
TLP 19 (2): 114–203, 2019. c© Cambridge University Press 2019

doi:10.1017/S1471068418000534 First published online 15 January 2019

114

Answering the “why” in answer set programming –
A survey of explanation approaches∗

JORGE FANDINNO
Institut de Recherche en Informatique de Toulouse (IRIT),

Université de Toulouse, CNRS, Toulouse, France
(e-mail: jorge.fandinno@irit.fr)

CLAUDIA SCHULZ
Ubiquitous Knowledge Processing (UKP) Lab,

Technische Universität Darmstadt, Darmstadt, Germany
(e-mail: schulz@ukp.informatik.tu-darmstadt.de)

submitted 29 September 2017; revised 24 September 2018; accepted 16 October 2018

Abstract

Artificial intelligence (AI) approaches to problem-solving and decision-making are becoming
more and more complex, leading to a decrease in the understandability of solutions. The Euro-
pean Union’s new General Data Protection Regulation tries to tackle this problem by stipulating
a “right to explanation” for decisions made by AI systems. One of the AI paradigms that may
be affected by this new regulation is answer set programming (ASP). Thanks to the emergence
of efficient solvers, ASP has recently been used for problem-solving in a variety of domains,
including medicine, cryptography, and biology. To ensure the successful application of ASP as a
problem-solving paradigm in the future, explanations of ASP solutions are crucial. In this sur-
vey, we give an overview of approaches that provide an answer to the question of why an answer
set is a solution to a given problem, notably off-line justifications, causal graphs, argumentative
explanations, and why-not provenance, and highlight their similarities and differences. More-
over, we review methods explaining why a set of literals is not an answer set or why no solution
exists at all.

KEYWORDS: answer set, explanation, justification, debugging

1 Introduction

With the increasing use of artificial intelligence (AI) methods in applications affecting

all parts of our lives, the need for explainability of such methods is becoming ever more

important. The European Union recently put forward a new General Data Protection

Regulation (GDPR) (Parliament and Council of the European Union 2016), outlining

how personal data may be collected, stored, and – most importantly – processed. The

GDPR reflects the current suspicion of the public toward automatic methods influenc-

ing our lives. It states1 that anyone has the right to reject a “decision based solely on

∗ We are thankful to the anonymous reviewers for their valuable feedback, which helped to improve
the paper. This study was funded by Centre International de Mathématiques et d’Informatique de
Toulouse ANR-11-LABEX-0040-CIMI.

1 Article 22.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534
http://orcid.org/https://orcid.org/0000-0002-3917-8717
mailto:jorge.fandinno@irit.fr
mailto:schulz@ukp.informatik.tu-darmstadt.de
https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 115

automated processing” that “significantly affects” this person. This new regulation may

not come as a surprise since most AI methods are “black-boxes,” that is, they produce

accurate decisions, but without the means for humans to understand why a decision was

computed. According to Goodman and Flaxman (2016), an implication of the GDPR

is that, in the future, automatically computed decisions will only be acceptable if they

are explainable in a human-understandable manner. The GDPR states that such an ex-

planation needs to be made of “meaningful information about the logic involved” in the

automatic decision-making and should be communicated to the person concerned in a

“concise, intelligible and easily accessible form” (Goodman and Flaxman 2016).

A popular AI paradigm for decision-making and problem-solving is answer set pro-

gramming (ASP) (Brewka et al. 2011; Lifschitz 2008). It has proven useful in a variety

of application areas, such as biology (Gebser et al. 2011), psychology (Inclezan 2015;

Balduccini and Girotto 2010), medicine (Erdem and Öztok 2015), and music composi-

tion (Boenn et al. 2011). ASP is a declarative programming language used to specify

a problem in terms of general inference rules and constraints, along with concrete in-

formation about the application scenario. For example, Ricca et al. (2012) present the

problem of allocating employees of the large Gioia Tauro seaport into functional teams.

To solve this problem, rules and constraints are formulated concerning, among others,

team requirements and employees’ shift constraints, along with factual knowledge about

available employees. The reasoning engine of ASP then infers possible team configura-

tions, or more generally, solutions to the problem. Such solutions are called stable models

or answer sets (Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991). Since the com-

putation of answer sets relies on a “guess and check” procedure, the question as to why

an answer set is a solution to the given problem can – intuitively – only be answered with

“because it fulfils the requirements of an answer set.” Clearly, this explanation does not

provide “meaningful information about the logic involved,” as required by the GDPR.

In ASP, the need for human-understandable explanations as to why an answer set was

computed was recognized long before the new GDPR was put forward (Brain and De Vos

2008). Explanation approaches for ASP have thus been developed for the past 20 years,

each focusing on different aspects. Some explain why a literal is or is not contained in

an answer set, using either the dependencies between literals or the (non-) application

of rules as an explanation. Other approaches provide explanations of the whole logic

program, in other words, the explanation is not specific to one particular answer set.

We will here refer to such explanations of logic programs that have some (potentially

unexpected) answer set as justifications. A different type of explanation is given by

debugging approaches for ASP, which focus on explaining errors in logic programs. Such

errors become apparent either if an unexpected answer set is computed or if the answer

set computation fails, that is, if the logic program is inconsistent. Debugging approaches

thus aim to answer the question why an unexpected answer set is computed or why no

answer set exists at all.

In this survey paper, we outline and compare the most prominent justification ap-

proaches for ASP, notably, off-line justifications (Pontelli et al. 2009), labeled assumption-

based argumentation (ABA)-based answer set (LABAS) justifications (Schulz and Toni

2016), causal justifications (Cabalar et al. 2014; Cabalar and Fandinno 2016), and why-

not provenance (Damásio et al. 2013). Further related approaches outlined here are the

formal theory of justifications (Denecker and De Schreye 1993; Denecker et al. 2015) and

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

116 J. Fandinno and C. Schulz

rule-based justifications (Béatrix et al. 2016). We will see that justifications obtained

using these approaches significantly differ due to their ideological underpinnings. For

example, causal justifications are inspired by causal reasoning, LABAS justifications by

argumentative reasoning, why-not provenance by ideas from databases, and off-line jus-

tifications by Prolog-tabled computations (Roychoudhury et al. 2000). These ideological

differences manifest themselves in the construction and layout of justifications, leading to

variations in, for instance, the elements used in a justification (e.g. rules vs. literals) and

the treatment of negation (e.g. assuming versus further explaining negation-as-failure

(NAF) literals).

Besides explanation approaches for consistent logic programs under the answer set

semantics, that is, justification approaches, we review and discuss approaches for ex-

plaining inconsistent logic programs under the answer set semantics, that is, debugging

approaches, notably, spock (Brain et al. 2007b; Brain et al. 2007a; Gebser et al. 2008),

Ouroboros (Oetsch et al. 2010), the interactive debugging approach by Shchekotykhin

(2015) that is built on top of spock, dwasp (Alviano et al. 2013; Alviano et al. 2015),

and stepping (Oetsch et al. 2018). We will see that these approaches form three groups,

which use different strategies for detecting errors in a logic program causing the incon-

sistency. These strategies also lead to different types of errors being pointed out to the

user. spock, Ouroboros, and the interactive spock approach use a program transforma-

tion to report unsatisfied rules, unsupported atoms, and unfounded atoms. In contrast,

dwasp makes use of the solve-under-assumption and unsatisfiable core features of the

wasp solver (Alviano et al. 2013; Alviano et al. 2015), indicating faulty rules causing

the inconsistency. The stepping approach uses the third strategy, namely a step-wise

assignment of truth values to literals until a contradiction arises, which is then pointed

out to the user.

The paper is structured as follows. We recall some background on logic programs and

their semantics in Section 2. We then review ASP justification approaches in Section 3 and

ASP debugging approaches in Section 4. In Section 5, we give a brief historical overview

of justifications for logic programs and discuss related work. Finally, Section 6 concludes

the paper, pointing out some issues with current approaches that provide interesting

future work for the ASP community.

2 Syntax and semantics of logic programs

In this section, we review the syntax and notation for disjunctive logic programs. We

also review the stable and the well-founded semantics for this class of programs, which

will be the basis for the works presented through the rest of the paper.

We assume the existence of some (possibly empty or infinite) set of atoms At and an

operator not, denoting NAF2. Lit def= At ∪ { not a
∣∣ a ∈ At } denotes the set of literals

over At. Literals of the form a and not a are respectively called positive and negative.

Given a literal l ∈ Lit, by l , we denote its complement, that is, l def= not a iff l = a and

l def= a iff l = not a. A rule is an expression of the form

h1 ∨ . . . ∨ hk ← b1 ∧ . . . ∧ bn ∧ not c1 ∧ . . . not cm , (1)

2 Sometimes called “default negation” in the literature.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 117

where each hi , bi , and ci is an atom. Given some rule r of the form of (1), by

head(r) def= {h1, . . . hk}, we denote the set of head atoms of the rule r . Similarly, by

body+(r) def= {b1, . . . bn} and body−(r) def= {c1, . . . ck}, we, respectively, denote the posi-

tive and negative body of r . For a set of atoms M ⊆ At we denote the negative lit-

erals corresponding to atoms in M by not M def= { not a
∣∣ a ∈ M }. Furthermore, by

body(r) def= body+(r)∪not body−(r), we denote the body literals of r . A rule is called nor-

mal if it satisfies head(r) = {h1} and positive if body−(r) = {} holds. A positive normal

rule is called definite. If body(r) = {}, the rule is called a fact3 and we usually represent

it omitting the symbol ← . We, therefore, sometimes use the term “fact” to refer to

the literal(s) in a fact’s head. When dealing with normal rules, we sometimes denote

by head(r) the atom h1 instead of the singleton set {h1}. A rule with head(r) = {} is

called constraint.

A (logic) program P is a set of rules of the form of (1). A program is called normal

(resp. positive or definite) iff all its rules are normal (resp. positive or definite).

Given a set of atoms M ⊆ At, we write M def= At\M for the set containing all atoms

not belonging to M . We say that an atom a is true or holds w.r.t. M ⊆ At when a ∈ M ;

we say that it is false otherwise. Similarly, we say that a negative literal not a is true

or holds w.r.t. M ⊆ At when a /∈ M and that it is false otherwise. A rule r ∈ P is

applicable w.r.t. M ⊆ At iff body+(r) ⊆ M and body−(r) ∩ M = {}, that is, when all

body literals are true w.r.t. M . A rule r is satisfied by M iff head(r)∩M
= {} whenever

r is applicable. M ⊆ At is closed under P iff every rule r ∈ P is satisfied by M .

Answer set semantics. Intuitively, for an atom a, the literal not a expresses that a is

false by default, that is, unless it is proven to be true. The following definitions of reduct

and answer set (Gelfond and Lifschitz 1988) capture this intuition.4 The reduct of a

program P w.r.t. a set of atoms M ⊆ At, in symbols PM , is the result of applying the

following two steps:

1. removing all rules r such that a ∈ M for some a ∈ body−(r),
2. removing all negative literals from the remaining rules.

The result is a positive program PM . Then, a set of atoms M ⊆ At is an answer set of a

program P iff it is a ⊆-minimal closed set under PM . A logic program is called consistent

if it has at least one answer set, and inconsistent otherwise.

Intuitively, a set of atoms is an answer set if all atoms in it are justified by the rules

of the program under the assumption that all negative literals are evaluated w.r.t. this

answer set.

Example 1

Let P1 be the logic program consisting of the following rules:

p ← q ∧ not r

r ← not p

s ← t

t ← s

q

3 This includes disjunctive facts of the form h1 ∨ . . . ∨ hk .
4 Gelfond and Lifschitz (1988) define “stable models” rather than answer sets. Later, Gelfond and
Lifschitz (1991) extended this definition to logic programs with explicit negation and with disjunc-
tion in the head, introducing the terms “answer set.” Since then, both terms are frequently used
interchangeably. We will here use the term answer set.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

118 J. Fandinno and C. Schulz

and let M1 be the set of atoms {p, q}. Then, the reduct of P1 w.r.t. M1 is the program

PM1
1 :

p ← q s ← t

t ← s

q

whose ⊆-minimal closed set is precisely {p, q}. Hence, M1 is an answer set of P1. Intu-

itively, q is in the answer since it is a fact in the program, while p is in the answer set

due to the rule p ← q ∧ not r and the fact that q is true and r is assumed to be false

w.r.t. M1. Note that s and t mutually depend on each other, so there is no reason to

believe either of them, and consequently neither is contained in the answer set. It is easy

to check that program P1 has a second answer set {q , r}. �

Well-founded model semantics. We introduce a definition of the well-founded model

semantics for normal logic programs in terms of the least fixpoint of a ΓP opera-

tor (Van Gelder 1989) which is, though equivalent, slightly different from the original

definition by Van Gelder et al. (1988) and Van Gelder et al. (1991). Given a normal logic

program P , let ΓP be the function mapping each set of atoms M to the ⊆-minimal closed

set of the program PM and let Γ2
P be the operator mapping each set M to ΓP (ΓP (M)).

Then, ΓP and Γ2
P are antimonotonic and monotonic, respectively, and, consequently, the

latter has a least and greatest fixpoint, which we, respectively, denote by lfp(Γ2
P) and

gfp(Γ2
P). We also, respectively, denote by WF+

P
def= lfp(Γ2

P) and WF−
P

def= (At\gfp(Γ2
P))

the set of true and false atoms in the well-founded model of P . The well-founded model

of P can then be defined as the set of literals: WFP
def= WF+

P ∪ notWF−
P . The well-

founded model is said to be complete iff WF+
P ∪WF−

P = At. We say that an atom a is

true w.r.t. the well-founded model if a ∈ WFP , false if not a ∈ WFP , and undefined

otherwise.

It is easy to see that, by definition, the answer sets of any normal program P coincide

with the fixpoints of ΓP and, thus, every stable model is also a fixpoint of Γ2
P . Hence,

every stable model M satisfies: WF+
P ⊆ M and WF−

P ∩ M = {}. In other words, the

well-founded model semantics is more skeptical than the answer set semantics in the

sense that all atoms that are true (resp. false) in the well-founded model are also true

(resp. false) in all answer sets.

Example 2 (Ex. 1 continued)

Continuing with our running example, it is easy to see that P
{}
1 is

p ← q

r ←
s ← t

t ← s

q

and that its ⊆-minimal model is {p, q , r}. Hence, we have that ΓP1
({}) = {p, q , r}. In a

similar way, it can be checked that Γ2
P1
({}) = Γ4

P1
({}) = {q} is the least fixpoint of the

Γ2
P1

operator. Hence, we have that WFP1
= {q , not s , not t}. As expected, q is true in all

answer sets of P1, while s and t are false in all of them. Furthermore, p and r are true in

one answer set but not in the other and are left undefined in the well-founded model. Note

that it is possible that an atom is true in all answer sets but undefined in the well-founded

model. For instance, M1 = {p, q} is the unique answer set of P1 ∪ {u ← r ∧ not u}, but
p is still undefined in its well-founded model. �

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 119

Explicit negation. In addition to NAF, we use the operator ¬ to denote explicit negation.

For an atom a, ¬a denotes the contrary of a. By ¬S def= { ¬a ∣∣ a ∈ S } we denote the

explicitly negated atoms of a set S ⊆ At and, by Atext
def= At ∪ ¬At we denote the

set of extended atoms consisting of atoms and explicitly negated atoms. By Litext
def=

Atext ∪ { not a
∣∣ a ∈ Atext }, we denote the set of extended literals over At. As for logic

programs without explicit negation, extended literals ¬a and not ¬a are, respectively,

called positive and negative.

An extended rule is an expression of the form (1), where each hi , bi , and ci is an ex-

tended atom. An extended (logic) program is a set of extended rules. The notions of head,

body, etc. directly carry over from rules without explicit negation. Note that we say that

a program is positive when it does not contain NAF, even if it contains explicit negation.

The definition of answer sets and well-founded model5 are easily transferred to ex-

tended logic programs by replacing M ⊆ At with M ⊆ Atext. If an answer set (resp.

the well-founded model) contains both an atom a and its contrary ¬a, the answer set is

called contradictory (Gelfond and Lifschitz 1991; Gelfond 2008). In some works (Gelfond

and Lifschitz 1991), a contradictory answer set is only an answer set if the program has

no other answer set and is, by definition, Atext.

Example 3

Let P2 be the logic program consisting of the following rules:

p ← q ∧ not r

r ← not p

¬p
q

and let M2 be the set of extended atoms {¬p, q , r}. Then, the reduct of P2 w.r.t. M2 is

the program PM2
2 :

r ←
¬p
q

whose ⊆-minimal closed set is precisely {¬p, q , r}. Hence, M2 is an answer set of P2.

Note that there is a second answer set {p,¬p, q} which is contradictory. According to

the definition of Gelfond and Lifschitz (1991), M2 is thus the only answer set. �

3 Justifications of consistent logic programs

In this section, we review the most prominent approaches for explaining consistent logic

programs under the answer set semantics. All approaches reviewed here, except for the

formal theory of justifications (Section 3.5.2), aim to provide concise structures called

justifications that provide a somewhat minimal explanation as to why a literal in question

belongs to an answer set.

We start by introducing off-line (Section 3.1; Pontelli et al. 2009; Pontelli and

Son 2006), LABAS (Section 3.2; Schulz and Toni 2016; Schulz and Toni 2013), and

causal justifications (Section 3.3; Cabalar et al. 2014; Cabalar and Fandinno 2016). In

5 Even though this simple transfer is sufficient for the purpose of this paper, for the well-founded model
semantics the property ensuring that the explicit negation of a formula implies its default negation
is lost. For a detailed study and solution of this problem we refer to the work of Pereira and Alferes
(1992).

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

120 J. Fandinno and C. Schulz

these three approaches, justifications are represented as different kinds of dependency

graphs between literals and/or rules. Next, we review why-not provenance justifications

(Section 3.4; Damásio et al. 2013), which represent justifications as propositional formulas

instead of graph structures. It is interesting to note that why-not provenance and causal

justifications share a multivalued semantic definition based on a lattice. Finally, we sketch

the main idea of rule-based justifications (Béatrix et al. 2016) and the formal theory of

justifications (Denecker and De Schreye 1993; Denecker et al. 2015) in Section 3.5.

3.1 Off-line justifications

Off-line justifications (Pontelli et al. 2009; Pontelli and Son 2006) are graph structures

that describe the reason for the truth value of an atom w.r.t. a given answer set. In

particular, each off-line justification describes the derivation of the truth value (i.e. true

or false) of an atom using the rules in the program. Each vertex of such a graph represents

an atom and each edge the fact that the two vertices that it joins are related by some

rule in the program, with the edge pointing from the head of the rule to some atom in

its body. Atoms that are true w.r.t. a given answer set are labeled “+,” whereas atoms

that are false w.r.t. it are labeled “−” (see condition 3 in Definition 1 below). Similarly,

edges labeled “+” represent positive dependencies, while those labeled “−” represent

negative ones. This is reflected in condition 5a (a true atom is supported by a true atom

through a positive dependency and by a false atom through a negative dependency) and

condition 8 of Definition 1 below (a false atom is supported by a false atom through a

positive dependency and by a true atom through a negative dependency).

Before we technically describe off-line justifications, we need the following notation:

for any set of atoms S ⊆ At, the sets of annotated atoms are defined as Sp def= { a+
∣∣ a ∈

S } and Sn def= { a− ∣∣ a ∈ S }. Furthermore, given an annotated atom a± (i.e. a± = a+

or a± = a−), by atom(a±) = a, we denote the atom associated with a±. Given a set of

annotated atoms S , by atoms(S) def= { atom(a±)
∣∣ a± ∈ S }, we denote the set of atoms

associated with the annotated atoms in S .

Definition 1 (Off-line explanation graph)

Let P be a normal logic program, let M ,U ⊆ At be two sets of atoms, and

let a± ∈ (Atp ∪Atn) be an annotated atom.6 An off-line explanation graph of a±

w.r.t. P , M , and U is a labeled, directed graph G = 〈V ,E 〉 with a set of vertices

V ⊆ (Atp ∪Atn ∪ {assume,
,⊥}) and a set of edges E ⊆ (V × V × {+,−}), which

satisfies the following conditions:

1. a± ∈ V and every b ∈ V is reachable from a±,
2. the only sinks in the graph are: assume,
, and ⊥,

3. atoms(V ∩Atp) ⊆ M and atoms(V ∩Atn) ⊆ (M ∪U),

4. the set of edges E satisfies the following two conditions:

(a) { c
∣∣ (b+, c−,+) ∈ E } ∪ { c

∣∣ (b+, c+,−) ∈ E } = {} and

(b) { c
∣∣ (b−, c+,+) ∈ E } ∪ { c

∣∣ (b−, c+,−) ∈ E } = {},

6 Off-line justifications were defined without using explicit negation, so we here stick to logic programs
without explicit negation. However, it is easy to see that they can be applied to extended logic program
by replacing At by Atext.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 121

p+ q−

q−

assume assume

−

−

−

Fig. 1. Off-line justifications of p+ and q− w.r.t. M3 = {p} in Example 4. The assumption is
{q}.

5. every b+ ∈ V satisfies that there is a rule r ∈ P with head(r) = b s.t.

(a) body(r) = { c
∣∣ (b+, c+,+) ∈ E } ∪ { not c

∣∣ (b+, c−,−) ∈ E }, or
(b) both body(r) = {} and (b+,
,+) is the unique edge in E with source b+,

6. every b− ∈ V with b ∈ U satisfies that (b−, assume,−) is the only edge with source

b−,
7. every b− ∈ V with b /∈ U and no rule r ∈ P with head(r) = b satisfies that

(b−,⊥,+) is the only edge with source b−,
8. every b− ∈ V with b /∈ U and some rule r ∈ P with head(r) = b satisfies that

S = { c
∣∣ (b−, c−,+) ∈ E } ∪ { not c

∣∣ (b−, c+,−) ∈ E } is a minimal set of literals

such that every rule r ′ ∈ P with head(r ′) = b satisfies body(r ′) ∩ S
= {}. �

Intuitively,M represents some answer set and U represents a set of assumptions w.r.t.M .

These assumptions derive from the inherent “guessing” process involved in the definition

and algorithmic construction of answer sets. In this sense, the truth value of assumed

atoms has no further justification, while non-assumed atoms must be justified by the

rules of the program. This is reflected in condition 6 of Definition 1. Note also that this

condition ensures that true elements are not treated as assumptions, which follows from

the intuition that any true atom in an answer set must be justified. Condition 4 ensures

that a labeled atom is not supported by the wrong type of relation.

The following example illustrates how assumptions are used to justify atoms that are

false w.r.t. an answer set in question.

Example 4

Let P3 be the program containing the following two rules:

p ← not q q ← not p

Program P3 has two answer sets, namely M3 = {p} and M4 = {q}. Figure 1 depicts the

off-line explanation graphs justifying the truth of p (annotated atom p+) and the falsity

of q (annotated atom q−) w.r.t. the program P3, the answer set M3, and the set of

assumptions {q}. Note that the falsity of q is assumed in both justifications. �

To ensure that the set of assumptions is meaningful w.r.t. the answer set being ex-

plained, it needs to be restricted. In particular, it will be restricted to a subset of atoms

that are false w.r.t. the answer set and undefined w.r.t. the well-founded model.

As mentioned above, assumptions are restricted to be false atoms to follow the intuition

that any true atom in an answer set must be justified. Restricting the set of assumptions

further to only those that are undefined w.r.t. the well-founded model ensures that false

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

122 J. Fandinno and C. Schulz

atoms that are also false w.r.t. to the well-founded model are justified by the constructive

process of the well-founded model rather than being assumed.

The following notation is needed to achieve this restriction:

Definition 2

Given a normal program P , by NANT(P) def= { b ∈ At
∣∣ ∃r ∈ P s.t. b ∈ body−(r) }, we

denote the set of atoms that occur negated in P . �

Definition 3 (Negative reduct)

Given a normal program P , by NR(P ,U) def= { r ∈ P
∣∣ head(r) /∈ U }, we denote the

negative reduct of P w.r.t. some set of atoms U ⊆ At. �

Definition 4 (Assumptions)

Let P be a normal program and M an answer set of P . Let us denote by

TAP(M) def= { a ∈ NANT(P)
∣∣ a ∈ M and a /∈ (WF+

P ∪WF−
P) }

the tentative assumptions of P w.r.t. M . Then, an assumption w.r.t M is a set of atoms

U ⊆ TAP(M) such that WF+
NR(P,U) = M . The set of all possible assumptions of P w.r.t.

M is denoted by Assumptions(P ,M). �

An interesting observation to make is that TAP(M) is always an element of the set

Assumptions(P ,M) and, therefore, the latter is never empty. Intuitively, an assumption

is a set of atoms that are false w.r.t. the considered answer set and that, when “forced

to be false” in the program, produces a complete well-founded model that coincides with

this answer set. The negative reduct (see Definition 3), removing all rules whose head

belongs to the assumption, can be interpreted as “forcing atoms to be false” since it

results in all atoms in the assumption being false in the well-founded model. Then, since

the computation of the well-founded model is deterministic, no guessing is necessary.

Justifications relative to the well-founded model can thus be used for the explanation

w.r.t. an answer set by adding edges that point out which atoms in the assumption were

used to obtain the answer set. This is formalized as follows:

Definition 5 (Off-line justification)

Let P be a normal program, M an answer set of P , U ∈ Assumptions(P ,M) an

assumption w.r.t M and P , and a± ∈ (Atp ∪Atn) an annotated atom. Then, an off-line

justification of a± w.r.t. P , M , and U is an off-line explanation graph w.r.t. P , M ,

and U (Definition 1), which satisfies that for all b ∈ At, (b+, b+) does not belong to the

transitive closure of { (c, e)
∣∣ (c, e,+) ∈ E }. �

The last condition of Definition 5 ensures that true atoms are not justified through

positive cycles, thus ensuring that justifications of true atoms are rooted in some rule

without positive body, that is, either facts or rules whose body is a conjunction of

negative literals. We may also interpret the latter type of rules as a kind of “facts by

default.”

Example 5

Let P4 be the program containing the following two rules:

p ← q q ← p

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 123

p+

q+

+ +

q+

p+

+ +

Fig. 2. Off-line explanation graphs of p+ and q+ w.r.t. {}, which are not off-line justifications.

p−

q−

+ +

q−

p−

+ +

Fig. 3. Off-line justifications of p− and q− w.r.t. M5 = {} and assumption {}.

It has a unique answer set that coincides with its complete well-founded model: M5 =

WF+
P4

= {}. Figure 2 depicts two cyclic off-line explanation graphs of p+ and q+, which,

as can be expected, are not off-line justifications since p and q are false w.r.t. M5 and

since positive cycles are allowed in explanation graphs, but not in off-line justifications.

Figure 3 depicts two cyclic off-line justifications explaining that p and q are false w.r.t.

M5 because they positively depend on each other. Note that cycles between negatively

annotated atoms are allowed in off-line justifications. �

The following example illustrates how off-line justifications are built for a more complex

program that has a complete well-founded model, in which case the unique assumption

is the empty set. Example 4 is continued later, in Example 8, where it is shown that the

off-line explanation graphs in Figure 1 are in fact off-line justifications. Note that the

program discussed in Example 4 has a non-complete well-founded model and, thus, some

atoms will need to be assumed to build the off-line justifications.

Example 6

Let P5 be the program consisting of the following rules:

p ← q q ← r ∧ s r ← not t s

This program has a unique answer set M6 = {p, q , r , s}, which coincides with its

complete well-founded model. As a result, we have an empty set of tentative as-

sumptions TAP5
(M6) = {} and the empty set as the only valid assumption, that is,

Assumptions(P5,M6) = {{}}. Figure 4(a) depicts the unique off-line justification of p+

w.r.t. program P5 and answer set M6. Intuitively, the edge (t−,⊥,+) points out that t

is false because there is no rule in P5 with t in the head. Then, as a consequence of the

closed-world assumption, t is considered to be false. Similarly, edge (s+,
,+) indicates

that s is true because it is a fact. Edge (p+, q+,+) (resp. (r+, t−,−)) indicates that p

(resp. r) is true because it positively (resp. negatively) depends on q (resp. t) which is

true (resp. false). Finally, edges (q+, r+,+) and (q+, s+,+) together point out that q is

true because it positively depends on both r and s , which are true. It is also worth noting

that the subgraphs of this off-line justification rooted in q+, r+, and s+ constitute the

off-line justifications of q , r , and s being true w.r.t. P5 and M6. Similarly, the subgraph

rooted in t− represents the off-line justification for the atom t being false. �

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

124 J. Fandinno and C. Schulz

(a)
p+

q+

r+ s+

t−

⊥ �

+

+ +

−

+

+

(b)
p+

q+

r+ s+

t−

⊥

+

+ +

−

+

−

Fig. 4. Off-line justifications of p+ w.r.t. P6, M6, and assumption {}. (a) is also an off-line
justification w.r.t. P5, M6, and {} (see Examples 6 and 7). (b) is an off-line justifications of p+

w.r.t. P6 but not w.r.t. P5.

In the above example, there is a unique off-line justification for each true or false atom.

The following examples show that several justifications may exist for a given atom w.r.t.

a given answer set.

Example 7 (Ex. 6 continued)

Let P6 be the result of adding rule s ← not t to program P5. It is easy to check that M6

is also the unique answer set of P6 (and {} the unique assumption), but now there is a

second way to justify the truth of s , namely in terms of the falsity of t . As a result, there

are two off-line justifications of p+, respectively, depicted in Figure 4(a) and (b). �

Example 8 (Ex. 4 continued)

In contrast to P5 and P6, program P3 does not have a complete well-founded model.

In fact, its well-founded model leaves all atoms undefined. Thus, q ∈ NANT(P3) implies

that TAP3
(M3) = {q} which, in turn, implies Assumptions(P3,M3) =

{ {q} }
. Note

that {} is not a valid assumption because the well-founded model of NR(P , {}) is not

complete. Then, since there is no cycle in Figure 1, it follows that these two off-line ex-

planation graphs are also off-line justifications. Note that edge (q−, assume,−) captures

that atom q is false because of the inherent guessing involved in the definition of answer

sets. �

In Example 5, we already illustrated the difference between off-line explanation graphs

and off-line justifications. The following example shows this difference in a program

without cycles.

Example 9

Let P7 be the program containing the single rule p ← not q . Program P7 has a complete

well-founded model, which consequently coincides with the unique answer set: M7 =

WF+
P7

= {p}. As in Example 4, it easy to see that graphs depicted in Figure 1 (also

depicted in Figure 5(a) to ease the comparison) are off-line explanation graphs of p+

and q− w.r.t. the program P7, the answer set M7, and the assumption {q}. Moreover,

since the well-founded model is complete, there are no tentative assumptions, that is,

TAP7
(M7) = {} and Assumptions(P7,M7) =

{ {} }
. Therefore, the off-line explanation

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 125

(a)
p+ q−

q−

assume assume

−

−

−

(b)
p+ q−

q−

⊥ ⊥

−

−

−

Fig. 5. Off-line justifications of p+ and q− w.r.t. M3 = M7 = {p} in Examples 4 and 9, respec-
tively. Note that the assumption is, respectively, {q} and {} in Figure 5(a) and (b).

graphs in Figure 5(a) are not valid off-line justifications. Figure 5(b) depicts the off-line

justifications of p+ and q− w.r.t. program P7, the answer set M7, and the assumption

{}. Note that, since there is no rule with q in the head, the falsity of q can be justified

without assumptions. �

By adding the rule q ← not p to program P7 (Example 9) we create an even-length

negative dependency cycle, that is, not only p is dependent on q being false, but also q

is dependent on p being false (note that this is exactly program P3 from Example 4).

This has the effect of replacing the edge (q−,⊥,−) by (q−, assume,−) in the off-line

justifications of p+ and q− (see Figure 5). In other words, rather than q being false by

default, it is now assumed to be false w.r.t. the answer set {p}. As shown by the following

example, this change from default to assuming is not always the case when creating an

even-length negative dependency cycle: for some programs, this may have the effect of

introducing additional justifications.

Example 10

Let P8 be the program

p ← not q r ← not p s ← not r

As in Example 9, this program has a complete well-founded model and, thus, a unique

answer set that coincides with the well-founded model: M8 = WF+
P8

= {p, s}. Then,
we have that TAP8

(M8) = {} and Assumptions(P8,M8) =
{ {} }

. Figure 6(a) de-

picts the unique off-line justification of s+ w.r.t. program P8, the answer set M8,

and assumption {}. Let now P9 = P8 ∪ {q ← not p}. As in Example 4, this pro-

gram also has two answer sets, namely M9 = {p, s} and M10 = {q , r}, and an empty

well-founded model WF+
P9

= WF−
P9

= {}. Then, it follows that TAP9
(M9) = {q , r} and

Assumptions(P9,M9) =
{ {q}, {q , r} }

. Figure 6(b) and (c) depicts the two off-line jus-

tifications of s+ w.r.t. program P9, M9, and assumptions {q} and {q , r}, respectively.
As opposed to what happens in Example 9, adding the rule q ← not p, and thus cre-

ating an even-length negative dependency cycle, not only has the effect of replacing the

edge (q−,⊥,−) by (q−, assume,−), but it also produces a second off-line justification in

which r− is assumed (Figure 6(c)). This difference disappears if we only take into account

off-line justifications w.r.t. ⊆-minimal assumptions, in which case only Figure 6(b) would

be a justification. �

As mentioned above, the last condition of Definition 5 ensures that true atoms are not

justified through positive cycles (those in which all edges are labeled “+”). Still, there

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

126 J. Fandinno and C. Schulz

(a)
s+

r−

p+

q−

⊥

−

−

−

−

(b)
s+

r−

p+

q−

assume

−

−

−

−

(c)
s+

r−

assume

−

−

Fig. 6. Off-line justifications of s+ w.r.t. M8 = M9 = {p, s} and the assumption {} (a), {q}
(b), and {q , r} (c) in Example 10.

(a)
r+

p−

q−

⊥

−

+

+

(b)
r+

p−

− −

Fig. 7. Off-line justifications of r+ w.r.t. M11 = {r} and assumption {} in Example 11.

exist off-line justifications in which true atoms are justified by (non-positive) cycles, as

illustrated by the following example.

Example 11

Let P10 be the program containing the following two rules:

p ← q ∧ not r r ← not p

This program has a complete well-founded model, which coincides with its unique answer

set WF+
P10

= M11 = {r}. Then, Assumptions(P10,M11) =
{ {} }

. Figure 7 depicts

the two off-line justifications of r+ w.r.t. program P10, the answer set M11, and the

assumption {}. �

Though at first sight, cyclic justifications (like the one in Figure 7) may seem to

contradict the intuition that the justifications of true atoms must be rooted in a rule

without positive body (facts or rules whose body is a conjunction of negative literals),

we note that the existence of an acyclic off-line justification (Figure 7(a)) in Example 11

is not accidental. In fact, for every true atom, there always exists at least one acyclic

justification (Pontelli and Son 2006, Proposition 2).

3.2 LABAS justifications

LABAS justifications (Schulz and Toni 2016; Schulz and Toni 2013) explain the truth

value of an extended literal w.r.t. a given answer set of an extended normal logic

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 127

program.7 They have been implemented in an online platform called LABAS Justifier.8

In contrast to off-line justifications, where every rule application step used to derive a

literal is included in a justification, LABAS justifications abstract away from intermedi-

ate rule applications in the derivation, only pointing out the literal in question and the

facts and negative literals occurring in rules used in the derivation. In addition, the truth

of negative literals not l is not taken for granted or assumed, but is further explained in

terms of the truth value of the respective positive literal l .

LABAS justifications have an argumentative flavor as they are constructed from trees

of conflicting arguments.9

Definition 6 (Argument)

Given an extended logic program P , an argument for l ∈ Litext is a finite tree, where

every node holds a literal in Litext, such that

• the root node holds l ;

• for every node N

— if N is a leaf, then N holds either a negative literal or a fact;

— if N is not a leaf and N holds the positive literal h, then there is a rule

h ← b1 ∧ . . .∧ bn ∧ not c1 ∧ . . . not cm in P and N has n +m children, holding

b1, . . . , bn , not c1, . . . not cm , respectively;

• AP is the set of all negative literals held by leaves; and

• FP is the set of all facts held by leaves.

An argument is denoted A : (AP ,FP) � l , where A is a unique name, AP is the set of

assumption premises, FP the set of fact premises, and l the conclusion. �

Intuitively, an argument is a derivation where each rule is used and where only negative

literals and facts are recorded. Note, however, that arguments are not necessarily minimal

derivations and that they allow the repeated application of a rule.

Example 12

Let P11 be the following logic program:

p ← q ∧ not r q ← q q

There are infinitely many arguments for p (and q) since the second rule can be used

infinitely many times before using the fact q . Figure 8(a) illustrates the argument A1

where the second rule is not used at all, Figure 8(b) illustrates the argument A2 where the

second rule is used once, and Figure 8(c) illustrates arguments where the second rule is

applied various times (indicated by the dots). Note that all arguments with conclusion p

differ in their names and their tree representation, but they are all denoted ({not r}, q) �
p in the shorthand notation. �

7 For simplicity, we use the term “literal” instead of “extended literal” throughout this section.
8 http://labas-justification.herokuapp.com/
9 Schulz and Toni (2016) define arguments and attack trees w.r.t. the translation of a logic program into
an ABA framework (Dung et al. 2009). For simplicity, we here reformulate these definitions w.r.t. a
logic program. Due to the semantic correspondence between logic programs and their translation into
ABA frameworks (Schulz and Toni 2016; Schulz and Toni 2015), these definitions are equivalent to
the original ones.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

http://labas-justification.herokuapp.com/
https://doi.org/10.1017/S1471068418000534

128 J. Fandinno and C. Schulz

p

q not r

(a) Argument A1

p

q not r

q

(b) Argument A2

p

q not r

q

...

q

(c) Argument An

Fig. 8. Different arguments with conclusion p.

An argument for a literal only exists if all literals in the rules used in the derivation

have an argument themselves. That is, for a logic program with only one rule p ← q ,

there is no argument for either p or q (q is neither a negative literal nor a fact, so it

cannot be the leaf of an argument tree).

If the conclusion of an argument is a positive literal l , then it attacks every argument

that has not l in its assumption premises. In other words, a derivation for l provides a

reason against any derivation using not l .

Definition 7 (Attack)

An argument (AP1,FP1) � l1 attacks an argument (AP2,FP2) � l2 iff l1 is a positive

literal and not l1 ∈ AP2. �

Note that attacks do not arise due to the existence of an atom a and its contrary ¬a in

two arguments.

Example 13 (Ex. 4 continued)

Four arguments can be constructed from P3:

A1 : ({not p}, {}) � not p A3 : ({not p}, {}) � q

A2 : ({not q}, {}) � not q A4 : ({not q}, {}) � p

A3 attacks A2 and A4 since its conclusion q is the complement of the assumption premise

not q in the two attacked arguments. Similarly, A4 attacks A1 and A3. �

3.2.1 Attack trees

LABAS justifications are constructed from trees of attacking arguments.

Definition 8 (Attack tree)

Given an extended program P , an attack tree of an argument A : (AP ,FP) � l w.r.t. an

answer set M of P , denoted attTreeM (A), is a (possibly infinite) tree such that:

1. Every node in attTreeM (A) holds an argument, labeled “+” or “−.”

2. The root node is A+ if ∀ not l ′ ∈ AP : l ′ /∈ M , or A− otherwise.

3. For every node B+ and for every argument C attacking argument B , there exists a

child node C− of B+.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 129

(a)
A−

3 : ({not p}, {}) � q

A+
4 : ({not q}, {}) � p

A−
3 : ({not p}, {}) � q

A+
4 : ({not q}, {}) � p

...

(b)
A+

4 : ({not q}, {}) � p

A−
3 : ({not p}, {}) � q

A+
4 : ({not q}, {}) � p

A−
3 : ({not p}, {}) � q

...

Fig. 9. Attack trees of arguments A3 and A4 w.r.t. M3 of P3.

4. Every node B− has exactly one child node C+ for some argument

C : (APC ,FPC) � lC attacking argument B and satisfying that ∀ not l ′ ∈ APC ,

l ′ /∈ M .

5. There are no other nodes in attTreeM (A) except those given in 1–4. �

The intuition for labeling arguments in an attack tree is as follows: If an argument A

is based on some negative literal not l (i.e. it has not l as an assumption premise) such

that l ∈ M , then some rule used to construct A is not applicable w.r.t. M (namely the

rule in which not l occurs), so argument A does not warrant that its conclusion is in M .

Therefore, argument A is labeled “−.” Otherwise, all rules used to construct A are

applicable, so the conclusion of argument A is in M . Thus, argument A is labeled “+.”

Example 14 (Ex. 13 continued)

The unique attack trees of A3 and A4 w.r.t. M3 = {p} are displayed in Figure 9(a)

and (b), respectively. When inverting all “+” and “−” labels in the trees, the attack

trees w.r.t. M4 = {q} are obtained. �

An attack tree is thus made of layers of arguments for literals that are alternately

true and false w.r.t. the answer set M . Note the difference in Definition 8 between

arguments labeled “+,” which have all attackers as child nodes, and arguments labeled

“−,” which have only one attacker as a child node. This is in line with the definition

of answer sets. To prove that a literal l is in M , all negative literals not l ′ used in its

derivation (i.e. in the argument B in condition 3) need to be true, so for all l ′ there

must not be a derivation that concludes that l ′ is true. Thus, all such derivations for

l ′ (i.e. all arguments C attacking B in condition 3) are explained in an attack tree. In

contrast, to prove that a derivation of a literal l (argument B in condition 4) does not

lead to l being true w.r.t. M , it is sufficient that one negative literal not l ′ used in this

derivation is false, that is, l ′ is in M , so there exists some derivation for l ′ (argument C

in condition 4) that warrants that l ′ is true w.r.t. M.

Example 15

Let P12 be the following logic program:

p ← not q ∧ not r q ← not s s

r ← s ∧ not p r ← not s

Program P12 has two answer sets, namely M12 = {s , p} and M13 = {s , r}. The argu-

ment A1 : ({not q , not r}, {}) � p has one attack tree w.r.t. M12 and one w.r.t. M13,

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

130 J. Fandinno and C. Schulz

(a)
A+

1 : ({not q , not r}, {}) � p

A−
2 : ({not s}, {}) � q A−

3 : ({not p}, {s}) � r A−
4 : ({not s}, {}) � r

A+
5 : ({}, {s}) � s A+

1 : ({not q , not r}, {}) � p A+
5 : ({}, {s}) � s

...

(b)
A−

1 : ({not q , not r}, {}) � p

A+
3 : ({not p}, {s}) � r

A−
1 : ({not q , not r}, {}) � p

...

Fig. 10. Attack trees of argument A1 w.r.t. M12 and M13.

depicted in Figure 10(a) and (b), respectively. Note that in the attack tree of A1 w.r.t.

M13, A2 and A4 cannot be chosen as the child nodes of A1, even though they attack

A1, since they both have not s as an assumption premise, where s is contained in the

answer set M13 (they thus violate condition 4 in Definition 8). These arguments thus do

not provide explanations as to why r is true w.r.t. M13 and consequently cannot be used

to explain why p is false. �

Attack trees are not only used to construct LABAS justifications, as explained in the

following, but in fact constitute justifications of literals in their own right.

Definition 9 (Attack tree justification)

Let M be an answer set of an extended program P , l ∈ Litext, and A an argument with

conclusion l .

• If l is true w.r.t. M , then an attTreeM (A) is a justification of l if the root node

is A+.

• If l is false w.r.t. M , then an attTreeM (A) is a justification of l if the root node

is A−. �

In fact, in the second case any attack tree for an argument with conclusion l will have

its root node labeled “−” (Schulz and Toni 2016, from Theorem 3 and Lemma 5).

Attack trees justify literals in terms of dependencies between arguments. Next, we

explain how dependencies between literals are extracted from attack trees to construct a

justification in terms of literals.

3.2.2 Constructing LABAS justifications

LABAS justifications are constructed from attack trees by extracting the relations be-

tween literals in arguments. That is, literals occurring as assumption or fact premises

in an argument of the attack tree are supporting the conclusion literal, whereas the

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 131

conclusion l of an attacking argument attacks the negative literal not l occurring as an

assumption premise of the attacked argument.

As a first step of the LABAS justification construction, an attack tree is transformed

into a labeled justification. A labeled justification is a set of labeled relations between

literals, which can thus be represented as a graph. Each literal in a relation is labeled as

“+,” meaning that it is true w.r.t. the answer set in question, or “−,” meaning that it is

false w.r.t. the answer set in question. Support and attack relations are labeled the same

as the respective source literals of the relation. The label “+” represents that the source

label is able to effectively attack or support the target literal, whereas “−” represents

an ineffective relation. In addition, a literal is labeled with fact or asm if it is a fact or

assumption premise, or else with its argument’s name.

Definition 10 (Labeled justification)

LetM be an answer set of an extended program P , A an argument, and Υ = attTreeM (A)

an attack tree of A w.r.t. M . For any node B+/− in Υ, children(B+/−) denotes the set

of child nodes of B+/− and conc(B+/−) the conclusion of argument B . The labeled

justification of Υ, denoted just(Υ), is obtained as follows:

just(Υ) def=⋃
B+:(AP,FP)�l in Υ

{supp rel+(not p+
asm , l+B) | not p ∈ AP\{l}} ∪

{supp rel+(f +fact , l
+
B) | f ∈ FP\{l}} ∪

{att rel−(k−
C , not k+

asm) | C− ∈ children(B+), conc(C−) = k} ∪
⋃

B−:(AP,FP)�l in Υ

{supp rel−(not p−
asm , l−B) | not p ∈ AP\{l}, children(B−) = {C+},

conc(C+) = p} ∪
{att rel+(f +fact , not f

−
asm) | children(B−) = {C+ : ({}, {f }) � f }} ∪

{att rel+(k+
B , not k−

asm) | children(B−) = {C+ : (APC ,FPC) � k},
APC
= {} or FPC
= {k}}· �

Note that a labeled justification does not extract all relations from an attack tree but

only those deemed relevant for justifying the conclusion of argument A. For example, for

an argument B− in the attack tree, only one negative literal is extracted as supporting

the conclusion, namely the one that is attacked by the child node C+ of B−, since this

negative literal provides the reason that the conclusion of B is not in the answer set.

Infinite attack trees, as for example shown in Figure 9(a) and (b), may be represented

by finite LABAS justifications as re-occurring arguments in an attack tree are only

processed once (note that justifications are sets).

Example 16 (Ex. 14 continued)

Since the two attack trees attTreeM3
(A3) and attTreeM3

(A4) (Figure 9(a) and (b)) com-

prise the same nodes, their labeled justifications are the same, namely:

{supp rel−(not p−
asm , q−A3

), att rel+(p+
A4

, not p−
asm),

supp rel+(not q+asm , p+
A4

), att rel−(q−A3
, not q+asm)}· �

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

132 J. Fandinno and C. Schulz

As illustrated by Example 16, it is not obvious from a labeled justification, which literal

is being justified. A LABAS justification thus adds the literal being justified to labeled

justifications. It furthermore defines a justification in terms of one labeled justification if

a literal contained in the answer set is justified and in terms of all labeled justifications

if a literal not contained in the answer set is justified. This is based on the idea that if a

literal can be successfully derived in one way, it is in the answer set, but that it is not in

the answer set only if all ways of deriving the literal are unsuccessful.

Definition 11 (LABAS justification)

Let M be an answer set of an extended program P and l ∈ Litext.

1. Let l be true w.r.t. M , let A : (AP ,FP) � l be an argument, and attTreeM (A) an

attack tree with root node A+. Let lab(l) def= l+asm if l is a negative literal, lab(l) def= l+fact
if FP = {l} and AP = {}, and lab(l) = l+A else. A (positive) LABAS justification of

l w.r.t. M is:

justLABAS+
M (l) def= {lab(l)} ∪ just(attTreeM (A)).

2. Let l be false w.r.t. M , let A1, . . . ,An be all arguments with conclusion l , and

Υ11, . . . ,Υ1m1
, . . . ,Υn1, . . . ,Υnmn

all attack trees of A1, . . . ,An with root node la-

beled “−.”

(a) If n = 0, then the (negative) LABAS justification of l w.r.t. M is

justLABAS−
M (l) def= {}·

(b) If n > 0, then let lab(l1)
def= l−asm , . . . , lab(ln)

def= l−asm if l is a negative literal and

lab(l1)
def= l−A1

, . . . , lab(ln)
def= l−An

else. Then the (negative) LABAS justification

of l w.r.t. M is

justLABAS−
M (l) def= {{lab(l1)} ∪ just(Υ11), . . . , {lab(ln)} ∪ just(Υnmn

)}. �

Note that there may be various LABAS justifications of a literal that is true w.r.t. the

answer set M , but only one LABAS justification of a literal that is false w.r.t. M .

Example 17 (Ex. 16 continued)

Since there exists only one argument with conclusion q /∈ M3, namely A3, and since

this argument has a unique attack tree attTreeM3
(A3), only the labeled justification from

Example 16 has to be taken into account for the LABAS justification of q w.r.t. M3.

That is,

justLABAS−
M3

(q) = {{q−A3
, supp rel−(not p−

asm , q−A3
), att rel+(p+

A4
, not p−

asm),

supp rel+(not q+asm , p+
A4

), att rel−(q−A3
, not q+asm)}}

Similarly, the only LABAS justification of p w.r.t. M3 is

justLABAS+
M3

(p) = {p−
A4

, supp rel−(not p−
asm , q−A3

), att rel+(p+
A4

, not p−
asm),

supp rel+(not q+asm , p+
A4

), att rel−(q−A3
, not q+asm)}

Note that the first is a set of sets, whereas the second is a simple set. �

LABAS justifications can be represented as directed graphs, where the justified literal

is depicted as the top node of the graph, and all literals occurring in a relation as the other

nodes. Support and attack relations form two different arcs: here, dashed arcs represent

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 133

(a)
q−
A3

not p−
asm

p+
A4

not q+
asm

+

−

+

−

(b)
p+
A4

not q+
asm

q−
A3

not p−
asm

+

−

+

−

Fig. 11. LABAS justifications of q and p w.r.t. M3: dashed arcs represent support, whereas
solid arcs represent attack.

support, whereas solid arcs represent attack. Both types of arcs are labeled according to

the label in the LABAS justification.

Example 18 (Ex. 17 continued)

The graphical representations of the LABAS justifications in Example 17 are, respec-

tively, illustrated in Figure 11(a) and (b). Unsurprisingly, they have the same nodes and

arcs. However, the respective orientation of the graph indicates the literal being justified.

Note the difference between the LABAS justification graphs and the off-line justifications

in Figure 1. In particular, the LABAS justification graphs explain the truth values of

non-fact positive literals in terms of negative literals needed to derive the positive literal.

Furthermore, the truth values of negative literals, which do not occur in off-line justifi-

cations at all, are explained in terms of their complement’s truth value. Also note that

q being false w.r.t. M3 is explained as a truth value being assumed in the off-line justi-

fications, whereas its truth value is further explained in terms of the ineffective support

by not p in the LABAS justifications. �

Example 19 (Ex. 15 continued)

Figure 12(a) and (b) illustrates the LABAS justifications of p w.r.t. M12 and M13 of

P12 (see Example 15). The first demonstrates the importance of labeling literals by their

arguments for distinction. If these labels did not exist, r−A3
and r−A4

would collapse into one

node r−. The resulting graph would give the impression that there is only one derivation

for r , which uses both not p and not s . In contrast, the distinction achieved by labeling

literals with their argument names (Figure 12a) expresses that there are two derivations

for r , one using not p and one using not s . Note that off-line justifications use a non-

labeling strategy, leading to the previously explained collapse of the two nodes holding

atom r , as shown in Figure 13(a) and (b). Figure 12(a), and in particular node r−A3
,

furthermore shows that for nodes labeled “−” in an attack tree, fact premises are not

included in the LABAS justification (A3 has a fact premise s). In contrast, Figure 12b,

and in particular node r+A3
, shows that for nodes labeled “+” in an attack tree, all

assumption and fact premises are included in a LABAS justification. Furthermore, for

nodes labeled “−” only the assumption premise that is attacked by the child node is

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

134 J. Fandinno and C. Schulz

(a)

p+
A1

not q+
asm not r+asm

q−
A2

r−A4
r−A3

not s−asm not p−
asm

s+fact

+ +

− −−

− −

+

−

+

(b)
p−
A1

not r−asm

r+A3

s+fact not p+
asm

−

+

++

−

Fig. 12. LABAS justifications of p w.r.t. M12 and M13.

(a)
p+

q− r−

s+ assume

− −

− −

(b)

p+

q− r−

s+

− −

− −

−

Fig. 13. Off-line justifications of p w.r.t. M12.

included (only assumption premise not r of p is included and assumption premise not q

is neglected). �

Comparing the LABAS justification in Figure 12(a) and the off-line justification in

Figure 13(b), we observe various similarities: Deleting the nodes holding negative literals

in the LABAS justification and collapsing the two nodes of atom r result in the same

nodes as in the off-line justification. Note that this is because all derivations of atoms are

“one-step” derivations, that is, there is no chaining of rules involved. If the derivation of

some atom involved the chaining of various rules, the off-line justification would include

more nodes than the LABAS justification, even if nodes holding negative literals were

deleted (see, for example, Figure 17(a) and (b)). Furthermore, “rerouting” the attack

edges in the LABAS justification from the attacked negative literal to the atom supported

by this negative literal (e.g. “rerouting” the attacking edge from p+ to not p instead to

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 135

(a)
p+
A1

not t+asm s+fact

+ +

(b)
p+
A2

not t+asm

+

Fig. 14. The two LABAS justifications of p w.r.t. M6 of P6.

r+A1

not p+
asm

+

Fig. 15. The unique LABAS justification of r w.r.t. M11 of P10.

atom r , which is supported by not p) and then reverting them results, in this example,

in the same edges as in the off-line justification. Note, however, that the labeling of edges

is different in LABAS and off-line justifications.

The following examples point out some further differences between LABAS and off-line

justifications. In particular, LABAS justifications do not explicitly contain information

about all rules applied in a derivation and there is no LABAS justification for literals

that have no argument, that is, literals that cannot be successfully derived.

Example 20 (Ex. 7 continued)

Figure 14(a) and (b) shows the LABAS justifications of p w.r.t. M6 of P6. The difference

between the two derivations of p is not as explicit as in the off-line justifications illustrated

in Figure 4(a) and (b). It is merely indicated by the different argument labels of p. �

Example 21 (Ex. 11 continued)

There are two off-line justifications of r w.r.t. P10 and M11 (see Figure 7(a) and (b)).

In contrast, there is only one LABAS justification of r , shown in Figure 15. The reason

is that there is no argument with conclusion p, since no rule with head p exists. Thus,

not p is not further explained as there is no way to prove p. �

As previously pointed out, infinite attack trees may be represented by finite LABAS

justifications. However, this is only the case if the infinity is due to the repetition of

the same arguments. Instead, if the infinity is due to the existence of infinitely many

arguments with the same conclusion, a LABAS justification may be infinite too.

Example 22

Let P13 be the following program with answer sets M14 = {p, r} and M15 = {q , r}:
p ← not q ∧ r q ← not p ∧ r r ← r r

Note first that there are infinitely many arguments with conclusion r of the form

Ari : ({}, {r}) � r , each applying the third rule a different number of times. For

the same reason, there are infinitely many arguments with conclusion p, of the form

Apj
: ({not q}, {r}) � p, and with conclusion q , of the form Aqk : ({not p}, {r}) � q .

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

136 J. Fandinno and C. Schulz

(a)
A+

p1 : ({not q}, {r}) � p

A−
q1 : ({not p}, {r}) � q A−

q2 : ({not p}, {r}) � q . . .

A+
p1 : ({not q}, {r}) � p A+

p1 : ({not q}, {r}) � p

...
...

(b)

p+
Ap1

not q+
asm r+fact

. . . q−
Aq2

q−
Aq1

not p−
asm

+ +

−−−

−−−

+

Fig. 16. One of the infinite attack trees and LABAS justifications of p w.r.t. M14 of P13.

Since there are infinitely many arguments with conclusion p (resp. q), there are also

infinitely many attack trees explaining p (resp. q) w.r.t. either of the two answer sets.

Similarly to the attack trees illustrated in Figure 9(a) and (b), all attack trees for p and

q are infinite in depth. In addition, they are infinite in breadth since any of the Apj

attacks every Aqk and vice versa. This means that whenever an argument for p (resp. q)

is labeled “+” in an attack tree, all infinitely many arguments with conclusion q (resp.

p) are child nodes labeled “−.” Figure 16a illustrates an attack tree of one of the argu-

ments with conclusion p w.r.t. M14. Note that in this particular attack tree, the argument

A+
p1

: ({not q}, {r}) � p is re-used to attack all the arguments with conclusion q attack-

ing the root node. By exchanging any occurrence of A+
p1

: ({not q}, {r}) � p by another

argument with conclusion p, for example, A+
p2

: ({not q}, {r}) � p, a different (infinite)

attack tree explaining p is obtained. We observe that any of these attack trees yields

an infinite LABAS justification. For example, the attack tree from Figure 16(a) results

in a LABAS justification with infinitely many relations of the form att rel−(q−Aqk
, p+

Apj
)

relations. Assuming that the only argument with conclusion p used in the attack tree in

Figure 16(a) is A+
p1

: ({not q}, {r}) � p; we obtain the infinite LABAS justification in

Figure 16(b). �

This behavior of infinity is dealt with in the LABAS Justifier by disallowing the

repeated application of a rule when constructing an argument (Schulz 2017). In Ex-

ample 22, the LABAS Justifier thus only constructs two different arguments for p

and q .

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 137

(a)
dead+

hemorrhage+

impact+

bullet+

gunpowder+

trigger(suzy)+

�

+

+

+

+

+

+

(b)
dead+A1

trigger(suzy)+fact

+

(c)
rdead1

rhemorrhage
2

r impact
3

rbullet4

rgunpowder
5

trigger(suzy)

(d)
dead

hemorrhage

impact

bullet

gunpowder

trigger(suzy)

Fig. 17. Off-line justification, LABAS justification, causal justification, and causal chain of
dead in Example 23.

3.3 Causal graph justifications

In contrast to the two previously discussed approaches (off-line and LABAS justifica-

tions), whose main purpose is to explain why a literal is (not) contained in an answer

set, the approach outlined in this section – called causal graph justifications (Cabalar

et al. 2014 Cabalar and Fandinno 2016) – is a reasoning formalism in its own right, which

can additionally be used to explain why a literal is contained in an answer set: the main

goal of the causal justification approach is to formalize and reason with causal knowledge,

so that sentences like “whoever causes the death of somebody else will be imprisoned”

can be represented in an elaboration tolerant10 manner (McCarthy 1998).

An online tool providing causal justifications and allowing this reasoning with causal

knowledge (Fandinno 2016a) is available at http://kr.irlab.org/cgraphs-solver/

nmsolver.

The semantics used for causal justifications is a multi-valued extension of the answer

set semantics, where each (true) literal in a model is associated with a set of causal

values expressing causal reasons for its inclusion in the model. Each of these causal

values represents a set of causal justifications, each of which, in turn, can be depicted

as a causal graph. Regarding the causal literature, a causal graph can be seen as an

extension of Lewis’s notion of causal chain: “let c, d , e, . . . be a finite sequence of actual

particular events such that d causally depends on c, e on d , and so on throughout. Then,

this sequence is a causal chain.” (Lewis 1973; see also Hall 2004; Hall 2007). The following

example illustrates the connection between causal chains and justifications in ASP.

Example 23

Consider a scenario in which Suzy pulls the trigger of her gun, causing the gunpowder

to explode. This causes the bullet to leave the gun at a high speed, impacting on Billy’s

10 We recall that a representation is elaboration tolerant if modifications of it can easily be taken into
account.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

http://kr.irlab.org/cgraphs-solver/nmsolver
http://kr.irlab.org/cgraphs-solver/nmsolver
https://doi.org/10.1017/S1471068418000534

138 J. Fandinno and C. Schulz

chest, provoking a massive hemorrhage, and, consequently, Billy’s death. We can model

this scenario as the following positive logic program P14:

dead ← hemorrhage (2)

hemorrhage ← impact (3)

impact ← bullet (4)

bullet ← gunpowder (5)

gunpowder ← trigger(suzy) (6)

trigger(suzy) (7)

Then, trigger(suzy) · gunpowder · bullet · impact · hemorrhage · dead is a causal chain

connecting trigger(suzy) with dead. �

This example suggests an intuitive correspondence between causal chains and the idea

of justification. In particular, the causal chain that connects the fact trigger(suzy) with

dead can be written as the graph in Figure 17(d). It is easy to see the correspondence

between this graph and the off-line justification of dead, depicted in Figure 17(a).

For comparison, Figure 17(b) and(c) depicts the LABAS justification and the causal

graph (which will be defined later) of dead. Recall that LABAS justifications focus on

facts and negative literals, precisely abstracting from the causal chain, which will be the

focus of causal justifications. In contrast, the causal graph expresses the same information

as the causal chain. This is due to the fact that no atom depends on more than one other

atom. More generally, causal chains coincide with the paths in causal graphs.

In addition to the idealogical differences between causal justifications, which treat

logic programs as causal knowledge, and off-line and LABAS justifications, which treat

logic programs as declarative problem descriptions, causal justifications allow for causal

reasoning, as they are based on a causal extension of the answer set semantics. More pre-

cisely, causal justifications are defined in terms of the causal value that each causal

answer set associates to atoms (causal answer sets assign causal values instead of

truth values to each atom). These causal values form a completely distributive (com-

plete) lattice that serves as the basis for a multi-valued extension of the answer set

semantics.

Let us introduce causal terms as a suitable syntax to write causal values.

Definition 12 (Causal term)

Given a set of atoms At and a set of labels Lb, a (causal) term t is recursively defined

as one of the following expressions:

t ::= l
∣∣∣

∏
S

∣∣∣
∑

S
∣∣∣ t1 · t2

where l ∈ (Atext ∪ Lb) is an extended atom or a label, t1, t2 are in turn terms, and S is

a (possibly empty and possibly infinite) set of terms. �

When S = {t1, . . . , tn} is a finite set, we write t1∗. . .∗tn and t1+. . .+tn instead of
∏

S

and
∑

S , respectively. The empty sum and empty product are, respectively, represented

as 0 and 1. We assume that application “·” has higher priority than product “∗” and,

in turn, product “∗” has higher priority than addition “+.” Intuitively, product “∗”

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 139

Associativity

t · (u·w) = (t ·u) · w
Absorption

t = t + u · t · w
u · t · w = t ∗ u · t · w

Identity

t = 1 · t
t = t · 1

Annihilator

0 = t · 0
0 = 0 · t

Indempotence

l · l = l

Addition distributivity

t · (u+w) = (t ·u) + (t ·w)
(t + u) · w = (t ·w) + (u·w)

Product distributivity

c · d · e = (c · d) ∗ (d · e) with d �= 1
c · (d ∗ e) = (c · d) ∗ (c · e)
(c ∗ d) · e = (c · e) ∗ (d · e)

Fig. 18. Properties of the operators: t , u,w are terms, l is a label or an extended atom, and
c, d , e are terms without addition “+.” Addition and product distributivity are also satisfied
over infinite sums and products. A kind of absorption over infinite sums and products can also
be derived from the finite absorption above and infinite distributivity.

represents conjunction or joint causation, sum “+” represents alternative causes, and

application “·” is a non-commutative product that builds causal chains by capturing the

successive application of rules.

Definition 13 (Causal value)

(Causal) values are the equivalence classes of terms under the axioms for a completely

distributive (complete) lattice with meet “
∏
” and join “

∑
” plus the axioms in Figure 18.

The set of values is denoted by VLb. Furthermore, by CLb we denote the subset of causal

values with some representative term without addition “
∑

.” �

As an example, the causal value [a] = {a, a ∗ a, a + a, a·a, a ∗ (a + b), . . .} is the

(possibly infinite) set of causal terms that are equivalent to a under the axioms for a

completely distributive lattice with meet “
∏
” and join “

∑
” plus the axioms in Figure 18.

Note that there are no causal terms equivalent to 0 or 1 besides themselves, that is,

[0] = {0} and [1] = {1}. By abuse of notation, we will use any causal term belonging to

a causal value to represent the value, that is, we write a instead of [a], 0 instead of [0],

and so on.

Note that all three operations “∗,” “+,” and “·” are associative. Product “∗” and

addition “+” are also commutative, and they satisfy the usual absorption and distributive

laws w.r.t. infinite sums and products of a completely distributive lattice. As usual, the

lattice order relation is defined as

t ≤ u iff t ∗ u = t iff t + u = u

An immediate consequence of this definition is that the ≤-relation has the product as

greatest lower bound, the addition as least upper bound, 1 as top element, and 0 as

bottom element. The term 1 represents a value that holds by default, without an explicit

cause, and will be assigned to the empty body. The term 0 represents the absence of

cause or the empty set of causes, and will be assigned to falsity.

Furthermore, applying distributivity (and absorption) of products and applications

over addition, every term can be represented in a (minimal) disjunctive normal form in

which addition is not in the scope of any other operation and every pair of addends are

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

140 J. Fandinno and C. Schulz

pairwise ≤-incomparable. As we will see in Example 31, this normal form emphasizes

the intuition that addition “+” separates alternative causes. Moreover, applying product

distributivity, this normal form can be further rewritten into a graph normal form in

which the application operator “·” is only applied to pairs of labels or extended atoms,

thus representing the edges of a graph: v ·v ′ with v , v ′ ∈ (Atext ∪ Lb). For instance,

applying priority rules, the causal terms a ∗ (((b·c)·e) + d) and ((a ∗ ((b·c)·e)) + (a ∗ d)
can be rewritten as a ∗ (b·c·e + d) and a ∗ b·c·e + a ∗ d , respectively. Furthermore, it is

easy to see that these two terms represent the same causal value since the former can

be rewritten as the latter by applying distributivity of products over sums. The latter

is in disjunctive normal form and can be further rewritten in graph normal form as

a ∗ b·c ∗ c·e + a ∗ d by applying distributivity of application over products.

Given any causal term without sums c ∈ CLb in graph normal form, we can associate

a graph Gc = 〈V ,E 〉, where V is the set of labels and extended atoms occurring in c

and E contains an edge (v , v ′) for every subterm of the form v ·v ′. By graph(c) we denote

the transitive and reflexive reduction11 of Gc . Given this relation between application “·”
and edges in such graphs it follows that application “·” must be non-commutative. For

any causal term in normal form t , by graphs(t) we denote the set containing a graph

graph(c) for each addend c in t .

Example 24 (Ex. 23 continued)

The causal chain of Example 23 is in disjunctive normal form (since it does not contain

products nor sums), but not in graph normal form. Using product distributivity, this

causal chain can be rewritten in graph normal form as (trigger(suzy) · gunpowder) ∗
(gunpowder · bullet) ∗ (bullet · impact) ∗ (impact ·hemorrhage) ∗ (hemorrhage · dead). In
this form, every subterm of the form (v ·v ′) corresponds to an edge in Figure 17(d). �

So far, we have introduced causal values, which will be the semantic building blocks

of causal justifications and the associated causal graphs. In the following, we define how

these causal values are assigned to each atom to form causal answer sets and how causal

justifications and graphs are obtained.

3.3.1 Causal semantics for programs without NAF

Semantics for logic programs usually assign truth values to atoms. In contrast, for the

causal semantics of logic programs, causal interpretations assign causal values to atoms.

Based on this, causal models and causal answer sets are defined. Causal justifications are

then extracted using the causal value of atoms in a causal answer set corresponding to a

standard answer set.

A (causal) interpretation is a mapping I : Atext −→ VLb assigning a value to each

extended atom and satisfying I (a) = 0 or I (¬a) = 0 for every atom a ∈ At. By

Atoms(I) def= { a ∈ Atext
∣∣ I (a)
= 0 } we denote the set of extended atoms in an

interpretation I . For any pair of interpretations I and J , we write I ≤ J to represent

the straightforward causal ordering, that is, I (a) ≤ J (a) for every atom a ∈ Atext and

11 Recall that the transitive and reflexive reduction of a graph G is a graph G′ whose transitive and
reflexive closure is G. A causal graph (see Definition 16), in which every cycle is a reflexive edge, has
a unique transitive and reflexive reduction.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 141

we write I�J when either I ≤ J or Atoms(I) ⊂ Atoms(J). That is, I�J is a weaker

partial order, since apart from the cases in which I ≤ J holds, it also holds when true

atoms in I are a strict subset of true atoms in J . As usual, we write I < J (resp. I�J)

iff I ≤ J (resp I�J) and I
= J . Note that Atoms(I) ⊂ Atoms(J) implies I
= J and so

I�J . We say that an interpretation I is ≤-minimal (resp. �-minimal) satisfying some

property when there is no J < I (resp. J�I) satisfying that property. Note that there is

a ≤-bottom and �-bottom interpretation 0 (resp. a ≤-top and �-top interpretation 1)

that stands for the interpretation mapping every extended atom a to the causal value 0

(resp. 1). It is easy to see that �-minimal models are also ≤-minimal models, though

the converse is not necessarily true, as will be illustrated by Example 30. For every rule

r in the program, we assign a label denoted by label(r). We assume that label(h) = h

for every definite fact h and that label(r)
= label(r ′) for every pair of distinct rules r

and r ′. We also assume that Lb contains all rule labels.

Definition 14 (Causal model)

An interpretation I satisfies a positive rule r of the form (1) (with m = 0) iff
(
I (b1) ∗ . . . ∗ I (bn)

) · ri · hj ≤ I (hj), (8)

for some atom hj ∈ head(r) and where ri = label(r) is the label associated with rule r .

We say that an interpretation I is a (causal) model of a positive extended program P ,

in symbols I |= P , iff I satisfies all rules in P . �

Example 25 (Ex. 23 continued)

Let us assume that rules of P14 are, respectively, labeled as r1, r2, r3, r4, r5,

and trigger(suzy). Then, it is easy to check that the model I of P14 must satisfy

I (trigger(suzy)) ≥ trigger(suzy) · trigger(suzy) = trigger(suzy)

I (gunpowder) ≥ trigger(suzy) · r5 · gunpowder �

Observation 1

If r is a definite fact h, that is, it has the form (h ←), then label(r) = h and, thus,

I |= r iff I (A) ≥ h·h = h (by idempotence of application on labels). �

Based on the definitions of causal values and models, the causal extension of the answer

set semantics is defined as follows.

Definition 15 (Causal answer set without NAF)

Let P be a positive extended program. A model I of P is a causal answer set iff it is

�-minimal among the models of P . �

Example 26 (Ex. 25 continued)

Continuing with our running example, note that there is only one rule with atoms

trigger(suzy) and gunpowder in the head. Then, any �-minimal model I1 of P14 must

satisfy equality instead of ≥, that is,

I1(trigger(suzy)) = trigger(suzy) · trigger(suzy) = trigger(suzy)

I1(gunpowder) = trigger(suzy) · r5 · gunpowder

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

142 J. Fandinno and C. Schulz

Note that any �-minimal model must also be a ≤-minimal model and, thus, I1(A)

must be equal to the least upper bound of the terms corresponding to all rules with the

atom A in the head. Since here we only have one rule for each atom, this least upper

bound coincides with the value corresponding to that rule. �

Definition 16 (Causal justification and causal graph)

Given a logic program P and an answer set M of P , a term without sums c is a causal

justification of some atom a w.r.t. P and M if there is some causal answer set I of P

such that Atoms(I) = M and c is an addend in the minimal disjunctive normal form

of I (a). For any causal justification of a w.r.t. P and M , graph(c) is a causal graph

(justification). �

Notation 1

In causal justifications, we will write rai instead of ri ·a when ri ∈ Lb is a rule label and

a ∈ Atext is an extended atom occurring in the head of the rule labeled ri . Similarly, in

causal graphs we write a single vertex rai instead of two vertices ri and a and an edge

connecting them. �

Example 27 (Ex. 26 continued)

Assuming the above notation, we may rewrite the causal value associated with

gunpowder, which is also its unique causal justifications, as I1(gunpowder) = trigger

(suzy) · rgunpowder
5 . Similarly, it is also easy to check that

I1(dead) = trigger(suzy) · rgunpowder
5 · r bullet4 · r impact

3 · rhemorrhage
2 · rdead1

Figure 17(c) depicts the causal graph associated with the causal justification

I1(dead). �

Next, we give an example of causal justifications for non-normal programs taken

from Cabalar and Fandinno (2016):

Example 28

Assume that Harvey throws a coin and only shoots when he gets tails. This scenario can

be modeled as the following logic program P15:

r1 : dead ← shoot (9)

r2 : shoot ← tails (10)

r3 : head ∨ tails ← harvey (11)

harvey (12)

where r1, r2, and r3 represent the labels associated with the corresponding rules.

Then, this logic program has two (standard) answer sets: M16 = {harvey, head} and

M17 = {harvey, tails, shoot, dead}. Similarly, this program also has two causal answer

sets satisfying

I16(harvey) = harvey

I16(head) = harvey·rhead3

I16(tails) = 0

I17(harvey) = harvey

I17(head) = 0

I17(tails) = harvey·r tails3

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 143

I16(shoot) = 0

I16(dead) = 0

I17(shoot) = harvey·r tails3 ·rshoot2

I17(dead) = harvey·r tails3 ·rshoot2 ·rdead1

Here, the I17(dead) represents the causal justification of dead w.r.t. M17 while

I16(dead) = 0 states that there is no causal justifications for dead w.r.t. M16. �

Example 28 illustrates that a causal answer set assigns the value 0 (i.e. the absence of

a justification) to an atom iff the atom is false in its corresponding standard answer set.

It is also worth to note that, for normal logic programs, there is a one-to-one correspon-

dence between the standard answer sets of a program and their causal answer sets. For

programs with disjunctive rules, there also exists a one-to-one correspondence, but in this

case it relates each standard answer set with a class of causal answer sets that represent

the same truth assignments, but different justifications (see Example 29 below). Further-

more, in the case of disjunctive rules, the superindex of a disjunctive rule’s label in the

causal answer set indicates the disjunct that has been effectively applied. For instance,

in Example 28, term r tails3 points out that the disjunct tails in r3 has been effectively

applied. In the case of normal rules, the superindex is somehow superfluous, as it is fully

determined by the rule, and could easily be omitted as in Cabalar and Fandinno (2016).

Nevertheless, we decide to keep them to ease the comparison with the other justification

approaches whose vertices are literals.

Example 29

Consider a program P16 consisting of the following rules:

r1 : a ∨ b ← r2 : a ← b r3 : b ← a

which has a unique (standard) answer set M18 = {a, b}, but two causal ones that satisfy:

I18(a) = ra1

I18(b) = ra1 ·rb3

I ′18(a) = rb1 ·ra2
I ′18(b) = rb1

As we can see, the true atoms in both models, Atoms(I18) = Atoms(I ′18) = {a, b},
coincide with the unique (standard) answer set M18, but their justifications differ. In

I18, atom a is a (non-deterministic) effect of the disjunction r1, while b is derived from

a through r3. Analogously, I
′
18 makes b true because of r1 and then obtains a from b

through r2.

It is interesting to point out that I ′′18 with

I ′′18(a) = ra1 + rb1 ·ra2
I ′′18(b) = rb1 + ra1 ·rb3

is also a model of the program, but not a �-minimal one because we have I18 � I ′′18.
Intuitively, I ′′18 would represent a scenario in which both a and b are justified by rule

r1, which does not fit the intuitive understanding that rule r1 can only justify one of its

head atoms. �

Let us also recall that, for normal programs Cabalar et al. (2014) define causal answer

sets as ≤-minimal models instead of �-minimal ones. These two definitions agree for

normal logic programs (Cabalar and Fandinno 2016) with the former being preferred for

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

144 J. Fandinno and C. Schulz

(a)
rp1

rq2

r s

(b)
p+

q+

r+ s+

�

+

+ +

+ +

Fig. 19. Causal graph and off-line justification of p w.r.t. the unique answer
set of P18 (see Example 31).

its simplicity.12 On the other hand, for disjunctive programs, there are ≤-minimal models

that do not correspond to any standard stable model, thus the need for the latter. This

is illustrated by the following example.

Example 30

Let P17 be the following logic program:

r1 : head ∨ tails head

which has two ≤-minimal models, one in which I17(head) = head+rhead1 and I17(tails) =

0, plus another in which I ′17(head) = head and I ′17(tails) = r tails1 . However, only the

former is a �-minimal one. Note that this corresponds to the set of atoms Atoms(I17) =

{head} which is the unique standard answer set of the program. �

The following example illustrates the fact that “∗” is used to represent joint causation,

or in other words, that two or more atoms are needed to justify the conclusion of some

rule.

Example 31

Consider the logic program P18 consisting of the following rules:

r1 : p ← q r2 : q ← r ∧ s r s

This program has a unique causal answer set I2 that satisfies

I2(p) = (r ∗ s)·rq2 ·rp1
I2(q) = (r ∗ s)·rq2

I2(r) = r

I2(s) = s

As shown in Observation 1, we have I2(r) ≥ r ·r = r . Then, the value of I2(r) follows

from the fact that causal answer sets are ≤-minimal models. Similar reasoning applies

for the atom s . Furthermore, from Definition 14, it follows that I2(q) ≥ (r ∗ s)·rq2 and,

by minimality, that I2(q) = (r ∗ s)·rq2 . In a similar way, we obtain for p that I2(p) =

I2(q)·rp1 = (r ∗ s)·rq2 ·rp1 . Figure 19(a) depicts the causal graph associated with I2(p).

Note that product “∗” is translated in this causal graph (Figure 19(a)) as two incoming

edges to the vertex rq2 . The causal graph associated with some causal value can be

easily constructed by rewriting the causal value in graph normal form and representing

12 This definition is also used in Section 3.3.3 where the syntax is restricted to normal programs.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 145

each term of the form v1·v2 with an edge from v1 to v2. In particular, we can obtain

the causal graph in Figure 19(a) by rewriting (r ∗ s)·rq2 ·rp1 in graph normal form as

follows:

(r ∗ s)·rq2 ·rp1 = r ·rq2 ·rp1 ∗ s ·rq2 ·rp1
= r ·rq2 ∗ rq2 ·rp1 ∗ s ·rq2 ∗ rq2 ·rp1
= r ·rq2 ∗ rq2 ·rp1 ∗ s ·rq2

Then, the three edges of the causal graph in Figure 19(a) correspond to the three subterms

of the form v1·v2 (i.e. r ·rq2 , rq2 ·rp1 , and s ·rq2) in the above causal term. For comparison,

Figure 19(b) depicts the off-line justification of p+. It is easy to see that this particular

off-line justification can be obtained from the causal graph by replacing each vertex rai
by a, reversing edges, adding the label “+” to each vertex and resulting edge and adding

edges of the form (a,
,+) for each resulting sink a. �

Next, we illustrate that “+” is used to separate alternative causal justifications and

the importance of addition distributivity to obtain such behavior.

Example 32

Consider the logic program P19 consisting of the following rules:

r1 : p ← q r2 : q ← r r3 : q ← s r s

This program has a unique causal answer set I3 that satisfies

I3(p) = r ·rq2 ·rp1 + s ·rq3 ·rp1
I3(q) = r ·rq2 + s ·rq3

I3(r) = r

I3(s) = s

As in Example 31, we have that I3(r) = r and I3(s) = s . Furthermore, in this case,

Definition 14 implies I3(q) ≥ r ·rq2 and I3(q) ≥ s ·rq3 . Then, the value of I3(q) follows from
the fact that causal answer sets are ≤-minimal models and the fact that “+” is the least

upper bound of the ≤ relation. Finally, I3(p) = I3(q)·rp1 = (r ·rq2 + s ·rq3)·rp1 follows in

similar way. The value of I3(p) shown above is the disjunctive normal form of this term,

and it is obtained by applying addition distributivity. Here, both addends in I3(p), that

is r ·rq2 ·rp1 and s ·rq3 ·rp1 , are causal justifications of p w.r.t. the unique answer set of the

program. �

3.3.2 Causal semantics for programs with NAF

We now extend the causal answer set semantics to logic programs with NAF. For this,

the closed-world assumption is directly translated into the language of justifications,

assuming that everything that has no justification is false by default. Accordingly,

negative literals are assumed to hold by default, without requiring further justifica-

tion. This contrasts with the previously presented off-line and LABAS justifications,

which further explain why negative literals hold. The next section shows how causal

justifications can be extended in order to provide such information. Let us start with

an example motivating why omitting the justification of negative literals, thus treating

them as defaults, may provide intuitive explanations in some scenarios.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

146 J. Fandinno and C. Schulz

Example 33 (Ex. 23 continued)

Consider a variation of the scenario of Example 23 in which shooting the victim may fail

in several ways: the victim may be wearing a bulletproof vest, the gunpowder may be wet,

etc. This is an instance of the well-known qualification problem (McCarthy 1977): any

comprehensive knowledge base for general commonsense reasoning may contain hundreds

or thousands of exceptions to any rule, which may also be impossible to list in advance.

As usual in ASP, this problem can be solved by adding abnormality predicates to the

body of all rules. In particular, rules (2–7) are rewritten as follows:

r1 : dead ← hemorrhage ∧ not ab1 (13)

r2 : hemorrhage ← impact ∧ not ab2 (14)

r3 : impact ← bullet ∧ not ab2 (15)

r4 : bullet ← gunpowder ∧ not ab3 (16)

r5 : gunpowder ← trigger(suzy) ∧ not ab4 (17)

trigger(suzy) (18)

Then, exceptions can be added in an elaboration tolerant manner by adding new rules

as follows:

r6 : ab2 ← bulletproof (19)

r7 : ab4 ← wet (20)

Let P20 be the program containing rules (13–20). �

For justifications, Example 33 sets out a new challenge: a justification for the lack

of all exceptions may be much bigger than the justification for the conclusion without

exceptions. Furthermore, from a causal perspective, saying that the lack of an exception is

part of a cause (e.g. for dead) may seem rather counterintuitive. It is not the case that the

victim is dead because the gunpowder was not wet, or because the victim was not wearing

a bulletproof vest, or whatever other possible exception might be added in the future.

This is a well-known problem in the causal literature (Maudlin 2004; Hall 2007; Halpern

2008; Hitchcock and Knobe 2009): in particular, Hitchcock and Knobe (2009) provide

an extended discussion with several examples showing how people ordinarily understand

causes as deviations from a normal or default behavior. In this sense, by understanding

falsity of exceptions as the default situation, we obtain that, when no exception is true

w.r.t. the causal answer set, the causal justifications for dead in programs P14 and P20

are the same. This interpretation of NAF can be captured by the following definitions:

Definition 17 (Causal program reduct)

The (causal) reduct of an extended program P w.r.t. a causal interpretation I , in sym-

bols P I , is the result of

1. removing all rules such that I (b)
= 0 for some b ∈ body−(r) and
2. removing all the negative literals from the remaining rules. �

Definition 18 (Causal answer set)

We say that a causal interpretation I is a causal answer set of an extended program P

iff I is a causal answer set of the positive program P I. �

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 147

Example 34 (Ex. 33 continued)

Let I4 be an interpretation such that I4(A) = I1(A) for all literals A occurring in the

program P14, and I4(A) = 0 for all other literals occurring in program P20. Then, it is

easy to see that P I4
20 = P14 ∪ {(19), (20)} and, thus, that I4 is the �-minimal model of

P I4
20. Note that 0 is the bottom value and there are no rules assigning greater values to

bulletproof or wet and, thus, neither to any of the abi . That is, the unique answer sets

of programs P14 and P20 agree on the causal values assigned to all literals they have in

common. �

We note that the behavior of causal justifications in Example 33 is similar to LABAS

justifications in the sense that, in the latter, the defaults are not further explained either.

This happens because there are no derivations for any abnormality atom abi . On the other

hand, if exceptions could be derived, then the behavior would be different. For instance,

let P21 be the program obtained from P20 by replacing rule (19) by the following two

rules

r6 : ab2 ← bulletproof ∧ not ab5 (21)

r8 : ab5 ← damaged (22)

plus the facts bulletproof and damaged. In this case, ab2 is still false, so the causal jus-

tification of dead remains the same. However, now there is a derivation for ab2 which is

“attacked” by damaged, so a LABAS justification further justifies the falsity of excep-

tion ab2 in terms of damaged. The following example illustrates some similarities and

differences between causal and off-line justifications.

Example 35 (Ex. 6 continued)

Let us now consider the program P5 and the following labeling of its rules:

r1 : p ← q r2 : q ← r ∧ s r3 : r ← not t s

Then, the unique causal answer set I5 of program P5 satisfies

I5(p) = (r r3 ∗ s)·rq2 ·rp1
I5(q) = (r r3 ∗ s)·rq2
I5(r) = r r3

I5(s) = s

I5(t) = 0

Figure 20(a) depicts the causal graph associated with I5(p), while Figure 20(b) depicts the

off-line justification of p+ for the sake of comparison. Note that the causal graph can be

obtained from the off-line justification by removing the ⊥,
, and all negatively labeled

vertices plus all the edges connected to these vertices (where the edges are inverted).

Note that the only change in the causal justification of p in this example w.r.t. that in

program P18 is the renaming of the node r as r r3 , while off-line justifications of the two

programs further differ in the subgraph rooted in r+. �

Example 36

Let us consider a scenario where there is a light bulb that turns on whenever the switches

a and b are pushed at the same time, and off whenever the switches c and d are pushed

at the same time. Assume also that the light is currently off and the switches a and b

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

148 J. Fandinno and C. Schulz

(a)
rp1

rq2

r r3 s

(b)
p+

q+

r+ s+

t−

⊥ �

+

+ +

−

+

+

Fig. 20. Causal graph and off-line justification of p w.r.t. the unique answer set of P5 (see
Examples 6 and 35).

(a)
ron1
11

swa0 swb0

(b)
ion2
12

ron1
11

swa0 swb0

Fig. 21. Causal justifications of the truth of on1 and on2.

are pushed (situation 0). This problem can be easily formalized as a logic program P22

consisting of rules13:

r1t+1 : ont+1 ← swat ∧ swbt r2t+1 : offt+1 ← swct ∧ swdt , (23)

for t ≥ 0, plus the facts off0, swa0, and swb0. As usual, inertia is represented by the

following pair of rules:

i1t+1 : ont+1 ← ont ∧ not offt+1, (24)

i2t+1 : offt+1 ← offt ∧ not ont+1, (25)

for t ≥ 0.

We also have an integrity constraint

← ont ∧ offt , (26)

ensuring that on and off cannot hold at the same time.

This program has a complete well-founded model and, thus, a unique answer set, in

which ont holds for every time t > 0. Figure (21a) and (21b), respectively, depicts the

causal justifications of on1 and on2 w.r.t. that answer set. �

As illustrated by the above example, understanding NAF as a default (which does not

need to be further explained) allows that causal justifications are “preserved” by inertia in

13 For the sake of simplicity, we avoid introducing a first-order language here and indirectly use the
propositional logic program that is produced through grounding.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 149

the following sense: at any situation t+1 if nothing happens, then the causal justification

of ont+1 can be obtained by adding to the causal justification of ont , an edge from iont
1t to

i
ont+1

1t+1 . True persistence of justifications, that is, exactly the same justification preserved

by inertia, can be obtained by selecting some rule labels, in this case the labels associated

with inertia (i1t+1 and i2t+1), as not forming part of the causal justifications, and thus of

the causal graphs. In such case, the causal graph for ont at any situation t would be the

one depicted in Figure 21a. In contrast, the number of off-line and LABAS justifications

grows exponentially with the number of situations in which nothing happens. This will

be discussed in more detail in Section 3.6.

3.3.3 Explaining Negative Literals in Causal Justifications

As we have seen, one major difference between causal justifications and the two previous

approaches, off-line and LABAS justifications, is the way in which all negative literals

that are true w.r.t. the answer set in question are assumed to hold by default, so they

do not need further justification. This behavior allows to get an important reduction in

the number of justifications in examples that involve exceptions or defaults like inertia

(as was illustrated in Example 36). On the other hand, there are scenarios in which

justifications for negative literals are valuable.14 Consider, for instance, the following

example from Cabalar and Fandinno (2017):

Example 37

A drug d in James Bond’s drink causes his paralysis p provided that he was not given

an antidote a that day. We know that Bond’s enemy, Dr. No, poured the drug and that

Bond is daily administered an antidote by the MI6, unless it is a holiday h:

r1 : p ← d , not a, (27)

r2 : a ← not h, (28)

d (29)

Then, {a, d} is the unique answer set of the program consisting of rules (27–29). Since p

is false with respect to this answer set, the causal value associated to it is 0, that is, it has

its value by default without further explanation. On the other hand, Figure 22(a) and (b),

respectively, depicts the off-line and LABAS justifications explaining that p does not hold

because a is somehow preventing it. The extension of causal justifications, presented in

this section, associates the causal value (∼ra2 ∗ d)·rp1 to p in this scenario, pointing out

that rule r2 (and, thus a) is what prevents p from becoming true. A causal reading of

this expression is that “a has prevented (through rule r2) d to cause p (through rule r1)”

or, equivalently, “if it was not for rule r2 (implying a), d would cause p through rule r1.”

Suppose now that it is a holiday, so fact h is added to the programs (27) and (28). Then,

a is itself disabled and d is free to cause p. The causal justification of p in this case is

d ·rp1 (which corresponds to the graph with a single edge from d to rp1), which reflects the

fact that d has caused p, but without keeping any record about the fact that h has also

been necessary for this to happen. On the other hand, we can see in Figure 22(c) and (d)

14 A more detailed elaboration of this argument can be found in Section 3.6.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

150 J. Fandinno and C. Schulz

(a)
p−

a+

h−

⊥

−

−

−

(b)
p−
A1

not a−
asm

a+
A2

not h+
asm

−

+

+

(c)
p+

d+ a−

h+

�

+ −

−
+

+

(d)
p+
A1

d+
fact not a+

asm

a−
A2

not h−
asm

h+
fact

+ +

−

−

+

Fig. 22. Off-line and LABAS justifications of p w.r.t. the unique answer set of Example 37.

that both off-line and LABAS justifications keep track of this dependency. The extended

causal justifications also keep track of this dependency and associate the casual value

(∼∼h ∗ d)·rp1 + (∼ra2 ∗ d)·rp1 with p. Here, the first addend can be informally read as “h

has allowed d to cause p (through rule r1).” Double negation in front of h is introduced

to distinguish between the philosophically distinct concepts15 of productive cause (in this

case d) and other contingently counterfactual dependencies (in this case h), though this

distinction is not of particular relevance in the context of justifications. As before, the

second addend can be informally read as “if it was not for rule r2 (implying a), d would

cause p through rule r1” (even without the presence of h). �

In order to introduce information about negative literals in causal justifications,

Cabalar and Fandinno (2017) extended causal justifications with a negation inspired

by why-not provenance justifications (see Section 3.4; Damásio et al. 2013). We now

review this extension, starting with the introduction of negation in causal terms as

follows:

Definition 19 (Extended causal terms)

Given a set of atoms At and a set of labels Lb, an extended (causal) term (e-term for

short) t is recursively defined as one of the following expressions:

t ::= l
∣∣∣
∏

S
∣∣∣
∑

S
∣∣∣ t1·t2

∣∣∣ ∼t1
where l ∈ Lbext

def= { rai
∣∣ ri ∈ Lb and a ∈ Atext }, t1, t2 are in turn terms, and S is a

(possibly empty and possibly infinite) set of terms. An e-term is elementary if it has the

form l , ∼l , or ∼∼l with l ∈ Lbext being an extended label. �

Definition 20 (Extended causal values)

An extended (causal) value (e-value for short) is each equivalence class of e-terms under

axioms for a completely distributive (complete) lattice with meet “∗” and join “+” plus

the axioms of Figures 18 and 23. The set of e-values is denoted by ELb. �

15 A productive cause is an event connected to its effect by a causal chain as explained at the beginning of
Section 3.3. For a thorough philosophical explanation about the differences between productive causes
and contingently counterfactual dependencies we refer to Hall (2004,2007).

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 151

Pseudo-complement

t ∗ ∼t = 0
∼∼∼t = ∼t

De Morgan

∼(t+u) = (∼t ∗∼u)
∼(t ∗u) = (∼t+∼u)

Weak excl. middle

∼t + ∼∼t = 1

Appl. negation

∼(t · u) = ∼(t ∗ u)

Fig. 23. Properties of the “∼” operator.

As with causal values, we will use any of the members of the class as representative

of the extended casual value. Note that [0] = {0, ra1 ∗ ∼ra1 , . . . , } and [1] = {1,∼ra1 +
∼∼ra1 , . . .} are no longer singleton sets. The definition of disjunctive and graph normal

form is now strengthened by requiring that negation “∼” or double negation “∼∼” only

occurs in front of labels and extended atoms. Similarly, the graph normal form also

requires now that negation “∼” or double negation “∼∼” only occurs in front of labels

and extended atoms.

Interpretations are extended in a straightforward way: an e-interpretation is a mapping

I : Atext −→ ELb assigning an e-value to each extended atom such that I(a) = 0 or

I(¬a) = 0 for every atom a ∈ At. For interpretations I and J we say that I ≤ J when

I(a) ≤ J (a) for each atom a ∈ Atext. As above, there is a ≤-bottom e-interpretation

0 (resp. a ≤-top e-interpretation 1) that stands for the e-interpretation mapping each

extended atom a to 0 (resp. 1). The value assigned to a negative literal not a by an

e-interpretation I, denoted as I(not a), is defined as I(not a) def= ∼I(a), as expected.

Similarly, for any e-term t , its valuation I(t) def= [t] is the equivalence class of t .

To define the semantics of logic programs for extended causal justifications a slight

extension in the syntax is also needed: we allow that b1, . . . , bn in (1) are not only

extended atoms, but also e-terms. For instance, p ← q ∧ (a ∗ ∼b), with p, q ∈ Atext
and a, b ∈ Lb, is a valid rule in this extended syntax. Furthermore, only normal logic

programs are considered.

Definition 21 (E-Model)

An e-interpretation I satisfies a rule like (1) with k = 1 iff
(I(b1) ∗ . . . ∗ I(bn) ∗ I(not c1) ∗ . . . ∗ I(not cm)

) · rh1
i ≤ I(h1), (30)

and I is an e-model of P , written I |= P , iff I satisfies all rules in P . �

Definition 22 (E-Reduct)

Given a normal program P and an interpretation I, by PI we denote the positive program

containing a rule of the form16:

h1 ← b1, . . . , bn , I(not c1), . . . , I(not cm), (31)

for each rule of the form (1) in P . �

Program PI is positive and it has a ≤-least e-model17. By Γ̂P (·), we denote the operator18
mapping each e-interpretation I to the ≤-least e-model of program PI . Furthermore,

16 Note that I(not ci) is a possibly infinite causal term for each ci .
17 Here, we take ≤-minimal models instead of �-minimal models as in earlier sections. These two

concepts coincide for normal programs, so we use the former for simplicity.
18 The operator Γ̂P (·) is analogous to the operator ΓP (·) defined in Section 2, but using e-interpretations

instead of sets of atoms.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

152 J. Fandinno and C. Schulz

Γ̂2
P (·) denotes the operator over e-interpretations resulting from applying Γ̂P to the result

of its application to any e-interpretation, that is, Γ̂2
P (I) def= Γ̂P (Γ̂P (I)). This operator Γ̂2

P

is monotonic and so, by Knaster-Tarski’s theorem, it has a least fixpoint LP and a

greatest fixpoint UP
def= Γ̂P (LP). These two fixpoints, respectively, correspond to the

justifications for true and for non-false (i.e. either true of undefined) extended atoms in

the (standard) well-founded model. To capture justifications w.r.t. answer sets, we use

the negative reduct from Definition 3.

Definition 23 (Extended causal answer sets)

Given a normal extended program P , one of its standard answer sets M , and a set

of assumptions U ⊆ M such that WFNR(P,U) = M , the extended causal answer set

(e-answer set) corresponding to M and U is a function mapping each literal to an e-value

as follows:

MU (a) def= LQ(a) MU (not a) def= ∼UQ(a)

with Q = NR(P ,U). �

The notion of causal justification is extended as expected.

Definition 24 (Extended causal justification)

Given a logic program P , an answer set M of P , and a set of assumptions U ⊆ M , a

term without sums c is an extended causal justification of some literal l ∈ {a, not a}
w.r.t. P , M , and U if c is an addend in the minimal disjunctive normal form of MU (l).

For any causal justification of l w.r.t. P , M , and U , graph(c) is an extended causal

graph (justification). �

Example 38 (Ex. 37 continued)

Let P23 be the logic program containing rules (27–28). This program has a complete

well-founded model which coincides with its unique answer set: M19 = {a, d}. Then, the
possible assumptions w.r.t. this answer set are those U such that U ⊆ {h}, that is, {} and
{h}. Usually ⊆-minimal assumptions are used and, thus, we have that P23 = NR(P23, {})
and that

Γ̂P23
(0)(p) = d ·rp1

Γ̂P23
(0)(d) = d

Γ̂P23
(0)(a) = ra2

Γ̂P23
(0)(h) = 0

Γ̂2
P23

(0)(p) = (∼ra2 ∗ d)·rp1
Γ̂2
P23

(0)(d) = d

Γ̂2
P23

(0)(a) = ra2

Γ̂2
P23

(0)(h) = 0

Γ̂3
P23

(0)(p) = (∼ra2 ∗ d)·rp1
Γ̂3
P23

(0)(d) = d

Γ̂3
P23

(0)(a) = ra2

Γ̂3
P23

(0)(h) = 0

Note that Γ̂2
P23

(0) = Γ̂3
P23

(0) also implies that Γ̂2
P23

(0) = Γ̂4
P23

(0) and, thus, Γ̂2
P23

(0) is

the least fixpoint of the Γ̂2
P23

(0) operator. Note also that Γ̂2
P23

(0)(p) = (∼ra2 ∗ d)·rp1 is

precisely the causal justification shown in Example 37 to be associated with p in this

scenario. Let now P24 = P23 ∪ {h}, which also has a complete well-founded model and

unique answer set: M20 = {p, d , h}. In this case, we have

Γ̂P23
(0)(p) = d ·rp1

Γ̂P23
(0)(d) = d

Γ̂2
P23

(0)(p) = (∼ra2 ∗ d)·rp1
Γ̂2
P23

(0)(d) = d

Γ̂3
P23

(0)(p) = . . .

Γ̂3
P23

(0)(d) = d

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 153

Γ̂P23
(0)(a) = ra2

Γ̂P23
(0)(h) = h

Γ̂2
P23

(0)(a) = ∼h·ra2
Γ̂2
P23

(0)(h) = h

Γ̂3
P23

(0)(a) = ∼h·ra2
Γ̂3
P23

(0)(h) = h

with Γ̂4
P23

(0)(p) = Γ̂3
P23

(0)(p) = (∼∼h ∗ d)·rp1 + (∼ra2 ∗ d)·rp1 as also mentioned in

Example 37. �

An extended causal justification is said to be inhibited when it contains a negated

label (non-double negated). Inhibited justifications point out derivations that could have

justified the truth value of the atom, but that have been prevented to do so. The negated

subterms are the inhibitors of the extended causal justification. Actual extended causal

justifications are those that only contain non-negated and double-negated subterms. In

Example 38, the casual term (∼∼h ∗d)·rp1 represents the actual extended causal justifica-

tion of p, while (∼ra2 ∗ d)·rp1 is an inhibited extended causal justification that points out

that “had it not been for rule r2, then d would cause p to be true through rule r1 (with-

out the need of h).” Note that the presence of the negated subterm ∼ra2 in the inhibited

extended causal justification (∼ra2 ∗d)·rp1 is similar to the attack from the argument with

conclusion a to the argument with conclusion p in the attack tree used to construct the

LABAS justification.

Example 39 (Ex. 36 continued)

Continuing with the problem introduced in Example 36, we can see that Γ̂i
P22

(0)(on1) =

(swa0∗swb0)·r11 for all i ≥ 1. That is, the extended causal justification of on1 has precisely

the same graph as the (non-extended) causal justification depicted in Figure 21(a). We

also have that Γ̂i
P22

(0)(off1) = (∼swa0 ∗ off0)·i22 + (∼swb0 ∗ off0)·i22 + (∼r11 ∗ off0)·i22
for all i ≥ 2. This points out that off1 would be true by inertia (rule i22) if any of the

facts swa0 or swb0 or the rule r11 had not been in the program. It can be checked that

(swa0 ∗ swb0)·r11·i12 is the extended causal justification of on2. Recall that this is the

(non-extended) causal justification of on2, whose corresponding causal graph is depicted

in Figure 21(b). �

Example 40 (Ex. 38 continued)

Recall that, in the unique answer set M19 = {d , a} of program P23, the atom p is

false. Extended causal justifications also allow to justify negative literals and we have

that not p is explained by the causal value ∼∼ra2 + ∼d + ∼rp1 . Here, ∼∼ra2 is the actual

extended causal justification explaining why p is false, while ∼d and ∼rp1 are inhibited

extended causal justifications that point out that p would also be false if either d or r1
were removed from the program. �

Note that in Example 40 the application operator “·” does not appear in the extended

causal justification of not p. In fact, this is the general case for negative literals and, thus,

extended causal justifications for negative literals do not keep track of the derivation order

among rules. An algebraic treatment that allows to keep track of this derivation order

is still an open topic. It is also an open topic to explain negative literals for disjunctive

programs.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

154 J. Fandinno and C. Schulz

3.4 Why-not provenance justifications

Why-not provenance (Damásio et al. 2013) is a declarative logical approach, which

extracts non-graph-based justifications for the truth value of atoms w.r.t. the (com-

plete) well-founded model of normal logic programs. It can furthermore be used to

explain the truth value of atoms w.r.t. the answer set semantics. The approach has

been implemented in a meta-programming tool (Damásio et al. 2015) available at

http://cptkirk.sourceforge.net. As mentioned in Section 3.3.3, the way extended

causal justifications have been defined is inspired by this approach; therefore, we here

just introduce the differences between these two approaches, avoiding the overlapping

material.

As already mentioned, the first major difference compared to extended causal justifi-

cations (and the other justifications approaches reviewed in Section 3) is the non-graph

nature of why-not provenance. Instead, why-not provenance justifications are sets of

annotations, each one expressing a possible modification of the program to achieve a

particular truth value of the justified atom w.r.t. the well-founded model (of the mod-

ified program). In other words, why-not provenance computes justifications expressing

how the atom can be made true, false, or undefined w.r.t. the well-founded model or the

answer set semantics. The justifications for the actual truth value of the atom are those

that do not imply any modification on the program. This can be achieved by adding the

axiom

(t ·u) = (t ∗ v) (32)

to those defining e-values (Definition 20). That is, the non-commutative operator “·” is

replaced by the commutative one “∗,” effectively removing the order of application of

rules from the justifications.

The second difference compared to extended causal justifications is that why-not prove-

nance does not distinguish between productive causes and other counterfactual depen-

dencies, which is achieved by adding the double negation elimination axiom:

∼∼t = t (33)

Definition 25 (Why-not provenance values)

A why-not provenance value (w-value for short) is each equivalence class of e-terms

(Definition 19) under axioms for a completely distributive (complete) lattice with meet

“∗” and join “+” plus the axioms of Figures 18 and 23 and the axioms (t ·u) = (t ∗ v)

and ∼∼t = t . The set of w-values is denoted WLb. �

Due to the addition of axioms (32) and (33), w-values form a free boolean algebra19

generated by Lb. The definitions of w-interpretation, w-model, and reduct are analogous

to the ones in Section 3.3.3, but replacing e-values by w-values. We will use Ĩ, J̃ , and

their variations to denote w-interpretations. By Γ̃P (Ĩ) we denote the least w-model of

program P Ĩ , and by Γ̃2
P (I) def= Γ̃P (Γ̃P (I)) we denote the result of applying Γ̃P to the

19 In fact, the original definition relies on a free boolean algebra instead of causal terms and assumes the
notation of logical formulas to represent its values (see Notation 2).

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

http://cptkirk.sourceforge.net
https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 155

result of its application to Ĩ. Let us denote by TP and TUP , the least and greatest

fixpoint of the operator Γ̃2
P .

Notation 2

In order to closely follow the notation used in Damásio et al. (2013), we will represent

the meet as conjunction “∧” instead of as product “∗” and the joint as disjunction “∨”
instead of “+” when representing w-values. We will also write negation as “¬” instead of

“∼” to strengthen the fact that it now acts as classical negation and omit the superindex

of labels. �

Note that the intuition of the two former operators is as before: conjunction “∧”
indicates joint interaction and disjunction “∨” represents alternative justifications. On

the other hand, now negation “¬” denotes hypothetical changes to the program (ei-

ther removal or addition) that may lead to the literal belonging to the well-founded

model.

Example 41 (Ex. 10 continued)

Let us label each rule in the program P8 as follows:

r1 : p ← not q r2 : r ← not p r3 : s ← not r

As mentioned in Example 10, this program has a complete well-founded model: M8 =

{p, s}. We also have that the following extended causal justifications:

Γ̂P8
(0)(p) = rp1

Γ̂P8
(0)(q) = 0

Γ̂P8
(0)(r) = r r2

Γ̂P8
(0)(s) = r s3

Γ̂2
P8
(0)(p) = rp1

Γ̂2
P8
(0)(q) = 0

Γ̂2
P8
(0)(r) = ∼rp1 ·r r2

Γ̂2
P8
(0)(s) = ∼r r2 ·r s3

Γ̂3
P8
(0)(p) = rp1

Γ̂3
P8
(0)(q) = 0

Γ̂3
P8
(0)(r) = ∼r1·r r2

Γ̂3
P8
(0)(s) = ∼∼r1·r s3 +∼r r2 ·r s3

and, it can be checked that, Γ̂4
P8
(0) = Γ̂2

P8
(0). Then, applying the above two axioms

(32-33) and the rewriting of Notation 2, we have that

Γ̃4
P8
(0)(p) = r1

Γ̃4
P8
(0)(q) = 0

Γ̃4
P8
(0)(r) = ¬r1 ∧ r2

Γ̃4
P8
(0)(s) = r1 ∧ r3 ∨ ¬r2 ∧ r3

The intuition behind r1 ∧ r3 is similar to the one in extended causal justifications, but

without derivation order nor distinction between productive causes and other contin-

gently counterfactual dependencies: r1 ∧ r3 means that “s is true because both r1 and r3
are in the program.” �

In other words, the least fixpoint of Γ̃2
P can be obtained from the least fixpoint of Γ̂2

P

by replacing applications “·” by products “∗,” removing every double negation symbols

“∼∼” and, then, applying the rewriting of Notation 2. More formally, let λ : ELb −→ WLb

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

156 J. Fandinno and C. Schulz

be this transformation from e-values to w-values, that is, λ is defined in the following

recursive way:

λ(t) def=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ(u) ∧ λ(w) if t = u � v with � ∈ {∗, ·}
λ(u) ∨ λ(w) if t = u + v

¬λ(u) if t = ∼u
l if t = l with l ∈ (Lb ∪Atext)

with t in graph normal form.

Note that, similar to LABAS justifications, there are no extended causal justifications

for atoms for which there is no derivation. For instance, there is no justification for the

atom p w.r.t. a program consisting of a single rule p ← q . On the other hand, as in off-line

justifications, there are why-not provenance justifications for those atoms. In our running

example, p is associated with the why-not provenance information ¬not(p)∨r1∧¬not(q)
where r1 is the label associated to the rule p ← q . This difference is due to the use of an

extended program to compute why-not provenance information.

Definition 26 (Provenance program)

Given a normal program P , the why-not provenance program is P(P) def= P ∪ P ′, where
P ′ contains a labeled fact of the form (¬not(a) : a) for each extended atom a ∈ Atext
not occurring as a fact in P . �

We write P instead of P(P) when the program P is clear from the context. To compute

the why-not provenance information of some normal program P , we will be interested

in the least and greatest fixpoints of the Γ̃2
P operator w.r.t. the provenance program

P (corresponding to P), instead of those of P itself. That is, we will use the least and

greatest fixpoints TP and TUP. It is also worth noting that these fixpoints can be obtained

from the fixpoints of the extended causal operator w.r.t. the extended program, that is,

TP = λ(LP) and TUP = λ(UP).

Definition 27 (Provenance information)

Given a normal program P , why-not provenance information is defined as a mapping

from literals20 into w-values satisfying:

WhyP (a)
def= TP(a)

WhyP (not a)
def= ¬TUP(a)

WhyP (undef a)
def= ¬WhyP (a) ∗ ¬WhyP (not a)

for each extended atom a ∈ Atext. �

Intuitively, each disjunct in the minimal disjunctive normal form of provenance infor-

mation corresponds to a justification about to why the atom does or does not have the

respective truth value w.r.t. the well-founded model. That is, the disjunct in WhyP (a),

WhyP (not a), and WhyP (undef a), respectively, explain why a is (not) true, false, and

undefined w.r.t. the well-founded model. The actual truth value of a can be spotted if a

20 In this section, we use a more general notion of “literal,” where an atom a may not only be proceeded
by not, but also by undef.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 157

disjunct in the respective justification (WhyP (a), WhyP (not a), or WhyP (undef a)) does

not contain any negation ¬.
Example 42 (Ex. 41 continued)

Continuing with our running example, we have that P8 = P(P8) consists of the following

rules:

r1 : p ← not q

r2 : r ← not p

r3 : s ← not r

¬not(p) : p

¬not(q) : q

¬not(p) : r

¬not(s) : s

Since there is no fact q in P8, we have that (¬not(q) : q) belongs toP8. Furthermore, this

is the unique rule in P8 with q in the head and, consequently, we have that Γ̂i
P8

(0)(q) =

¬not(q) for all i ≥ 1. This implies that TP(q) = TUP(q) = ¬not(q) and, thus, that
WhyP8

(q) = ¬not(q) (34)

WhyP8
(not q) = not(q) (35)

WhyP8
(undef q) = 0 (36)

Note that WhyP8
(q) = ¬not(q) corresponds to the off-line justification of q consisting

of a unique edge (q−,⊥,−). On the other hand, since there is no rule in P with q in

the head, there is no LABAS nor (extended) causal justification of q . Similarly, to the

computation shown in Example 41, we also have that

Γ̃i
P8
(0)(p) = ¬not(p) ∨ r1 ∧ not(q)

Γ̃i
P8
(0)(r) = ¬not(r) ∨ r2 ∧ not(p) ∧ ¬r1 ∨ r2 ∧ not(p) ∧ ¬not(q)

Γ̃i
P8
(0)(s) = ¬not(s) ∨ r3 ∧ not(r) ∧ ¬r2 ∨ r3 ∧ not(r) ∧ ¬not(p)

∨ r3 ∧ not(r) ∧ r1 ∧ not(q)

for all i ≥ 2. This implies that TP(p) = TUP(p) = ¬not(p) ∨ r1 ∧ not(q) and that

WhyP8
(p) = ¬not(p) ∨ r1 ∧ not(q)

WhyP8
(not p) = not(p) ∧ ¬r1 ∨ not(p) ∧ ¬not(q)

WhyP8
(undef p) = 0

Following a similar procedure, it can be checked that

WhyP8
(r) = ¬not(r) ∨ r2 ∧ not(p) ∧ ¬r1 ∨ r2 ∧ not(p) ∧ ¬not(q)

WhyP8
(not r) = not(r) ∧ ¬r2 ∨ not(r) ∧ ¬not(p) ∨ not(r) ∧ r1 ∧ not(q)

WhyP8
(undef r) = 0

that WhyP8
(s) is

¬not(s) (37)

∨ r3∧not(r)∧¬r2 (38)

∨ r3∧not(r)∧¬not(p) (39)

∨ r3∧not(r)∧r1∧not(q) (40)

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

158 J. Fandinno and C. Schulz

and that WhyP8
(nots) is

not(s)∧¬r3 (41)

∨ not(s)∧¬not(r) (42)

∨ not(s)∧r2∧not(p)∧¬r1 (43)

∨ not(s)∧r2∧not(p)∧¬not(q) (44)

Comparing the conjunction r1∧r3 obtained in Example 41 with the conjunction (40), we

can observe that annotations not(r) and not(q) have been added. This can be informally

read as “s is true because both r1 and r3 are in the program and facts r and q are

not.” Note also that not(r) ∧ r1 ∧ not(q) is one of the disjuncts of WhyP8
(not r). This

could be read as “r is false because of rule r1 and the absence of facts r and q in the

program.” �

The following definitions formalize the notion of why-not provenance justification,

that is, a disjunct in the why-not provenance information, and the intuition behind the

meaning of each annotation in a justification. In particular, it expresses the idea that

each justification describes a modification of the program after which the atom has the

truth value of the respective justification.

Definition 28 (Why-not provenance justification)

Let P be a normal program, let a ∈ Atext be an extended atom, and let l ∈
{a, not a, undef a} such that WhyP (l) = c1 ∨ . . . ∨ cn is the why-not provenance infor-

mation of l in minimal disjunctive normal form. Then, we say that each ci is a why-not

provenance justification of l w.r.t. P . �

Definition 29

Let P be a normal program, a ∈ Atext be an extended atom, and l ∈ {a, not a, undef a}.
Let c be some why-not provenance justification of l w.r.t. P and C a set of annotations

such that
∧
C = c. Then, the following sets are defined, where b ∈ Atext and r ∈ P :

KeepFacts(c) def= { b
∣∣ b ∈ C }

RemoveFacts(c) def= { b
∣∣ ¬b ∈ C }

MissingFacts(c) def= { b
∣∣ ¬not(b) ∈ C }

NoFacts(c) def= { b
∣∣ not(b) ∈ C }

KeepRules(c) def= { r
∣∣ ri ∈ C and label(r) = ri }

RemoveRules(c) def= { r
∣∣ ¬ri ∈ C and label(r) = ri } �

Intuitively, any disjunct cj in the why-not provenance information of some literal l ex-

presses a possible modification of the program such that l belongs to the well-founded

model of the resulting program. These modifications are captured by the above sets.

For instance, MissingFacts(cj) is a set of facts that would be necessary to add to the

program in order to justify l , while NoFacts(cj) is a set of facts that cannot be added

in order to justify l . As a consequence, l will belong21 to the well-founded model of any

21 This has been shown in Damásio et al. (2013, Theorem 3).

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 159

program resulting from adding any supersetG ofMissingFacts(cj) that does not contain

any fact fromNoFacts(cj) (assuming that RemoveRules(cj) = RemoveFacts(cj) = {}).
Example 43 (Ex. 42 continued)

Continuing with our running example, we have that nots does not belong to the well-

founded model of P8 and that c = not(s)∧¬not(r) is a why-not provenance justification

of not s , that is, it is a disjunct (42) of the why-not provenance information of not s .

Then, we also have MissingFacts(c) = {r} and NoFacts(c) = {s}. This expresses that
not s would belong to the well-founded model of any program P ′ = P8 ∪G with G any

set of facts that includes r but does not include s . �

Similarly, KeepFacts(cj) and KeepRules(cj) point out facts and rules that need to be

kept in the program to justify the literal while RemoveFacts(cj) and RemoveRules(cj)

state facts and rules that need to be removed from the program. Note that, if a con-

junction cj contains no negation, then it does not imply any change in the program and,

thus, constitutes an actual justification for the actual value of the literal.

Example 44 (Ex. 43 continued)

As a further example, let c′ = r3 ∧ not(r) ∧ r1 ∧ not(q) be a why-not provenance

justification of s (the conjunction corresponding to the disjunct (40) of the why-not

provenance information of s). Informally, this conjunction expresses that “s is true

because both r1 and r3 are in the program and facts r and q are not.” Note that

KeepRules(c′) = {r1, r3} and NoFacts(c′) = {r , q}, indicating that s remains true

as long as we keep these two rules and we add neither r nor q , even if we remove other

rules or remove or add other facts. Note also that there is no negated annotation in

c′ and, thus, RemoveFacts(c′) =MissingFacts(c′) =RemoveRules(c′) = {}. In other

words, c′ points out that no modification is required to make s true and, thus, it is an

actual justification for the truth of s . �

The following example illustrates how why-not provenance captures justifications of

programs with even-length negative dependency cycles:

Example 45 (Ex. 4 continued)

Let us define the following labeling for program P3:

r1 : p ← not q r2 : q ← not p

As we have seen, program P3 has two answer sets, namely M3 = {p} and M4 = {q}, and
an empty well-founded model. The computation of the why-not provenance information

goes as follows:

Γ̃1
P3

(0)(p) = ¬not(p) ∨ r1

Γ̃2
P3

(0)(p) = ¬not(p) ∨ r1∧not(q)∧¬r2
Γ̃3
P3

(0)(p) = ¬not(p) ∨ r1∧not(q)
Γ̃4
P3

(0)(p) = ¬not(p) ∨ r1∧not(q)∧¬r2

Γ̃1
P3

(0)(not q) = not(q) ∧ ¬r2
Γ̃2
P3

(0)(not q) = not(q) ∧ (¬r2∨¬not(p)∨r1)
Γ̃3
P3

(0)(not q) = not(q) ∧ (¬r2∨¬not(p))
Γ̃4
P3

(0)(not q) = not(q) ∧ (¬r2∨¬not(p)∨r1)
Γ̃2
P3

(0) and Γ̃3
P3

(0), respectively, are the least and greatest fixpoint of Γ̂2
P3

. The case for

q and not p are symmetric. Then, the why-not provenance information for p is as follows:

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

160 J. Fandinno and C. Schulz

WhyP3
(p) = ¬not(p) ∨ r1∧not(q)∧¬r2

WhyP3
(not p) = not(p)∧¬r1 ∨ not(p)∧¬not(q)

WhyP3
(undef p) = not(p)∧not(q)∧r1∧r2

Note that the only why-not provenance justification without negation ¬ occurs in

WhywP3
(undef p), indicating that the actual truth value of p w.r.t. the well-founded

model is undefined. The conjunction expresses that p is undefined in the well-founded

model of P3 because of the rules r1 and r2 and the absence of the facts p and q . �

3.4.1 Answer set why-not provenance

The why-not justifications reviewed so far explain the truth value of literals w.r.t. the

well-founded model. Why-not provenance information of a literal w.r.t. the answer set

semantics is defined in terms of the why-not provenance of that literal being true in the

well-founded model and the non-existence of undefined atoms in it. In other words, a

literal is justified w.r.t. the answer set semantics by referring to modifications that make

the literal true w.r.t. the complete well-founded model, which implies that it becomes

the unique answer set.

Definition 30 (Answer set provenance information)

Given a normal program P , the answer set why-not provenance information of a literal

l ∈ Litext is defined as: AnsWhyP (l)
def= WhyP (l) ∧ ∧

b∈Atext
¬WhyP (undef b). �

Definition 31 (Answer set why-not provenance justification)

Let P be a normal program, let a ∈ Atext be an extended atom, and let l ∈
{a, not a, undef a} such that AndWhyP (l) = c1 ∨ . . . ∨ cn is the answer set why-not

provenance information of l in minimal disjunctive normal form. Then, we say that each

ci is an answer set why-not provenance justification of l w.r.t. P . �

Note that Definition 30 characterizes the major difference between this justification

approach and the three previous ones: there is a unique provenance information of a

literal w.r.t. the whole program, not w.r.t. each answer set.

In the case of Example 45 the answer set provenance (Definition 30) for p, q , not p,

and not q coincides with their respective provenance information (Definition 27). Note

that none of the disjuncts in the why-not provenance information of p (resp. q) is without

negation, which seems to point out that p is not true (can only be made true through

modifications of the program). The reason is that, even though p (resp. q) is true in

some answer set, it is not true in the well-founded model (it could also be due to the

well-founded model not being complete). The answer set provenance thus points out

modifications that would yield a complete well-founded model (and, thus, a unique answer

set) in which p (resp. q) is true.

The following example illustrates that even if an atom is true in the unique answer

set, the answer set provenance (as given by Definition 30) may still point out that mod-

ifications are needed to make the atom true. This is because a unique answer set may

not be a complete well-founded model.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 161

Example 46 (Ex. 45 continued)

Let P25 be the program

r1 : p ← not q r2 : q ← not p r3 : s ← p ∧ not s

obtained by adding rule r3 to program P3. This program has a unique answer set M21 =

{q}. Furthermore, adding rule r3 to program P3 does not change the why-not provenance

information of p or q . The computation of the why-not provenance information for s goes

as follows:

Γ̃1
P25

(0)(s) = ¬not(s) ∨ r3∧¬not(p) ∨ r3∧r1
Γ̃2
P25

(0)(s) = ¬not(s)
Γ̃3
P25

(0)(s) = ¬not(s) ∨ r3∧¬not(p) ∨ r3∧r1∧not(q)
Γ̃4
P25

(0)(s) = ¬not(s)
and we obtain

WhyP25
(s) = ¬not(s)

WhyP25
(not s) = not(s)∧¬r3 ∨ not(s)∧not(p)∧¬r1 ∨ not(s)∧not(p)∧¬not(q)

WhyP25
(undef s) = r3∧not(s)∧¬not(p) ∨ r1∧r3∧not(s)∧not(q)

That is, s is undefined in the well-founded model because of rules r1 and r3 and the

absence of the facts s and q . It would also be undefined if we added the fact p while keep-

ing the rule r3 and the absence of s . Furthermore, AnsWhyP25
(undef p) = AnsWhyP25

(undef q) and, thus, ¬AnsWhyP25
(undef p) ∧ ¬AnsWhyP25

(undef q) ∧ ¬AnsWhyP25

(undef s) = ¬AnsWhyP25
(undef p) ∧ ¬AnsWhyP25

(undef s) which corresponds to

¬(not(p)∧not(q)∧r1∧r2) ∧ ¬(r3∧not(s)∧¬not(p) ∨ r1∧r3∧not(s)∧not(q))
We also have that

WhyP25
(q) = ¬not(q) ∨ r2∧not(p)∧¬r1

This implies that the answer set provenance information for q is

AnsWhyP25
(q) = ¬not(q) ∧ ¬r3

∨ ¬not(q) ∧ ¬not(s)
∨ ¬not(q) ∧ not(p)

∨ ¬r1 ∧ r2 ∧ not(p)

The disjuncts represent different modifications of the program leading to the existence

of a complete well-founded model (and, thus, a unique answer set), in which q is true. �

Example 46 can be used to illustrate how the notion of assumption, as introduced

in Section 3.1, can be applied to why-not provenance justifications. In particular, the

disjunct ¬r1 ∧ r2 ∧ not(p) in AnsWhyP25
(q) suggests removing all rules with p in the

head (just r1) and not adding the fact p to the program. This can be understood as

“p needs to be assumed to be false” in a similar way as done in off-line or extended

causal justifications. In order to make this informal reading about this last disjunct,

we need to know that p is actually false in the answer set that we are considering,

that is, M21 = {q}, because AnsWhyP25
(p) contains a symmetric disjunct ¬r2 ∧ r1 ∧

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

162 J. Fandinno and C. Schulz

not(q) whose informal reading does not correspond to an assumption but to an actual

modification. This is not a surprise because why-not provenance (as an unsimplified

formula) can be computed in polynomial time, while deciding whether some atom is

true in some answer set of some normal program is, in general, NP-complete. Hence,

unless the polynomial hierarchy collapses, it is obvious that why-not provenance cannot

contain information about whether some atom is true or false in some answer set. Note

also that, though extended causal justifications (as an unsimplified causal term) can be

computed in polynomial time, they are construed w.r.t. a program reduced w.r.t. the set

of assumptions corresponding to this answer set. Hence, they assume the information of

true atoms in an answer set as given. The same approach used to define extended causal

justifications w.r.t. an answer set could be applied to why-not provenance as well.

3.5 Other justification approaches

In this section we informally review two other approaches that deal with justifications

in ASP, namely justifications in rule-based answer set computation (Béatrix et al. 2016)

and the formal theory of justifications (Denecker and De Schreye 1993; Denecker et al.

2015). Despite sharing a similar purpose with previous approaches, the formal definition

of Béatrix et al. (2016) heavily relies on the concept of ASPeRiX computation (Lefèvre

et al. 2017) and is out of the scope of this survey. On the other hand, the purpose of the

works by Denecker and De Schreye (1993) and Denecker et al. (2015) is to study different

semantics of logic programming from the point of view of justifications rather than to

provide explanations that are “intelligible and easily accessible” by humans, as required

by the new GDPR.

3.5.1 Justifications in rule-based answer set computation

Béatrix et al. (2016) study the notion of justification from a rule-based point of view of

answer set computation, that is, under the assumption that the inherent non-determinism

of answer sets is due to the guessing of the application or non-application of rules rather

than the guessing of the truth value of literals. Another interesting point to mention is

that justifications in this approach, called reasons, are sets of rules instead of graphs.

The following example illustrates these two differences.

Example 47

Consider the following program P26:

r1 : p ← t ∧ not q r2 : q ← s r3 : s ← not p t : t

which has two answer sets: M22 = {p, t} and M23 = {q , s , t}. The rule-based reason

for the truth of the atom p w.r.t. the answer set {p, t} of the program P26 is the

set {r1, t}. �

We may use Example 47 to highlight some similarities and differences with previously

discussed justification approaches. It can be checked that the causal graph justification

(Figure 24(c)) for p in this example has precisely vertices t and rp1 , corresponding to the

rule-based reason. Correspondences with the off-line justification, shown in Figure 24(a),

are also easy to see: the application of rule r1 is represented by the two outgoing edges

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 163

(a)
p+

t+ q−

� assume

−+

++

(b)

p+

t+fact not q+
asm

q−

not p−
asm

+ +

−

−

+

(c)
rp1

t

Fig. 24. Off-line, LABAS, and causal justifications of p w.r.t. {p, t} and P26.

from p+ to t+ and to q−, where assuming q− to be false ensures that r1 is satisfied.

Similarly, the answer set why-not provenance of p includes the disjunct r1∧t∧not(q)∧¬r2,
where not(q)∧¬r2 can be understood to mean that q is assumed to be false. The LABAS

justification, shown in Figure 24(b), further explains that the falsity of q depends on the

truth of p, thus also using rules r2 and r3 for the explanation. Interestingly, the answer

set why-not provenance of p has another disjunct r1 ∧ t ∧ not(q) ∧ ¬r3, which also uses

rule r3 to justify p.

Note that the rule-based reason for the falsity of q w.r.t. M22 is a subset of the reason

for p, namely {r1}. This contrasts with off-line and causal justifications, in which q is

assumed to be false, and LABAS justifications, in which q is explained in the same way

as in the justification of p (flipping the justification in Figure 24(b) so that q is at the

top coincides with the LABAS justification of q), that is, in terms of r3 (and implicitly

r2) as well as r1 and t . The answer set why-not provenance of not q includes the disjunct

not(q) ∧ ¬r2 which, as mentioned before, can be understood as assuming that q is false.

3.5.2 Formal theory of justifications

Denecker and De Schreye (1993) and Denecker et al. (2015) present an abstract theory

of justifications, suitable for describing the semantics of logics in knowledge representa-

tion and computational and mathematical logic. In this theory, each program induces a

semantic structure called justification frame, which embodies the potential reasons why

the program’s conclusions are true. Interestingly, the authors show that differences in

various semantics can be traced back to a single difference, namely the way in which

justifications with infinite branches are handled. For instance, p is justified w.r.t. pro-

gram P3 = {p ← not q , q ← not p} by the following infinite branch:

p → not q → p → not q → . . .

This is evaluated as undefined under the well-founded semantics (infinite branches alter-

ing positive and negative literals are always evaluated as undefined under the well-founded

semantics). In contrast, it takes the value of not q under the answer set semantics (un-

der the answer set semantics infinite branches are evaluated to the truth value of the

first positive (resp. negative) literal whose predecessors are all negative (resp. positive)

literals), which is true w.r.t. answer set {p}, but false w.r.t. {q}.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

164 J. Fandinno and C. Schulz

Contrary to the other approaches surveyed here, this work focuses on exploiting jus-

tifications as mathematical objects to understand different semantics (and propose new

ones) rather than as means to answer in a compact way, why a conclusion has been

reached. The complete justifications defined in the formal theory of justifications are

thus structures that contain information for all literals, even those that are not directly

related to the derivation of a literal in question. As an explanation in the sense of the new

GDPR, complete justifications are thus not suitable as they are clearly not “concise” and

likely not “intelligible and easily accessible,” as they comprise information unnecessary

for a user’s understanding. Studying how concise and intelligible justifications can be ob-

tained from this structures is an interesting open topic as it would be directly applicable

to several logics and knowledge representation formalisms like argumentation.

3.6 Summary and discussion

In Sections 3.1–3.5 we have surveyed the most prominent approaches for justifying the

solutions to consistent logic programs under the answer set semantics. Note that through-

out these sections, by referencing an answer set to justify, we implicitly assumed that

logic programs are consistent. While explaining the justification approaches, we already

pointed out differences and similarities between these approaches. Some of these are re-

iterated in Tables 1 and 2, which provide a comparative overview of various features of

the justification approaches.

Table 1 illustrates for which types of logic programs the different justification ap-

proaches are defined, in which terms they explain answer sets (i.e. dependencies between

rules or literals), whether all parts of a literal’s derivation are included in a justification,

and what precisely is being explained, that is, a literal in an answer set, a literal not

contained in an answer set, or a whole answer set. Table 2 complements this comparison,

by showing whether the justification approaches make use of logic programming models

other than the answer set in question when constructing a justification, whether nega-

tive literals occur in justifications and, if so, how their truth value is explained, whether

justifications may be infinite, and whether there may be infinitely many justifications.

In the following, we discuss some of the differences between the justification approaches

in more detail and highlight some of their advantages and disadvantages.

In particular, we focus on the philosophical ideas underpinning the different justifica-

tions approaches (Section 3.6.1), the problem of having exponentially many justifications

(Section 3.6.2), how different approaches deal with NAF (Section 3.6.3), and the issues

faced when dealing with large logic programs (Section 3.6.4).

3.6.1 Explanatory elements

Due to the usage of different definitions of answer set, the different justifications em-

body distinct ideas. For instance, the intuition of off-line justifications (Section 3.1)

can be traced back to Prolog-tabled justifications (Roychoudhury et al. 2000); LABAS

justifications (Section 3.2) have an argumentative flavor and are based on a corre-

spondence between logic programs and their translation into argumentation frameworks

(Schulz and Toni 2015; Schulz and Toni 2016), while causal justifications (Section 3.3)

rely on a causal interpretation of rules and the idea of causal chain (Lewis 1973). Despite

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 165

Table 1. Comparison of explanation approaches for consistent logic programs under the

answer set semantics

Derivation
Justification Type of logic Explanation steps
approach program in terms of included Explains

Off-line
justifications

Normal LP Literal
dependency

All One literal (not) in
answer set

LABAS
justifications

Normal extended
LP

Literal
dependency

Some One literal (not) in
answer set

Causal
justifications

Extended LP
with nested
expressions in the
body

Rule-literal
dependency

All One literal in
answer set

Extended
causal
justifications

Normal extended
LP

Rule-literal
dependency

All One literal (not) in
answer set

Why-not
provenance

Normal LP Rule
dependency

All One literal (not) in
the complete
well-founded
modela

Rule-based
justifications

Normal LP Rule
dependency

All One literal (not) in
answer set

Formal
theory of
justifications

Normal LP Literal
dependency

All Whole answer set

aThe why-not provenance corresponding to each answer set can then be obtained by forcing the atoms
not in the answer set as assumptions, similarly as done for extended causal justifications.

their differences, these three approaches share the fact that they explain why a literal

belongs to some answer set using a “concise” graph structure (in the sense that these

graphs do not contain information not related to the literal in question).

The why-not provenance (Section 3.4), which is based on the concept of provenance

inherited from the database literature (Green et al. 2007), shares with these approaches

the idea of building concise justifications for each literal. However, why-not provenance

justifications are set based (instead of graph based) and are built without referring to a

specific answer set, so justifications are answer set independent. The justifications for a

particular answer set can be obtained by “forcing” the appropriate assumptions as done

in extended causal justifications.

A similar point of view is also shared by rule-based justifications (Section 3.5.1), which

are based on the concept of an ASPeRiX computation (Lefèvre et al. 2017). Conceptually,

the major difference between this and the previously mentioned approaches lies in what

is considered as assumptions, that is, as elements that do not need to be further justified:

rules in the case of rule-based justifications and literals in the case of the other approaches.

Finally, the formal theory of justifications (Section 3.5.2) aims to explain the differences

between different logic programming semantics by identifying how their conclusions are

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

166 J. Fandinno and C. Schulz

Table 2. Comparison of explanation approaches for consistent logic programs under the

answer set semantics (continued)

Computation Explanation
Justification uses other negative Infinite Infinitely many
approach models literals explanations explanations

Off-line
justifications

Well-founded
model

Assumed or
further
explained

No, if the program
is finite

No, if the program
is finite

LABAS
justifications

No Further
explained

Yes Yes

Causal
justifications

No Assumed No No, if the program
is finite

Extended
causal
justifications

Well-founded
model

Assumed or
further
explained

No, if the program
is finite

No, if the program
is finite

Why-not
provenance

(Do not need
answer sets)

Further
explained

No, if the program
is finite

No, if the program
is finite

Rule-based
justifications

No Further
explained

No, if the program
is finite

No, if the program
is finite

Formal theory No Further
explained

Yes No, if the program
is finite

justified. Contrary to the other approaches, it provides justifications for a whole answer

set instead of concise justifications for each literal. This is similar to debugging systems

(which we will overview in Section 4), which explain why a whole set of literals is not an

answer set, rather than explaining a specific literal.

3.6.2 The problem of exponentially many justifications

As mentioned in the introduction, a key point for a human-understandable answer to

the question of why some conclusion is reached is its conciseness. Most justification

approaches reviewed here have tackled this issue and provide justifications that only

contain information related to the literal in question. However, a second issue related to

conciseness is how many justifications are there. In this section, we show that the number

of justifications is in general exponential w.r.t. the size of the program. Let us start by

continuing here the discussion about the light bulb scenario introduced in Example 36.

Example 48 (Ex. 36 continued)

Recall that the program P22 representing this scenario consists of the following rules:

r1t+1 : ont+1 ← swat ∧ swbt

r2t+1 : offt+1 ← swct ∧ swdt

i1t+1 : ont+1 ← ont ∧ not offt+1

i2t+1 : offt+1 ← offt ∧ not ont+1

plus the integrity constraint ← ont ∧ offt for t ≥ 0 and the facts off0, swa0, and swb0.

Recall also that this program has a complete well-founded model and, thus, a unique

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 167

(a)
on+

1

swa+0 swb+0

�

+ +

+ +

(b)
on+

1

swa+0 fact swb+0 fact

+ +

(c)
ron1
11

swa0 swb0

Fig. 25. Off-line, LABAS, and causal justifications of the truth of on1.

(a)
on+

2

off−
2

off−
1

on+
1 swd−1

swa+0 swb+0 swc−0

� ⊥

+

−

+ +

+ +

+
−

−

−
−

−

(b)
on+

2

off−
2

on+
1 swd−1

swa+0 swb+0

� ⊥

+

−

+ +

+ +

−

−

−

Fig. 26. Off-line justifications of on2 w.r.t. the unique answer set of Example 48.

answer set, in which ont holds for every time t > 0. Figure 25(a), (b), and (c), respectively,

depicts the off-line, the LABAS, and the causal justification explaining why the light is on

in situation 1. We also have that the answer set why-not provenance of on1 corresponds

to the following propositional formula:

AnsWhyP22
(on1) = ¬not(on1) ∨ ¬not(on0) ∧ not(off1) ∧ i12 ∨ swa0 ∧ swb0 ∧ r11

where swa0 ∧ swb0 ∧ r11 points out that on1 is true w.r.t. the unique answer set (which,

here, coincides with the complete well-founded model) because of facts swa0 and swb0 and

rule r11. It is easy to see the similarity with Figure 25(a), (b), and (c), in particular that

swa0 ∧ swb0 ∧ r11 is precisely the conjunction of the three vertices in these justifications.

Informally, these justification can be read as “because both switches a and b have been

pushed in situation 0.”

Let us now consider the justifications for the atom on2, which is true w.r.t. the

unique answer set. Figure 26 depicts two of the six possible off-line justifications for on2.

Furthermore, by replacing swd−1 with swc−1 in Figure 26(a) and (b), we obtain another

two off-line justifications. Similarly, by replacing swc−0 with swd−0 in Figure 26(a), we

obtain another off-line justification and, by replacing both swc−0 and swd−1 , respectively,
with swd−0 and swc−1 , we obtain the sixth one. Figure 27 depicts one of the off-line justi-

fications of on+3 and, by replacing any subset of {swc−1 , swc−2 , swc−3 } by its corresponding

subset of {swd−1 , swd−2 , swd−3 }, we obtain another seven alternative off-line justifications.

That is, the number of off-line justifications grows exponentially with the number of

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

168 J. Fandinno and C. Schulz

on+
3

on+
2 off−

3

off−
2

off−
1 swc−2

on+
1 swc−1

swa+0 swb+0 swc−0

� ⊥

+

+

−

−

+ +

+ +

+

+
−

−

−

−
−

−

−

Fig. 27. Off-line justification of on3 w.r.t. the unique answer set of Example 48.

(a)
on2

+
A1

swa0
+
fact swb0

+
fact not off2

+
asm

off2
−
A2

not on1
−
asm

on1
+
A3

+ + +

−

−

+

+ +

(b)

on2
+
A1

swa0
+
fact swb0

+
fact not off2

+
asm

off2
−
A2

not on2
−
asm

+ + +

−

−

+

Fig. 28. LABAS justifications of on2 w.r.t. the unique answer set of Example 48.

situations in which nothing happens. Similarly, the number of why-not justifications22

(i.e. disjuncts in the answer set provenance information) of ont grows exponentially,

because the conjunction of all atoms in an off-line justification plus the rules used to

derive those atoms form a why-not justification (Damásio et al. 2013, Theorem 4).

The number of LABAS justifications also grows exponentially. There are two LABAS

justifications for on2, displayed in Figure 28(a) and (b). The reason for the exponential

explosion is that ont can be justified through any oni with i < t . On the other hand,

22 Why-not information can be obtained in polynomial time and size w.r.t. the program. However,
rewriting it as a disjunction of minimal conjuncts may require exponential space.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 169

ion2
12

ron1
11

swa0 swb0

Fig. 29. The unique causal justification of on2 w.r.t. the unique answer set of Example 48.

as explained in Section 3.3 (extended) causal justifications are somehow preserved by

inertia in the sense that, at any situation t +1, if nothing happens, then the justification

of ont+1 can be obtained by adding to the justification of ont an edge from iont
1t to i

ont+1

1t+1 .

For instance, Figure 29 shows the unique (extended) causal justification of on2. �

Despite the fact that understanding NAF as a default allows to exponentially reduce

the number of causal justifications on some knowledge representation scenarios as

illustrated by the above example, there still exist logic programs that produce an

exponential number of causal justifications:

Example 49

Consider the following logic program adapted from Cabalar et al. (2014):

p1 ← q1

p1 ← u1

pi ← pi−1 ∧ qi for i ∈ {2, . . . ,n}
pi ← pi−1 ∧ ui for i ∈ {2, . . . ,n}
qi for i ∈ {1, . . . ,n}
ui for i ∈ {1, . . . ,n}

whose unique answer set is {p1, q1, u1 . . . , pn , qn , un}. Note that p1 can be justified using

the facts q1 or u1; the atom p2 can be justified using the sets of facts {q1, q2}, {q1, u2},
{u1, q2}, or {u1, u2}; and so on. It is easy to see that atom pn can be justified using 2n

different sets of facts and, thus, that the number of justifications grows exponentially

w.r.t. the size of the program. �

Although this logic program has no deeper knowledge representation meaning, it points

out a potential problem regarding the human readability of the answers provided by

current justification approaches. The issue of an exponential number of justifications

illustrated by Example 49 holds for any justification approach that records minimal

sets of facts used to derive the justified atom, in particular, all justification approaches

reviewed here. This does not mean that other kinds of polynomial justifications can

be used. For instance, for causal justifications or why-not provenance, a non-simplified

formula could be returned and, if we consider such a formula as the justification, then

it would be polynomial. In our running example, we would have that pn is justified

by the causal term (q1 + u1) ∗ (q2 + u2) ∗ . . . ∗ (qn + un) or the why-not provenance

formula (q1 ∨ u1 ∨ ¬not(p1)) ∧ (q2 ∨ u2 ∨ ¬not(p2)) ∧ . . . ∧ (qn ∨ un ∨ ¬not(pn)). On

the other hand, these non-simplified expressions are not minimal and, thus, they do not

adhere to the desired conciseness criterion for justifications. Another alternative is to

provide simplified justifications, but selecting only some of them in case some imposed

preferences (Cabalar et al. 2014). For instance, approaches in databases (Specht 1993)

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

170 J. Fandinno and C. Schulz

and Prolog (Roychoudhury et al. 2000) implicitly impose such preferences by selecting

only the first negative literal of a rule that fails as its unique justification.

3.6.3 Interpreting NAF

Related to the above exponentiality problem is the way in which different approaches

interpret negative literals. The definition of answer sets (Gelfond and Lifschitz

1988; Gelfond and Lifschitz 1991) is inherently non-deterministic: a candidate set is

(non-deterministically) selected and then checked against the program to see whether it

is the minimal model of the reduct w.r.t. this candidate. For normal logic programs, the

checking part can be done deterministically in polynomial time, for instance, by iterating

the well-known direct consequences operator introduced by van Emden and Kowalski

(1976); but the non-determinism is still present in the selection of the candidate. This

non-determinism is handled by most justification approaches by considering some part

of the justification as assumptions: negative literals in the case of off-line, LABAS, and

causal justifications; and rules in the case of rule-based justifications (formal theory of

justifications takes a different approach, representing this by infinite branches). Regard-

ing the approaches that use negative literals as assumptions, a remarkable difference

is how they do or do not justify those negative literals. As the two extremes we have

LABAS and causal justifications: the former justifies all negative literals (introducing

cycles in the justifications when even-length negative dependency loops are present

in the program), while the latter treats all negative literals as assumptions, or rather

defaults, that need no further explanation. In the middle, we have off-line and extended

causal justifications, which further explain some negative literals, while treating others

as assumptions (when the set of assumptions is minimized, these approaches justify all

negative literals that can be explained without introducing cycles in the justifications).

We have seen that treating negative literals as assumptions may help to (exponentially)

reduce the number of justifications of some knowledge representation problems in which

negation is used to express defaults. Let us now illustrate the opposite case, with the

following example from Schulz and Toni (2016), where justifications for negative literals

are as important as those for positive literals:

Example 50

The logic program P27 in Figure 30 represents the decision support system used by an

ophthalmologist. It encodes some general world knowledge as well as an ophthalmologist’s

specialist knowledge about the possible treatments of shortsightedness. P27 also captures

the additional information that the ophthalmologist has about his shortsighted patient

Peter. Program P27 has a unique answer set

M24 = { shortSighted, afraidToTouchEyes, student, likesSports, tightOnMoney,

correctiveLens, caresAboutPracticality, intraocularLens }
Focusing on the positive dependencies on facts and not considering dependencies on neg-

ative literals, we can only say that Peter has been recommend to use an intraocularLens

because he is shortSighted. However, this reasoning could also lead to the recommenda-

tion of other treatments that have the same positive dependencies: glasses, contactLens

or laserSurgey. Negative dependencies, on the other hand, tell us that intraocularLens

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 171

tightOnMoney ← student ∧ not richParents

caresAboutPracticality ← likesSports

correctiveLens ← shortSighted ∧ not laserSurgery

laserSurgery ← shortSighted ∧ not tightOnMoney ∧ not correctiveLens

glasses ← correctiveLens ∧ not caresAboutPracticality∧
not contactLens

contactLens ← correctiveLens ∧ not afraidToTouchEyes∧
not longSighted ∧ not glasses

intraocularLens ← correctiveLens ∧ not glasses ∧ not contactLens

shortSighted ←
afraidToTouchEyes ←

student ←
likesSports ←

Fig. 30. Program P27 from Example 50.

was recommended because all the other alternatives were discarded for different rea-

sons: glasses because Peter likesSports, contactLens because he is afraidToTouchEyes

and laserSurgey because he is a student without richParents. �

The informal reading shown in the above example can be extracted from off-line,

LABAS, extended causal, why-not provenace, and rule-based justifications, but not from

(non-extended) causal justifications. A general approach to justifications should be able

to effectively combine both interpretations of NAF, something which to the best of our

knowledge has not been studied in the literature yet.

3.6.4 Large programs and application-oriented considerations

Our comparison so far has concentrated on the theoretical, or even philosophical, nature

of justification approaches. Another important, and distinguishing, aspect of justification

approaches is their applicability when solving real-world problems. In such situations,

various challenges arise.

Firstly, representing a real-world problem may result in a large logic program, where

literals may have long derivations, that is, their truth value depends on a large num-

ber of rules. It is then not clear, which information a justification should comprise in

order to be, on the one hand, succinct enough for humans to understand, but, on the

other hand, complete enough to provide all important information. For example, justifi-

cation approaches where all derivation steps are included in the justification, that is all

approaches other than LABAS justifications, may struggle with the succinctness when

explaining a large logic program, as explanations grow with longer derivations. In con-

trast, LABAS justifications are independent of the derivation length. However, a large

logic program may also comprise more dependencies on negative literals, thus increasing

the size of LABAS justifications. More generally, it is an open problem how to effectively

deal with the growing size (as well as the previously mentioned exponential number) of

justifications.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

172 J. Fandinno and C. Schulz

In order to use justifications in real-world problems, they need to be automatically

constructed. Currently, only LABAS, causal, and why-not provenance justifications have

been implemented in working prototypes.23 A related issue is which type of logic programs

can be explained. The only approach able to handle non-normal logic programs, that is,

logic programs with disjunctive heads, is the causal justification approach, which can also

deal with nested expressions in the body.24 Furthermore, in practice logic programs are

rarely normal and often use additional language constructs, such as weight constraints,

aggregates, and choice rules, which extend the syntax and/or semantics of logic programs

under the answer set semantics. Choice rules are handled by off-line justifications and in a

limited way by causal justifications (Cabalar and Fandinno 2016). Note that explanations

of additional language constructs have not been investigated so far.

As a last challenge, we mention variables. Even though the theory of most justification

approaches can easily be applied to programs with variables by considering the complete

grounding of the program, it is questionable if this method yields meaningful justifications

in practice. The difficulty of handling variables in explanations of inconsistent programs

is a further indication that justifications involving variables are non-trivial, and therefore

an interesting consideration for future work.

4 Debugging of inconsistent logic programs

In this section, we review the most prominent approaches for explaining inconsistent logic

programs. that is, logic programs that have no answer set. Note that various approaches

discussed in this section are not only applicable to inconsistent logic programs, but also

to consistent ones. More specifically, they can also be used to explain why a set of atoms

of a consistent logic program is not an answer set, or even why a set of atoms is an answer

set, and are thus closely related to the previously reviewed justification approaches.

Finding errors that lead to a logic program being inconsistent is often referred to as

debugging. Errors can be roughly divided into syntactic and semantic ones.25 The first

category, comprising, for example, misspelled literals and wrong rule layout, is handled by

most Integrated Development Environments (IDEs) for ASP such as SeaLion (Busoniu

et al. 2013), ASPIDE (Febbraro et al. 2011), and AnsProlog* Programming Environment

(APE) (Sureshkumar et al. 2007).

Semantic errors are more difficult to identify due to the inherent declarative nature

of the answer set semantics. In procedural programming languages, the cause of wrong

program behavior can be found by investigating the program procedure step-by-step.

This cannot be straightforwardly done for logic programs, as answer sets are computed

in a “guess and check” fashion rather than procedurally. Various approaches tackle this

problem by searching for known error classes for inconsistent logic programs, for example,

unfounded loops, unsupported atoms, and unsatisfied rules. We review these approaches

in Sections 4.1–4.3. Another approach makes use of the unsatisfiable core feature of the

23 There used to be an implementation of off-line justifications (El-Khatib et al. 2005). Unfortunately,
this implementation is lost and it is not available anymore.

24 In this survey, we have limited ourselves to normal extended logic programs. For the definition of
causal justifications for logic programs with nested expressions in the body, we refer to (Fandinno
2016b).

25 Note that we here use these terms differently than, for example, Syrjänen (2006).

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 173

ASP solverwasp, which we review in Section 4.4, and Section 4.5 outlines an approach for

finding semantic errors that indeed applies a step-by-step procedure. Finally, Section 4.6

concludes the section with a discussion about similarities and differences between these

debugging approaches. Throughout this section, we will use the term “debugging” to

refer to the task of finding and explaining semantic errors in logic programs.

4.1 The spock system – debugging with a meta-program

The spock system explains why a potential answer set, that is, some set of atoms, is

not an answer set of the given program P . This is achieved by transforming P into a

meta-(logic)program, expressing, for example, conditions for the applicability of rules in

P . Each answer set of this meta-program contains the atoms of a potential answer set

of P along with special atoms indicating reasons why this potential answer set is not

an actual answer set of P . Thus, spock uses answer sets of a meta-logic program for

explaining the inconsistency of a given logic program.

The spock system is a command line tool26 usable with either the DLV (Leone et al.

2006) or Smodels (Syrjänen and Niemelä 2001) ASP solver.27 It implements two different

approaches to transform P into a meta-program, where the second (Gebser et al. 2008)

was developed as a successor of the first (Brain et al. 2007b). Both transformations

distinguish three types of reasons for explaining why a set of atoms is not an answer set.

These reasons are different ways of violating the definition of answer sets as given by Lin

and Zhao (2004) and extended by Lee (2005). Note that this definition of answer sets is

equivalent to the one given in Section 2.

Definition 32 (Answer set)

A set of atoms M ⊆ At is an answer set of a program P iff

1. each rule r ∈ P is satisfied by M , that is,

• head(r) ∩M
= {} if r is applicable;

2. each atom a ∈ M is supported w.r.t. M , that is,

• there exists r ∈ P such that r is applicable w.r.t. M and head(r) ∩ M = {a};
and

3. each (positive dependency) loop L ⊆ M is founded w.r.t. M , where

• L is a loop iff for all a ∈ L there is a chain of rules r1, . . . , rn ∈ P (n ≥ 1) such

that a ∈ head(r1) ∩ body+(rn), and if n > 1 then it holds for all ri (1 ≤ i < n)

that ∃bi ∈ body+(ri) ∩ head(ri+1) with bi ∈ L, and

• L is founded w.r.t. M iff there exists r ∈ P such that r is applicable and satisfied

w.r.t. M , head(r) ∩M ⊆ L, and body+(r) ∩ L = {}. �

The third condition defines a loop as a set of atoms that positively depend on them-

selves, possibly via positive dependencies on other atoms in the loop. Such a positive

dependency loop is founded w.r.t. M if there exists an applicable and satisfied rule that

26 http://www.kr.tuwien.ac.at/research/systems/debug/index.html
27 Smodels is not maintained anymore and may thus not work on new systems. However, spock should

work fine on most systems using DLV.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

http://www.kr.tuwien.ac.at/research/systems/debug/index.html
https://doi.org/10.1017/S1471068418000534

174 J. Fandinno and C. Schulz

allows to derive some loop atoms without using other atoms in this loop. An atom con-

tained in an unfounded loop is said to be unfounded.

Both transformation approaches of spock generate reasons why a set of atoms M is

not an answer set in terms of violations of the three conditions in Definition 32. These

reasons are:28

1. a rule r ∈ P is not satisfied,

2. an atom a ∈ M is not supported, and

3. there exists an unfounded loop in M .

In the following, we illustrate how the two transformation approaches generate these

three reasons and point out some differences between the approaches.

4.1.1 Transformation 1

The first transformation approach (Brain et al. 2007a; Brain et al. 2007b), defined for

normal logic programs, can be used to explain

1. why a set of atoms is an answer set, by referring to the applicability and non-

applicability of rules, and

2. why a set of atoms is not an answer set, by referring to the violation (i.e. non-

satisfaction) of rules, the unsupportedness of atoms, or the unfoundedness of atoms.

To achieve the first, each rule r : h ← b1 ∧ . . . ∧ bn ∧ not c1 ∧ . . . not cm of a normal

program P is transformed into two new rules29:

applicable(r) ← b1 ∧ . . . ∧ bn ∧ not c1 ∧ . . . not cm (45)

h ← applicable(r) (46)

They, respectively, express that r is applicable if the body of r is true and that the head

of r can be deduced if r is applicable. Similarly, rules expressing conditions under which

rule r is “blocked” are added, namely if one of its positive body literals b or negative

body literals not c are false (c∗ /∈ At is a new atom):

blocked(r) ← not b (47)

blocked(r) ← not c∗ (48)

c∗ ← not c (49)

These transformed rules are added for each rule in the given program and each of its

body literals.

The transformation given by rules (45)–(49) is called kernel transformation of P and

denoted Tk [P]. For a consistent program P , the answer sets of Tk [P] coincide with the

answer sets of P , but additionally contain the new tagging atoms applicable(r) and

blocked(r) (Brain et al. 2007b). This “explains” why a set of atoms is an answer set

in the sense that it gives an insight into the rules that were used to derive the answer set.

28 Lloyd (1987) discusses a similar idea for diagnosing errors in Prolog programs in terms of incorrect
rules (analogous to unsatisfied rules) and uncovered atoms (analogous to unsupported atoms).

29 The transformed rules as originally defined also have body literals ok(r) and ko(r) for fine-tuning the
debugging process, which we omit as they do not play a role at this point.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 175

Example 51 (Ex. 36 continued)

The rules of the logic program from Example 36 can be grounded for the first time step

as follows, obtaining the logic program P28:

r1 : on1 ← swa0 ∧ swb0

r2 : off1 ← swc0 ∧ swd0

r3 : on1 ← on0 ∧ not off1

r4 : off1 ← off0 ∧ not on1

r5 : off0 ←
r6 : swa0 ←
r7 : swb0 ←

The only answer set of P28 is {swa0, swb0, off0, on1}. In comparison, the only an-

swer set of Tk [P28] is {swa0, swb0, off0, on1, applicable(r1), applicable(r5), applicable(r6),

applicable(r7), applicable(r2), blocked(r3), blocked(r4)}, pointing out that this answer set

was obtained due to the applicability of rules r1, r5, r6, and r7, whereas the applicability

of the other rules was blocked. �

For explaining the inconsistency of a logic program, three additional extrapolation

transformations are performed (rules (50)–(55)), denoted Tex [P]. They allow to generate

potential answer sets, that is, sets of atoms, that violate Definition 32 and thus provide

an explanation of the inconsistency. To generate potential answer sets choice-rules are

used, which allow to choose whether or not the head of this rule should be true if the

rule is applicable. These rules have the form {head(r)} ← body(r) and are shorthand

notation for

head(r) ← body(r) ∧ not x

x ← not head(r)

where x /∈ At is a new atom.

Concerning the first inconsistency reason – the violation of rules – a new abnormal-

ity tagging atom unsatisfied(r) is introduced and used to transform each rule r , where

head(r) = h30:

{h} ← applicable(r), (50)

unsatisfied(r) ← applicable(r) ∧ not h, (51)

When used for explaining inconsistent programs, rule (50) substitutes rule (46) from the

kernel transformation. This allows to exclude h from an answer set, even if r is applicable.

This choice rule allows to generate potential answer sets and rule (51) derives a respective

reason why they may not be actual answer sets. In particular, this is the case if a rule is

applicable w.r.t. a potential answer set but its head is not contained in this set.

30 We use the more intuitive naming unsatisfied(r) instead of the original abp(r) (Brain et al. 2007b)
(similarly for the tagging atoms described in the rest of this section).

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

176 J. Fandinno and C. Schulz

The second extrapolation transformation is concerned with the supportedness of atoms.

It introduces a new abnormality tagging atom unsupported(a) for each a ∈ At, used in a

transformation as follows:

{a} ← blocked(r1) ∧ . . . ∧ blocked(rk), (52)

unsupported(a) ← a, blocked(r1) ∧ . . . ∧ blocked(rk), (53)

where r1, . . . , rk are all the rules with head a. Similarly to the first extrapolation transfor-

mation, rule (52) allows to choose if a is or is not included in a potential answer set being

explained. Rule (53) derives unsupported(a) whenever a is in the answer set without any

rule to support it.

The third extrapolation transformation deals with unfounded atoms. A new abnormal-

ity tagging atom unfounded(a) is introduced for each atom a ∈ At and used as follows:

{unfounded(a)} ← not unsupported(a), (54)

a ← unfounded(a) (55)

This transformation gives a choice to include or exclude the abnormality atom

unfounded(a), given that there is no other reason for a to be causing the inconsistency,

namely being unsupported. This is different from the previous transformations, where

abnormality atoms are only derived if there is an actual violation of a condition in Defi-

nition 32. Here, the abnormality atom may be derived even if the third condition in

Definition 32 is not violated. This means that unfounded loops cannot be identified with

certainty.

Example 52

Consider the following inconsistent logic program P29:

r1 : a ← not b

r2 : b ← not b

The answer sets of Tk [P29] ∪ Tex [P29] (where rule (46) is not included since derivability

of the head is expressed through rule (50) as previously explained) indicate potential

answer sets and explain why these potential answers sets are not actual answer sets by

pointing out violations concerning the definition of answer sets.

• M25 = {a, b, unsupported(a), unsupported(b), blocked(r1), blocked(r2)}
• M26 = {b, unsupported(b), blocked(r1), blocked(r2)}
• M27 = {a, unfounded(a), unsatisfied(r2), applicable(r1), applicable(r2)}
• M28 = {a, unsatisfied(r2), applicable(r1), applicable(r2)}
• M29 = {unsatisfied(r1), unsatisfied(r2), applicable(r1), applicable(r2)}

M25 expresses that {a, b} is not an answer set because neither of the two atoms are

supported by an applicable rule. This is because both r1 and r2 are blocked w.r.t. {a, b}.
In contrast M29 explains that w.r.t. {} both r1 and r2 are applicable, but the head of

neither rule is included in {}. M27 illustrates the guessing of unfounded atoms. It states

that {a} is not an answer set because a may be unfounded and because r2 is violated.

Note that this guess is redundant, since answer set M28 explains {a} by only referring

to the violation of r2. In fact, a is not unfounded here, as it is not part of an unfounded

loop w.r.t. {a} (it is not part of a loop at all). �

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 177

As shown by Example 52, there may be many explanations for the inconsistency of a

logic program and some of them may be redundant. It is thus advisable to only consider

explanations with a minimal number of abnormality tagging atoms. This also ensures that

unfounded(a) only occurs if a is indeed unfounded (Brain et al. 2007b). In Example 52,

minimization narrows the explanations down to sets M26 and M28.

Example 53

Let P30 be the logic program P29 with the two additional rules:

r3 : a ← b

r4 : b ← a

These rules induce an unfounded loop w.r.t. the set {a, b}. Tk [P30] ∪ Tex [P30] has three

answer sets explaining why {a, b} is not an answer set: one in terms of a being an

unfounded atom (comprising unfounded(a)), one in terms of b being an unfounded atom

(comprising unfounded(b)), and one in terms of both atoms being unfounded (comprising

both unfounded(a) and unfounded(b)). Similarly to Example 52, the last of these three

answer sets provides a redundant explanation compared to the first two. However, here

the explanations in terms of unfoundedness of atoms are correct, as there exists an

unfounded loop. In addition, Tk [P30] ∪ Tex [P30] has four answer sets stating the same

reasons as M26–M29. �

Note that spock does not suggest how to change an inconsistent logic program to make

it consistent. However, based on the abnormality tagging atoms in an answer set M of

Tk [P]∪Tex [P] there is a straightforward way of turning the inconsistent program P into

a consistent logic program:

• if unsatisfied(r) ∈ M , then delete r from P ;

• if unsupported(a) ∈ M or unfounded(a) ∈ M , then add a ← to P .

If this is done for all abnormality tagging atoms in M , the changed logic program has an

answer set M ∩ At. Note that even though this change results in a consistent program,

there is no guarantee that this program captures the originally intended meaning.

Example 54 (Ex. 52 continued)

Consider adding b ← to P29, based on M26. This turns P29 into a consistent logic

program with answer set {b}. However, the intended meaning of the program may have

been a choice between answer sets {a} and {b}, with the programmer’s mistake being

that not b in r2 should have been not a. In this case, the change does not capture the

original meaning. �

In addition to giving explanations of inconsistent programs w.r.t. automatically

generated potential answer sets, the spock system also allows for more user-directed

explanations. Among others, a user can specify a set of rules and atoms from which

the explanations are drawn (Brain et al. 2007a). For example, in P29 we may be sure

that rule r2 is correct and thus restrict31 abnormality tagging atoms unsatisfied(r) to

rule r1. This prevents the construction of answer set M28, thus resulting in M26 as the

only explanation (when using minimization). Furthermore, an atom a that should be

31 In the spock implementation this is achieved by using flags exrules and exatoms for specifying rules
and atoms to be debugged. This restricts the transformations to these rules and atoms.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

178 J. Fandinno and C. Schulz

included in an answer set can be specified by adding the constraint ← not a to the

kernel transformation of the given logic program.

4.1.2 Transformation 2

In the first transformation approach of spock, an ASP solver is merely used to compute

the answer sets of the kernel and extrapolation transformations, thus generating expla-

nations. That is, the kernel and extrapolation transformations are constructed externally

(from the ASP solver). In contrast, the second transformation approach of spock (Gebser

et al. 2008) uses an ASP solver to both construct a transformation and compute explana-

tions. This is achieved by using a static non-groundmeta-program Pmeta , which expresses

violation conditions that can be instantiated with any given logic program. The second

transformation approach is furthermore defined for any logic program, that is, the head

of rules is a (possibly empty) disjunction of atoms.

In order to instantiate the meta-program with the rules and atoms of a given logic

program P , an input transformation Pinp [P] is generated, containing facts that express

which rules r and atoms a are contained in P . More specifically, for every atom a ∈ At,

every rule r ∈ P (where r is the label of the rule), and every h ∈ head(r), b ∈ body+(r),

and c ∈ body−(r), the following facts are included in Pinp [P]:

atom(a) ← (56)

rule(r) ← (57)

head(r , h) ← (58)

bodyP(r , b) ← (59)

bodyN(r , c) ← (60)

This input transformation Pinp [P] is combined with the static meta-program Pmeta to

compute explanations for inconsistent logic programs using an ASP solver. The meta-

program uses a more explicit way of constructing potential answers sets than the extrap-

olation transformations, namely, for every atom(a) there is the choice to include or not

include it in a potential answer set32:

in(A) ← atom(A) ∧ not out(A) (61)

out(A) ← atom(A) ∧ not in(A) (62)

Thus, an answer set of Pinp [P] ∪ Pmeta comprises for each atom a ∈ At either in(a)

or out(a). In contrast, an answer set of Tk [P] ∪ Tex [P] either does or does not contain

a ∈ At.

The other parts of the meta-program Pmeta are similar to the kernel and extrapo-

lation transformations. The rule applicability conditions of the kernel transformation

(rules (45)–(49)) are expressed in Pmeta as follows:

blocked(R) ← bodyP(R,B) ∧ out(B), (63)

blocked(R) ← bodyN(R,C) ∧ in(C), (64)

applicable(r) ← not blocked(R) (65)

32 Throughout this section, we use uppercase letters to denote variables.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 179

In contrast to the first transformation approach, the applicability of a rule is here ex-

pressed in terms of the rule not being blocked.

The following rules of the meta-program Pmeta generalize the extrapolation transfor-

mations for rule satisfiability from normal rules to rules whose head may be empty or a

disjunction of atoms.33 In contrast to normal rules, here we check if at least one of the

head atoms of an applicable rule is satisfied:

headSatisfied(R) ← head(R,A) ∧ in(A), (66)

unsatisfied(R) ← applicable(r) ∧ not headSatisfied(R) (67)

For logic programs that are not normal, an atom may be unsupported even if there

exists a rule with a in the head that is not blocked. As stated in the second condition of

Definition 32, a is supported if some rule is applicable and a is the only head atom that

is in the potential answer set being explained. Thus, for an atom to be unsupported, this

condition has to be false:

oHeadTrue(R,A) ← head(R,A2) ∧A
= A2 ∧ in(A2), (68)

supported(A) ← head(R,A) ∧ applicable(r) ∧ not oHeadTrue(R,A), (69)

unsupported(A) ← in(A) ∧ not supported(A) (70)

The biggest difference between the first and second transformation approach concerns

unfounded loops. Just like the first approach, the second includes a choice as to whether

or not an atom that is part of the potential answer set being explained is unfounded

(see rules (71) and (72)). The difference is that if an atom is guessed to be unfounded,

there is a check (see rule (73)) of the foundedness condition in Definition 32. That is,

for an unfounded atom a it is checked if there is an applicable rule r with a in the head

(if so, r is also satisfied since unfounded(a) only holds if in(a)) that has no head atom

that is founded (in the same loop) and no positive body atom that is unfounded (in the

same loop). If such a rule exists, a is by Definition 32 founded, which is why this check

is implemented as a constraint in Pmeta (rule (73)). This ensures that unfounded(a) is

only part of an answer set of Pinp [P] ∪ Pmeta if a is actually unfounded.

unfounded(A) ← in(A) ∧ supported(A) ∧ not founded(A), (71)

founded(A) ← in(A) ∧ not unfounded(A), (72)

← unfounded(A) ∧ head(R,A) ∧ applicable(R)∧ (73)

not headNotinLoop(R) ∧ not BodyPInLoop(R),

headNotinLoop(R) ← head(R,A) ∧ founded(A), (74)

BodyPInLoop(R) ← bodyP(R,A) ∧ unfounded(A) (75)

Furthermore, there are rules ensuring that only one loop is considered at a time, that is,

unfounded(a) and unfounded(b) only hold if a and b are part of the same loop.

Another main difference between the two spock approaches is that the second trans-

formation approach only explains sets of atoms that are not answer sets of the given logic

33 The meta-program also contains rules explicitly handling unsatisfied constraints, tagging them with a
different abnormality atom. For simplicity, and since rule (67) also applies to constraints, we do not
report these constraint rules.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

180 J. Fandinno and C. Schulz

program, whereas the first also explains actual answer sets of the given logic program (if

any exist). This is due to the following rules in the meta-program Pmeta , ensuring that

at least one abnormality tagging atom is part of an answer set:

noAS ← unsatisfied(r), (76)

noAS ← unsupported(a), (77)

noAS ← unfounded(r), (78)

← not noAS (79)

Example 55 (Ex. 52 continued)

Applying the second transformation approach to P29, spock computes the answer sets

of Pinp [P29] ∪ Pmeta , yielding the following:

• M30 = {in(a), in(b), founded(a), founded(b), unsupported(a), unsupported(b),
blocked(r1), blocked(r2), headSatisfied(r1), headSatisfied(r2),

headNotinLoop(r1), headNotinLoop(r2)}
• M31 = {in(b), out(a), founded(b), unsupported(b), blocked(r1), blocked(r2),

headSatisfied(r2), headNotinLoop(r2)}
• M32 = {in(a), out(b), founded(a), supported(a), supported(b), unsatisfied(r2),

applicable(r1), applicable(r2), headSatisfied(r1), headNotinLoop(r1)}
• M33 = {out(a), out(b), supported(a), supported(b), unsatisfied(r1), unsatisfied(r2),

applicable(r1), applicable(r2)}
Note that all answer sets also comprise the facts in Pinp [P29], such as atom(a), head(r1, a),

and rule(r1), as well as the atom noAS, which we omitted above for readability. Since the

second transformation approach does not generate explanations containing unfounded-

ness as a reason when an atom is in fact founded, there is no equivalent of answer set

M27 from the first transformation approach. All other answer sets of Tk [P29] ∪ Tex [P29]

report the same reasons as the answer sets given above. �

Example 56 (Ex. 53 continued)

For the program P29, which comprises an unfounded loop w.r.t. {a, b}, even more re-

dundant explanations are omitted when using the second transformation approach. More

precisely, as for P29 there is one explanation for each possible set of atoms, that is, {},
{a}, {b}, and {a, b}. The explanation as to why the last set is not an answer set is given

by unfounded(a) and unfounded(b). The explanations concerning the other three sets are

analog to the explanations of P29 in Example 55. �

Similarly to the first transformation approach, the user can specify constraints for

debugging. An atom a can, for example, be forced to (not) be a part of an answer set by

adding the constraint ← out(a) (respectively ← in(a)) to the input transformation of

the given logic program. In the same way, constraints on the abnormality tagging atoms

can be specified, for example, ← unsatisfied(r) enforces that rule r is satisfied.

In conclusion, the second transformation approach requires less processing of the given

logic program P performed outside the ASP solver than the first transformation ap-

proach. Furthermore, the two transformation approaches differ in the number of expla-

nations given, since the first approach may yield redundant explanations and explanations

where unfoundedness is given as a reason even though the atom in question is founded.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 181

4.2 The Ouroboros system – debugging non-ground programs

The two spock approaches do not explicitly deal with variables occurring in the given

logic program. However, variables are important to consider for debugging approaches,

since, in practice, logic programs under the answer set semantics often contain first-order

predicates and variables. Handling variables when debugging thus requires an efficient

grounding strategy.

Building upon the second spock transformation, Oetsch et al. (2010) develop a meta-

program able to construct explanations of inconsistent extended logic programs possibly

comprising variables. In contrast to the approach taken by spock, which constructs var-

ious sets of atoms and explains why these are not answer sets, Ouroboros requires an

intended answer set. It thus assumes that the user already has a solution in mind. An

explanation is then constructed for this anticipated solution.

Efficiently constructing explanations for logic programs with variables is non-trivial as

it requires grounding (i.e. substituting variables with constants). First grounding a given

logic program and then constructing explanations, for example, using the spock ap-

proach, requires exponential space and double-exponential time. Instead, the Ouroboros

approach requires only polynomial space and single-exponential time, as it applies

grounding to the input transformation and meta-program during the solving process

rather than grounding the given logic program before transforming and solving it.

Similarly to the input transformation Pinp [P] of the second spock approach,

Ouroboros constructs an input transformation �inp [P] of a given logic program P ,

expressing which extended literals are part of the head and body of each rule. Addition-

ally, �inp [P] includes facts expressing which predicates occur in P , what the position of

variables and constants is in each predicate, and which variables occur in which rules.

Since Ouroboros requires a given set of atoms M ⊆ At to be explained, this set is also

transformed to make it applicable to the input transformation and the meta-program.

The interpretation transformation �int [M] includes facts in(a) for each atom a ∈ M as

well as facts stating which predicates occur in M and what the position of constants is

in predicates in M .

The meta-program �meta of Ouroboros follows the same ideas as spock, expressing

conditions under which a rule is unsatisfied or a loop is unfounded. Note that in contrast

to spock, Ouroboros does not explicitly point out unsupported atoms. Instead, unsup-

ported atoms are handled as singleton loops that are unfounded. The exact encoding of

�meta with its more than 160 rules can be found online34.

When applying an ASP solver to �inp [P] ∪ �int [M] ∪ �meta to compute explanations

as to why M is not an answer set, the automatic grounding of the solver allows for the

efficient computation of ground answer sets if P contains variables.

Just like spock, Ouroboros only gives explanations as to why a set of atoms is not an

answer set. The subsequent changing of the program to make it consistent is left to the

user. In addition to explicit negation, Ouroboros can also handle arithmetic operations

with integers (+ and ∗) and allows for comparison predicates (=,
=, ≥, ≤, >, <). Polleres

et al. (2013) further extend Ouroboros to deal with choice rules and cardinality and

weight constraints by translating these constructs into normal rules (possibly containing

variables). Frühstück et al. (2013) integrate Ouroboros into the SeaLion IDE.35

34 www.kr.tuwien.ac.at/research/projects/mmdasp/encoding.tar.gz
35 Note that a special setup of ASP solvers is needed to make this integration work.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

www.kr.tuwien.ac.at/research/projects/mmdasp/encoding.tar.gz
https://doi.org/10.1017/S1471068418000534

182 J. Fandinno and C. Schulz

4.3 Interactive debugging based on spock

No matter which of the two transformations is used, the spock approach may generate

many different explanations, since for every set of atoms that is not an answer set at least

one explanation is constructed. Even for the small logic program in Example 52, which

has only two atoms, four explanations are generated using the second transformation

(see Example 55). Ouroboros tackles this problem by requiring the user to specify an

intended answer set. However, a user may not have a truth assignment for every atom

in mind. Shchekotykhin (2015) therefore proposes an interactive method on top of the

second spock approach, where the user is queried whether or not an atom should be

contained in an answer set. The user’s answer narrows down the sets of atoms for which

explanations are constructed to the ones relevant to the user and relieves the user of the

burden to specify the whole intended answer set upfront.

As mentioned in previous sections, the user can force atoms to be contained or not

contained in explanation answer sets of spock (using the second transformation) by

adding facts in(a) or out(a). In the interactive debugging approach, such statements are

explicitly used as test cases.

Definition 33 (Test case and background theory)

Given a program P , its input transformation Pinp [P], and the meta-program Pmeta

• Pos,Neg ⊆ { in(a), out(a)
∣∣ a ∈ At } are sets of positive and negative test cases

and

• B ⊆ P is a background theory. �

Positive test cases are atoms that have to be contained in (in(a)) or excluded from

(out(a)) all answer sets. In contrast, negative test cases are atoms that have to be con-

tained in (in(a)) or excluded from (out(a)) some answer set. A background theory consists

of rules in the logic program that are assumed to be satisfied.

In contrast to the spock approach, answer sets of Pinp [P] ∪ Pmeta that contain the

same abnormality tagging atoms are considered as the same explanation, even if the

atoms in the respective explained answer sets are different. The aim is to find sets of

abnormality tagging atoms that satisfy all given test cases and the given background

theory. In other words, we want to compute all answer sets of Pinp [P] ∪ Pmeta containing

only abnormality tagging atoms satisfying the test cases and the background theory. Sets

of abnormality tagging atoms satisfying this condition are called diagnoses.

Definition 34 (Diagnosis)

Let Er(P) be the set of all abnormality tagging atoms over a program P , that is,

Er(P) def= { unsatisfied(r)
∣∣ r ∈ P } ∪ { unsupported(a), unfounded(a)

∣∣ a ∈ At }
A set D ⊆ Er(P) is a diagnosis for the problem instance 〈P ,B, Pos,Neg〉 if
1. P∗ = Pinp [P] ∪ Pmeta ∪ { ← d

∣∣ d ∈ Er(P) \ D } ∪ { ← unsatisfied(r)
∣∣ r ∈

B } ∪ { p ← ∣∣ p ∈ Pos } has an answer set and

2. for each n ∈ Neg, P∗ ∪ {n ← } has an answer set. �

Note that due to the constraints of the form ← d , any answer set of P∗ will only contain

abnormality tagging atoms from D.

Diagnoses can be found by computing answer sets of the program Pinp [P] ∪ Pmeta ∪
{ ← unsatisfied(r)

∣∣ r ∈ B } and then verifying whether the respective sets of abnormality

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 183

tagging atoms contained in these answer sets satisfy the conditions for being a diagnosis.

Usually, only (subset) minimal diagnoses will be considered.

Example 57

Consider the logic program P28 (see Example 51) with the additional constraint r8 :

← not off1. This program, called P31, is inconsistent. Using the second translation ap-

proach of spock, 256 answer sets are computed for Pinp [P31] ∪ Pmeta , each explaining a

different set of atoms that is not an answer set. Let us now specify B = {r1, r2, r6, r7}, in
other words, we are sure that the first two rules are correct and that switches a and b

are on in situation 0. This narrows down the answer sets; program Pinp [P31] ∪ Pmeta ∪
{ ← unsatisfied(r1), ← unsatisfied(r2), ← unsatisfied(r6), ← unsatisfied(r7)} has only 28

answer sets. Given positive test cases Pos = {out(swc0), out(swd0)}, only eight out of

the 28 answer sets satisfy these, namely :

• M34 = {out(on0), out(off0), in(on1), out(off1)} ∪ {unsatisfied(r5), unsatisfied(r8)}
• M35 = {in(on0), out(off0), in(on1), out(off1)} ∪ {unsatisfied(r5), unsatisfied(r8),

unsupported(a)}
• M36 = {out(on0), out(off0), in(on1), in(off1)} ∪ {unsatisfied(r5), unsupported(a)}
• M37 = {in(on0), out(off0), in(on1), in(off1)} ∪ {unsatisfied(r5), unsupported(a),

unsupported(a)}
• M38 = {out(on0), in(off0), in(on1), out(off1)} ∪ {unsatisfied(r8)}
• M39 = {in(on0), in(off0), in(on1), out(off1)} ∪ {unsatisfied(r8), unsupported(a)}
• M40 = {out(on0), in(off0), in(on1), in(off1)} ∪ {unsupported(a)}
• M41 = {in(on0), in(off0), in(on1), in(off1)} ∪ {unsupported(a), unsupported(a)}

Note that each answer set also contains in(swa0), in(swb0), out(swc0), and out(swd0),

as well as the further tagging atoms discussed in Section 4.1.2. Taking a closer look

at these eight answer sets, each of them defines a diagnosis when Neg = {}, namely

the second part of each answer set. Only M38 and M40 induce minimal diagnoses. Now

consider that Neg = {in(on0), in(off0)}. This rules out half of the diagnoses, leaving only

the following four:

• D1 = {unsatisfied(r5), unsatisfied(r8), unsupported(a)} (cf. M35)

• D2 = {unsatisfied(r5), unsupported(a), unsupported(a)} (cf. M37)

• D3 = {unsatisfied(r8), unsupported(a)} (cf. M39)

• D4 = {unsupported(a), unsupported(a)} (cf. M41)

Even though in(off0) /∈ M35, D1 is a diagnosis of the given problem instance since there

are two answer sets of P∗ w.r.t. D1, namely M35 and M39, and in(off0) ∈ M39, thus

satisfying the negative test case in(off0) w.r.t. D1. �

As illustrated in Example 57, positive and negative test cases can considerably reduce

the number of diagnoses and, thus, of explanations as to why sets of atoms are not

answer sets of P . If the user does not specify any test cases, it is therefore desirable to

produce them automatically by querying the user. That is, the user is asked whether an

atom is expected to be contained in or excluded from all or some answer sets. Ideally,

the debugging system chooses an atom as a query that helps to reduce the number of

diagnoses as much as possible.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

184 J. Fandinno and C. Schulz

Definition 35 (Query and diagnosis splitting)

Let D be the set of all diagnoses of the problem instance 〈P ,B, Pos,Neg〉 and let Q ⊆ At

be a query. Q splits the diagnoses in D into three sets, where for each D ∈ D:

• D ∈ DP if for all a ∈ Q, in(a) is in every answer set of P∗;
• D ∈ DN if for all a ∈ Q, out(a) is in every answer set of P∗;
• D ∈ D∅ if D /∈ (DP ∪DN). �

This means that DP and DN contain all diagnoses that are still diagnoses if the atoms in

the query are added as positive test cases so as to force them to be, respectively, included

in or excluded from all answer sets. Thus, if the user’s reply to a query is that the atoms

should be included, then the diagnoses in DN can be disregarded. Likewise, if the user

replies that the atoms should be excluded, the diagnoses in DP can be disregarded.

Example 58 (Ex. 57 continued)

Consider the two atoms that are not part of positive or negative test cases yet, namely on1
and off1. For Q1 = {on1}, all four diagnoses are in DP, so DN = D∅ = {}. For example,

the answer sets of P∗ w.r.t. D1 are M35 and M39, and both comprise in(on1). This means

that if the user replies to the query, that on1 should be in the desired answer set, then no

diagnoses can be disregarded. However, if the user replies that on1 should not be in the

desired answer set, then all diagnoses would be disregarded and therefore no explanations

are given. This would imply that the test cases specified could not be satisfied. In contrast,

for Q2 = {off1} we get DP = {D2,D4}, DN = {D1,D3}, and D∅ = {}. Note that if one of
the negative test cases was used as a query, then D∅
= {}. For instance, for Q3 = {off0}
we get D1 ∈ D∅ since out(off0) ∈ M35 but in(off0) ∈ M39. �

There may be a large number of queries, so queries that yield a large information gain

are desirable, that is, queries that allow to disregard as many diagnoses as possible, inde-

pendent of the user’s answer, which clearly is not known when generating a query. Thus,

a useful query should at least yield a partition with DP,DN
= {} so that independent

of the user’s answer, some diagnoses can be disregarded.

A straightforward selection method is the myopic strategy, which prefers queries yield-

ing sets DP and DN that have similar size and where D∅ is as small as possible, that is,

a query that minimizes

| | DP | − | DN | | + | D∅ |

Example 59 (Ex. 58 continued)

According to the myopic strategy, Q2 is preferable to Q1 since independent of the answer

of the user, the number of possible queries is reduced to two. �

The idea of this interactive debugging approach is that queries are generated and

presented to the user until only one diagnosis, or a specified maximal number of diagnoses,

is left.

4.4 The dwasp system – interactive debugging of non-ground programs

The interactive debugging approach discussed in the previous section only applies to logic

programs without variables. Dodaro et al. (2015) and Gasteiger et al. (2016) extend the

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 185

idea, of querying the user to find relevant explanations of inconsistency, to non-ground

programs. Instead of using an elaborate meta-program expressing possible reasons for

inconsistencies as in spock, they use the solving process of the ASP solver wasp (Alviano

et al. 2013; Alviano et al. 2015) to find inconsistencies in a logic program. Their ASP

debugger is thus called dwasp.

Like Shchekotykhin (2015), dwasp allows to define a background theory. If the back-

ground theory is not explicitly specified, the set of facts of the given logic program P

is used. Instead of applying abnormality atoms to indicate inconsistencies, the dwasp

system adds to each rule in P that is not part of the background theory a debug atom,

stating the name of the rule and the variables occurring in it.

Definition 36 (Debugging program)

Given a logic program P and a background theory B ⊆ P , the debugging program is

defined as

Pdeb [P] = B ∪
{
h1 ∨ . . . ∨ hk ← b1 ∧ . . . ∧ bn ∧ debug(r ,varsr) (80)

∧not c1 ∧ . . . not cm‖r ∈ P \ B, head(r) = {h1 ∨ . . . ∨ hk},
body(r) = {b1, . . . , bn , not c1, . . . , not cm}

}

where varsr is a tuple consisting of all variables in body(r). �

When applying the wasp solver to the debugging program Pdeb [P], atoms can be

assumed to hold when computing answer sets. That is, these assumed atoms do not need

to be derived from rules or facts; they are true by default. Assumed atoms are thus

similar to positive test cases in the approach of Shchekotykhin (2015).

If a debugging atom is not assumed to hold, this amounts to “blocking” the respective

rule specified in the atom, that is, the rule is no longer applicable when computing

answer sets, since a debugging atom cannot be derived using the rules in Pdeb [P]. If all

debugging atoms are assumed to hold, the answer sets of Pdeb [P] (minus the debugging

atoms) coincide with the answer sets of P . If P is inconsistent, it therefore follows that

Pdeb [P] is also inconsistent.

To find rules causing the inconsistency of a program, the wasp solver allows to com-

pute unsatisfiable cores, that is, sets of atoms such that if they are assumed to hold, no

answer set exists. In the dwasp system, only debugging atoms are considered for unsat-

isfiable cores. Thus, an unsatisfiable core points out a combination of rules causing the

inconsistency.

Definition 37 (Unsatisfiable core)

Let PG
deb [P] be the grounding of Pdeb [P] and let Atdeb(P) be the set of all (ground)

debugging atoms occurring in PG
deb [P]. C ⊆ Atdeb(P) is an unsatisfiable core iff PG

deb [P]

is inconsistent when all debugging atoms in C are assumed to hold. �

Note that this definition does not make any assumptions about other atoms assumed

to hold. Therefore, an unsatisfiable core is such that, no matter which other atoms are

assumed to hold, PG
deb [P] is inconsistent.

If P is inconsistent, clearly Atdeb(P) is an unsatisfiable core. However, there may

be other unsatisfiable cores, which are subsets of Atdeb(P), and thus more useful for

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

186 J. Fandinno and C. Schulz

identifying the source of inconsistency. Therefore, only (subset) minimal unsatisfiable

cores are of interest in dwasp.

If there is only one unsatisfiable core, then deleting any of the atoms in the core from

the atoms assumed to hold results in the existence of an answer set. However, if there

are various unsatisfiable cores, only a combination of atoms from the different cores will

lead to the existence of an answer set. dwasp finds such sets of debugging atoms that,

when no longer assumed to hold, ensure the existence of an answer set. Such sets thus

express which rules need to be “blocked” to obtain an answer set.

Definition 38 (dwasp diagnosis)

Let PG
deb [P] be the grounding of Pdeb [P] and let Atdeb(P) be the set of all (ground)

debugging atoms occurring in PG
deb [P]. Ddwasp ⊆ Atdeb(P) is a diagnosis iff PG

deb [P] is

consistent when none of the debugging atoms in Ddwasp is assumed to hold. �

The dwasp system only considers minimal diagnoses. Even though the definition of di-

agnosis does not reference unsatisfiable cores, diagnoses are computed from unsatisfiable

cores in dwasp.

Note the difference between the notions of diagnosis used in dwasp and in the approach

of Shchekotykhin (2015). In both cases, a diagnosis comprises atoms identifying the reason

for inconsistency. The difference is that in dwasp a diagnosis is a set of atoms such that

the debugging program is consistent if the atoms are not contained in answer sets. In

contrast, a diagnosis according to Definition 34 is a set of abnormality tagging atoms

such that the transformed logic program is consistent if these are the only abnormality

tagging atoms contained in answer sets.

As in the approach by Shchekotykhin (2015), there may be a large number of diagnoses

and not all of them may be relevant to the user. Thus, dwasp uses the same strategy for

querying the user as discussed in the previous section for the approach by Shchekotykhin

(2015). That is, a query atom q ∈ At is determined, that is, a ground (non-debugging)

atom, which partitions the set of all diagnoses into DP, DN, and D∅, where:

• Ddwasp ∈ DP if q is in every answer set of PG
deb [P] when none of the debugging

atoms in Ddwasp is assumed to hold;

• Ddwasp ∈ DN if q is in no answer set of PG
deb [P] when none of the debugging atoms

in Ddwasp is assumed to hold; and

• Ddwasp ∈ D∅ if Ddwasp /∈ (DP ∪DN).

The only difference in the usage of queries in dwasp as compared to the approach of

Shchekotykhin (2015) is that, rather than adding test cases, the user’s answer determines

if q (in case q should hold) or not q (in case q should not hold) is added to the set of

assumed atoms.

4.5 Stepping

The debugging approach of Oetsch et al. (2018), which extends previous work by Oetsch

et al. (2011) and Pührer (2014), tackles the problem of explaining why a set of atoms is or

is not an answer set of a logic program in a procedural manner. Inspired by debugging in

procedural programming languages, where the step-wise execution of a program can be

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 187

Fig. 31. The first rule of P28 is chosen for stepping. The “truth assignment” tab shows the
assignment of truth values to the atoms a and b if a step is performed on the chosen rule.

traced, the stepping approach allows to apply rules and assign literals to be true or false

w.r.t. a potential answer set step-by-step. In contrast to the execution of a procedural pro-

gram, the sequence of steps in the execution of a logic program is not predetermined, due

to the declarative nature of the answer set semantics. Thus, the user chooses the step se-

quence in the stepping approach. This debugging approach has been implemented in the

SeaLion IDE (Busoniu et al. 2013), a logic programming plug-in of the Eclipse platform.

Starting with the empty set as the potential answer set, in each computation step the

user is presented with all rules that are applicable w.r.t. the current potential answer

set. To satisfy the chosen rule, a head of the rule is then added to the current potential

answer set and any atoms that thus cannot be in the potential answer set (because they

occur in the negative body of the rule) are recorded as being false w.r.t. the potential

answer set.

Example 60 (Ex. 52 continued)

Recall the logic program P28:

r1 : a ← not b

r2 : b ← not b

The stepping starts with no atoms recorded as being true or false w.r.t. the potential

answer set. Thus, both r1 and r2 are applicable since b is not recorded as being in the

potential answer set, so not b may be true w.r.t. the current potential answer set. The user

can therefore choose which of the two rules to apply. Figure 31 illustrates this scenario in

the stepping component of SeaLion, where all applicable rules are marked in blue. The

user chooses r1 to proceed, so r1 is the only “active instance” of the chosen rule shown

in the respective tab (if r1 contained variables, all applicable grounded versions would

be shown in this tab). The active instance r1 is then used for the “truth assignment,”

which is performed by clicking the “step” button. This records a as being true and b

as being false w.r.t. the potential answer set M , as illustrated in the “state” tab at the

bottom of Figure 32. After this first step, rule r2 is still applicable, so it is chosen for

the next “truth assignment.” However, as indicated by the red X in Figure 32, the truth

assignment that would satisfy r2 cannot be performed. Thus, the stepping computation

fails before being completed, indicating to the user that the assignment of truth values

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

188 J. Fandinno and C. Schulz

Fig. 32. After the first step, the second rule is active but a step cannot be performed.

performed so far does not lead to an answer set. Note that the reason why r2 cannot be

used for the next step is not pointed out to the user explicitly, that is, that b is recorded

as false, but to satisfy r2 it would also have to be true. If r2 was chosen in the first step,

the stepping would fail straight away, that is, the scenario from Figure 32 would apply,

but without the truth assignments shown in the “state” tab at the bottom. �

As illustrated in Example 60, the stepping approach gives the user an insight into the

answer set computation in terms of truth assignments to atoms, rather than providing an

explicit explanation of the cause of inconsistency like the previously discussed debugging

approaches. It also does not make any suggestions on how to change the logic program to

make it consistent. Whereas in Ouroboros the user needs to explicitly specify an intended

answer set, the stepping approach indirectly allows this but does not require it. In other

words, if a user expects a certain answer set, but the logic program is inconsistent or has

different answer sets, the stepping can be targeted toward the intended answer set, until

it becomes clear why certain atoms in the intended answer set are false or why atoms

not expected to be in the answer set are true. However, the stepping approach can also

be applied if a logic program is inconsistent and the user does not know what the answer

set should be. In this case, the user can simply step through applicable rules until the

stepping computation fails, thus providing an insight into how the inconsistency of the

logic program arises. Note that the stepping approach can also be used to find out how

consistent answer sets are derived, in line with the approaches discussed in Section 3.

Like Ouroboros and dwasp, the stepping system can handle logic programs with vari-

ables and supports language constructs such as constraints, choice rules, and aggregates.

Furthermore, it can easily be used with different ASP solvers.

The theory behind the stepping approach is based on an extension of the

FLP-semantics (Faber et al. 2011) by Oetsch et al. (2012), which coincides with the an-

swer set semantics. This guarantees that the computation of answer sets using stepping

is sound and complete, that is, any answer set can be reached through the step-wise

application of rules and truth assignment of atoms, and any successfully terminated

step-wise computation results in an assignment of truth values to atoms forming an an-

swer set. Thus, if the step-wise computation does not terminate successfully, the current

assignment of truth values cannot be extended to an answer set.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 189

Fig. 33. The user chooses r4 as a rule for jumping.

Fig. 34. Truth assignment and applicable facts (highlighted blue) after the jump.

To speed up the step-wise computation, especially in large logic programs with vari-

ables, where rules have various groundings that can be applied in different steps, the user

can perform jumps. A jump is the automatic application of various specified rules in such

a way that they are satisfied. This is useful if the user is not interested in the exact work-

ings of these rules and their influence on a potential answer set. Note that it only makes

sense to use a jump if the chosen rules can be satisfied given the current truth assignment,

so the user should be sure that the chosen jumping rules do not pose a problem.

Example 61 (Ex. 36 continued)

Consider again the logic program about a light bulb and the four switches to turn the

light on and off. We encode this in P32 for the time steps t = 0 . . . 3. Figure 33 illustrates

P32 and the scenario where the user chose the fact off(0) in the first step and now

decides to perform a jump on r4 (see the “jump” tab). Since the jump only considers

the current assignment of truth values and the chosen rule(s), it makes off(1), off(2), and

off(3) true and on(1), on(2), and on(3) false by repeatedly applying r4. This automatic

assignment is shown in the “state” tab in Figure 34, along with the grounded rules

used in the automatic steps of the jump. As illustrated by the blue highlighting, at this

point only facts swa(0) and swb(0) are applicable. Performing steps on these two facts

results in r1 being applicable, but the rule cannot be satisfied w.r.t. the current truth

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

190 J. Fandinno and C. Schulz

Fig. 35. Failure of the stepping computation.

assignment, as shown in Figure 35. The failure provides insights as to why there is no

answer set in which the bulb is turned off at t ≥ 0. Namely, the reason it may be

turned off is inertia (application of rule r4); however, since switches swa and swb are

pushed, it follows that the light bulb must be turned on at t = 1. This conflicts with the

previous inertia assumption that the light is not turned on (not on(1) in r4 when deriving

off(1)). �

4.6 Summary and discussion

In Sections 4.1–4.5, we outlined the most prominent approaches to ASP debugging,

that is, the explanation of non-existence of answer sets in terms of semantic errors.

In contrast to the justification approaches discussed in Section 3, where the truth value

of literals is explained in detail by referring to truth values of other literals used in

their derivation, the explanations provided by debugging approaches can seem rather

minimalistic. Indeed, debugging aims at providing a pointer to the cause of inconsistency

rather than a full-fledged explanation. Furthermore, we have seen that these approaches

follow different ideas as to what an explanation should encompass and that they use

different methodologies to achieve this. Tables 3 and 4 provide a comparative overview

of the differences and similarities of the surveyed debugging approaches. In particular,

Table 3 compares debugging approaches concerning the type of logic programs that can

be debugged, whether or not logic programs with variables as well as with language

constructs such as aggregates or arithmetic terms can be debugged, and whether the

approach can also be used to explain consistent logic programs. Table 4 complements

this by illustrating whether the debugging approaches require an intended answer set, or

rather, whether they detect mistakes w.r.t. potentially intended answer sets, which types

of errors in a logic program the debugging approaches distinguish, and whether the user

can or has to interact with the debugger.

In the following, we discuss some of the distinguishing features in more detail to facil-

itate users to choose the appropriate debugging approach for their application.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 191

Table 3. Comparison of explanation approaches for inconsistent logic programs

Additional
Debugging Type of logic Variables language Explains
approach program supported constructs consistent LPs

spock

transformation 1
Normal LP No No Yes

spock

transformation 2
LP No No Only non-answer

sets
Ouroboros Extended LP Yes Arithmetic,

comparison
Only non-answer

sets
Interactive spock LP No No Only non-answer

sets
dwasp LP Yes No No
stepping LPa Yes Aggregates, weight

constraints,
external atoms

Yes

a The earlier version of the stepping approach (Oetsch et al. 2011) uses extended normal programs.

Table 4. Comparison of explanation approaches for inconsistent logic programs

(continued)

Debugging Intended User
approach answer set Error types interaction

spock

transformation 1
Possible but not

required
(automatically
generated)

Unsatisfied rule,
unsupported atom,
unfounded atom

Possible

spock

transformation 2
Possible but not

required
(automatically
generated)

Unsatisfied rule/constraint,
unsupported atom,
unfounded atom

Possible

Ouroboros Required Unsatisfied rule/constraint,
unfounded atom

Required for
intended
answer set

Interactive spock Possible but not
required

Unsatisfied rule/constraint,
unsupported atom,
unfounded atom

Required

dwasp Possible but not
required

Minimal unsatisfiable core Required

stepping Not required but
(indirectly)
possible

Unsatisfiability of rules,
conflicting truth value of
atoms

Required

4.6.1 Knowledge representation versus programming

As discussed by Cabalar (2011), logic programs under the answer set semantics are

seen as a pure knowledge representation and reasoning formalism by some and as a

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

192 J. Fandinno and C. Schulz

programming language by others. It is therefore not surprising that explanation and

debugging approaches reflect this difference. Seeing ASP as a knowledge representation

formalism, a user represents knowledge in terms of a logic program and uses the answer

set semantics to find out which conclusions can be drawn from this knowledge. The user

may also represent a problematic situation and compute answer sets to find a solution

to the problem. Especially in the latter of these two cases, the user most likely has no

idea what the solution may be, in other words, there is no answer set intended by the

user. On the other hand, if ASP is seen as a programming language, the user may well

have an idea as to what the solution, that is, the answer sets, should look like.

Taking these considerations into account, the spock approach (Section 4.1) may be

more suitable for knowledge representation applications, as it does not require that the

user specifies an intended answer set. Sets of literals are generated automatically as

potential answer sets, which are then justified as to why they are not actual answer

sets. Similarly, the stepping approach (Section 4.5) does not require the user to have

an answer set in mind as applicable rules are automatically determined and the user can

then freely choose which one to use. However, both approaches allow the user to guide

the explanation toward specific literals that may be expected in an answer set.

The interactive debugging approaches (Sections 4.3 and 4.4) take a programming lan-

guage rather than a knowledge representation view on ASP, as they assume that the

user has at least some idea as to what an answer set should look like, querying the user

about the expected truth values of some literals. The user can certainly choose these

truth values at random, making the interactive approaches applicable even if the user

has no answer set in mind. However, this is not their intended usage. Note also that in

order to know the truth value of a literal chosen by the debugging approach, the user

essentially has to have an answer set in mind, as the user does not know upfront which

literal will be chosen as a query.

The Ouroboros approach (Section 4.2) is clearly on the programming language end of

the spectrum as it requires the user to specify a complete intended answer set. The user

could of course choose an “intended” answer set at random, but, again, this is not the

usage envisaged by this approach.

4.6.2 Error classification

As in the case of justifications for consistent logic programs, the debugging approaches

also differ regarding the elements used for explaining the inconsistency. More precisely,

they identify different types of “errors” causing a set of literals to not be an answer set.

Broadly speaking, two different ideas toward errors can be distinguished: the classification

of errors into different classes or the reduction of all errors to one “class.”

dwasp and the stepping approach do not use any named error classes, thus following

the latter idea. In dwasp errors are sets of rules that, when blocked, make the program

consistent. However, there is no further explanation as to why this is the case. On the

other hand, errors in the stepping approach are only indirectly specified. They are

indicated by (partial) truth assignments to literals, which lead to a contradiction. Again,

there is no further explanation, other than the rule causing the contradiction. In contrast,

the other approaches reviewed here distinguish different classes of errors.

The spock system and the two approaches based on it (interactive debugging and

Ouroboros) use mostly the same classes of errors. As previously explained, these are

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 193

violations of the definition of answer sets by Lin and Zhao (2004) and Lee (2005) (see

Definition 32), namely unsatisfied rules, unsupported atoms, and unfounded atoms.

Interestingly, one reason for inconsistency of logic programs often discussed in the

literature (You and Yuan 1994; Syrjänen 2006; Costantini 2006; Schulz et al. 2015) is

not explicitly pointed out by spock, namely odd-length (negative dependency) cycles.

In Examples 52 and 55, the odd-length cycle in r2 of P29 is only indirectly pointed out:

M26 expresses that {b} is not an answer set of P29 since all rules with head b are blocked

by {b}. Taking a closer look at P29, we realize that the only rule with head b is r2 and

that the reason for it being blocked is that not b is in the body of r2. However, if P29

was a large logic program, it would be infeasible to check all rules with head b to find

out that one of them may comprise an odd-length cycle, causing the rule to be blocked.

Similarly, M28 indirectly points out the odd-length cycle by stating that r2 is applicable

but its head is not contained in the set {a}. We then realize that the reason for r2 not

being satisfied is the odd-length cycle.

Example 62

Let P33 be the inconsistent logic program with:

r1 : a ← b r2 : b ← not a (81)

The answer sets of Tk [P33] ∪ Tex [P33] (when using minimization) are

• M42 = {a, b, unsupported(b), applicable(r1), blocked(r2)}
• M43 = {a, unsupported(a), blocked(r1), blocked(r2)}
• M44 = {b, unsatisfied(r1), applicable(r1), applicable(r2)}
• M45 = {unsatisfied(r2), blocked(r1), applicable(r2)}

None of the answer sets captures the fact that there is an odd-length cycle a ← not a.

For a similarly structured logic program with more rules and derivation steps between a

and not a, it would therefore be difficult to identify that the reason of the inconsistency

is an odd-length cycle. �

A debugging approach related to spock (Syrjänen 2006) explicitly points out incon-

sistencies due to odd-length cycles. The approach also uses the input transformation

Pinp [P] of a logic program together with a meta-encoding of two types of errors: odd-

length cycles and violated constraints. However, all odd-length cycles are considered as

faulty, even though some odd-length cycles do not cause a logic program to be inconsis-

tent. In contrast to the spock system, faults are pointed out independent of intended or

potential answer sets.

Another class of “errors” not considered in any of the debugging approaches is those of

contradictory answer sets. In fact, none of the debugging approaches reviewed here deals

with contradictory atoms in an answer set. Schulz et al. (2015) show that logic programs

with contradictory answer sets include different types of semantic errors than inconsistent

logic programs. This is also taken into account in the inconsistency measurements of

Ulbricht et al. (2016).

4.6.3 Large and real-world logic programs

We already hinted at the fact that the different debugging approaches require various

levels of user interaction to obtain an explanation. In particular, some approaches

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

194 J. Fandinno and C. Schulz

require the user to specify an intended answer set before starting the debugging process,

especially the Ouroboros system. This can be difficult if faced with a large logic program,

potentially comprising hundreds of atoms. Furthermore, using the stepping approach,

the user has to step through every single applicable rule, unless being sure that some

rules are not problematic, in which case the jumping feature can be used.

Assuming that the user does not have any idea why the logic program is inconsistent,

thus ruling out jumping, the stepping approach can take a long time and also be prone

to errors for these large programs.

In contrast, for approaches requiring only little user interaction, first and foremost the

spock system, the amount of interaction does not increase when dealing with large logic

programs. However, note that the more literals occur in a program, the more explanations

are computed by spock, namely one for each potential answer set. The user interaction

is thus implicitly required after explanations are computed, since the user then has to

decide which explanations to take into account. It follows, that, just like the Ouroboros

and stepping approaches, using spock with large logic programs may take a long time.

The two interactive approaches (the one based on spock and the dwasp system) are

the ones that require least user interaction when handling large logic programs. This is

because queries are determined in such a way that the user’s answer provides maximal

information gain. Consequently, the total number of queries generated is as small as

possible. From a user’s point of view, answering a query on the expected truth value of

a single literal may furthermore be easier than specifying the truth value of all literals

at once or choosing a meaningful explanation from all the ones generated.

When using ASP in practice, logic programs often include additional language con-

structs, make use of variables, and are seldom limited to normal rules. These are impor-

tant consideration when choosing a debugging approach. Currently, Ouroboros and the

stepping approach are the only ones to handle both NAF and explicit negation, vari-

ables, and additional language constructs, where the stepping approach supports more

constructs than Ouroboros. dwasp supports variables, but to the best of our knowledge

no explicit negation or additional language constructs. Nevertheless, is to be assumed

that these will be supported in the future since dwasp is implemented in terms of the

ASP solver wasp, which is able to handle these.

5 Related work

In this survey, we focussed on justification and debugging approaches for logic programs

under the answer set semantics. Historically, the concept of justifications can be traced

back to the works of Shapiro (1983) and Sterling and Lalee (1986), where they have been

used as a means for identifying bugs in programs. Later, Lloyd (1987) introduced the

notions of uncovered atoms and incorrect rules under the completion semantics (Clark

1978) while Sterling and Yalçinalp (1989) explained Prolog expert systems using a meta-

interpreter.

An important notion for understanding errors in ASP is the concept of a supported

set of atoms, which was introduced by Pereira et al. (1991) and further elaborated

by Pereira et al. (1993). Another important concept is the notion of assumptions, which

was introduced for truth maintenance systems by de Kleer (1986) and developed for logic

programming by Pereira et al. (1993). Specht (1993) presented one of the first techniques

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 195

to compute complete proof trees for bottom-up evaluation of database systems by

means of a program transformation. Further techniques for computing justifications or

explanations for Prolog by means of meta-interpreters or program transformations can

be found in Sterling and Shapiro (1994) and Bratko (2001). Furthermore, explanation

approaches have been developed for knowledge representation paradigms related to ASP.

For instance, Arora et al. (1993) present explanations for deductive databases and

Ferrand et al. (2006) for constraint logic programs and constraint satisfaction problems.

Regarding justifications for logic programs under the answer set semantics, Brain and

De Vos (2005) were one of the first to tackle this issue by presenting two algorithms

for producing natural language explanations as to why a (set of) literal(s) is or is not

part of an answer set. In the first case, applicable rules are provided as an explanation,

whereas in the second case contradictions (concerning the truth values of atoms) are

pointed out.

Off-line justifications (Pontelli and Son 2006; Pontelli et al. 2009), as reviewed in Sec-

tion 3.1, use graphs as justifications, expressing why an atoms is (not) contained in a

given answer set. This approach can be traced back to tabled justifications for Pro-

log (Roychoudhury et al. 2000; Pemmasani et al. 2003). Albrecht et al. (2013) further

show how off-line explanation graphs can be constructed from a graphical representation

of logic programs called extended dependency graph. The root of causal justifications can

be traced back to Cabalar (2011), where an extension of the stable semantics with causal

proofs was introduced, and Cabalar and Fandinno (2013), where an algebraic character-

ization of this semantics was developed. Argumentation-based answer set justifications

(Schulz et al. 2013) are a predecessor of LABAS justifications. They share the argu-

mentative flavor of LABAS justifications but use a slightly different way of constructing

arguments and justifications.

Erdem and Öztok (2015) use ASP to construct explanations for biomedical queries.

These explanations have a tree structure expressing derivations of a literal in question and

have a close relationship with off-line justifications. Lifschitz (2017) introduces a method-

ology that facilitates the design of encodings that are easy to understand and provably

correct. In addition to the implementations of justification and debugging approaches

reviewed here, Perri et al. (2007) integrate an explanation and debugging component

into the DLV solver.

As we saw throughout this survey, many justification approaches construct a graphical

explanation. Graph representations of logic programs have also been extensively studied

for other purposes (Costantini et al. 2002; Costantini and Provetti 2010). Graphs can, for

instance, be useful for the computation of answer sets, as is the purpose of attack graphs

(Dimopoulos and Torres 1996), rule graphs (Dimopoulos 1996), and block graphs (Linke

2001) and their extensions (Linke and Sarsakov 2004; Konczak et al. 2006). Furthermore,

Costantini (2001) and Costantini and Provetti (2011) study desirable properties of graphs

representing logic programs and Costantini (2006) uses cycle graphs to prove conditions

for the existence of answer sets.

Various IDEs for ASP also make use of graphical representations of logic programs or

visualize dependencies between literals to help the user understand a problem represented

as a logic program. For example, for the DLV solver a visual computation tracing feature

(Calimeri et al. 2009) as well as a dependency graph feature (Febbraro et al. 2011)

have been developed. Furthermore, the VIDEAS system (Oetsch et al. 2011) uses entity

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

196 J. Fandinno and C. Schulz

relationship graphs of logic programs for model-driven engineering in ASP and, in the

“Visual ASP” system (Febbraro et al. 2010), the user can draw a graph, which is then

translated into a logic program.

6 Conclusion

Lifschitz 2010 lists 13 different definitions of the concept of answer set (and points out

that even more exist). These definitions are equivalent (at least for normal programs),

but provide alternative points of view on the intuitive meaning of logic programs or lead

to different algorithms for generating answer sets. In this sense, it is not surprising that

there exist several ways of explaining the solutions to consistent programs and the errors

in inconsistent ones. In this survey, we have reviewed and compared the most prominent

explanation approaches for both consistent and inconsistent logic programs under the

answer set semantics and pointed out their differences and similarities. These approaches

try to answer important “why” questions regarding answer sets, namely why a set of

literals is or is not an answer set, or why a logic program is inconsistent. Approaches

aiming at answering the first question for consistent logic programs are referred to as jus-

tification approaches, while explanation approaches trying to answer the second question

for inconsistent logic programs are referred to as debugging approaches. The latter take a

more global view than justification approaches: in debugging approaches the explanation

is w.r.t. a whole set that is not an answer set, whereas in most justification approaches

the explanation is w.r.t. one literal that is (not) in an answer set.

As we have seen in Sections 3.6 and 4.6, the different justification and debugging ap-

proaches suffer from various issues. Building upon these observations, in the following

we suggest some considerations for future research that are mainly independent of philo-

sophical choices made by different approaches. These are particularly important in the

light of the European Union’s new GDPR, which states that explanations should consist

of “meaningful information about the logic involved” and be “concise, intelligible and

easily accessible” (Goodman and Flaxman 2016). Since the approaches discussed here

construct explanations based on the logical connection between rules and literals leading

to the existence of a particular answer set or to inconsistency, at least the first part of

the first GDPR condition, that is, “information about the logic involved,” can be deemed

satisfied by these approaches. The proposed directions of research are as follows:

• Number of explanations (tackling the conciseness and intelligibility required by

the GDPR): As previously discussed, most justification and debugging approaches

suffer from a large number of possible explanations when dealing with large pro-

grams with, potentially, many (and long) dependencies between literals. This is not

feasible in practice, so a method for choosing the most suitable explanation(s) is

needed. This could, for example, be tackled by querying the user as in dwasp and

the interactive spock approach.

• Size of explanations (tackling meaningfulness of information, conciseness, intelli-

gibility, and easy accessibility required by the GDPR): A related problem is the

growth in size, from which many of the justification approaches suffer. Large ex-

planations are infeasible in many practical applications, since they make it difficult

for the user to understand the explanation. The development of techniques for col-

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 197

lapsing less important parts of an explanation provides a challenging topic for the

future.

• Language constructs and variables: We have seen that, especially among the justi-

fication approaches, there is little support for logic programs that contain language

constructs such as aggregates, weight constraints, etc. Many approaches are not

even able to efficiently handle variables. In order to apply explanations in practice,

these issues will have to be addressed.

• Cross-fertilization of justification and debugging: Most current approaches focus on

either justifying consistent programs or debugging inconsistent programs. A first

step toward the cross-fertilization of the two was made by Damásio et al. (2015),

who combine the second spock transformation approach with why-not provenance

justifications.

• Going beyond debugging: Current debugging approaches merely point out errors

in a program, leaving the fixing of these errors to the user. The automatic revision

of inconsistent logic programs is thus an interesting, and challenging, topic for

future investigations. A first step in this direction was made by Li et al. (2015),

who use inductive logic programming to achieve a semi-automatic revision of logic

programs.

Meeting the requirements of the GDPR will be a challenging task, especially since con-

ditions like meaningfulness and intelligibility of information may have to be realized dif-

ferently for ASP experts and non-experts. Applications of ASP explanation approaches

will thus determine whether or not they meet the required conditions. In this sense, an

exciting prospect for the future is the combination of the advantages and minimization

of the disadvantages of all the different approaches for answering a “why” question in

ASP.

References

Albrecht, E., Krümpelmann, P. and Kern-Isberner, G. 2013. Construction of explanation
graphs from extended dependency graphs for answer set programs. In Declarative Program-
ming and Knowledge Management. INAP 2013, WLP 2013, WFLP 2013, M. Hanus and
R. Rocha, Eds. Lecture Notes in Computer Science, vol. 8439. Springer, Cham, 1–16.

Alviano, M., Dodaro, C., Faber, W., Leone, N. and Ricca, F. 2013. WASP: A native ASP
solver based on constraint learning. In Logic Programming and Nonmonotonic Reasoning.
LPNMR 2013, P. Cabalar and T. C. Son, Eds. Lecture Notes in Computer Science, vol. 8148.
Springer, Berlin, Heidelberg, 54–66.

Alviano, M., Dodaro, C., Leone, N. and Ricca, F. 2015. Advances in WASP. In Logic
Programming and Nonmonotonic Reasoning. LPNMR 2015, F. Calimeri, G. Ianni, and
M. Truszczynski, Eds. Lecture Notes in Computer Science, vol. 9345. Springer, Cham, 40–54.

Arora, T., Ramakrishnan, R., Roth, W. G., Seshadri, P. and Srivastava, D. 1993. Explain-
ing program execution in deductive systems. In Deductive and Object-Oriented Databases.
DOOD 1993, S. Ceri, K. Tanaka, and S. Tsur, Eds. Lecture Notes in Computer Science,
vol. 760. Springer, Berlin, Heidelberg, 101–119.

Balduccini, M. and Girotto, S. 2010. Formalization of psychological knowledge in answer
set programming and its application. Theory and Practice of Logic Programming 10, 4–6,
725–740.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

198 J. Fandinno and C. Schulz

Béatrix, C., Lefèvre, C., Garcia, L. and Stéphan, I. 2016. Justifications and blocking sets
in a rule-based answer set computation. In Technical Communications of the 32nd Interna-
tional Conference on Logic Programming (ICLP’16), 6:1–6:15.

Boenn, G., Brain, M., De Vos, M. and Fitch, J. P. 2011. Automatic music composition
using answer set programming. Theory and Practice of Logic Programming 11, 2–3, 397–427.

Brain, M. and De Vos, M. 2005. Debugging logic programs under the answer set semantics.
In Proceedings of the 3rd Workshop on Answer Set Programming, Advances in Theory and
Implementation (ASP’05).

Brain, M. and De Vos, M. 2008. Answer set programming - a domain in need of explanation:
A position paper. In Proceedings of the 3rd International Workshop on Explanation-Aware
Computing (ExaCt’08), 37–48.

Brain, M.,Gebser, M., Pührer, J., Schaub, T., Tompits, H. andWoltran, S. 2007a. Debug-
ging ASP programs by means of ASP. In Logic Programming and Nonmonotonic Reasoning.
LPNMR 2007, C. Baral, G. Brewka, and J. Schlipf, Eds. Lecture Notes in Computer Science,
vol. 4483. Springer, Berlin, Heidelberg, 31–43.

Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H. and Woltran, S. 2007b.
“That is illogical captain!” - The debugging support tool spock for answer-set programs:
System description. In Proceedings of the 1st International Workshop on Software Engineering
for Answer Set Programming (SEA’07), 71–85.

Bratko, I. 2001. Prolog Programming for Artificial Intelligence. Pearson Education.

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

Busoniu, P.-A., Oetsch, J., Pührer, J., Skocovsky, P. and Tompits, H. 2013. SeaLion:
An eclipse-based IDE for answer-set programming with advanced debugging support. Theory
and Practice of Logic Programming 13, 4–5, 657–673.

Cabalar, P. 2011. Answer set; programming? In Logic Programming, Knowledge Representa-
tion, and Nonmonotonic Reasoning - Essays Dedicated to Michael Gelfond on the Occasion
of His 65th Birthday, 334–343.

Cabalar, P. and Fandinno, J. 2013. An algebra of causal chains. CoRR abs/1312.6134.

Cabalar, P. and Fandinno, J. 2016. Justifications for programs with disjunctive and causal-
choice rules. Theory and Practice of Logic Programming 16, 5–6, 587–603.

Cabalar, P. and Fandinno, J. 2017. Enablers and inhibitors in causal justifications of logic
programs. Theory and Practice of Logic Programming 17, 1, 49–74.

Cabalar, P., Fandinno, J. and Fink, M. 2014. Causal graph justifications of logic programs.
Theory and Practice of Logic Programming 14, 4–5, 603–618.

Cabalar, P., Fandiño, J. and Fink, M. 2014. A complexity assessment for queries involving
sufficient and necessary causes. In Proceedings of the 14th European Conference on Logics
in Artificial Intelligence (JELIA’14). Lecture Notes in Computer Science, vol. 8761. Springer,
297–310.

Calimeri, F., Leone, N., Ricca, F. and Veltri, P. 2009. A visual tracer for DLV. In Proceed-
ings of the 2nd International Workshop on Software Engineering for Answer Set Programming
(SEA’09), 79–93.

Clark, K. L. 1978. Negation as failure. In Logic and Data Bases, H. Gallaire and J. Minker,
Eds. Springer, Boston, MA, 293–322.

Costantini, S. 2001. Comparing different graph representations of logic programs under the an-
swer set semantics. In Proceedings of the 1st International Workshop on Answer Set Program-
ming: Towards Efficient and Scalable Knowledge Representation and Reasoning (ASP’01).

Costantini, S. 2006. On the existence of stable models of non-stratified logic programs. Theory
and Practice of Logic Programming 6, 1–2, 169–212.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 199

Costantini, S., D’Antona, O. and Provetti, A. 2002. On the equivalence and range of
applicability of graph-based representations of logic programs. Information Processing Let-
ters 84, 5, 241–249.

Costantini, S. and Provetti, A. 2010. Graph representations of logic programs: Properties
and comparison. In Proceedings of the 6th Latin American Workshop on Non-Monotonic
Reasoning, 1–14.

Costantini, S. and Provetti, A. 2011. Conflict, consistency and truth-dependencies in graph
representations of answer set logic programs. In Revised Selected Papers of the 2nd In-
ternational Workshop on Graph Structures for Knowledge Representation and Reasoning
(GKR’11), 68–90.

Damásio, C. V., Analyti, A. and Antoniou, G. 2013. Justifications for logic programming. In
Logic Programming and Nonmonotonic Reasoning. LPNMR 2013, P. Cabalar and T. C. Son,
Eds. Lecture Notes in Computer Science, vol. 8148. Springer, Berlin, Heidelberg, 530–542.

Damásio, C. V., Moura, J. and Analyti, A. 2015. Unifying justifications and debugging for
answer-set programs. In Technical Communications of the 31st International Conference on
Logic Programming (ICLP’15).

Damásio, C. V., Pires, J. M. and Analyti, A. 2015. Unifying justifications and debugging
for answer-set programs. In Proceedings of the Technical Communications of the 31st Inter-
national Conference on Logic Programming (ICLP’15), M. D. Vos, T. Eiter, Y. Lierler and
F. Toni, Eds. CEUR Workshop Proceedings, vol. 1433. CEUR-WS.org.

de Kleer, J. 1986. An assumption-based TMS. Artificial Intelligence 28, 2, 127–162.

Denecker, M., Brewka, G., and Strass, H. 2015. A formal theory of justifications. In Logic
Programming and Nonmonotonic Reasoning. LPNMR 2015, F. Calimeri, G. Ianni, and M.
Truszczynski, Eds. Lecture Notes in Computer Science, vol. 9345. Springer, Cham, 250–264.

Denecker, M. and De Schreye, D. 1993. Justification semantics: A unifying framework for
the semantics of logic programs. In Proceedings of the 2nd International Workshop on Logic
Programming and Non-monotonic Reasoning (LPNMR’93), 365–379.

Dimopoulos, Y. 1996. On computing logic programs. Journal of Automated Reasoning 17, 3,
259–289.

Dimopoulos, Y. and Torres, A. 1996. Graph theoretical structures in logic programs and
default theories. Theoretical Computer Science 170, 1–2, 209–244.

Dodaro, C., Gasteiger, P., Musitsch, B., Ricca, F. and Shchekotykhin, K. 2015. Inter-
active debugging of non-ground ASP programs. In Logic Programming and Nonmonotonic
Reasoning. LPNMR 2015, F. Calimeri, G. Ianni, and M. Truszczynski, Eds. Lecture Notes in
Computer Science, vol. 9345. Springer, Cham, 279–293.

Dung, P. M., Kowalski, R. A. and Toni, F. 2009. Assumption-based argumentation. In
Argumentation in Artificial Intelligence, G. R. Simari and I. Rahwan, Eds. Springer US,
199–218.

El-Khatib, O., Pontelli, E. and Son, T. C. 2005. Justification and debugging of answer set
programs in ASP - Prolog. In Proceedings of the 6th International Workshop on Automated
Debugging (AADEBUG’05), 49–58.

Erdem, E. and Öztok, U. 2015. Generating explanations for biomedical queries. Theory and
Practice of Logic Programming 15, 1, 35–78.

Faber, W., Pfeifer, G. and Leone, N. 2011. Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence 175, 1, 278–298.

Fandinno, J. 2016a. Deriving conclusions from non-monotonic cause-effect relations. Theory
and Practice of Logic Programming 16, 5–6, 670–687.

Fandinno, J. 2016b. Towards deriving conclusions from cause-effect relations. Fundamenta
Informaticae 147, 1, 93–131.

Febbraro, O., Reale, K. and Ricca, F. 2010. A visual interface for drawing ASP Programs.
In Proceedings of the 25th Italian Conference on Computational Logic (CILC’10).

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

200 J. Fandinno and C. Schulz

Febbraro, O., Reale, K. and Ricca, F. 2011. ASPIDE: Integrated development environment
for answer set programming. In Logic Programming and Nonmonotonic Reasoning. LPNMR
2011, J. P. Delgrande and W. Faber, Eds. Lecture Notes in Computer Science, vol. 6645.
Springer, Berlin, Heidelberg, 317–330.

Ferrand, G., Lesaint, W. and Tessier, A. 2006. Explanations and proof trees. Computers
and Informatics 25, 2–3, 105–122.

Frühstück, M., Pührer, J. and Friedrich, G. 2013. Debugging answer-set programs with
ouroboros? Extending the SeaLion Plugin. In Logic Programming and Nonmonotonic Reason-
ing. LPNMR 2013, P. Cabalar and T. C. Son, Eds. Lecture Notes in Computer Science, vol.
8148. Springer, Berlin, Heidelberg, 323–328.

Gasteiger, P., Dodaro, C., Musitsch, B., Reale, K., Ricca, F. and Schekotihin, K.

2016. An integrated graphical user interface for debugging answer set programs. In Proceedings
of the Workshop on Trends and Applications of Answer Set Programming (TAASP’16).

Gebser, M., Pührer, J., Schaub, T. and Tompits, H. 2008. A meta-programming technique
for debugging answer-set programs. In Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (AAAI’18), D. Fox and C. P. Gomes, Eds. AAAI Press, 448–453.

Gebser, M., Schaub, T., Thiele, S. and Veber, P. 2011. Detecting inconsistencies in large
biological networks with answer set programming. Theory and Practice of Logic Program-
ming 11, 2–3, 323–360.

Gelfond, M. 2008. Answer sets. In Handbook of Knowledge Representation, B. Porter, F. van
Harmelen, and V. Lifschitz, Eds. Elsevier, 285–316.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In
Logic Programming: Proceedings of the 5th International Conference and Symposium, vol. 2.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 3/4, 365–386.

Goodman, B. and Flaxman, S. 2016. European union regulations on algorithmic decision-
making and a “right to explanation.” arXiv preprint arXiv:1606.08813.

Green, T. J., Karvounarakis, G. and Tannen, V. 2007. Provenance semirings. In Proceed-
ings of the 26th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, L. Libkin, Ed. ACM, 31–40.

Hall, N. 2004. Two concepts of causation. In Causation and Counterfactuals, J. Collins, N. Hall
and L. A. Paul, Eds. MIT Press, Cambridge, MA, 225–276.

Hall, N. 2007. Structural equations and causation. Philosophical Studies 132, 1, 109–136.

Halpern, J. Y. 2008. Defaults and normality in causal structures. In Proceedings of the 11th
International Conference on Principles of Knowledge Representation and Reasoning (KR’08),
G. Brewka and J. Lang, Eds. AAAI Press, 198–208.

Hitchcock, C. and Knobe, J. 2009. Cause and norm. Journal of Philosophy 11, 587–612.

Inclezan, D. 2015. An application of answer set programming to the field of second language
acquisition. Theory and Practice of Logic Programming 15, 01, 1–17.

Konczak, K., Linke, T. and Schaub, T. 2006. Graphs and colorings for answer set program-
ming. Theory and Practice of Logic Programming 6, 1–2, 61–106.

Lee, J. 2005. A model-theoretic counterpart of loop formulas. In Proceedings of the 19th Inter-
national Joint Conference on Artificial Intelligence (IJCAI’05), 503–508.

Lefèvre, C., Béatrix, C., Stéphan, I. and Garcia, L. 2017. ASPeRiX, a first-order forward
chaining approach for answer set computing. Theory and Practice of Logic Programming 17, 3,
266–310.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello, F.

2006. The DLV system for knowledge representation and reasoning. ACM Transactions on
Computational Logic 7, 3, 499–562.

Lewis, D. K. 1973. Causation. The Journal of Philosophy 70, 17, 556–567.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 201

Li, T., De Vos, M., Padget, J., Satoh, K. and Balke, T. 2015. Debugging ASP using
ILP. In Proceedings of the Technical Communications of the 31st International Conference
on Logic Programming (ICLP’15).

Lifschitz, V. 2008. What is answer set programming? In Proceedings of the 23rd AAAI Con-
ference on Artificial Intelligence (AAAI’08), 1594–1597.

Lifschitz, V. 2010. Thirteen definitions of a stable model. In Fields of Logic and Computa-
tion, Essays Dedicated to Yuri Gurevich on the Occasion of His 70th Birthday, A. Blass,
N. Dershowitz, and W. Reisig, Eds. Lecture Notes in Computer Science, vol. 6300. Springer,
488–503.

Lifschitz, V. 2017. Achievements in answer set programming. Theory and Practice of Logic
Programming 17, 5–6, 961–973.

Lin, F. and Zhao, Y. 2004. ASSAT: Computing answer sets of a logic program by SAT solvers.
Artificial Intelligence 157, 1–2, 115–137.

Linke, T. 2001. Graph theoretical characterization and computation of answer sets. In Pro-
ceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI’01),
641–648.

Linke, T. and Sarsakov, V. 2004. Suitable graphs for answer set programming. In Proceedings
of the 11th International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR’04), 154–168.

Lloyd, J. W. 1987. Declarative error diagnosis. New Generation Computing 5, 2, 133–154.

Maudlin, T. 2004. Causation, counterfactuals, and the third factor. In Causation and Coun-
terfactuals, J. Collins, E. J. Hall and L. A. Paul, Eds. MIT Press.

McCarthy, J. 1977. Epistemological problems of artificial Intelligence. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI). MIT Press, Cambridge, MA,
1038–1044.

McCarthy, J. 1998. Elaboration tolerance. In Proceedings of the 4th Symposium on Log-
ical Formalizations of Commonsense Reasoning (Commonsense’98), London, UK, 198–217.
Updated version at http://www-formal.stanford.edu/jmc/elaboration.ps.

Oetsch, J., Pührer, J., Seidl, M., Tompits, H. and Zwickl, P. 2011. VIDEAS: A devel-
opment tool for answer-set programs based on model-driven engineering technology. In
Logic Programming and Nonmonotonic Reasoning. LPNMR 2011, J. P. Delgrande and W.
Faber, Eds. Lecture Notes in Computer Science, vol. 6645. Springer, Berlin, Heidelberg,
382–387.

Oetsch, J., Pührer, J. and Tompits, H. 2010. Catching the Ouroboros: On debugging non-
ground answer-set programs. Theory and Practice of Logic Programming 10, 4–6, 513–529.

Oetsch, J., Pührer, J. and Tompits, H. 2011. Stepping through an answer-set program. In
Logic Programming and Nonmonotonic Reasoning. LPNMR 2011, J. P. Delgrande and W.
Faber, Eds. Lecture Notes in Computer Science, vol. 6645. Springer, Berlin, Heidelberg, 134–
147.

Oetsch, J., Pührer, J. and Tompits, H. 2012. An FLP-style answer-set semantics for
abstract-constraint programs with disjunctions. In Technical Communications of the 28th
International Conference on Logic Programming (ICLP’12), 222–234.

Oetsch, J., Pührer, J. and Tompits, H. 2018. Stepwise debugging of answer-set programs.
Theory and Practice of Logic Programming 18, 1, 30–80.

Parliament and Council of the European Union 2016. Regulation (EU) 2016/679: General
Data Protection Regulation.

Pemmasani, G., Guo, H. F., Dong, Y., Ramakrishnan, C. R. and Ramakrishnan, I. V. 2003.
Online justification for tabled logic programs. In Functional and Logic Programming. FLOPS
2004, Y. Kameyama and P. J. Stuckey, Eds. Lecture Notes in Computer Science, vol. 2998.
Springer, Berlin, Heidelberg, 500–501.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

http://www-formal.stanford.edu/jmc/elaboration.ps
https://doi.org/10.1017/S1471068418000534

202 J. Fandinno and C. Schulz

Pereira, L. M. and Alferes, J. J. 1992. Well founded semantics for logic programs with
explicit negation. In Proceedings of the 10th European conference on Artificial Intelligence
(ECAI ’92), B. Neumann, Ed. John Wiley & Sons, Inc., New York, NY, USA, 102–106.

Pereira, L. M., Alferes, J. J. and Apaŕıcio, J. N. 1991. Contradiction removal semantics
with explicit negation. In Knowledge Representation and Reasoning under Uncertainty. Logic
at Work 1992. M. Masuch and L. Polos, Eds. Lecture Notes in Computer Science (Lecture
Notes in Artificial Intelligence), vol. 808. Springer, Berlin, Heidelberg.

Pereira, L. M., Aparcio, J. N. and Alferes, J. 1993. Non-monotonic reasoning with
logic programming. The Journal of Logic Programming 17, 2, 227–263. Special Issue: Non-
Monotonic Reasoning and Logic Programming.

Pereira, L. M., Damásio, C. V. and Alferes, J. J. 1993. Debugging by diagnosing as-
sumptions. In International Workshop on Automated and Algorithmic Debugging. Springer,
58–74.

Perri, S., Ricca, F., Terracina, G., Cianni, D. and Veltri, P. 2007. An integrated
graphic tool for developing and testing DLV programs. In Proceedings of the 1st In-
ternational Workshop on Software Engineering for Answer Set Programming (SEA’07),
86–100.

Polleres, A., Frühstück, M., Schenner, G. and Friedrich, G. 2013. Debugging non-ground
ASP programs with choice rules, cardinality and weight constraints. In Logic Programming
and Nonmonotonic Reasoning. LPNMR 2013, P. Cabalar and T. C. Son, Eds. Lecture Notes
in Computer Science, vol. 8148. Springer, Berlin, Heidelberg, 452–464.

Pontelli, E. and Son, T. C. 2006. Justifications for logic programs under answer set seman-
tics. In Proceedings of the 22nd International Conference on Logic Programming (ICLP’06),
196–210.

Pontelli, E., Son, T. C. and El-Khatib, O. 2009. Justifications for logic programs under
answer set semantics. Theory and Practice of Logic Programming 9, 1, 1–56.

Pührer, J. 2014. Stepwise Debugging in Answer-Set Programming: Theoretical Foundations and
Practical Realisation. Ph.D. thesis, Vienna University of Technology.

Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S. and Leone, N.

2012. Team-building with answer set programming in the Gioia-Tauro Seaport. Theory and
Practice of Logic Programming 12, 3, 361–381.

Roychoudhury, A., Ramakrishnan, C. R. and Ramakrishnan, I. V. 2000. Justifying proofs
using memo tables. In Proceedings of the 2nd ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming (PPDP’00), 178–189.

Schulz, C. 2017. Developments in abstract and assumption-based argumentation and their
application in logic programming. Ph.D. thesis, Imperial College London.

Schulz, C., Satoh, K. and Toni, F. 2015. Characterising and explaining inconsistency in logic
programs. In Logic Programming and Nonmonotonic Reasoning. LPNMR 2015, F. Calimeri,
G. Ianni, and M. Truszczynski, Eds. Lecture Notes in Computer Science, vol. 9345. Springer,
Cham, 467–479.

Schulz, C., Sergot, M. and Toni, F. 2013. Argumentation-based answer set justification. In
Proceedings of the 11th International Symposium on Logical Formalizations of Commonsense
Reasoning (Commonsense’13).

Schulz, C. and Toni, F. 2013. ABA-based answer set justification. Theory and Practice of
Logic Programming 13, 4–5 Online-Supplement.

Schulz, C. and Toni, F. 2015. Logic programming in assumption-based argumentation revis-
ited - Semantics and graphical representation. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence (AAAI’15), 1569–1575.

Schulz, C. and Toni, F. 2016. Justifying answer sets using argumentation. Theory and Practice
of Logic Programming 16, 01, 59–110.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

Answering the “why” in ASP 203

Shapiro, E. Y. 1983. Algorithmic Program DeBugging. MIT Press, Cambridge, MA, USA.

Shchekotykhin, K. M. 2015. Interactive query-based debugging of ASP programs. In Pro-
ceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI’15), 1597–1603.

Specht, G. 1993. Generating explanation trees even for negations in deductive database sys-
tems. In Proceedings of the 5th Workshop on Logic Programming Environments (LPE’93),
M. Ducassé, B. L. Charlier, Y. Lin and L. Ü. Yalçinalp, Eds. IRISA, Campus de Beaulieu,
France, 8–13.

Sterling, L. and Lalee, M. 1986. An explanation shell for expert systems. Computational
Intelligence 2, 1, 136–141.

Sterling, L. and Shapiro, E. Y. 1994. The Art of Prolog: Advanced Programming Techniques.
MIT press.

Sterling, L. and Yalcinalp, L. U. 1989. Explaining prolog based expert systems using a
layered meta-interpreter. In Proceedings of the 11th international joint conference on Artificial
intelligence - Volume 1 (IJCAI’89), Vol. 1. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 66–71.

Sureshkumar, A., De Vos, M., Brain, M. and Fitch, J. 2007. APE: An AnsProlog* en-
vironment. In Proceedings of the 1st International Workshop on Software Engineering for
Answer Set Programming (SEA’07), 101–115.

Syrjänen, T. 2006. Debugging inconsistent answer set programs. In Proceedings of the 11th
International Workshop on Non-Monotonic Reasoning (NMR’06), 77–84.

Syrjänen, T. and Niemelä, I. 2001. The smodels system. In Logic Programming and Nonmo-
tonic Reasoning. LPNMR 2001, T. Eiter, W. Faber, and M. Truszczyński, Eds. Lecture Notes
in Computer Science, vol. 2173. Springer, Berlin, Heidelberg, 434–438.

Ulbricht, M., Thimm, M. and Brewka, G. 2016. Measuring inconsistency in answer set pro-
grams. In Logics in Artificial Intelligence. JELIA 2016, L. Michael and A. Kakas, Eds. Lecture
Notes in Computer Science, vol. 10021. Springer, Cham, 577–583.

van Emden, M. H. and Kowalski, R. A. 1976. The semantics of predicate logic as a program-
ming language. Journal of the ACM 23, 4, 733–742.

Van Gelder, A. 1989. The alternating fixpoint of logic programs with negation. In Proceedings
of the 8th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
ACM, 1–10.

Van Gelder, A., Ross, K. and Schlipf, J. S. 1988. Unfounded sets and well-founded seman-
tics for general logic programs. In Proceedings of the 7th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems. ACM, 221–230.

Van Gelder, A., Ross, K. A. and Schlipf, J. S. 1991. The well-founded semantics for general
logic programs. Journal of the ACM (JACM) 38, 3, 619–649.

You, J.-H. and Yuan, L. Y. 1994. A Three-valued semantics for deductive databases and logic
programs. Journal of Computer and System Sciences 49, 2, 334–361.

https://doi.org/10.1017/S1471068418000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000534

