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SUMMARY
In this paper a rolling robot resembling the shape of a triangular-bipyramid is proposed. The robot
has three degrees of freedom and is formed by connecting two tripod mechanisms with three
spherical joints. By kinematic analysis, the robot can be viewed as a planar four-bar linkage. Further,
its dynamic rolling ability is discussed by Zero Moment Point (ZMP) analysis. We show that the
robot has the capability to roll, adjust its step length, and switch rolling directions. These functions
are verified by a series of simulations with a CAD (computer-aided design) model and experiments
with a prototype.
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1. Introduction
Rolling locomotion is an effective mobile mode on flat ground.1 Plenty of methods and structures have
been presented to realize rolling locomotion. Spherical robot is a classic rolling robot that rolls on the
ground with its entire outer surface by controlling actuators inside.2–8 The touching area of spherical
robot is relatively small, so it can be easily controlled to realize rolling locomotion. However, it
requires some sophisticated algorithms to change directions and it is fairly hard to keep stable.9,10

To improve the locomotion capability of spherical robots, Keith et al.11 used “Pneumatic Method”
to design a novel deformable spherical rolling robot. Phipps and Minor12 presented a “MorpHex”
rolling robot that can deform into spherical robot or six-legged robot.

Some rolling robots realize the rolling function by deforming their geometry shapes. Sugiyama
and Hirai13 used soft materials to design a robot that can roll, crawl, and jump by deforming its body.
Shibata and Hirai14 further used Tensegrity structure15 to design a kind of deformable structure for
rolling. Sastra et al.16 used several modular links to construct a closed-loop mechanism and realized
the rolling function by deforming the shape of the loop. Also with modular units, some modular
reconfigurable robots, each consisting of multiple loops, can roll by controlling the edge length of
some loops.17–20 A common characteristic of these robots is that their centroids as well as shapes
are changing during the rolling course. However, a disadvantage of these robots is that the degree of
freedom (DOF) of the robot is very large, and thus a loss of the rigidity of their bodies.

Recently, we have proposed a class of 4R rolling mechanisms with single DOF.21 The rolling
function is realized by changing its shape, but the rolling step length is fixed, and the rolling direction
cannot be changed freely. To drive the mechanism to any position on the ground, we used an 8U
parallel mechanism to construct a 2-DOF rolling mechanism.22 Further, we presented a tetrahedron
unit to enable the rolling function.23

In this paper, we put forward a rolling robot resembling the shape of a triangular-bipyramid. This
can be viewed as an extension of the work in ref. [23]. We focus on the kinematic analysis and
dynamic rolling analysis of the robot. We show that the robot can be deformed into a planar four-bar
linkage, and the dynamic rolling ability is discussed using Zero Moment Point (ZMP) theory.
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Fig. 1. The construction of a TBR: (a) the geometric of a triangular-bipyramid, (b) the sketch of TBR, (c) a
three-dimensional (3D) model of the TBR.

The rest of the paper is organized as follows. The design of the robot is introduced in Section 2.
Section 3 gives the kinematic analysis of the robot and shows that the robot can deform into a planar
four-bar linkage. Section 4 discusses rolling capability based on ZMP analysis. Section 5 presents
the results of the locomotion tests using a physical prototype. The conclusions and brief discussions
close the paper in Section 6.

2. Mechanism Design
Figure 1 shows a triangular-bipyramid sketch with five vertexes and six triangles. It can be considered
as two equal tripods (upper tripod O-ABC and lower tripod P-ABC) connected with their common
face ABC. As shown in Fig. 1(b), each tripod mechanism contains a tripod link and three equal links,
e.g., the lower tripod mechanism is composed of three links (DA, EB, and FC) and a tripod link
DEF (see Fig. 1(b)). A triangular-bipyramid robot (for simplicity, called TBR) can be obtained by
connecting two tripod mechanisms at vertexes A, B, and C with spherical joints. The three links are
distributed around the tripod, and each link is connected to the tripod with a revolute joint. Therefore,
the angle between every two axes of revolute joints is 60 deg. Point O and P are the center of the
lower and upper platform respectively.

As shown in Fig. 1(b), the joints at A, B, and C are spherical joints. Therefore the TBR is a 3-RSR
parallel mechanism, which contains eight links, six revolute joints, and three spherical joints. It is
non-overconstrained (see, for example, in refs. [24] and [25]). Using Eq. (1) we get the mobility as

M = 6 (n − 1) −
g∑

i=1

(6 − fi) = 6 × 7 − 39 = 3. (1)

See Fig. 1(c), three motors (M1, M2, and M3) can be mounted at the lower platform to drive the
links DA, EB, and FC respectively. A block is mounted at the upper platform to balance the weight
of TBR.

3. Kinematic Analysis
In this section, we first do the position analysis of our robot. Based on the results, we show that the
robot can be viewed as a four-bar linkage. Then, we further get the expression of some parameters of
the four-bar linkage.

3.1. Position analysis
As shown in Fig. 1(a), initially, fix the lower platform of the mechanism on the ground; links DA,
EB, and FC rotate about the lower platform for the angles of θ1, θ2 and θ3 respectively. For the ease
of discussion (seeing in Fig. 1(b)), a coordinate system o-xyz is set at the center of the lower platform
(denoted as O). The z-axis is vertical to the ground, the x-axis is orthogonal to the link BE, and the
y-axis is orthogonal to the plane of xz. Further, to simplify the analysis, we assume that the three
revolute joints on the platform are very close to each other, and we can ignore the distance between the
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Fig. 2. The mathematic model of triangular-bipyramid robot.

revolute joints and the center of the platform. Figure 2 shows the simplified sketch of the mechanism,
our goal is to get the expression of the positions of ri (i = A, B, C, P).

Recall that all the links have the same length. Let L be the length of line OA, let θ1, θ2, and θ3 be
the input angles of links OA, OB, and OC respectively. According to the mechanism, the positions of
A, B, and C are determined by Eq. (2).

⎧⎪⎪⎨
⎪⎪⎩

rA =
[
−

√
3

2 L cos θ1
1
2L cos θ1 L sin θ1

]T

rB = [ 0 −L cos θ2 L sin θ2 ]T

rC =
[ √

3
2 L cos θ3

1
2L cos θ3 L sin θ3

]T

. (2)

Since ‖PA‖ = ‖OA‖, ‖PB‖ = ‖OB‖, and ‖PC‖ = ‖OC‖, given the positions of A, B, and C,
the position of P can be determined by Eq. (3).

⎧⎨
⎩

(rP,x − rA,x)2 + (rP,y − rA,y)2 + (rP,z − rA,z)2 = L2

(rP,x − rB,x)2 + (rP,y − rB,y)2 + (rP,z − rB,z)2 = L2

(rP,x − rC,x)2 + (rP,y − rC,y)2 + (rP,z − rC,z)2 = L2
(3)

For the three equations in Eq. (3), let the second and third equations minus the first one respectively,
we have

{
rP,x(rB,x − rA,x) + rP,y(rB,y − rA,y) + rP,z(rB,z − rA,z) = 0
rP,x(rC,x − rA,x) + rP,y(rC,y − rA,y) + rP,z(rC,z − rA,z) = 0 . (4)

Define k11 = rB,y−rA,y

rB,x−rA,x
, k12 = rB,z−rA,z

rB,x−rA,x
, k21 = rC,y−rA,y

rC,x−rA,x
, and k22 = rC,z−rA,z

rC,x−rA,x
, then Eq. (4) can be further

simplified as

{
rp,x + k11rP,y + k12rP,z = 0
rp,x + k21rP,y + k22rP,z = 0 . (5)

Define a1 = (− k11(k22−k12)
k11−k21

− k12), a2 = k22−k12
k11−k21

, then solving Eq. (5), rP ,x and rP ,y can be expressed
as

{
rP,x = a1rP,z

rP,y = a2rP,z
. (6)

Substituting Eq. (6) into the first equation of Eq. (3), we have

(a1rP,z − rA,x)2 + (a2rP,z − rA,y)2 + (rP,z − rA,z)
2 = L2. (7)
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Table I. Input angles {θ1, θ2, θ3} (deg).

Input angles θ1 θ2 θ3

Congfig. a 30 60 36
Congfig. b 45 45 45
Congfig. c 0 60 0
Congfig. d 60 0 0
Congfig. e 0 0 60

Fig. 3. The configurations (a)–(e) of the robot for kinematics with {θ1, θ2, θ3} in Table I.

Using r2
A,x + r2

A,y + r2
A,z = L2, Eq. (7) can be further simplified as

(
a2

1 + a2
2 + 1

)
r2
P,z − 2(a1rA,x + a2rA,y + rA,z)rP,z = 0. (8)

Since rP,z is non-negative, solving Eq. (8), we get

rP,z = 2(a1rA,x + a2rA,y + rA,z)

a2
1 + a2

2 + 1
. (9)

In the following we show a numerical example for the forward kinematics. From Eqs. (2), (6), and
(9), all the vertices of the mechanism can be determined by the input angles θ1, θ2, and θ3. Let L =
1. The parameters are shown in Table I. See Fig. 3, the configurations of the mechanism are obtained
by running a program in Matlab.

Configuration (a) in Fig. 3 is an arbitrary state with three distinct θis; configuration (b) is a special
state with θ1 = θ2 = θ3; configuration (c) is the case when θ1 = θ3 = 0 and θ2 > 0; configuration (d)
is the case when θ2 = θ3 = 0 and θ1 > 0; configuration (e) is the case when θ1 = θ2 = 0 and θ3 > 0.
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Fig. 4. The mathematic sketch of TBR: (a) the general state of the robot; (b) the projection view on the plane
OBP.

3.2. Deform into a planar four-bar linkage
When two input angles are fixed and equal, for example (see Fig. 2), let θ1 = θ3, according to the
kinematic analysis in Section 3.1, we have

{
rA,x = −rC,x, rA,y = rC,y, rA,z = rC,z

rP,x = rB,x = 0 . (10)

Since, rP,x = 0, the upper platform can only move in the yz plane, and the mechanism is
symmetrical with respect to the yz plane. As shown in Fig. 4(a), if we fix input angles θ1 and
θ3, links OA and OC are fixed with the lower platform, such that, links OA, OC, and the lower
platform can be considered as a single link OAC. By symmetry, links PA, PC, and upper platform
become a single link PAC. Since links OAC and PAC are connected with two spherical joints, we
can consider that links OAC and PAC are connected via a virtual revolute at point Q (the mid-point
of AC). In this case, our mechanism can be viewed as a planar four-bar linkage. Figure 4(b) shows
the projection view on the OBP plane. For convenience, the parameters of the four-bar linkage are
defined as follows:

β, the angle between link OB and OQ;
γ , the angle between link OQ and QP;
ϕ, the angle between link OA and OC;
δ, the angle between link OQ and the positive y-axis;
k, the length of link OQ;
w, the length of line AC.

3.3. The parameters of the planar four-bar linkage
As shown in Fig. 4, a coordinate system is set at point O, the positive x-axis is vertical to the plane
OBP, and the positive z-axis is vertical to the ground. When the input angle θ1 is given, our goal is
get the expression of parameters of β, γ , and k. As shown in Fig. 4(a), from triangle OAC, we have

k = L cos
ϕ

2
. (11)

Since ϕ is the angle of vector �OA and �OC, using vectorial angle cosine, ϕ can be expressed as

ϕ = arccos(1 − 1.5 cos2 θ1). (12)
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Fig. 5. The limit positions of line AC: (a) the maximum position; (b) the minimum position.

Using Eq. (12), we get the width as

w = 2L sin
ϕ

2
. (13)

When θ1 = θ3 = 0, line AC is at its maximum position (see Fig. 5(a)). When θ1 = θ3 = 90◦, line
AC is at its minimum position (see in Fig. 5(b)), and the width of the robot is also very small at this
position. Therefore, it is possible for the robot to roll across narrow passages.

In the planar four-bar linkage, if β is the input angle and γ can be considered as the output angle,
then we can further express γ in terms of β. As shown in Fig. 4(b), let δ be the angle of link OQ and
positive y-axis; then β can be written as

β = π − δ − θ2, (14)

where δ = arctan( rQ,z

rQ,y
) = arctan( rA,z+rC,z

rA,y+rC,y
) = arctan(2 tan θ1).

Due to ‖OB‖ = ‖BP‖ = L, ‖DQ‖ = ‖QP‖ = k, according to cosine theorem, ‖BF‖ can be
determined as

‖BF‖ =
√

L2 + k2 − 2Lk cos β (15)

By the sine theorem in triangle OBQ, angle γ satisfies

sin
γ

2
/L = sin β/ ‖BQ‖. (16)

Combining Eqs. (15) and (16), we have

γ = 2 arcsin

(
L sin β√

L2 + k2 − 2kL cos β

)
. (17)

As shown in Fig. 6, when the robot is supported by point O, the height of the robot can be adjusted
by changing the three input angles symmetrically. See Fig. 6(a), the upper platform of our robot is
at its lowest position. In Fig. 6(c), the upper platform is at its highest position and the robot is also
folding into a strut like structure. At this position, the robot can be easily stored and carried. When
the robot rolls in the outdoor environment, this folding deformation is useful for hiding itself.

4. Dynamic Rolling Capability Analysis
In this section, the dynamic rolling function is analyzed based on ZMP of the mechanism. The ZMP
is considered as the center of pressure at the feet (supporting area) on the ground.26 Generally, ZMP
is used to analyze the stability for walking robot. If the ZMP of a robot is in its interior of the
supporting area, the robot is in a state of dynamic balance. Otherwise, if the ZMP moves out of
the supporting area, the robot is about to lose the dynamic balance and rotate about its supporting
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Fig. 6. The folding process: (a) the lower limit state; (b) the middle state; (c) the upper limit state.

Fig. 7. The supporting states: (a) supporting by point O; (b) supporting by OB; (c) supporting by OA and OC.

edge. By controlling the ZMP out of the supporting links, our robot can realize the dynamic rolling
locomotion.

4.1. ZMP analysis
As shown in Fig. 7, depending on the supporting state, we have three different cases, i.e., (a)
supporting by O, (b) supporting by OA and OC, and (c) supporting by OB. The first line shows the
corresponding four-bar linkage of the three supporting states, and the second line shows the 3D CAD
(computer-aided design) models of the three supporting states.

For the first and third supporting states, we can control the centroid of the linkages out of its
supporting point and the linkage will turn over onto the ground by its own gravity. So, in this section,
we focus on discussing the ZMP of the second supporting state.

As shown in Fig. 8, recall that point Q is the position of the virtual revolute joint in Fig. 4, the
four-bar linkage is supporting by OQ. A coordinate system is set at point O. The positive y-axis
is along line OQ and the positive z-axis is vertical to the ground. Then it suffices to consider the
component of the ZMP on the y-axis. We denote this component by yzmp. According to the ZMP
equations provided by Takanishi,27 yzmp can be expressed in Eq. (18).

yzmp =
∑n

i=1 [miyi(z̈i + gz) − miziÿi] + (∑n
i=1 Jiαi

)
x∑n

i=1 mi(z̈i + gz)
, (18)
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Fig. 8. The four-bar linkage EBFD: (a) the initial position, (b) the limit position of β.

where mi is the mass of link i; [yizi]T are the positions of the centroid of link i; ẍi and z̈i are the
accelerations along the y-axis and z-axis respectively; gz is the acceleration of gravity; and αi is the
angular acceleration of link i.

As shown in Fig. 8(a), for convenience, we use β and γ to express the positions of the four-bar
linkage. Let ω1 and α1 be the angular velocity and acceleration of β respectively. Let ω2 and α2 be
the angular velocity and acceleration of γ respectively. In the yoz plane, the position of O, B, P, and
Q can be re-written as

[ rO rB rP rQ ] =
[

0 L cos β k(1 − cos γ ) k

0 L sin β k sin γ 0

]
, (19)

where γ is a function of β (see Eq. (17)).
Since the maximum value of γ is π , from Fig. 8(b), we can get the minimum value of β as

βmin = arccos

(
k

L

)
. (20)

Thus, the range of β is (βmin, p). From Eq. (19), we have

[ r̈O r̈B r̈P r̈Q ] =
[

0 u1 −u2 0
0 v1 v2 0

]
, (21)

where

u1 = L
(− α1 sin β − ω2

1 cos β
)
, v1 = L

(
α1 cos β − ω2

1 sin β
)
,

u2 = k
( − α2 sin γ − ω2

2 cos γ
)
, v2 = k

(
α2 cos γ − ω2

2 sin γ
)
.

To determine the values of u2 and v2, ω2 and α2 should be solved further. According to Eq. (17),
ω2 can be obtained as

ω2 = ∂ (π − γ )

∂t
= − 2Lω1 (L − k cos β) (L cos β − k)

(L2 + k2 − 2kL cos β) |k − L cos β| . (22)

Since β ∈ (arccos(k/L), π), we have k − L cos β ≥ 0, then Eq. (22) can be re-written as

ω2 = ω1
2L2 − 2kL cos β

L2 + k2 − 2kL cos β
. (23)

Based on Eq. (23), we get

α2 = −2L
(
kω2

1 sin β + Lα1 − kα1 cos β
)

L2 + k2 − 2kL cos β
+ 4L2ω2

1k (L − k cos β) sin β

(L2 + k2 − 2kL cos β)2
. (24)
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Table II. The parameters of four-bar linkage when θ1 = θ3 = 0.

L (mm) k (mm) w (mm) ϕ (deg) βmin (deg) m1 (kg) m2 (kg)

250 125 433 120 60 2 0.5

Fig. 9. The curves of yzmp when ω1 ≤ 0.

Since the motors are mounted on the platform and the links can be made of light materials, we
only consider the mass of platforms (O and P) and the spherical joints (A, B, and C). Let lower and
upper platforms have the same mass of m1, and a spherical joint have a mass of m2. So, the mass at
points O, B, P, and Q are

[
mO mB mP mQ

] = [
m1 m2 m1 2m2

]
. (25)

Substituting Eqs. (19), (21) and (25) into Eq. (18), yzmp is expressed as

yzmp = m1
[
u2k sin γ − k (cos γ − 1) (g + v2) + kα2

12

] +m2
[
(g + v1)L cos β − u1L sin β + 2gk + Lα1

12

]
m1 (2g + v2) + m2 (3g + v1)

.

(26)

As shown in Fig. 8, when yzmp > k, the mechanism will roll about point Q (the position of the virtual
revolute joint in Fig. 4) along positive y-axis, and if yzmp < 0, it rolls about point O along negative y-axis.
Thus, the dynamic rolling condition is given in Eq. (27).

{
yzmp > k

yzmp< 0
. (27)

According to Eq. (26), when θ1 and θ3 are given, yzmp is determined by the input parameters
(i.e., ω1 and α1). Their relations are analyzed as follows:

Case 1: Link OB is rotating in the clockwise direction, with α1 = 0 and ω1 ≤ 0.

Let θ1 = θ3 = 0, L = 250 mm. Based on the kinematic in Section 3, we get the parameters of four-
bar linkage as shown in Table II. Suppose that the robot is moving from the initial position. Set ω1 =
0,−180,−270 deg/s, and β decreases from 90 deg to βmin; the curves of yzmp is plotted in Fig. 9.

When ω1 = 0, see the solid line in Fig. 9; yzmp cannot move out of the upper limit. When ω1 = −180
deg/s, β is reducing from 90 deg to 60 deg. The relationship between yzmp and β is shown in Fig. 9 (the
dotted line). β ≈ 76.43 deg, yzmp > k, and the robot is beginning to roll about point Q.β ∈ (76.43 deg,
90 deg), yzmp is always in the interval of [0, k], and the robot is kept stable. Further, when ω1 = −270
deg/s, the curve of yzmp is shown through a dashed line. β ≈ 82.33 deg, the yzmp > k. We can see that the
robot could roll to the right earlier as the value of ω1 increases.
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Fig. 10. The procedure of rolling to the right.

Fig. 11. The curves of yzmp when ω1 ≥ 0.

Fig. 12. The procedure of rolling to the left.

A rolling procedure of the mechanism is shown in Fig. 10. During this procedure, the rolling direction
is fixed along line OQ, and the length of this rolling step is determined by ‖OQ‖, i.e., k. When the rolling
step is accomplished, the robot will have link PQ lying on the ground.

Case 2: Link OB is rotating in the counter-clockwise direction, with α1 = 0 and ω1 ≥ 0.

Set ω1 = 0, 180, 270 deg/s. Consider that the robot is started at the initial state (β = 90 deg), so, β

increases from 90 deg to 180 deg. The curves of yzmp are plotted in Fig. 11. When ω1 = 180 deg/s,
β ≈ 166.21 deg, yzmp < 0, and when ω1 = 270 deg/s, β ≈ 154.13 deg, yzmp < 0. Once yzmp < 0, yzmp is
about to jump out of the lower limit and roll about point O along negative y-axis. Similarly with case 1,
the robot can roll to the left earlier as the value of ω1 increases.

A rolling procedure of the robot is shown in Fig. 12. After the rolling step, the robot will have link OB
lying on the ground, resulting in the state that OB becomes the new supporting link.

Case 3: The angular acceleration α1 �= 0.
In cases 1 and 2, we show that the angular velocity (ω1) affects the curve of yzmp. Further, in

case 3, we discuss the effect of angular acceleration (α1). For convenience, we suppose that our robot is
moving to the right from the initial state with an initial angular velocity (κ) and a fixed angular acceleration
(α1). If the actuator is accelerated, e.g., κ = −180deg/s, α1 = −57.3,−114.6 deg/s2, Fig. 13 plots the
curves of yzmp when the robot rolls to the right side. See Fig. 13, the ZMP is changed faster, and the robot
will roll earlier as the value of |α1| increases. If the actuator is decelerated, the robot will roll later as the
value of α1 increases.

By controlling the ZMP, the robot will roll along a straight line with four links supporting on the ground
in turn.
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Fig. 13. The curves of yzmp when ω0 = −180 deg/s, α1 ≤ 0.

Fig. 14. Direction switching: (a) the state of the robot with OA lying on the ground; (b) the state of the robot
with OA and OB lying on the ground; (c) the state of the robot with OA and OC lying on the ground.

Fig. 15. The manufactured prototype.

4.2. Direction switching
When the robot is supported by single link, e.g., supported by link OA (see Fig. 14(a)), it is symmetrical
with respect to line OA, and the projection of the centroid of the robot is within line OA. If link OC is
rotated to increase the height of C, then point P will move along the dashed line (see Fig. 14(b)). Thereafter,
the projection of the centroid of the robot will move out of line OA and the robot will roll about link OA
toward B. As a result, see Fig. 14(b), OA and OB both lie on the ground. Alternatively, if link OB is rotated
to increase the height of B, OA and OC both lie on the ground (see Fig. 14(c)). Therefore, the robot can
change its rolling directions with a link supporting on the ground.

5. Prototype and Experiments
To test the feasibility and efficiency of the rolling robot in practice, a prototype is manufactured (Fig. 15).
The parameters of the prototype are shown in Table III. Based on the prototype, Fig. 16 shows the
folding function of our robot. Figure 17 shows that the robot changes its width. Figure18 shows a rolling
experiment when the robot is at its narrowest state. As shown in Fig. 19, a rolling experiment is performed
and the robot is rolling along a straight line. Figures 20 and 21 show the procedure of altering the rolling
directions.
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Table III. Specification of the robot.

Item Specification

Total weight 4.8 kg
Length of each link 250 mm
DC motor 12 V, speed: 0–360 deg/s, weight: 0.50 kg
Radius of spherical joint 50 mm
Rolling speed Highest speed: 125 mm/s Lowest speed: 60 mm/s

Fig. 16. The folding function.

Fig. 17. The width adjustment.

Fig. 18. A rolling procedure when the robot is at its narrowest state.
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Fig. 19. Rolling along a straight line.

Fig. 20. A procedure of altering the rolling direction (rolling to one side of the robot).

Fig. 21. A procedure of altering the rolling direction (rolling to other side of the robot).

6. Conclusions
In this paper, a rolling robot is proposed. It is essentially a combination of two tripod mechanisms into the
geometry shape of a triangular bipyramid. Each tripod mechanism is realized by connecting three equal
links at a common node via three revolute joints. The two tripod mechanisms are connected at their three
common vertices via sphere joints. As regards to parallel robot, our robot is a 3-RSR parallel mechanism
with 3 DOF. Based on the kinematic analysis, the deformation characteristics of the robot are revealed.
With these characteristics, we show that our robot can be deformed into a planar four-bar linkage. The
dynamic rolling capability is discussed by ZMP analysis of the planar four-bar linkage. We show that the
robot can roll and change its rolling directions with proper conditions.

In addition, our robot can change the length of its rolling step and the width of the body during the
rolling process. With this feature, the robot is capable to rolling across narrow passages. Further, we show
that the robot can be folded into a strut-like structure, which can be very useful in carrying and storing
or exploring the unstructured environments. Finally, a series of experiments were performed on a real
prototype of the robot. In the future, we would like to extend the work in two directions. First, we would
like to optimize the parameters of the designs to improve the rolling performance. Second, we would like
to study the path planning on rugged surfaces.
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