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Abstract

An extension of a convergence theorem for sequences of Markov chains is derived.
For every positive integer N let (XN(r))r be a Markov chain with the same finite state
space S and transition matrix �N = I + dNQ + cNBN , where I is the unit matrix, Q a
generator matrix, (BN)N a sequence of matrices, limN→∞ cN = limN→∞ dN = 0 and
limN→∞ cN/dN = 0. Suppose that the limits P := limm→∞(I + dNQ)m and G :=
limN→∞ PBNP exist. If the sequence of initial distributions PXN (0) converges weakly to
some probability measure μ, then the finite-dimensional distributions of (XN([t/cN ]))t≥0
converge to those of the Markov process (Xt )t≥0 with initial distribution μ, transition
matrix P etG and limN→∞(I + dNQ + cNBN)[t/cN ] = P − I + etG = P etG = etGP

for all t > 0.
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1. Introduction and main result

A convergence theorem proved in [4] has been used in population genetics for various models
including partial selfing, two-sex populations, strong migration, age-structure, and so on, and
it provides many useful results; see [2]–[8]. This theorem is a generalization of the well known
matrix equation limN→∞(I + B/N)N = eB . Let d ∈ N := {1, 2, . . .}, A = (aij ) be a d × d

matrix satisfying ‖A‖ := maxi

∑
j |aij | = 1, and suppose that P := limm→∞ Am exists. Let

t , K ≥ 0, and (cN)N∈N be a sequence of positive real numbers satisfying limN→∞ cN = 0.
Then (see [4]) limN→∞ sup‖B‖≤K ‖(A + cNB)[t/cN ] − (P + cNB)[t/cN ]‖ = 0. If (BN)N∈N

is a sequence of d × d matrices such that G = limN→∞ PBNB exists, then limN→∞(A +
cNBN)[t/cN ] = P − I + etG = P etG = etGP for all t > 0.

Set N0 := N ∪ {0} and for every N ∈ N let (XN(r))r∈N0 be a time-homogeneous Markov
chain with the same finite state space S and transition matrix �N := A+cNBN . If the sequence
of initial probability measures PXN(0) converge weakly to some probability measure μ, then
the finite-dimensional distributions of the process (XN([t/cN ]))t≥0 converge to those of a
continuous-time Markov process (Xt )t≥0 with initial distribution PX0 = μ and transition matrix
�(t) = P − I + etG = P etG = etGP , t > 0. The limiting process jumps instantaneously
from a state i ∈ S at time t = 0 to a state j ∈ S at time t = 0+ with probability pij , where pij
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is the (i, j)-entry of the matrix P describing the instantaneous jumps. After that, it is described
by a Markov process with infinitesimal generator G. The limiting process reflects two time-
scale phenomena, where one occurs on a fast time scale and the other on a slow time scale.
This theorem can be extended to more general time-scaling phenomena by a slight modification.
The purpose of this paper is to prove Theorem 1 below. We call a matrix Q = (qij ) a generator
matrix if qij ≥ 0 for all i 
= j and

∑
j qij = 0 for all i. In Theorem 1 below, the matrix A in [4]

is replaced by a matrix AN depending on N of the form AN := I + dNQ, where (dN)N∈N is a
sequence of positive real numbers tending to 0 slower than (cN)N∈N and Q is a generator matrix.

Theorem 1. Let (cN)N∈N and (dN)N∈N be two sequences of positive real numbers such that
limN→∞ cN = limN→∞ dN = 0 and limN→∞ cN/dN = 0. Furthermore, let Q = (qij )

be a d × d generator matrix and suppose that P := limm→∞(I + dNQ)m exists for every
N ∈ N. If (BN)N∈N is a d × d matrix sequence such that G := limN→∞ PBNP exists, then
limN→∞(I + dNQ + cNBN)[t/cN ] = P − I + etG = P etG = etGP for all t > 0.

For every N ∈ N, let (XN(r))r∈N0 be a Markov chain with the same finite state space S

and transition matrix �N := I + dNQ+ cNBN . If the sequence of initial distributions PXN(0)

converges weakly to some probability measure μ, then the finite-dimensional distributions of
the process (XN([t/cN ]))t≥0 converge to those of a continuous-time Markov process (Xt )t≥0
with initial distribution PX0 = μ and transition matrix �(t) = P − I + etG = P etG = etGP ,
t > 0.

Note that the limit P := limm→∞(I +dNQ)m does not depend on N (see Lemma 2 below).
A special case of Theorem 1 has already been used by Nordborg and Krone [6], but its proof
needs some attention.

2. Proof

The proof of Theorem 1 is based on the following three lemmas.

Lemma 1. If A is a d×d matrix such that P := limm→∞ Am exists, then limt→∞ et (A−I ) = P .

Proof. Fix ε > 0. Choose m0 = m0(ε) ∈ N such that ‖Am − P ‖ < ε for all m > m0.
We have et (A−I ) − P = e−tetA − P = e−t

∑∞
m=0(t

m/m!)(Am − P). Thus,

‖et (A−I ) − P ‖ ≤ e−t

m0∑
m=0

tm

m! ‖A
m − P ‖ + e−t

∞∑
m=m0+1

tm

m! ‖Am − P ‖︸ ︷︷ ︸
≤ε

≤
(

sup
0≤m≤m0

‖Am − P ‖
)

e−t

m0∑
m=0

tm

m! + ε

→ ε as t → ∞.

The assertion follows since ε > 0 can be chosen arbitrarily small. �

Lemma 2. (i) Let 0 < δ < ∞ and suppose that Q is a d×d matrix such that P := limm→∞(I+
δQ)m exists. Then limt→∞ etQ = P .

(ii) If 0 < δ1, δ2 < ∞, and if Q is a d × d matrix such that the two limits P1 := limm→∞(I +
δ1Q)m and P2 := limm→∞(I + δ2Q)m exist, then P1 = P2.
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Proof. Lemma 1, applied with A := I + δQ, yields limt→∞ etδQ = P . Part (i) follows
since t → ∞ is equivalent to tδ → ∞. Part (ii) follows from (i) via P1 = limt→∞ etQ = P2,
completing the proof. �
Lemma 3. Under the assumptions of Theorem 1, there exists a sequence of integers (MN)N∈N

such that limN→∞ MNcN = 0 and limN→∞ supm≥MN
‖(I + dNQ)m − P ‖ = 0.

Proof. Choose a sequence (MN)N∈N of positive integers such that limN→∞ MNdN = ∞,
limN→∞ MNcN = 0, and limN→∞ MNd2

N = 0; for example, one may choose MN := 1 +
[min((cNdN)−1/2, (d3

N)−1/2)] for all N ∈ N. Set AN := I + dNQ. Since Q is a generator
matrix and since limN→∞ dN = 0, we conclude that ‖AN‖ = 1 for all N > N0 for some
suitable N0 ∈ N. Without loss of generality assume that N > N0 in the following. From

‖Am+1
N − P ‖ = ‖(Am

N − P)AN‖ ≤ ‖Am
N − P ‖ ‖AN‖ ≤ ‖Am

N − P ‖,
it follows that the map m �→ ‖Am

N − P ‖ is nonincreasing in m. Thus, it suffices to verify that

limN→∞ ‖AMN

N − P ‖ = 0. We have

‖AMN

N − P ‖ ≤ ‖AMN

N − eMNdNQ‖ + ‖eMNdNQ − P ‖.
The last norm converges to 0 as N → ∞ by Lemma 2, since limN→∞ MNdN = ∞. Moreover,
since ‖AN‖ = 1 and ‖edNQ‖ = 1, we have

‖AMN

N − (edNQ)MN ‖ ≤ MN‖AN − edNQ‖

= MN

∥∥∥∥
∞∑

m=2

(dNQ)m

m!
∥∥∥∥

= MNO(d2
N)

→ 0 as N → ∞. �

Proof of Theorem 1. The proof is given by a one point improvement of the proof provided
in [4]. In [4, Appendix] it is shown that for fixed t ≥ 0 and ε > 0, if we choose M ∈ N such
that ‖Am − P ‖ < ε for all m ≥ M , and set n := [t/cN ], then

‖(A + cNB)n − (P + cNB)n‖ ≤ ‖An − P ‖ + S1 + S2,

where S1 ∼ εet (t + 1) and S2 ∼ 2McN et (t + 2) as N → ∞. Since McN tends to 0 as
N → ∞, we conclude that limN→∞ sup‖B‖≤K ‖(A + cNB)n − (P + cNB)n‖ = 0.

In our situation, the matrix A in [4] is replaced by AN := I + dNQ. We should say that,
by Lemma 3, there exists Nε ∈ N and a sequence of positive integers (MN)N∈N such that
limN→∞ MNcN = 0 and ‖Am

N − P ‖ < ε for all N > Nε and all m ≥ MN . It follows that
limN→∞ sup‖B‖≤K ‖(AN + cNB)[t/cN ] − (P + cNB)[t/cN ]‖ = 0. The rest of the proof is the
same as in [4]. �
Example 1. (i) We have �N = I + Q/Nα + BN/N ; that is, cN = 1/N and dN = 1/Nα with
0 < α < 1. Then we can choose MN := 1 + [Nα log N ] for all N ∈ N.

(ii) �N = I +Q/ log N +BN/N ; that is, cN = 1/N and dN = 1/ log N . Then we can choose
M1 := 1 and MN := 1 + [(log N)(log log N)] for all N ∈ N with N ≥ 2.

Example 1(i) was used by Nordborg and Krone [6], where the matrix Q comprised fast
migration occurring at a rate proportional to 1/Nα and BN corresponded to coalescent events
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which occur at a rate proportional to 1/N . Example 1(ii) is more artificial, where a fast
phenomenon (for example, migration) occurs at a rate proportional to 1/ log N .

Remark 1. (Extension to the countable infinite case.) Let �∞ be the Banach space of all
x = (xi)i∈N ∈ R

N with ‖x‖ := supi∈N |xi | < ∞. Let A = (aij )i,j∈N be the linear operator
from �∞ to �∞ defined by (Ax)i := ∑

j∈N
aij xj for x = (xi)i∈N ∈ �∞, where we assume that

‖A‖ := supi∈N

∑
j∈N

|aij | < ∞. The set L of all such linear operators A is a complete metric
space with ‖AB‖ ≤ ‖A‖ ‖B‖ for all A, B ∈ L. For A ∈ L, the exponential can be defined by
eA := ∑∞

n=0A
n/n! as in the finite-dimensional case. All matrices in [6] can be reconsidered

as linear operators from �∞ to �∞. If their norms are finite then all lemmas and theorems in
this paper are still valid.

Remark 2. (Convergence of the semigroups.) For t ≥ 0 and N ∈ N, define the linear operators
SN , T

(N)
t , and Tt via SNf (i) := E(f (XN(r + 1)) | XN(r) = i) = ∑

j∈S(�N)ij f (j),

T
(N)
t := S

[t/cN ]
N , and Ttf (i) := ∑

j∈S(P etG)ij f (j). Note that (T
(N)
t )t≥0 and (Tt )t≥0 are the

semigroups of the processes (XN([t/cN ]))t≥0 and (Xt )t≥0, respectively. Under the conditions
of Theorem 1, it follows that, for all t > 0, N ∈ N, and f : S → R,

‖T (N)
t f − Ttf ‖ = sup

i∈S

|S[t/cN ]
N f (i) − Ttf (i)|

≤ sup
i∈S

∑
j∈S

|f (j)| |(�[t/cN ]
N )ij − (P etG)ij |

≤ ‖f ‖ ‖�[t/cN ]
N − P etG‖

→ 0 as N → ∞,

since ‖f ‖ < ∞. Thus, limN→∞ ‖T (N)
t f − Ttf ‖ = 0 for all f : S → R and all t > 0.

Note that, however, the latter convergence does not hold for t = 0. It is, hence, not permitted
to apply convergence results such as [1, p. 168, Theorem 2.6] in order to verify convergence
in the Skorokhod topology. The paths of the limiting process (Xt )t≥0 are in general not right-
continuous at t = 0.
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