AN EXTENSION OF A CONVERGENCE THEOREM FOR MARKOV CHAINS ARISING IN POPULATION GENETICS

MARTIN MÖHLE,* Eberhard Karls Universität Tübingen MORIHIRO NOTOHARA,** Nagoya City University

Abstract

An extension of a convergence theorem for sequences of Markov chains is derived. For every positive integer N let $(X_N(r))_r$ be a Markov chain with the same finite state space S and transition matrix $\Pi_N = I + d_N Q + c_N B_N$, where I is the unit matrix, Q a generator matrix, $(B_N)_N$ a sequence of matrices, $\lim_{N\to\infty} c_N = \lim_{N\to\infty} d_N = 0$ and $\lim_{N\to\infty} c_N/d_N = 0$. Suppose that the limits $P := \lim_{m\to\infty} (I + d_N Q)^m$ and G := $\lim_{N\to\infty} PB_N P$ exist. If the sequence of initial distributions $P_{X_N(0)}$ converges weakly to some probability measure μ , then the finite-dimensional distributions of $(X_N([t/c_N]))_{t\geq 0}$ converge to those of the Markov process $(X_t)_{t\geq 0}$ with initial distribution μ , transition matrix Pe^{tG} and $\lim_{N\to\infty} (I + d_N Q + c_N B_N)^{[t/c_N]} = P - I + e^{tG} = Pe^{tG} = e^{tG}P$ for all t > 0.

Keywords: Convergence; Markov chain; population genetics; separation of time-scales

2010 Mathematics Subject Classification: Primary 60F05; 92D10 Secondary 60J27; 92D25

1. Introduction and main result

A convergence theorem proved in [4] has been used in population genetics for various models including partial selfing, two-sex populations, strong migration, age-structure, and so on, and it provides many useful results; see [2]–[8]. This theorem is a generalization of the well known matrix equation $\lim_{N\to\infty} (I + B/N)^N = e^B$. Let $d \in \mathbb{N} := \{1, 2, ...\}$, $A = (a_{ij})$ be a $d \times d$ matrix satisfying $||A|| := \max_i \sum_j |a_{ij}| = 1$, and suppose that $P := \lim_{m\to\infty} A^m$ exists. Let $t, K \ge 0$, and $(c_N)_{N\in\mathbb{N}}$ be a sequence of positive real numbers satisfying $\lim_{N\to\infty} c_N = 0$. Then (see [4]) $\lim_{N\to\infty} \sup_{||B|| \le K} ||(A + c_N B)^{[t/c_N]} - (P + c_N B)^{[t/c_N]}|| = 0$. If $(B_N)_{N\in\mathbb{N}}$ is a sequence of $d \times d$ matrices such that $G = \lim_{N\to\infty} PB_NB$ exists, then $\lim_{N\to\infty} (A + c_N B_N)^{[t/c_N]} = P - I + e^{tG} = Pe^{tG} P$ for all t > 0.

Set $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$ and for every $N \in \mathbb{N}$ let $(X_N(r))_{r \in \mathbb{N}_0}$ be a time-homogeneous Markov chain with the same finite state space *S* and transition matrix $\Pi_N := A + c_N B_N$. If the sequence of initial probability measures $P_{X_N(0)}$ converge weakly to some probability measure μ , then the finite-dimensional distributions of the process $(X_N([t/c_N]))_{t\geq 0}$ converge to those of a continuous-time Markov process $(X_t)_{t\geq 0}$ with initial distribution $P_{X_0} = \mu$ and transition matrix $\Pi(t) = P - I + e^{tG} = Pe^{tG} = e^{tG}P$, t > 0. The limiting process jumps instantaneously from a state $i \in S$ at time t = 0 to a state $j \in S$ at time t = 0+ with probability p_{ij} , where p_{ij}

Received 2 September 2015; revision received 7 September 2015.

^{*} Postal address: Mathematisches Institut, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany. Email address: martin.moehle@uni-tuebingen.de

^{**} Postal address: Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya, 467-8501, Japan. Email address: noto@nsc.nagoya-cu.ac.jp

is the (i, j)-entry of the matrix P describing the instantaneous jumps. After that, it is described by a Markov process with infinitesimal generator G. The limiting process reflects two timescale phenomena, where one occurs on a fast time scale and the other on a slow time scale. This theorem can be extended to more general time-scaling phenomena by a slight modification. The purpose of this paper is to prove Theorem 1 below. We call a matrix $Q = (q_{ij})$ a generator matrix if $q_{ij} \ge 0$ for all $i \ne j$ and $\sum_j q_{ij} = 0$ for all i. In Theorem 1 below, the matrix A in [4] is replaced by a matrix A_N depending on N of the form $A_N := I + d_N Q$, where $(d_N)_{N \in \mathbb{N}}$ is a sequence of positive real numbers tending to 0 slower than $(c_N)_{N \in \mathbb{N}}$ and Q is a generator matrix.

Theorem 1. Let $(c_N)_{N \in \mathbb{N}}$ and $(d_N)_{N \in \mathbb{N}}$ be two sequences of positive real numbers such that $\lim_{N\to\infty} c_N = \lim_{N\to\infty} d_N = 0$ and $\lim_{N\to\infty} c_N/d_N = 0$. Furthermore, let $Q = (q_{ij})$ be a $d \times d$ generator matrix and suppose that $P := \lim_{m\to\infty} (I + d_N Q)^m$ exists for every $N \in \mathbb{N}$. If $(B_N)_{N \in \mathbb{N}}$ is a $d \times d$ matrix sequence such that $G := \lim_{N\to\infty} PB_N P$ exists, then $\lim_{N\to\infty} (I + d_N Q + c_N B_N)^{[t/c_N]} = P - I + e^{tG} = Pe^{tG} = e^{tG} P$ for all t > 0.

For every $N \in \mathbb{N}$, let $(X_N(r))_{r \in \mathbb{N}_0}$ be a Markov chain with the same finite state space Sand transition matrix $\Pi_N := I + d_N Q + c_N B_N$. If the sequence of initial distributions $P_{X_N(0)}$ converges weakly to some probability measure μ , then the finite-dimensional distributions of the process $(X_N([t/c_N]))_{t\geq 0}$ converge to those of a continuous-time Markov process $(X_t)_{t\geq 0}$ with initial distribution $P_{X_0} = \mu$ and transition matrix $\Pi(t) = P - I + e^{tG} = Pe^{tG} = e^{tG}P$, t > 0.

Note that the limit $P := \lim_{m \to \infty} (I + d_N Q)^m$ does not depend on N (see Lemma 2 below). A special case of Theorem 1 has already been used by Nordborg and Krone [6], but its proof needs some attention.

2. Proof

The proof of Theorem 1 is based on the following three lemmas.

Lemma 1. If A is a $d \times d$ matrix such that $P := \lim_{m \to \infty} A^m$ exists, then $\lim_{t \to \infty} e^{t(A-I)} = P$.

Proof. Fix $\varepsilon > 0$. Choose $m_0 = m_0(\varepsilon) \in \mathbb{N}$ such that $||A^m - P|| < \varepsilon$ for all $m > m_0$. We have $e^{t(A-I)} - P = e^{-t}e^{tA} - P = e^{-t}\sum_{m=0}^{\infty} (t^m/m!)(A^m - P)$. Thus,

$$\|\mathbf{e}^{t(A-I)} - P\| \le \mathbf{e}^{-t} \sum_{m=0}^{m_0} \frac{t^m}{m!} \|A^m - P\| + \mathbf{e}^{-t} \sum_{m=m_0+1}^{\infty} \frac{t^m}{m!} \underbrace{\|A^m - P\|}_{\le \varepsilon}$$
$$\le \Big(\sup_{0 \le m \le m_0} \|A^m - P\| \Big) \mathbf{e}^{-t} \sum_{m=0}^{m_0} \frac{t^m}{m!} + \varepsilon$$
$$\to \varepsilon \quad \text{as } t \to \infty.$$

The assertion follows since $\varepsilon > 0$ can be chosen arbitrarily small.

Lemma 2. (i) Let $0 < \delta < \infty$ and suppose that Q is a $d \times d$ matrix such that $P := \lim_{m \to \infty} (I + \delta Q)^m$ exists. Then $\lim_{t \to \infty} e^{tQ} = P$.

(ii) If $0 < \delta_1, \delta_2 < \infty$, and if Q is a $d \times d$ matrix such that the two limits $P_1 := \lim_{m \to \infty} (I + \delta_1 Q)^m$ and $P_2 := \lim_{m \to \infty} (I + \delta_2 Q)^m$ exist, then $P_1 = P_2$.

Proof. Lemma 1, applied with $A := I + \delta Q$, yields $\lim_{t\to\infty} e^{t\delta Q} = P$. Part (i) follows since $t \to \infty$ is equivalent to $t\delta \to \infty$. Part (ii) follows from (i) via $P_1 = \lim_{t\to\infty} e^{tQ} = P_2$, completing the proof.

Lemma 3. Under the assumptions of Theorem 1, there exists a sequence of integers $(M_N)_{N \in \mathbb{N}}$ such that $\lim_{N \to \infty} M_N c_N = 0$ and $\lim_{N \to \infty} \sup_{m \ge M_N} ||(I + d_N Q)^m - P|| = 0$.

Proof. Choose a sequence $(M_N)_{N \in \mathbb{N}}$ of positive integers such that $\lim_{N\to\infty} M_N d_N = \infty$, $\lim_{N\to\infty} M_N c_N = 0$, and $\lim_{N\to\infty} M_N d_N^2 = 0$; for example, one may choose $M_N := 1 + [\min((c_N d_N)^{-1/2}, (d_N^3)^{-1/2})]$ for all $N \in \mathbb{N}$. Set $A_N := I + d_N Q$. Since Q is a generator matrix and since $\lim_{N\to\infty} d_N = 0$, we conclude that $||A_N|| = 1$ for all $N > N_0$ for some suitable $N_0 \in \mathbb{N}$. Without loss of generality assume that $N > N_0$ in the following. From

$$||A_N^{m+1} - P|| = ||(A_N^m - P)A_N|| \le ||A_N^m - P|| ||A_N|| \le ||A_N^m - P||,$$

it follows that the map $m \mapsto ||A_N^m - P||$ is nonincreasing in m. Thus, it suffices to verify that $\lim_{N\to\infty} ||A_N^{M_N} - P|| = 0$. We have

$$\|A_N^{M_N} - P\| \le \|A_N^{M_N} - e^{M_N d_N Q}\| + \|e^{M_N d_N Q} - P\|$$

The last norm converges to 0 as $N \to \infty$ by Lemma 2, since $\lim_{N\to\infty} M_N d_N = \infty$. Moreover, since $||A_N|| = 1$ and $||e^{d_N Q}|| = 1$, we have

$$\|A_N^{M_N} - (e^{d_N Q})^{M_N}\| \le M_N \|A_N - e^{d_N Q}\|$$

= $M_N \left\| \sum_{m=2}^{\infty} \frac{(d_N Q)^m}{m!} \right\|$
= $M_N O(d_N^2)$
 $\rightarrow 0$ as $N \rightarrow \infty$.

Proof of Theorem 1. The proof is given by a one point improvement of the proof provided in [4]. In [4, Appendix] it is shown that for fixed $t \ge 0$ and $\varepsilon > 0$, if we choose $M \in \mathbb{N}$ such that $||A^m - P|| < \varepsilon$ for all $m \ge M$, and set $n := [t/c_N]$, then

$$||(A + c_N B)^n - (P + c_N B)^n|| \le ||A^n - P|| + S_1 + S_2,$$

where $S_1 \sim \varepsilon e^t (t+1)$ and $S_2 \sim 2Mc_N e^t (t+2)$ as $N \to \infty$. Since Mc_N tends to 0 as $N \to \infty$, we conclude that $\lim_{N\to\infty} \sup_{\|B\|\leq K} \|(A+c_N B)^n - (P+c_N B)^n\| = 0$.

In our situation, the matrix A in [4] is replaced by $A_N := I + d_N Q$. We should say that, by Lemma 3, there exists $N_{\varepsilon} \in \mathbb{N}$ and a sequence of positive integers $(M_N)_{N \in \mathbb{N}}$ such that $\lim_{N \to \infty} M_N c_N = 0$ and $||A_N^m - P|| < \varepsilon$ for all $N > N_{\varepsilon}$ and all $m \ge M_N$. It follows that $\lim_{N \to \infty} \sup_{||B|| \le K} ||(A_N + c_N B)^{[t/c_N]} - (P + c_N B)^{[t/c_N]}|| = 0$. The rest of the proof is the same as in [4].

Example 1. (i) We have $\Pi_N = I + Q/N^{\alpha} + B_N/N$; that is, $c_N = 1/N$ and $d_N = 1/N^{\alpha}$ with $0 < \alpha < 1$. Then we can choose $M_N := 1 + [N^{\alpha} \log N]$ for all $N \in \mathbb{N}$.

(ii) $\Pi_N = I + Q/\log N + B_N/N$; that is, $c_N = 1/N$ and $d_N = 1/\log N$. Then we can choose $M_1 := 1$ and $M_N := 1 + [(\log N)(\log \log N)]$ for all $N \in \mathbb{N}$ with $N \ge 2$.

Example 1(i) was used by Nordborg and Krone [6], where the matrix Q comprised fast migration occurring at a rate proportional to $1/N^{\alpha}$ and B_N corresponded to coalescent events

which occur at a rate proportional to 1/N. Example 1(ii) is more artificial, where a fast phenomenon (for example, migration) occurs at a rate proportional to $1/\log N$.

Remark 1. (*Extension to the countable infinite case.*) Let ℓ^{∞} be the Banach space of all $x = (x_i)_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ with $||x|| := \sup_{i \in \mathbb{N}} |x_i| < \infty$. Let $A = (a_{ij})_{i,j \in \mathbb{N}}$ be the linear operator from ℓ^{∞} to ℓ^{∞} defined by $(Ax)_i := \sum_{j \in \mathbb{N}} a_{ij} x_j$ for $x = (x_i)_{i \in \mathbb{N}} \in \ell^{\infty}$, where we assume that $||A|| := \sup_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} |a_{ij}| < \infty$. The set *L* of all such linear operators *A* is a complete metric space with $||AB|| \le ||A|| ||B||$ for all *A*, $B \in L$. For $A \in L$, the exponential can be defined by $e^A := \sum_{n=0}^{\infty} A^n/n!$ as in the finite-dimensional case. All matrices in [6] can be reconsidered as linear operators from ℓ^{∞} to ℓ^{∞} . If their norms are finite then all lemmas and theorems in this paper are still valid.

Remark 2. (*Convergence of the semigroups.*) For $t \ge 0$ and $N \in \mathbb{N}$, define the linear operators S_N , $T_t^{(N)}$, and T_t via $S_N f(i) := \mathbb{E}(f(X_N(r+1)) | X_N(r) = i) = \sum_{j \in S} (\Pi_N)_{ij} f(j)$, $T_t^{(N)} := S_N^{[t/c_N]}$, and $T_t f(i) := \sum_{j \in S} (Pe^{tG})_{ij} f(j)$. Note that $(T_t^{(N)})_{t\ge 0}$ and $(T_t)_{t\ge 0}$ are the semigroups of the processes $(X_N([t/c_N]))_{t\ge 0}$ and $(X_t)_{t\ge 0}$, respectively. Under the conditions of Theorem 1, it follows that, for all t > 0, $N \in \mathbb{N}$, and $f: S \to \mathbb{R}$,

$$\begin{split} \|T_t^{(N)} f - T_t f\| &= \sup_{i \in S} |S_N^{[t/c_N]} f(i) - T_t f(i)| \\ &\leq \sup_{i \in S} \sum_{j \in S} |f(j)| \, |(\Pi_N^{[t/c_N]})_{ij} - (P e^{tG})_{ij}| \\ &\leq \|f\| \, \|\Pi_N^{[t/c_N]} - P e^{tG}\| \\ &\to 0 \quad \text{as } N \to \infty, \end{split}$$

since $||f|| < \infty$. Thus, $\lim_{N\to\infty} ||T_t^{(N)}f - T_tf|| = 0$ for all $f: S \to \mathbb{R}$ and all t > 0. Note that, however, the latter convergence does not hold for t = 0. It is, hence, not permitted to apply convergence results such as [1, p. 168, Theorem 2.6] in order to verify convergence in the Skorokhod topology. The paths of the limiting process $(X_t)_{t\geq 0}$ are in general not right-continuous at t = 0.

Acknowledgement

M. Notohara wishes to thank Dr Shimizu for helpful discussion and advice.

References

- ETHIER, S. N. AND KURTZ, T. G. (1986). Markov Processes: Characterization and Convergence. John Wiley, New York.
- [2] HÖSSJER, O. (2011). Coalescence theory for a general class of structured populations with fast migration. Adv. Appl. Prob. 43, 1027–1047.
- [3] KAJ, I., KRONE, S. M. AND LASCOUX, M. (2001). Coalescent theory for seed bank models. J. Appl. Prob. 38, 285–300.
- [4] MÖHLE, M. (1998). A convergence theorem for Markov chains arising in population genetics and the coalescent with selfing. Adv. Appl. Prob. 30, 493–512.
- [5] MÖHLE, M. (1998). Coalescent results for two-sex population models. Adv. Appl. Prob. 30, 513-520.
- [6] NORDBORG, M. AND KRONE, S. M. (2002). Separation of time scales and convergence to the coalescent in structured populations. In *Modern Developments in Theoretical Population Genetics*, eds M. Slatkin and M. Veuille, Oxford University Press, pp. 194–232.
- [7] POLLAK, E. (2011). Coalescent theory for age-structured random mating populations with two sexes. *Math. Biosci.* 233, 126–134.
- [8] SAMPSON, K. Y. (2006). Structured coalescent with nonconservative migration. J. Appl. Prob. 43, 351–362.