combination of
the robot’s own physical properties and the existing graph
density determine the amount of pruning or dilation required.

The robot cannot pass through a gap smaller than itself,
thereby defining what is and is not a viable junction and/or
edge. If two junctions are close together, the robot’s size
means that it can occupy more than one GVD junction
simultaneously, effectively creating a single vertex with four
or more incident edges (see Fig. 1). Given infinite accuracy,

it is unlikely that any vertex of the GVD would have more
than three edges.

If vertices are merged, two ambiguities are eliminated.
The first is the order in which vertices are visited, which
cannot be determined unless the robot’s movement is
highly constrained and the unmerged vertices are precisely
positioned. The second ambiguity is which unmerged vertex
the robot occupies if parts of the robot are at different
vertices. However, a third ambiguity is created—whether
two vertices are merged, given the distance between them. In
the reported experimental trials, the environment was altered
to cause this type of ambiguity, and a method of resolving it
is demonstrated.

Although it is not possible to eliminate all types of
ambiguity, errors can be managed by choosing when they
occur. In order to minimize the use of physical constants and
metric parameters, all vertices are considered to have an area
equal to the diameter of the robot. Overlapping vertices are
merged. It is easiest for the director to assess a scene in terms
of the robot’s size, and what it is possible for the robot to do at
that location. This also makes it easier to explain the direction
language concepts to a lay user. In summary, we define the
topology of spatial affordances as a selectively pruned and
merged GVD, in which the size of the robot determines the
outcome of pruning and merging.

1.5. Are topological directions a map?
So far, we have established that there exists a navigationally
useful common language that can be shared by humans and
robots. Given this shared symbology, the next step is to show
that knowledge transfer is possible, in other words, that useful
navigational tasks can be achieved by the robot using a human
director’s knowledge of the world. Communication between
both parties will be based on concepts that both can perceive
locally and directly.

It is arguable that a series of navigational instructions
actually constitutes a topological map. This may be true;
but if a person can generate a map of this type from memory
and transmit it verbally it constitutes an enormous increase
in utility over traditional map types that must be drawn,
digitised, calculated using measuring devices, or generated
through robot exploration. The issue of whether topological

Fig. 1. Ambiguity from junction merging. If two junctions only slightly overlap sensor error will determine whether they are perceived as
one or two junctions.
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directions constitute an incomplete topological map is, in
comparison, insignificant.

2. Implementation

2.1. Mobile robot
The experiments reported in this paper were conducted using
an ActivMedia Pioneer 3 All-Terrain mobile robot featuring a
skid-steer drive mechanism. Due to the topological nature of
the navigation method proposed, the resultant poor odometry
is not problematic. A Hokuyo URG scanning laser-range
sensor is mounted on the robot for obstacle detection and the
perception of spatial affordances, as detailed later.

2.2. Computing the GVD in an egocentric metric map
An Egocentric map is always centered on the robot, and has
limited scope. Only the area around the robot is mapped.
When the robot moves, the mapped area moves like a
scrolling window, keeping the robot at its center, as in refs. [6]
and [7]. However here, odometry is used without correction
to translate the map to account for robot motion. In this work,
Egocentric maps are represented by images, i.e., as a regular
grid of cells. To compute the GVD of free space around the
robot, it is first necessary to know which cells are occupied
by obstacles.

Since both sensors and odometry are inaccurate, stochastic
methods such as Bayes’ update rule47 are necessary to infer
cells’ occupancy probability, given multiple sensor readings.
Stochastic reasoning is also necessary to remove dynamic or
transient obstacles such as passing people. The Occupancy
Grid48 is a suitable stochastic model for Egocentric mapping
because distant obstacles roll off the edge of the map and large
loops cannot occur. Similarly, scan-matching is unnecessary
because cumulative errors are not significant. Therefore, the
authors describe the model detailed later as an Egocentric
Occupancy Map (EOM).

To calculate the probability that a given cell in the
egocentric grid is obstructed, it is necessary to know the
prior probability of occupancy P (H ) and the probability
of obtaining current sensor evidence if the cell is occupied
P (E|H ). In ref. [49] P (E|H ) is obtained from an occupancy
probability profile for a particular sensor. In this work, since
the geometric accuracy of the EOM is not important, a two-
dimensional profile was created that was required to account
for all types of error—dynamic obstacles, odometric error in
translation of the map, and sensor error.

The two-dimensional profile is built from three Gaussian
kernels—one to support the hypothesis that cells around the
sensed location are occupied; second, a strong refutation
of the occupancy of intervening cells along the line of
sight of the sensor, and, last, a mild refutation in the
case where nothing is sensed. Note that priors default to
0.5 as they are added at the edge of the map, or are
inherited from cells’ previous occupancy probabilities using
uncorrected odometry to account for robot translation. To
avoid interpolation of priors, the orientation of the egocentric
map is fixed.

Since a scanning laser is used, the evidence from all N

readings is summed and normalized. In Eqs. (1), and (2), a

hierarchy of forks determines which kernel will be used to
generate an inference for a particular (pixel, sensor reading)
combination. Function f (i, j, n) is an arbitrary name for
the second level of this hierarchy. Refutation is maximized
along the sensor’s line of sight and rotational odometric error
dominates; hence, the difference between sensor bearing θn

and pixel bearing θi,j is used as a distance measure for these
kernels. Support is based on the Euclidean distance xi,j,n

from the sensed obstacle position. The support model is
invoked if the distance from the sensor to the pixel di,j is
greater than a threshold tn = dn − 3σx where dn is the sensed
distance and σx is the standard deviation of expected error. It
is assumed that due to the Gaussian profile, support beyond
3σx would be insignificant; the authors found ad-hoc tuning
of σx acceptable, given that this model should account for
multiple sources of error that cannot easily be modeled,
and accuracy is not crucial. The strength of refutation is
determined by two parameters, α and β. At insignificant
loss of precision, the output for all possible configurations
of sensor and pixel can be precomputed and stored in a
lookup-table. It is worth mentioning that if greater accuracy
were required, this component could be replaced with more
accurate Occupancy Grid or SLAM methods.

P (E|H )i,j = η

N∑
n=0

{
f (i, j, n) valid reading

α · refute(θi,j , θn) otherwise
(1)

f (i, j, n) =
{
β · support(xi,j,n) di,j > tn

γ · refute(θi,j , θn) otherwise
(2)

support(x) = 1 +
(

1√
2πσx

)
e
− x2

2σ2
x (3)

refute(θ, θ̄ ) = 1 −
(

1√
2πσθ

)
e
− (θ−θ̄)2

2σ2
θ . (4)

In this paper, an approximation of the GVD is created
from the EOM using the method in ref. [5], which has linear
complexity in the number of map pixels and does not require
pruning of the resultant graph. Alternatives would include
the morphological thinning method proposed by ref. [32],
clustering of obstacle features50, pruning of the true GVD as
suggested by refs. [7], [31] and [45] and pruning of the Medial
Axis Transform.51 The morphological thinning approach has
the drawback that the mapped region must be enclosed. In
a local, incomplete or egocentric map enclosure will cause
spurious or misplaced junctions and edges between actual
obstacles and the edge of the map. Pruning the graph model
is complex7,31,45 and, therefore, not convenient.

The GVD is approximated by first thresholding the
egocentric occupancy probability map P at 0.51, giving a
map of confirmed obstacles O. The chosen threshold ensures
that without evidence, cells are modeled as unoccupied.
These and subsequent maps are stored and processed as
images. No gap smaller than the diameter d of the robot
can be traversed; therefore, the obstacles in O are dilated by
d/2 giving image D. Dilation is achieved using the Distance
Transform52 of the background or free space region,53

thresholding at the pixel-scale equivalent of d/2.
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Fig. 2. Simultaneously propagating distance to and label of the
nearest obstacle. This figure displays two images N (left) and M
(right) half-way through the first of the two passes of the proposed
custom distance transform algorithm. Three obstacles (black pixels
a, b, c) are visible in N , and in all other pixels, the label of the
closest obstacle. Obstacle a consists of two pixels—the connected
component transform has already been applied to ensure that all
connected obstacle pixels share the same label. The right image
(M) stores distance to these obstacles. Note that at this point part
way through the first pass, many pixels are undetermined, and that
distance and obstacle labels are propagated from top-left to bottom-
right; in the second pass, labels and distance are propagated in the
opposite direction. The reader should note that unlike the actual
algorithm, integer distances are used in this example.

Subsequently, a single pass of D is sufficient to uniquely
label all 8-way connected feature regions.54 The labels
are stored as image L. At this stage, a modified Distance
Transform is applied to L so that the label of the closest
feature is propagated with accumulating distance. This
results in two images, one containing distance to the nearest
dilated obstacle (M), the other containing the label of the
nearest dilated obstacle (N) (see Figure 2).

An image V approximating the GVD may be computed
in a single further pass of N : For each pixel in N , count the
number of distinct labels n among its eight neighbours: If
n= 2, the pixel lies on an edge of the GVD; if n> 2, the
pixel is located at a junction in the GVD.

O = Threshold(P , 0.51);
T = DistanceTransformOf(O);
D = Threshold(T , tDilate);
L = LabelConnectedComponentsIn(D);

M ,N = DistanceTransformOf(L);
V = CountDistinctNeighbours(N).

Note that this method of approximating a pruned GVD is
unusual because it does not produce “weak meet points,”
spurs, or other navigationally irrelevant skeletar features.
Treatment of obstacles as labeled connected components
ensures that topology is unaffected by changes in obstacle
boundary or shape. Topological variations are only caused
by the appearance or disappearance of an entire obstacle.

2.3. Coastal navigation of open areas
The finite range of typical laser and sonar sensors makes it
difficult to accurately and replicably move across large open
areas. When no obstacles are detected, the robot must rely
on internal sensing (odometry) to maintain course. Without
corrective feedback from the world, odometric error will ac-
cumulate. Although, in this work, odometry is not corrected
using laser data, obstacles still have the effect of constraining
motion and, hence, make navigation more consistent.

For these reasons, an Extended-GVD model may be prefer-
red, similar to that proposed by Beeson and Kuipers.6−8 (See
the cited works for illustrations of Extended-GVD topology).
In the Extended-GVD, edges are formed around the perimeter
of obstacles when no other obstacles are nearby. By following
this perimeter and always keeping an obstacle in view,
the robot may navigate more predictably. This approach is
sometimes known as coastal navigation.

An Extended-GVD can be computed using the method
presented in this paper for approximating the GVD by
propagating the labels of connected components. A new
threshold (tFree) is required to define the distance of the new
edges from obstacles. Figure 3(b) shows that tFree can be
configured so that two alternative topologies generate an edge
in the same place. When only one obstacle is detected, the
dotted edge in Fig. 3(b) is followed. This edge is a perimeter
edge. When another obstacle is detected (e.g., a black circle
in Fig. 3(b)), an edge is, instead, formed between the two
obstacles.

Erratic behavior can occur when obstacles are slightly too
far apart to be consistently detected. However, if tFree is set
to twice the sensory horizon, the edges created by the two
alternative models coincide, and the behavior is consistent
despite intermittent detection of one or the other obstacle.

O = Threshold(P );
T = DistanceTransformOf(O);
S = Threshold(T , tFree);
D = Threshold(T , tDilate);

D + = S;
L = LabelConnectedComponentsIn(D);

M ,N = DistanceTransformOf(L);
V = CountDistinctNeighbours(N).

2.4. Selectively navigating GVD edges
The robot is controlled by manipulation of the first derivative
of the robot’s rotational velocity, using a Behavioral
Dynamics approach for the coordination of multiple
behaviors, as described by Althaus and Christensen.55 The
reader is directed to the cited work, or to ref. [56], for a
detailed description of this methodology.

However, here the GOTO behavior in the cited work is
replaced with an EDGE TRAVERSAL behavior and the
DOOR PASSING, CORRIDOR FOLLOWING, and WALL
AVOIDANCE behaviors are removed. The OBSTACLE
AVOIDANCE behavior is also redundant if the robot is nav-
igating only on or near the edges of the approximated GVD.

Since only one or two behaviors are used, the primary
benefit of the Behavioral Dynamics is elegant generation
of the control signal for the robot, its rotational velocity
φ̇. Since this is generated from the egocentric map images,
an obvious and popular alternative would be further image-
based processing to generate artificial potential fields,57, 58

which would then determine robot motion.
The robot used for this work has an embedded control

algorithm that accepts a desired rotational velocity that it
attempts to realize. As the robot’s physical response is slower
than the rate of updates to φ̇, the robot follows a continuously
curving path. The accuracy of the robot’s adherence to
the theoretical path is not critical to this paper, which is,
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Fig. 3. Careful handling of problematic situations prevents erratic behavior when traversing egocentrically modeled edges. Obstacles may
force the robot off its intended vector of travel, or suddenly alter the perceived positions of topological edges.

Fig. 4. Computing an egocentric approximation of the GVD. The robot is always at the centre of these images. Note that higher probability
of occupancy is associated with brighter pixels in P . Priors for P are retained from previous iterations using odometry to account for
robot translation. Odometric errors are not estimated. Egocentric map orientation is invariant to robot orientation. Brighter pixels in M are
more distant from obstacles. In V , white pixels are junctions with three or more different neighbor labels. Grey pixels have two different
neighbor labels. Black pixels have 1.
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instead, concerned with defining, identifying, and making
navigational decisions.

EDGE TRAVERSAL is a development of the GOTO
behavior attractor in ref. [55]. Instead of generating a
single attractor in a particular goal direction, all GVD edge
pixels in the egocentric image V are attractive to the robot.
The strength of individual pixel’s attraction reduces with
increasing distance from the robot, and with increasing
angular distance from the goal direction. Thus, GVD edge
pixels close to the center of the map, in the desired
direction of travel, have the greatest influence. Since EDGE
TRAVERSAL navigates the robot only along traversable
GVD edges (the graph is already pruned via dilation), this
behavior also effectively performs obstacle avoidance. As
a result, the goal direction need only be approximately
specified. In the event that the current edge is very curved,
the behavior will still drive the robot along the current edge,
i.e., edge following takes priority over goal direction.

Let φrobot represent the current heading of the robot. Vi,j is
a pixel at column i and row j of the Voronoi image V . The
output of the EDGE TRAVERSAL function is φ̇, the robot’s
desired turn rate:

φ̇ =
w−1∑
i = 0

h−1∑
j = 0

{
φ̇i,j iff Vi,j = edge pixel

0 otherwise
(5)

φ̇i,j = (−λ sin φrelative) · fradial(i, j ) · fangular(i, j ) (6)

fradial(i, j ) = e−γ
√

(c−i)2+(c−j )2
(7)

fangular(i, j ) = π − |φi,j − φgoal| (8)

φrelative = φrobot − φi,j (9)

φi,j = −a tan2(c − j, i − c). (10)

Note that the function is computed as the sum of output
for all pixels within V and biased toward the global goal
direction φgoal. The term fradial(i, j ) ensures that closer edge
pixels are more influential. γ is a constant chosen to scale
pixel distances within V . fangular(i, j ) reduces the strength of
attractors not in the direction of the goal. λ scales the output
of EDGE TRAVERSAL to match the physical capabilities
of the robot.

2.5. Developing topological instructions
Each topological instruction permits selective navigation of a
single edge of the GVD. Therefore, normally each instruction
is initialized at a GVD junction, and guides the robot to an ad-
jacent GVD junction. This allows instructions to be executed
in series. At the moment the current instruction is completed,
the robot’s pose is taken to be a reference point for the next
instruction. The instructions provided in this paper only allow
travel to junctions; once close to the goal, it is assumed that
application-specific behaviors will be used instead.

By terminating each instruction at a reference point
perceived in the world—i.e., a GVD junction—rather than
at an absolute position, error is not accumulated between
instructions. (Of course, a topological error such as transiting
the wrong edge will immediately introduce significant error).
It is also useful to define a perceived, rather than absolute,
reference direction: Angular error has a more significant
effect than positional error. So, in this paper, the direction
from which the robot approached the current junction
(hereafter, “back-trail”) is used as the reference direction
φref.

The back-trail bearing φref is computed as the circular
mean bearing of all egocentric map pixels the robot has
recently occupied. If the robot is at a GVD junction, φref

is effectively computed relative to that junction. The robot’s
heading φrobot at the moment it reaches a GVD junction is not
a good indication of the direction it has come from, since the
edges of the GVD are usually highly curved near junctions.
φref gives a better long-term estimate of the direction from
which the robot has approached the junction. This has
the added benefit that it makes more sense to the human
director.

The output of a topological instruction initialized at
junction J is φedge, the orientation of a vector Z originating
at J . The input to the EDGE TRAVERSAL behavior, φgoal,
is derived from φedge. EDGE TRAVERSAL interprets the
parameter φgoal liberally, causing the robot to move along
edges in this direction while avoiding obstacles. Where
multiple edges are available, the edge whose bearing is
closest to φgoal will be followed. Since the robot will not move
accurately along the specified vector Z, φgoal is continually
recomputed and set to values that would cause the robot to
intercept Z at the edge of the egocentric map [see Fig. 3(a)].
Two different instruction types are described later. They
differ in the way that φedge is calculated.

2.6. Relative bearing instructions
The “relative bearing” instruction specifies that the robot
should move in a straight line originating wherever the
instruction is initialized at an angle φedge. The parameter
φoffset is a specified offset to the robot’s direction of
travel at initialization; therefore, φedge = φref + π + φoffset.
The additional π transforms the back-trail into the robot’s
direction of travel.

This instruction need not be initialized at a junction, if
the robot’s current heading φrobot is used in place of the
robot’s direction of travel (φref + π). It is, therefore, suitable
for the first part of a navigation exercise. As with hand-
waving human convention, the first instruction is based on
the instructee’s pose. The relative bearing instruction is
completed when the robot arrives at any GVD junction that
is at least n meters from the point of initialization. Thus, to
summarize, two parameters are required, n and φoffset. These
are supplied by the director.

2.7. Edge enumeration instructions
The “edge enumeration” instruction is an enhancement of
the “relative bearing” instruction. The motivation behind
this instruction type is that selection of edges by bearing
is somewhat ambiguous when two or more edges are
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Fig. 5. Enumerating, selecting, and navigating edges of the egocentric Voronoi graph. Note that these images represent a different scenario
to those in Fig. 4.

close. The reference bearing may also be difficult to
estimate beforehand, especially if the junction position is
not perceived accurately. Moreover, it is easier and more
natural for a human director to specify edges by counting
from a reference edge. For example, when driving a car and
navigating a roundabout, one might “take the second exit.”

When initialized, the edge enumeration instruction
computes the circular mean bearing of GVD edge pixels
in V relative to the junction closest to the robot, for each
edge k incident at that junction. This is illustrated in Figs. 5
and 6. Note that these bearings are calculated relative to the
position of the junction, not the robot. One edge is assumed
to be the edge the robot has just traversed. This is identified
by minimizing the circular angular difference between edge
mean bearings φedgek

and the back-trail bearing φref. Once the
reference edge bearing φedgemin is known, it is a simple matter
to count clockwise or anticlockwise to find the selected edge
bearing φedgeselected . Thus, φedge = φedgeselected , and the selected
edge will be traversed even if further along it subsequently
twists around to a new direction.

In all other respects, the Edge Enumerating instruction is
identical to the Relative Bearing instruction. The instruction
is completed when the robot reaches a GVD junction. Since
the Edge Enumerating instruction relies on identification of
the previously transited edge and the robot being at a GVD

junction when initialized, it cannot be the first instruction in
a series.

2.8. Other instructions
More complex and natural instructions could be created,
such as “take the second left”—meaning go straight over
the first junction, and left at the second. But these can
be created by chaining the atomic instructions already
discussed. Useful and more sophisticated instructions
could be created by expanding the vocabulary to include
recognition of landmarks that are distinctive, if not,
otherwise, navigationally relevant. However, recognition of
landmarks described using an abstract language is a problem
domain in its own right, and beyond the scope of this paper.

3. Experiment

In 21 trials, the robot was tasked with navigating from the
author’s desk to every other workplace in the laboratory, via
a number of different routes, using different combinations of
relative bearing and edge enumeration instructions provided
by the author and other students. The laboratory environment
is not a single cluttered concavity, so a combination of goal
vector and obstacle avoidance behavior would not result in
successful or efficient navigation (see Figs. 7, and 8). The
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Fig. 6. Enumerating the edges around a junction, and the direction of travel of the robot. The aim is to define a goal vector with an origin
at the junction and orientation equal to φedgeselected . Here, we select the first edge anticlock wise (ACW) of the reference edge.

Fig. 7. Approximate path of robot when undergoing trials, overlaid on photographs of the experiment environment. In each trial, the robot
navigated from the start point (a variable position close to the author’s desk) to a goal location. Junctions of the GVD are marked with
sheets of white A4 paper on the laboratory floor. This is purely for the author’s convenience in presenting these results in the paper and
demonstrating the robot.

Fig. 8. Approximate path of robot in longer trials.
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Fig. 9. Robot paths and perceived junctions, from odometry. Axes show distance in millimetres. Note that along each route, each time
a junction is reached, it is detected exactly once. No false junctions are detected. No junctions are omitted, except in the deliberately
ambiguous case where two junctions are sometimes merged.

final two instruction sets specified a Fig. 9 route. The robot
moved without pause during the trials at a wheel speed of
approximately 10–25 cm/s. The robot was not required to
detect or recover from erroneous instruction, or to recover
from erroneous interpretation of accurate instructions. These
problems are beyond the scope of this paper and have been
previously researched (e.g., refs. [41] and [42]).

Table I enumerates instruction types implemented for these
trials. Table II details the use of these instructions in the trials.
Note that the Relative Bearing instructions can make use of
reasonably accurate bearing information, but we have chosen
to limit precision to π/2, i.e., Left, Right, or Forward, to show
that the human director need not estimate GVD edge angles
accurately.

4. Results

Figures 7, and 8 show the routes covered by the robot and
the experimental environment. In these images, the GVD
junctions are marked on the laboratory floor for the benefit
of the reader—they are not used by the robot. They were
also used to explain the GVD concepts to other students who
subsequently demonstrated the ability to direct the robot.

Twenty of the 21 trials resulted in successful navigation.
The total distance covered was just over 200 m. Trial 10 failed
due to the engineered ambiguity of the GVD, as illustrated in
Fig. 1. At one location on the robot’s path, either one or two
junctions are perceived, since the distance between them is
exactly the threshold required for the junctions to be separate.
This was achieved by using cardboard boxes to modify
the environment. In such situations, sensor error determines
the actual mapping. In trials 11 onwards, the same area is
navigated successfully using “relative bearing” instructions
and approximately specifying the minimum distance to the
junction at which the next instruction should be applied. In
trial 11, one junction is perceived at the ambiguous location,
with four edges incident. In trial 12, two junctions are
perceived here, each having three edges.

Overall, the robot was successfully navigated to all
accessible areas of the laboratory and, in trials 20 and 21,

a Fig. 8 route was executed to demonstrate a longer series
of instructions (46 m total for the Fig. 8 routes). One trial
was unsuccessful. Since it was not necessary to measure
the environment to provide the instructions and the robot
does not use SLAM, no metric map of the environment
is available. However, Fig. 9 shows the robot’s path from
odometry and detected junction positions, for selected trials.
Before each trial, the robot was positioned near the author’s
desk facing approximately in the direction of the first goal
junction: precise positioning was unnecessary.

Some problems were experienced during testing prior to
reported trials due to the limitations of the scanning laser-
range sensor. In particular, planar sensing assumes that the
shape of obstacles does not vary greatly with height and
some surfaces are not detectable. However, traversal of
the GVD minimizes such problems since distance to all
obstacles is maximised. Also, the method of GVD junction
detection is robust to variations in sensor performance and
odometric error. In the few places where scanning sensing
was inadequate, artificial obstacles were added below higher
projections, to prevent collision. Similarly, a few surfaces that
do not reflect the laser signal were covered with cardboard to
ensure the robot could sense its environment satisfactorily.
Note that these modifications were made to mitigate sensor
limitations, not processing flaws. In several trials, the robot
encountered dynamic obstacles in the form of passing
people, but navigation was unaffected due to application
of Bayes’ rule in the egocentric occupancy map. A video
of experiments similar to trials 20 and 21 is available at
http://thecyberiad.net/videos/ to better illustrate
the operating conditions.

5. Conclusions

The results show that it is possible for robots and
humans to share useful topological navigational concepts
that both can perceive directly. This enables reliable and
efficient navigation of the robot in a realistic environment
without a prior mapping operation, which is very useful.
The topological instructions provided to the robot are
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Table I. Instructions.

Shorthand Type Description

Fn Relative bearing φoffset = 0. Follow edges closest to the direction the robot is initially
facing, for at least n meters, until a junction is reached. Default n = 2r ,
where r is the diameter of the robot.

Ln Relative bearing φoffset = π/2. Follow edges closest to the direction the robot is
initially facing + 90◦, otherwise as previously.

Rn Relative bearing φoffset = −π/2. Follow edges closest to the direction the robot is
initially facing − 90 degrees

mCW Edge enumerating Count n edges clockwise from the back-trail edge; follow the selected
edge until a junction is reached, e.g., 1CW means take the first edge
clockwise from the back-trail edge.

mACW Edge enumerating As previously, but counting anticlockwise.

Table II. Experimental trials.

Trial Goal Instructions Comments

01 P’s desk F, 1ACW, 1ACW, 1ACW Forward until junction, take first path on
right, until junction . . . and so on

02 P’s desk F, 1ACW, 1ACW, 1ACW Repeat
03 P’s desk F, F, R, R Same route as trials 01 and 02

04 S’s desk F, F, R, L First part same as trial 03, then diverges
05 S’s desk F, 1ACW, 1ACW, 1CW Same route as 04
06 S’s desk F, 1ACW, 1ACW, 1CW Repeat

07 F’s desk F, 1ACW, 1CW, 1ACW Short route
08 F’s desk F, 1ACW, 1CW, 1ACW Repeat
09 F’s desk F, 1CW, 1ACW, 1ACW Longer route
10 F’s desk F, 1CW, 1ACW, 1ACW Longer route, failed: Went to G’s desk
11 F’s desk F, 1CW, R1.5, 1ACW Longer route like trial 10, better instructions
12 F’s desk F, 1CW, R1.5, 1ACW Repeat trial 11, different modeling of ambiguous

junction, still success
13 F’s desk F, F, L, R Short route, different instructions

14 G’s desk F, 1CW, F1.5 To show can still get here

15 Z’s desk F, 1CW, R1.5

16 R’s desk F, 1CW, R1.5, 1CW
17 R’s desk F, 1CW, R1.5, 1CW Repeat

18 Laboratory exit F, 1CW, L, 1ACW Short route
19 Laboratory exit F, 1ACW, 1CW, 1CW, F, 1ACW Longer route

20 Author’s Desk F, 1CW, R1.5, 1ACW, 1ACW, 1ACW, 1CW, 1CW, 1CW Figure-8 route back to start
21 Author’s Desk F, 1CW, R1.5, 1ACW, 1ACW, 1ACW, 1CW, 1CW, 1CW Repeat

Table III. Essential features of a topologically directed navigation language.

Feature Comments

Mutual perception To conveniently exchange navigational information, both parties (robot
and human) must be able to perceive the same topology reliably and
directly.

Local perception Many topological mapping systems generate erroneous topology until
the map is largely complete and accurate. To follow directions without
a complete map, local sensing must be sufficient.

General relevance It must be possible to efficiently describe routes in all conceivable
situations to all goal locales, because the chosen topological landmarks
are present in all environments.

Efficiency The chosen topological landmarks must occur frequently enough to
specify routes accurately, but not so frequently that the plan becomes
cumbersome or complicated.
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Fig. 10. An example of egocentric modeling in a different environment—here the robot crosses the foyer of our building. The robot’s
perception of local topology agrees with the author’s estimation, shown overlaid on the building floor plan. Two junctions (J ) exist in the
foyer, a third due to a path into the elevator (E). Note that despite detecting only fragments of the foyer walls and nearby corridors, the robot
has still modeled local topology accurately. Topological modeling errors occur only if a significant obstacle is entirely undetected. Small
perturbations in obstacle shape, and erroneous small gaps between obstacles, have no effect on topology. Small variations in the shape
or position of topological edges have a momentary effect on robot motion, but do not affect the incremental interpretation of topological
directions.

parsimonious and intuitive, especially when explained in
terms of the robot’s spatial affordances. The instructions
correspond directly with the type of directions that humans
give each other when navigating unknown environments,
albeit the latter employ a richer vocabulary of symbols
(not just junctions and edges). For comparison, topological
navigation instructions generated expressly for the purpose
of easy human comprehension are discussed in this paper.1

Since the instructions use minimal or no metric data, it is
possible for a human director to produce them from memory
of the scene, greatly increasing the utility of the system.

The pure topological approach to navigation demonstrated
here is different to other goal-directed navigation in the
literature. Lack of detailed metric information does make
the system vulnerable to gross error. The same attribute
simultaneously offers great convenience. It is interesting
that complex robot perception, rather than more accurate
mapping, makes possible a new mode of navigation in
unmapped environments.

The experiments reported in this paper are not simply GVD
following because the robot does not have a map of the global
GVD and the physical structure that generated it. Instead, it
is given only the part of the topology that it must transit, and
must incrementally perceive and ground equivalent features
in the real world, simultaneously navigating directly to the
goal. This is more difficult than localization in a fully mapped
environment and has not previously been demonstrated.

5.1. Sources of error
The proposed method by which the topological features—
junctions and paths—are perceived is robust to most
variations in sensing, but two types of failure are possible.
Firstly, total failure to sense any part of a large obstacle
dramatically changes the perceived position, or existence,
of associated junctions. However, sparse and/or inaccurate
detection of parts of an obstacle is sufficient to localize
junctions with reasonable accuracy, as demonstrated in our
experiments (See Fig. 10).
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The second source of error or ambiguity is merging of
adjacent junctions in the GVD that may be considered a
single junction, if close enough. The source of error is the
definition of “close enough.” In the reported experiments,
one such situation (see Fig. 8) was artificially created
with cardboard boxes, but, in fact, it was still possible to
reliably navigate this part of the laboratory by specifying the
approximate minimum distance to the junction at which the
next instruction should be applied.

It is worth mentioning that misinterpretation of the
instructions does lead to a gross navigational error that is
undetectable. This also happens to people, who recover either
by realizing that the goal has not been reached or by using
more detailed localization based on a richer vocabulary of
landmarks.

5.2. Future directions
Navigation may also be unsuccessful if the topology of the
world changes between the moment the robot is instructed,
and completion of navigation. Topological changes may be
caused by simple acts such as opening and closing doors.

Possible solutions to this problem include use of extra
geometric information to confirm topological interpretations,
and querying the human director during navigation. But,
ideally, the robot should be fully autonomous after initial
instruction, and geometric information is inconvenient to
obtain.

Instead, in later experiments, the authors used visual
landmarks to identify specific GVD junctions by appearance,
ignoring intermediate vertices. Provided that visual
landmarks are not missed, this makes the system robust to
changes in topology. However, a large vocabulary of natural
landmarks is required to allow instruction of the robot in a
variety of environments. These results will appear in a future
paper.

5.3. Summary of prerequisites
A number of key features must be in place in order that
the robot can execute a series of meaningful topological
navigation instructions in an unknown environment. The
first is robust local mapping and planning given incomplete
knowledge of the environment. This was achieved using
an egocentric metric mapping approach to computation of
the GVD, conceptually similar to Beeson and Kuipers’
Local Perceptual Mapping (LPM).6, 7 Note that the proposed
algorithm only makes judgements about the characteristics
of the robot’s immediate environment, for which maximal
information is available. Without accurate sensing of local
topology, global mapping is necessary before goal-directed
navigation can occur.

A second key feature is the choice of shared symbols
that are perceived and grounded by both the robot and the
operator, in this case GVD junctions and edges. These are
present in all environments44 unlike doorways, corners, and
other more specific geometric landmarks. The GVD concepts
modeled as spatial affordances are also highly relevant to
navigation, and, in this paper, defined with reference to the
physical capabilities of the robot (any passage through which
the robot can physically pass is an edge, and any position at
which two paths are available is a junction). It is easy for

an operator to make good judgements about where the robot
can and cannot travel, since the same skills are necessary for
a number of everyday tasks such as driving and tool use.

A third key feature is the near-absence of metric
information, instead relying on topology that humans can
readily perceive. If it were necessary to add accurate metric
information, considerable labor would be required to provide
such data and it would be laborious to translate into an
acceptable digital format without the use of a computer.
In contrast, using a standard speech analysis program,
the proposed system could easily interpret spontaneous
verbal instructions using the robot’s onboard computer.
It is interesting that a remote operator can also generate
navigation instructions, from memory of the environment.
Many of the instruction chains provided for the reported
experiments were generated by the author while not viewing
the experimental environment.

Finally, the fact that the robot’s internal topological map
formed during navigation is in the same format as the original
topological directions means that repeat navigation to any
previously visited location may be requested.

5.4. Applications
In some applications, complete and accurate mapping is
effectively part of the mission, but, in many situations, it
is merely necessary to move to a goal location as quickly
as possible. In any nonenclosed environment, a complete
mapping will necessarily take an unreasonable amount of
time. Many SLAM experiments are conducted by manually
driving the robot, or by altering the environment to close
off areas that are not desired to be explored. The proposed
approach, in conjunction with existing SLAM techniques,
would permit guided autonomous exploration experiments
to focus on the areas that do indeed require mapping, without
modification of the environment.
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