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Test section streaks originating from
imperfections in a zither located

upstream of a contraction
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Defining a link between wind-tunnel settling chamber screens, flow quality and
test section boundary-layer spanwise variation is necessary for accurate transition
prediction. The aim of this work is to begin establishing this link. The computed,
steady, laminar wake of a zither (screen model) with imperfect wire spacing is tracked
through a contraction and into a model test section. The contraction converts the zither
wake into streamwise vorticity which then creates spanwise variation (streaks) in the
test-section boundary layer. The magnitude of the spanwise variation is sensitive to
the zither open-area ratio and imperfections, but the observed wavelength is relatively
insensitive to the zither wire spacing. Increased spanwise variation is attributed to
large wavelength variation of drag across the zither, and not the coalescence of jets
phenomena. The linear stability of the streaks is predicted using the parabolized
stability equations with the eN method. A standard deviation of zither wire position
error of 38.1 µm (15 % of wire diameter) for a zither of 50 % open-area ratio is
found to suppress Tollmien–Schlichting wave growth significantly.

Key words: boundary layers, boundary layer stability, wakes

1. Introduction

Thirty-five years ago, Morkovin (1979) summarised observations of streamwise
vorticity in boundary layers and the absence of a causative condition, although
an empirical link to wind-tunnel settling chamber screens had been established.
Experiments on nominally two-dimensional flows in wind tunnels cannot be assumed
to be two-dimensional. Streamwise vorticity generates spanwise variation (streaks)
that can significantly alter the boundary-layer properties and stability characteristics.
At elevated free-stream turbulence (FST) levels, the streaks are called Klebanoff
streaks and transition to turbulence is often via a bypass mechanism (see Zaki 2013;
Goldstein 2014 for recent reviews). However, even at low FST levels, significant
spanwise variation and streaks can be observed in some experiments.
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1.1. Observations of boundary-layer spanwise variation
Spanwise boundary-layer variation can manifest in differing ways. The spanwise
spacing of Görtler vortices has been linked to the free stream (Swearingen &
Blackwelder 1987), while early boundary-layer transition studies noted significant
spanwise variation (Klebanoff, Tidstrom & Sargent 1961). Advances have shown this
to be a secondary instability of the Tollmien–Schlichting (TS) wave (Herbert 1988),
although weak streaks can affect the spanwise scale and secondary instability growth
rate, delaying or promoting transition (Liu, Zaki & Durbin 2008b). The simulations
of Schlatter et al. (2011) provide a graphical demonstration.

Klebanoff streaks, often associated with elevated FST levels (Klebanoff 1971;
Kendall 1985; Westin et al. 1994; Kendall 1998; Watmuff 1998; Matsubara &
Alfredsson 2001; Fransson, Matsubara & Alfredsson 2005b; Nolan & Walsh 2012),
are a form of spanwise variation that can influence transition involving TS waves.
Boiko et al. (1994) observed forced TS wave growth to be reduced by Klebanoff
streaks, although transition shifted upstream. However, Watmuff (1998) found that
flow quality improvements to reduce Klebanoff streaks shifted the natural transition
upstream, similar to Arnal & Juillen (1978), who increased the FST and found
a downstream transition shift on a body of revolution. However, Kendall (1991)
observed increased TS-wave-packet growth rates in the presence of Klebanoff streaks.

Computations (Cossu & Brandt 2002) and stability theory (Cossu & Brandt 2004;
Bagheri & Hanifi 2007) have shown that the steady optimal streak (Andersson,
Berggren & Henningson 1999; Luchini 2000) reduces TS-wave growth rates. Streaks
forced by roughness elements (Fransson et al. 2005a; Gürün 2006) or miniature vortex
generators (Fransson & Talamelli 2012) have also shown reduced TS-wave growth,
and sometimes transition delay (Fransson et al. 2006; Shahinfar et al. 2012; Shahinfar,
Sattarzadeh & Fransson 2014). However, both steady and unsteady streaks forced by
a single Squire mode have been found to increase TS-wave growth (Vaughan & Zaki
2011), depending on streak amplitude, indicating that the forcing of the streak is an
important consideration. Free-stream disturbances generated by wind-tunnel screens
are known to force Klebanoff streaks, but the link is still tenuous. Klebanoff streak
amplitude and the influence on transition have yet to be linked directly with measures
of a screen.

Turbulent boundary layers are also affected by spanwise variation. Unexplained
spanwise variation in both the tripped and non-tripped turbulent layers, generating
a mixing flow, have been observed by Bell & Mehta (1990). Dengel & Fernholz
(1989) found spanwise variation in the turbulent layer and showed direct linkage to
the settling chamber screens by rotating them. Spanwise variation was considerably
reduced by replacing the screen with one constructed from perforated metal.

1.2. Spanwise variation empirically linked to settling chamber screens
Wind-tunnel settling chamber screens and honeycombs are used to reduce FST
levels and improve flow quality, yet many experimentalists identify them as directly
influencing the test-section boundary layer. Bradshaw (1965) studied a tripped,
turbulent boundary layer on the test-section floor that exhibited spanwise variation
of skin friction in excess of 10 %. The spanwise variation was dependent on the
individual screen, its orientation and was repeatable when the open-area ratio
was greater than 57 %. Decreasing the open-area ratio below 57 % produced a
boundary layer with considerably increased spanwise variation. This was attributed
to a spatial flow instability downstream of the screen called the coalescence of jets.
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The coalescence of jets is a local change of flow pattern that occurs downstream of
low open-area ratio zithers. Requiring screens to have an open-area ratio greater than
57 % has become a guideline when selecting screens for wind tunnels.

Crow (1966), in response to the findings of Bradshaw (1965), analytically
investigated the effect of small, steady spanwise variations of transverse velocity
above a laminar boundary layer. Small velocity variations could create spanwise
variations in the boundary layer. Experiments by de Bray (1967) confirmed the
findings of Bradshaw (1965). A high quality honeycomb was also observed to
produce a more spanwise uniform boundary layer while locating the test-section plate
on the wind-tunnel centreline could reduce the spanwise variation by 50 % compared
to the wind-tunnel wall boundary layer. de Bray (1967) concluded that immeasurable
non-uniformities introduced by screens persist into the test section and affect the
spanwise variation of the layer. He postulated that vortices of opposite rotation
(apparently streamwise oriented) originate from adjacent openings in the screen and
bundle together (coalesce) downstream.

Similarly, Patel (1964) observed reduced spanwise variation when using a
honeycomb downstream of the settling chamber screens, although this configuration
can increase FST levels (Mehta & Bradshaw 1979). However, Scheiman & Brooks
(1981) found that a honeycomb upstream of a screen produced a greater reduction
of turbulence levels. Patel (1964) also noted increased spanwise variation with dust
accumulation on the screens, underscoring the sensitivity of the test-section layer to
screen quality.

The widespread consensus is that jets coalesce downstream of the screen due to
some ‘instability’ formed at low open-area ratios. From this instability, streamwise
vortices form (de Bray 1967; Mehta & Bradshaw 1979), which persist through the
contraction and into the test-section layer. However, Mehta & Hoffmann (1987) found
increased spanwise variation does not always correlate directly with an open-area
ratio of 57 %. Two screens, both with an open-area ratio of 58.8 %, created spanwise
skin-friction variation of 10 % and 18 %. They concluded the 57 % open-area ratio
criteria is not sufficient to guarantee two-dimensionality of the test-section boundary
layer. Mehta (1985) also tested screens of varying materials and construction methods.
Plastic screens were found to produce less spanwise variation relative to woven metal
screens.

Increased spanwise variation of the test-section boundary layer can also be
associated with increased FST levels. Klebanoff (1971) elevated the FST level in
a wind tunnel with grids constructed of rope that were placed upstream of the
contraction. A low-frequency spanwise thickening and thinning of the layer was
observed that grew with increasing FST levels (Klebanoff streaks). However, the
measurements of Watmuff (1998) suggest the link between FST and Klebanoff streaks
is not simple. Watmuff found that replacing and tensioning the settling chamber
screens reduced the FST level from 0.12–0.08 %, but the Klebanoff streaks in the
boundary layer (measured by urms) decreased by a factor of three. The unsteadiness
in the layer was not spanwise uniform but clustered into ‘clump’ regions that did not
shift with time. The unsteadiness in the layer was reduced by a further factor of two
by reordering the screens based on quality, as measured from laser scans, from least
uniform (worst quality) to most uniform (best quality) downstream.

Westin et al. (1994) compiled published results of Klebanoff streak growth and
found considerable differences, even when scaled with the FST level. However, the
observed spacing of Klebanoff streaks generally shows a more reasonable agreement,
approximately twice the boundary-layer thickness (∼2δ99). Matsubara & Alfredsson
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(2001) observed the physical spacing of Klebanoff streaks to be independent of the
mesh spacing used in the construction of a grid placed in the test section to elevate the
FST levels, however streak spacing has been found to be dependent on the free-stream
environment (Fransson & Alfredsson 2003; Ovchinnikov, Choudhari & Piomelli 2008).

Swearingen & Blackwelder (1986) found the ‘natural’ spacing of Görtler vortices
to be sensitive to the settling chamber screens. The spacing was independent of
the screen mesh length, test section width, distance of the last screen from the
contraction and FST variation created by the removal of the honeycomb upstream of
the screens. However, the spanwise pattern of Görtler vortices was stationary in time
and strongly dependent on the downstream screen. Vertical cylinders oriented normal
to the test-section leading edge, and placed in the tunnel contraction, were used to
alter the screen wake. Cylinder spacing larger than the natural Görtler spacing did not
substantially alter the spanwise pattern, but the cylinder wakes were clearly visible in
the boundary layer as narrow regions superimposed on the ‘natural’ pattern. Reducing
cylinder spacing created a near-periodic variation, approximating the cylinder spacing.
The mechanism for the cylinder wake affecting the Görtler spacing was described
as the creation of streamwise vorticity when the wakes intersect the leading edge
and are stretched by the boundary layer. At elevated FST levels, travelling Görtler
vortices can be important (Schrader, Brandt & Zaki 2011; Wu, Zhao & Luo 2011).

Unlike streaks and Görtler vortices, the growth of cross-flow vortices on swept
wings does not appear to be sensitive to free-stream non-uniformity. Deyhle & Bippes
(1996) found no effect on cross-flow spacing when shifting screens to change the
dominant free-stream wavelength. The cross-flow pattern shifted with movement of
the body, indicating surface roughness was the dominant factor. However, cross-flow
growth and transition is very sensitive to FST, and hence screens (see Hunt 2011).

All of these observations clearly link settling chamber screens with spanwise
variation in the test-section boundary layer and establish screen open-area ratio and
quality as causal factors without any satisfactory explanation. Stationary Klebanoff
streaks and Görtler vortices, and differing spanwise skin friction measurements
depending on test-section plate location, question any assumption of a homogeneous
screen wake and FST across a wind-tunnel cross section.

1.3. Flow downstream of screens
The classical analysis of Taylor & Batchelor (1949) considered the linear, inviscid
flow of streamlines through a gauze (screen) where a pressure drop takes place.
Classical analysis does not consider the details of the screen or honeycomb beyond
the pressure drop and deflection coefficients (Laws & Livesey 1978). However,
Scheiman & Brooks (1981) found screens suppressed longitudinal turbulence better
than the lateral component, while honeycombs did the opposite. They deduced the
mechanism responsible is different, which cautions the use of simple theory to
understand the effects of screens, honeycomb or other turbulence manipulators.

Classical analysis predicts a pressure drop coefficient of 2.76 will remove any mean
streamwise flow non-uniformity. Decreasing screen open-area ratio will increase the
pressure drop. Hancock (1998) extended the analysis to multiple screens and found
no series of screens can perfectly attenuate free-stream non-uniformity, although any
series of screens can give significant attenuation if the sum of the pressure drops
coefficients is greater than 2.5. Bradshaw (1965) recommended screens should have
a pressure drop coefficient less than 1.6 to avoid jet coalescence. This is significantly
lower than the analysis of Taylor & Batchelor (1949) indicates is required to achieve
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uniform flow. Schubauer, Spangenberg & Klebanoff (1950) and Bradshaw (1965)
have recommended a series of lower pressure drop screens be used to achieve a high
pressure drop.

Morgan (1960) summarises early work on the coalescence of jets behind screens
and zithers of low open-area ratio. Important points are that the instability occurs for
open-area ratios less than approximately 50 %, and that imperfections of the screen
(quality) have been postulated as a possible cause. Earlier experimental work by Bohl
(1940) (the original work is in German and the current authors cannot directly review
it. The review is based on the reading of Morgan (1960) and Corrsin (1944)) studied
the flow downstream of a zither constructed of sharp wooden slats and provided the
first analytical treatment of the coalescence of jets. Stable flow (no coalescence of jets)
was observed for an open-area ratio of 63 % and unstable flow (with coalescence of
jets) for an open-area ratio of 50 %. An analytical analysis was provided but Corrsin
(1944) has criticised it for unclear physical assumptions in the derivation, although the
results show qualitative agreement with experiment. Observations of the coalescence
of jets have shown the flow pattern can be either stable in time or variable, and that
multiple jets can coalesce at very low open-area ratios (Cheng & Moretti 1988; Le
Gal et al. 1996).

Böttcher & Wedemeyer (1989) examined the steady wakes of screens and zithers
as the sum of each individual wire’s wake, governed by the linear diffusion equation.
It should be noted that the coalescence of jets is equivalent to the merging of
wakes (Corrsin 1944). The wake strength and wavelength of a zither was derived by
considering each wire randomly perturbed from its position in a zither with perfect
wire spacing. Direct comparison between theory and experiment was not possible as
inputs to the wake strength formula had to be estimated. Their analysis offers the
potential to relate screen quality to the downstream wake.

The wake turbulence of a screen is also affected by the open-area ratio and the
coalescence of jets. Loehrke & Nagib (1972) and Tan-Atichat, Nagib & Loehrke
(1982) found the decay of turbulent energy downstream of a low open-area ratio
(30 %) perforated plate was greatly reduced relative to plates with open-area ratios of
51 % and 58 %. They suggest the coalescence of jets may be responsible. Irregularities
were also observed in the mean flow far downstream. Previously, Schubauer et al.
(1950) had noted that low open-area ratio screens (high pressure drops) could produce
abnormally large streamwise velocity fluctuations and less uniform mean flow, but
the cause was not identified. Recent computations by Ertunç et al. (2010) show
turbulence downstream of a symmetric (perfect) screen is not homogeneous. If the
screen has small non-uniformities in its construction (variation in wire position), then
the mean flow is also non-homogeneous.

No satisfactory explanation exists for the coalescence of jets, nor does the traditional
inviscid analysis of screens predict its appearance or effects. To the authors knowledge,
there has been no direct observation of the coalescence of jets for a screen (as opposed
to a zither) and all reports of increased spanwise variation attributed to this phenomena
have not directly observed its occurrence. How the change in flow pattern at a screen,
located upstream of a contraction which produces near uniform streamwise velocity
mean-flow but increases spanwise variation of the test-section boundary layer, is not
fully explained.

1.4. Creating the link to settling chamber screens
Explaining the creation of spanwise variation and streaks in the boundary layer
requires understanding of how disturbances grow in the layer, the receptivity of
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disturbances, the evolution of the disturbance in the free stream from their source
and the creation of the disturbances at a source (screen). Recent work has focused on
streak growth via non-modal theories (Andersson et al. 1999; Luchini 2000; Schmid
2007) or transient/algebraic growth (Ellingsen & Palm 1975; Hultgren & Gustavsson
1981; Butler & Farrell 1992; Reddy, Schmid & Henningson 2008). Asymptotic
analyses have linked Klebanoff streaks to FST (Leib, Wundrow & Goldstein 1999;
Wundrow & Goldstein 2001; Ricco 2009; Ricco, Luo & Wu 2011) and highlighted
the importance of free-stream anisotropy. Goldstein, Leib & Cowley (1992) and
Goldstein & Leib (1993) describe the receptivity of normal and streamwise vorticity
that creates streaks, while the computations of Schrader et al. (2010) and Pook &
Watmuff (2014) demonstrate the preference for the receptivity of streamwise vorticity.

Pook & Watmuff (2014) have also demonstrated how normal vorticity entering
a wind-tunnel contraction can be tilted and stretched into significant streamwise
vorticity at the exit, away from the wind-tunnel centreline. This is consistent with the
observations by de Bray (1967) of increased skin friction variation away from the
wind-tunnel centreline, suggesting the tilting and stretching of normal vorticity in the
contraction can be a significant mechanism in the generation of spanwise variation
of the test-section boundary layer and Klebanoff streaks. Any analysis that attempts
to link spanwise variation to settling chamber screens must consider the contraction.
Streaks that link directly to a physical, free-stream disturbance from a defined source
in a wind tunnel may be important for determining their effect on the boundary-layer
stability and transition.

1.5. Overview

This paper will focus on streak generation in a ‘clean’ wind-tunnel facility where
the boundary-layer spanwise variation is time invariant, e.g. Watmuff (1998) with
FST ∼ 0.1 %. The streaks, created by an imperfect zither located upstream of a
contraction, will be weak and bypass transition would not be expected. Modelling a
zither is less computationally expensive than a screen, and provides an initial step
towards Morkovin’s call to link screens with the test-section boundary layer. The
current work is strictly applicable to zithers with steady laminar wakes, however
qualitative similarities with observations made from screens will be noted. The work
is divided into the following sections:

(i) Section 2 examines the steady laminar wakes of an imperfect zither, extending the
analysis of Böttcher & Wedemeyer (1989). Substantial variation of drag across a
zither is shown to lead to a reduced wake decay rate, but this decay rate is not
so easily realised.

(ii) Section 3 passes the wakes through a 5:1, two-dimensional contraction. This
will create streamwise vorticity at the exit via tilting and stretching of normal
vorticity.

(iii) Section 4 documents the streaks formed in the flat-plate boundary layer by the
wake of streamwise vorticity.

(iv) Section 5 assesses the linear stability of the test-section streak base-flows.

The contraction geometry, and the test-section leading edge shape and position, are
the same as Watmuff (2006), Pook (2013), Pook & Watmuff (2014). An overview is
provided in figure 1.
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Steady, two-dimensional
wake of an imperfect

zither
Streak growth and

boundary layer linear stability

Two-dimensional,
5:1 contraction

Contraction tilts normal vorticity,
transforming into streamwise

vorticity and stretching.

Non-modal streak growth
forced by free-stream,

streamwise vorticity. Streaks
alter the layer linear

stability

Diffusion decreases wake strength. Small
wavelengths decay more rapidly, leaving

large-scale wake

FIGURE 1. (Colour online) Overview of geometry and section breakdown.

2. The steady laminar wake of a zither

The (simplified) governing equation of a far wake is the linear diffusion equation
(Böttcher & Wedemeyer 1989; Batchelor 2000),

Uux = νuzz, (2.1)

where u= u(x, z) is the streamwise velocity of the wake, U the uniform free-stream
flow and ν is the fluid kinematic viscosity. Considering a spanwise (z) periodic domain
of width L and a zither with N wires, it can be shown that the solution to (2.1) is,

u(x, z)=
∞∑

k=−∞
ak exp

(
2πikz

L

)
exp(−4π2K2x), (2.2)

where ak are the unknown Fourier coefficients at the wake origin, k is the integer
wavenumber, K is k/N and x is a non-dimensional streamwise distance defined by,

x= x
M

1
ReM

, (2.3)

where ReM is the Reynolds number based on perfect zither wire spacing (M). The
wake energy is found as,

u2 = 1
L

∫ L

0
(U − u)2 dz=

∞∑
k=−∞
|ak|2 exp(−8π2K2x), (2.4)

where the mean flow mode (k= 0) is not included in the summation. The value of a
given Fourier coefficient in the downstream wake can be evaluated by multiplying it
with,

f = exp(−4π2K2x). (2.5)
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2.1. Summation of wakes
The wake of a zither will be considered as the summation of each individual wire’s
wake. Unlike Böttcher & Wedemeyer (1989), each wire will be assumed to have an
individual wake. Each wake is given by an unknown function, Wn(z− zn), where zn is
the spanwise location of the nth wire. Far downstream, the wavelengths are large in
comparison to the wire spacing, as observed by Böttcher & Wedemeyer (1989). They
argue that the wake function of a wire can be considered as a point source,∫

Wn(z− zn)= qnδ(z− zn), (2.6)

where δ(z − zn) is the Dirac function and qn is the source strength of the nth wire.
Assuming only a drag force acting on the wire (no lateral force component), qn is
then related to the drag force (Dn) by Dn=ρUqn, where ρ is density (Batchelor 2000).
Every wire in the zither is perturbed from its perfect position (Mn), giving the position
and source strength of the nth wire as,

zn =M(n+ δn), qn = q(1+ εn), (2.7a,b)

where δn and εn are non-dimensional random variables with zero means and δn�M,
εn� 1 and q is the mean source strength. The Fourier coefficients of (2.2) are then,

ak = q
NM

N∑
n=1

(2πiKδn + εn − 2πiKεnδn) exp(−2πiKn), (2.8)

where the first exponential term of (2.2) has been expanded with a power series (ex≈
1+ x).

2.2. Predicted wake from a zither with imperfect wire spacing and source strength
Assuming all wavelengths are excited relatively equally by the distributions of δn and
εn gives the wake energy as,

u2 = q2

N2M2

∞∑
k=−∞

(4π2K2Nσ 2
δ +Nσ 2

ε ) exp(−8π2K2x), (2.9)

where,

σ 2
δ =

1
N

N∑
n=1

δ2
n, σ 2

ε =
1
N

N∑
n=1

ε2
n , (2.10a,b)

and terms with higher products of δn and εn are assumed negligible. Considering an
infinite zither (N → ∞, k/N → K) allows the summation to be replaced with the
integral,

u2 = q2

M2

∫ ∞
−∞
(4π2K2σ 2

δ + σε) exp(−8π2K2x) dK. (2.11)

The wavenumber with peak energy can be found from the integrand as,

K = 1

2
√

2πx

√
x− 2

σ 2
ε

σ 2
δ

x2, (2.12)
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giving the dominant wake wavelength as,

λ

M
= 2

√
2πx√

x− 2
σ 2
ε

σ 2
δ

x2

. (2.13)

For small x, or when σε is small, the wavelength will be independent of the zither
geometry,

λ

M
=
√

8π2x, (2.14)

as originally derived by Böttcher & Wedemeyer (1989).
The mean energy of the wake is found as the solution of (2.11). The average wake

strength is non-dimensionalised by U, giving the combined wake strength equation as,

1u= 0.2233qσδ
MUx0.75

√
1+ 4

σ 2
ε

σ 2
δ

x. (2.15)

where 1u is defined as 1u=
√

u2/U.

2.3. Predicted zither wake from only imperfect wire positions
Assuming each wire is identical, and neglecting the change in wire source strength
due to an error in position, then the Fourier coefficients of (2.8) are given by,

ak = q
NM

N∑
n=1

−2πiKδn exp(−2πiKn). (2.16)

The dominant wavelength of the zither wake is found as (2.14) and the average wake
strength of a zither with only imperfect wire position is,

1u= 0.2233
qσδ

MUx0.75 , (2.17)

as originally derived by Böttcher & Wedemeyer (1989).

2.4. Predicted zither wake from only imperfect wire source strengths
Assuming only imperfection of wire source strength gives the Fourier coefficients,

ak = q
NM

N∑
n=1

εn exp(−2πiKn). (2.18)

The dominant wavenumber is found as k= 0, but as the wake has no zero mode, k= 1
will dominate far downstream. The average wake strength for a zither with imperfect
wire source strength is found as,

1u= 0.4466
qσε

MUx0.25 . (2.19)
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FIGURE 2. (a) Fourier coefficients at the zither due to: grey solid line, random normal
distribution of wire drag; grey dashed, mean distribution of drag, (2.21); black solid,
random normal distribution of wire position; black dashed, mean distribution of position,
(2.20). (b) Example wake decay: light grey solid, random normal distribution of wire drag
calculated with (2.18) and (2.4); light grey dashed, variation of drag, (2.19); black solid,
random normal distribution of wire position calculated with (2.16) and (2.4); black dashed,
variation of position, (2.17); dark grey solid, random normal distribution of wire drag and
position calculated with (2.8) and (2.4); dark grey dashed, variation of drag and position,
the combined wake strength equation, (2.15).

2.5. Differing zither wake decay rates
The wake strength formulas (2.15), (2.17) and (2.19) are compared in figure 2 for
zithers with: imperfect wire spacing and source strength (σδ = σε = 0.05); only
imperfect wire position (σδ = 0.05, σε = 0); and only imperfect source strength
(σδ = 0, σε = 0.05). The wake decay of the imperfect wire position zither differs
significantly to a zither with only imperfect source strength, predominately due to
the respective x−0.75 and x−0.25 dependencies. For the same standard deviation of
imperfection, the zither with only source strength variation will be weaker close to
the zither, but stronger far downstream. The wake decay is explained by the Fourier
coefficient distributions shown in figure 2. The distribution for a zither with only
variation in wire position is approximated by,

akP = 2πkσδq

M
√

N
. (2.20)

The distribution for variation only in source strength is approximated as,

akD = σεq

M
√

N
. (2.21)

Variation in wire source strength can create significantly stronger small wavenumbers
(large wavelengths), that decay slower and create a stronger far wake. This leads
to a hypothesis that significant spanwise variation in the test-section boundary layer
is linked to screens that have significant spatial variation of source strength. This
spatial variation may be induced by poor quality screens that have larger variations in
wire position which, particularly for lower open-area ratios, may lead to nearby wires
influencing each other’s source strength (drag) and creating a stronger far wake.

2.6. Zither CFD domain and methods
Navier–Stokes simulations (CFD) will be used to study ten zithers with differing
combinations of open-area ratio and random wire position error. The steady,
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FIGURE 3. (a) Overview of the zither mesh domain. Marked regions start at streamwise
positions: U2 at −317d, U1 at −76d, Zither at −7d to 7d, D1 at 7d, D2 at 67d, D3 at
205d, D4 at 405d, D5 at 805d. (b) Close-up of the CFD mesh between two zither wires.
Every second line shown.

pressure-based solver (second-order upwind differencing for pressure, third-order
MUSCL differencing for momentum) of the ANSYS Fluent CFD package is used.
Solution convergence is judged by the constancy of the far wake with increasing
iteration and convergence of global residual monitors. An overview of the zither
domain and mesh is shown in figure 3(a). The velocity inlet-boundary-condition is
317 diameters (d) (80.47 mm) upstream of the zither while the outflow boundary
condition is located at 2405d (610.8 mm). Periodic boundary conditions are used in
the spanwise direction.

To reduce the total mesh control volumes (CV), eight regions with varying
resolution are used as the wake spanwise scale increases. Each region is composed of
structured quadrilateral CV aligned with the uniform flow direction. Hanging nodes
are used to halve the number CV in the spanwise direction at each region boundary.
Figure 3(b) shows the mesh between wires. There are 216 CV on the surface of a
wire. Total mesh size varies between 23.4 and 44.2 million CV, depending on the
open-area ratio. Refining the entire β = 60 % with σδ = 0.05 mesh by a factor 2 in
each direction altered wire forces by less than 0.5 % and has a negligible effect on
the far wake (see figure 4c).

The spanwise domain is the same for all zithers (L= 243.84 mm), with up to 576
wires depending on the open-area ratio (see table 1). Numerical tests comparing (2.2)
with (2.15) show this is enough wires for the averaging in (2.15) to be representative
beyond x = 30 (see Pook 2013). The spanwise domain is also more than six times
wider than the wavelength for optimal, non-modal streak growth (Andersson et al.
1999) at the downstream end of the model test section used in § 4.

2.7. Zither geometry
Table 1 lists the geometry parameters for all the zithers which are composed of
circular wires arranged in a line perpendicular to the free stream. All wires have a
diameter of 254 µm, the same size used by Pook & Watmuff (2014). Four open-area
ratios (β) are used, β = 40 % where coalescence of jets is expected, 50 %, 60 % and
66.67 % where coalescence of jets is not expected. The open-area ratio, diameter and
the mesh spacing of the perfect zither (uniformly spaced wires) are related by,

β = 1− d
M
. (2.22)
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FIGURE 4. (Colour online) Zither wake strength from CFD simulations compared to
prediction: (a) β = 40 %; (b) β = 50 %; (c) β = 60 %; (d) β = 66.67 %. Lines: - - - -
prediction due to only position variation (2.17); · · · · · · prediction of combined wake
strength (2.15); CFD wake for σδ = 0.025; CFD wake for σδ = 0.05; CFD
wake for σδ = 0.075; CFD wake for σδ = 0.1. For (b), refined mesh for σδ = 0.05.

Each wire (n) is randomly perturbed from its position in the perfect zither by some
distance. A normal distribution is used for the random variation of δn, with (near) zero
mean and a given standard deviation (σδ) listed in table 1 (see Pook 2013 for quantile-
quantile plots). The β=60 % zithers share the same distribution of δn, i.e. the differing
standard deviation is achieved by multiplying by a constant. The same applies for the
β = 66.67 % zithers. The β = 50 % zithers all have differing distributions. A constant
σδ implies a decreasing physical error in wire position with decreasing open-area ratio.
The largest standard deviation in physical units for the zithers studied is 57.1 µm,
or 22 % of the wire diameter. The smallest is 10 µm, or 4 % of the wire diameter.
The uniform free stream is U = 1.7 m s−1 giving a Reynolds number based on wire
diameter Red = 29.6 for all zithers, except the β = 66.67 % with σδ = 0.05 zither that
uses U = 1.9 m s−1. The zithers are sub-critical (do not shed eddies).

Table 1 shows that the mean wire source strength is (near) invariant to the standard
deviation of wire position variation. The wire source strength is obtained from the
CFD wire force data and the mean calculated by,

q= 1
ρUN

N∑
n=1

Dn. (2.23)

The drag coefficient (Cd) is defined as D= 0.5ρU2dCd. The pressure drop coefficient
(PD=1p/(0.5ρU2)) is also listed.

2.8. Wake strength
Figure 4 compares the CFD wake strength with the predicted wake strength due only
to variation in wire position (2.17), and the combined wake strength equation (2.15).
Beyond x & 0.1, the CFD wakes decay as x−0.75. However, at x = 1, the CFD wake
strengths are 20–40 % greater than predicted by (2.17) (see Pook 2013), with the error
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FIGURE 5. (Colour online) (a) The effect of a downstream initial condition for the β =
40 %, σδ = 0.025 zither. —— CFD; - - - - calculated with (2.1) and (2.8); calculated
with (2.1) from initial condition at x = 0.13; calculated with (2.1) from initial
condition at x = 2.5. (b) β = 50 % zithers CFD wake strength compared to calculation
with (2.1) and (2.8). Lines and markers as for figure 2.
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FIGURE 6. (Colour online) FFT of streamwise velocity and pressure for the β = 40 %,
σδ= 0.025 zither: (a) x= 0.13; (b) x= 2.5. Lines: —— streamwise velocity; - - - - pressure.

increasing with the standard deviation of wire position variation (σδ) and decreasing
open-area ratio. By x= 10, the CFD wake strengths are 20–70 % stronger, indicating
a decay-rate slower than x−0.75 but not nearly as dramatic as predicted by (2.15).

Table 1 shows σε/σδ is a near constant 0.13 for the β = 60 % and β = 66.67 %
zithers when σδ 6 0.05. The wake strength at a given streamwise distance for the β =
60 % and 66.67 % zithers scales near linearly with σδ. However, the β = 50 % zithers
show linear scaling only for σδ = 0.025 and 0.05. The σδ = 0.075 zither wake strength
is significantly greater than a linear scaling, indicating the wake strength due to only
variation in wire position (2.17) does not predict the correct wake decay for zithers
with large σδ which induces variations of drag across the zither. With decreasing open-
area ratio, the ratio σε/σδ is seen to increase but only substantially for the β = 40 %
zither. However, its wake decay proportional to x−0.75 indicates a flawed assumption
in the derivation of the combined wake strength equation (2.15).

2.9. Validity of the linear diffusion equation
The β= 40 % zither CFD wake is sampled and used as a downstream initial condition
to (2.1) as validation. Figure 5 shows using an initial condition sampled at x = 2.5
where 1u= 1 %, predicts a downstream wake in agreement with CFD. Using a fast
Fourier transform (FFT) on the sampled wakes, figure 6, shows an initial condition
too close to the zither fails as low-wavenumber variations of pressure have not been
recovered into velocity. Fourier coefficients calculated at the zither with both wire
drag and drag position are used to predict the wake in figure 5. The predicted wake
undershoots the CFD results between x = 0.1 and x = 6, before showing reasonable
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FIGURE 7. (Colour online) Fourier coefficients at the zither due to variation in drag
only, calculated with (2.18): (a) β = 40 %; (b) β = 50 %; (c) β = 60 %; (d) β = 66.67 %.
Increasing coefficients is increasing σδ . Lines: black, σδ = 0.025; red, σδ = 0.05; blue,
σδ = 0.075; green, σδ = 0.1.

agreement further downstream. As wire drag includes the effect of pressure, the linear
diffusion equation can be used with known wire drag to predict the far wake.

The relative error between CFD wake strength and (2.1) using known wire drag is
less than 10 % for x> 1, for all zithers. Equation (2.17) under-predicts wake strength
primarily because it neglects the variation in wire drag.

2.10. Distribution of source strength (drag)
Figure 7 shows the Fourier spectra due to only variation in wire drag, calculated with
(2.18). The magnitude of the β= 60 % and 66.67 % zither Fourier coefficients increase
from k = 0, peak at approximately k = 100, before diminishing. Approximating with
the mean Fourier coefficient, as akD does, will significantly over estimate the effect
of wire drag variation for large wavelengths. The combined wake equation will over
predict the wake strength at large x. For β = 50 %, the Fourier coefficients for small
k increase with σδ. Only for the σδ = 0.75 zither are the Fourier coefficients spread
relatively evenly across the spectrum at low wavenumbers, meaning σε should be an
accurate representation. The wake decay should reduce from x−0.75 at large streamwise
distances. Indeed, figure 4 does show the wake decay reducing for this zither.

The Fourier spectrum of the β = 40 % zither is different to the other zithers, with
the largest coefficients occurring at wavenumbers k> 200, raising σε but not affecting
the far wake. A wavenumber of k = 288 corresponds to a wavelength of 2M, i.e. a
wavelength that could be expected to be associated with the coalescence of adjacent
jets.

The over prediction of wake strength by the combined wake strength equation
(2.15) is attributed to the assumed Fourier coefficient distribution due to variation
in wire source strength (drag), akD. Approximating the Fourier coefficients due to
wire force variation as constant (independent of k) is not valid and over predicts the
wake strength for large x. Equations to predict wake strength more accurately require
an understanding of how the drag of a wire varies with an error in its position,
particularly at low wavenumbers.
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FIGURE 8. (Colour online) Wavelength of the peak Fourier mode in the CFD simulation;
(a) β = 40 %; (b) β = 50 %; (c) β = 60 %; (d) β = 66.67 %. Lines: - - - - wavelength
predicted by (2.14); marked lines as for figure 4.

2.11. Wake wavelength
The dominant wavelength at each streamwise position is extracted from the CFD
wakes using an FFT of the streamwise velocity. Figure 8 shows the dominant
wavelength increases with x0.5 and is independent of the zither geometry, as predicted
by (2.14). Wake profiles can also be calculated from knowledge of the individual
wire source strength and position data (see Pook 2013).

2.12. Coalescence of jets
Figures 9 and 10 show contours of streamwise velocity for a limited extent (<10 %)
of the β = 40 %, 50 % and 60 % zithers. The β = 60 % zithers share the same wire
perturbation pattern. Apart from the longer jets and wakes, the flow pattern does not
significantly change over the σδ range investigated. There is minimal deflection of
the jets that would be taken to indicate the coalescence of jets in experimental flow
visualisation (see Bradshaw 1965; Le Gal et al. 1996), and table 1 shows σε/σδ is
near constant. For the β = 50 % with σδ = 0.075 zither shown in figure 10(c), the jets
emanating near the cylinder at z/d≈ 135 are visibly deflected away from each other,
creating an extended region of low-speed flow. More instances of visible jet deflection
can be observed for this zither, and particularly the β = 40 % zither, but not the other
zithers. The ratio σε/σδ increases for zithers with instances of jet deflection.

The observed instances of jet deflection in figure 10 are similar to the experimental
flow visualisations of Le Gal et al. (1996). However, Le Gal et al. (1996) observed
significant jet deflection for the majority of jets. As previously mentioned, the Fourier
coefficients of the β = 40 % zither wire drag increase rapidly for k > 200. This
indicates a flow pattern that possibly correlates to the coalescence of jets. However,
such small wavelengths have no effect on the far wake strength. For all other zithers,
there is no trend towards increased drag variation at wavelengths approaching 2M
relative to large wavelength, although the Fourier coefficients for the β = 50 % with
σδ = 0.075 are appreciable at short wavelengths. The authors’ opinion is that the
coalescence of jet phenomena (large jet deflection visible in contours) appears for
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FIGURE 9. Contours of streamwise velocity scaled by free-stream velocity U (see insert
for scale) for a limited extent (<10 %) of the zithers, β = 60 % with: (a) σδ = 0.025,
σε/σδ = 0.13; (b) σδ = 0.05, σε/σδ = 0.13; (c) σδ = 0.075, σε/σδ = 0.13; (d) σδ = 0.1,
σε/σδ = 0.17.
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FIGURE 10. Contours of streamwise velocity scaled by free-stream velocity U (see insert
for scale) for limited extent (<10 %) of the zithers: (a) β= 50 % with σδ= 0.025, σε/σδ=
0.13; (b) β = 50 % with σδ = 0.05, σε/σδ = 0.14; (c) β = 50 % with σδ = 0.075, σε/σδ =
0.18; (d) β = 40 % with σδ = 0.025, σε/σδ = 0.29. Arrows indicate examples of significant
jet deflection.

a limited number of jets in the β = 40 % and to a lesser extent the β = 50 % with
σδ = 0.075 zithers. This differs from the flow visualisations of Bradshaw (1965) and
Le Gal et al. (1996) where the majority of jets show large deflection.
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FIGURE 11. (Colour online) (a) Non-uniform velocity inlet profile. (b) Wake strength,
β = 40 %, 50 %, 60 % with σδ = 0.025 zithers. Dark solid line (stronger far wake) is
non-uniform inflow. Light solid line is uniform inflow. Square makers indicated strength
downstream calculated with (2.2). Dashed lines are (2.17). (c) Fourier coefficients at
x=10 for β=40 %. (d) Fourier coefficients at x=10 for β=50 %. (e) Fourier coefficients
at x= 10 for β = 60 %. Lines: black solid, extracted from CFD with non-uniform inflow;
grey dash-dot, extracted from CFD with uniform inflow; black long-dash, calculated with
(2.8) at zither and transferred to x= 10 with (2.5); red short-dash, calculated with (2.25)
at zither and transferred to x= 10 with (2.5).

2.13. The effect of non-uniform inflow
Limited CFD simulations are performed with a random inlet-velocity wake (Ur),
constructed by the addition of sinusoids, from k= 1 to 50, with random phase,

Ur =U +
50∑

k=1

0.002U sin
(

2πk
960

z
d
+ random phase

)
. (2.24)

The non-uniform inflow strength is 1u = 1 % and the profile is shown in
figure 11(a). The non-uniform inflow is applied to the β = 40 %, 50 % and 60 %
zithers with σδ = 0.025. The streamwise domains of the β = 40 % and 50 % zithers
are extended to capture any change of wake decay.

Velocity contours near the zither (not shown) are not discernibly different to the
uniform inflow simulations. For small x, figure 11(b) shows the non-uniform inflow
wake decay changes from x̄−0.75 towards x̄−0.25. This is readily apparent for the β =
60 % zither. For x> 13, the β = 60 % zither wake is stronger than the β = 50 % zither.

At x = 10, the β = 60 % zither non-uniform inlet wake strength is 50 % greater
relative to a uniform inflow. The β = 50 % zither wake is 16 % greater and the
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β = 40 % zither is only 9 % greater. Standard deviations of wire source strength
(σε) for the β = 40 %, 50 % and β = 60 % zithers are 0.0093, 0.0045 and 0.0058,
respectively. As σδ is the same, the combined wake-strength equation (2.15) would
predict the β = 40 % zither wake to show a greater deviation from x−0.75, opposite to
what is observed in figure 11(b).

Wake Fourier coefficients at x = 10 are extracted from the CFD simulations and
shown in figure 11(c–e) for the uniform and non-uniform inlet simulations. Also
shown are the Fourier coefficients calculated from the individual wire drag and
position data, and transferred to x= 10 by (2.5). The extracted Fourier coefficients at
low wavenumbers are significantly smaller than calculated with wire position and drag
data. This increases the calculated value of σε relative to that observed. Decreasing
open-area ratio reduces the difference between uniform and non-uniform inflow
Fourier coefficients. The drag variation induced at the zither by the non-uniform
inflow, creates an additional wake component tending to cancel the non-uniform
inflow. The removal of a non-uniform inflow with increasing screen pressure drops is
predicted by the Taylor & Batchelor (1949) analysis. Hence, the far wake strength of
the lower-open area ratio zithers with a non-uniform inflows differs less compared to
a uniform inflow.

Prediction of the far wake with known wire position and drag data can be improved
by linearly adding the non-uniform inlet velocity. The Fourier coefficients at the zither
are then found as,

ak = q
L

N∑
n=1

(−2πiKδn + εn − 2πiKεnδn) exp(−2πiKn)− akw, (2.25)

where akw is the kth Fourier coefficient of the non-uniform inflow at the zither,
assuming no influence of the zither. It is subtracted due to the convention of a wake
being positive. Figure 11(c–e) reveals the addition of the non-uniform inflow term
produces good agreement between the calculated and CFD Fourier coefficients.

3. Zither wakes through the contraction
The zither wakes of normal vorticity pass through a contraction which removes

the majority of the 1u wake component and produces streamwise vorticity. The
uniform-inflow zither wakes are sampled 197d downstream of the zither and imposed
957d upstream of the contraction start. Symmetry requires only the lower-half of the
5:1, two-dimensional contraction to be modelled. A structured mesh with quadrilateral
CV is used, with 440, 200 and 500 CV in the streamwise, wall-normal and spanwise
directions. This is the same geometry and similar mesh resolution used by Pook &
Watmuff (2014) to accurately reproduce the effect of a single wire wake passing
through a contraction by comparison with the experiment of Watmuff (2006).

Figure 12 provides an example of a two-dimensional zither wake entering the
contraction and contours of the streamwise vorticity (ωx) on a plane 394d downstream
of the exit, scaled by the standard deviation of the normal vorticity entering the
contraction (σωy in). The contraction floor is located at y/d = 0 on the downstream
plane and the leading edge used in § 4 is located at y = 186d. Stronger regions
of streamwise vorticity near the contraction floor are due to the combination of
Görtler instability near the no-slip contraction wall combined with the tilting and
stretching mechanism discussed by Pook & Watmuff (2014). The visible wake
spanwise wavelength changes little through the contraction. The magnitude of the
streamwise vorticity reduces to zero at the contraction centreline.
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FIGURE 12. (Colour online) Wake of the β = 50 % with σδ = 0.025 zither entering
the contraction and streamwise vorticity out. (a) Wake spanwise profile of 1u entering
contraction. (b) Wake spanwise profile of normal vorticity (ωy) entering contraction.
(c) Contours of streamwise vorticity (ωx/σωy in), 394d downstream of the contraction exit.
Dashed line is leading edge of § 4.
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FIGURE 13. (Colour online) Streamwise vorticity 394d downstream of the contraction
exit, 186d above the contraction floor: (a) β = 40 %; (b) β = 50 %; (c) β = 60 %;
(d) β= 66.67 %. Lines: black, σδ= 0.025; red, σδ= 0.05; blue, σδ= 0.075; green, σδ= 0.1.

A spanwise profile of streamwise vorticity at the contraction exit is shown in
figure 13. The zither with the strongest wake, β = 50 % with σδ = 0.075, produces
the strongest streamwise vorticity. The maximum streamwise velocity perturbation on
a spanwise profile 11 leading edge half-thicknesses (h) upstream of the leading edge,
is less than 0.015 % of U (not shown). The streamwise vorticity is predominantly
due to spanwise variation of the wake normal velocity perturbation (maximum of
∼0.5 % of U), giving a flow angle of 0.26◦. However, the standard deviation of the
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FIGURE 14. (Colour online) Streamwise vorticity FFT (ω̂x, solid lines) magnitude, 394d
downstream of the contraction exit, 186d above the contraction floor. Normal vorticity (ω̂y,
dotted lines) magnitude at contraction start. (a) β = 40 %; (b) β = 50 %; (c) β = 60 %;
(d) β= 66.67 %. Lines: black, σδ= 0.025; red, σδ= 0.05; blue, σδ= 0.075; green, σδ= 0.1.

flow angle is only 0.1◦ and is a better indicator of what would be measured by a
survey of flow quality.

An FFT on the spanwise profile of streamwise vorticity exiting, and normal vorticity
entering, is shown in figure 14. The largest streamwise vorticity coefficient occurs at
k= 10–12 for all zithers, except the β = 66.67 % zithers which have three peaks from
k=11 to 21. At this height above the floor, wavenumbers below k≈10 exhibit a larger
streamwise vorticity Fourier coefficient than the normal vorticity, while for k> 30 the
coefficients are negligible at the contraction exit.

Table 2 lists the standard deviation of the normal vorticity entering the contraction
(σωy in), and the standard deviation of the streamwise vorticity on the spanwise profile
after the contraction, at the height of the leading edge to be used in § 4, (σωx out). The
ratio varies between 0.30 and 0.45, increasing with a decrease in screen open-area
ratio and increase in σδ. This indicates differing wake decay rates in the contraction.

The zither wake decay through the contraction (1uc) is examined with the ratio,

1uc = 1ulocal

1u0
, (3.1)

where 1ulocal is the wake strength on the contraction centreline normalised by the
local velocity on the contraction centreline, and 1u0 is the zither wake strength at the
contraction entry. Figure 15 plots (3.1). At the contraction exit, the value of 1uc for
the strongest zither wake is twice that of the weakest. Zithers with relatively larger
low-wavenumbers of drag variation (see figure 7) have a stronger wake exiting the
contraction, indicating the importance of large-wavelength drag variation across the
zither. The trend in figure 15 holds across a contraction cross section.

4. Test section flat-plate boundary layer

The streamwise vorticity exiting the contraction creates streaks in the test-section
plate boundary layer. Receptivity to low-frequency streamwise vorticity has been
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FIGURE 15. (Colour online) Scaled wake strength on the contraction centreline, 1ucont
defined by (3.1). The contraction curvature begins at x/Lc= 0 and ends at x/Lc= 1, Lc=
1.524 m. Lines: β = 40 % σδ = 0.025; β = 50 % σδ = 0.025; β = 50 % σδ =
0.05; β = 50 % σδ = 0.075; β = 60 % σδ = 0.025; β = 60 % σδ = 0.05;
β = 60 % σδ = 0.075; β = 60 % σδ = 0.1; β = 66 % σδ = 0.025.

β (%) σδ σ1u in (%) σωy in (s−1) σωx out (s−1) σωx out/σωy in

40.00 0.025 0.41 3.62 1.57 0.43
50.00 0.025 0.20 1.90 0.73 0.38
50.00 0.050 0.46 4.04 1.81 0.45
50.00 0.075 0.88 7.56 3.28 0.43
60.00 0.025 0.19 1.78 0.54 0.30
60.00 0.050 0.37 3.53 1.08 0.31
60.00 0.075 0.55 5.16 1.75 0.34
60.00 0.100 0.74 6.72 2.49 0.37
66.67 0.025 0.17 1.65 0.51 0.31
66.67 0.050 0.36 4.03 1.31 0.32

TABLE 2. Ratio of σωx out to σωy in on a profile 394d downstream of contraction exit and
186d above contraction floor.

shown by Schrader et al. (2010) to be a dominant mechanism. The same leading
edge geometry as Pook & Watmuff (2014) with a slot mass-flow of 0.21 is used
(see Pook & Watmuff (2014) for details). Near Blasius flow is achieved by R= 400,
where R=√Ux/ν, as indicated by the shape factor in figure 16. The virtual origin is
small and of little consequence to the results presented. Shifting the attachment point
has a minimal effect on the receptivity to streamwise vorticity (Pook & Watmuff
2014). The free-stream velocity over the flat-plate region is U = 8.6 m s−1.

The mesh in the test-section boundary layer has minimal skewness with ∼40 CV
in the wall-normal direction and ∼500 CV in the spanwise direction. The total mesh
size is ∼45 million CV. This is a similar level of refinement as Mesh2 in Pook &
Watmuff (2014) that was shown to accurately calculate the streak strength.

4.1. Measures of streak strength
Various measures of streak strength have been favoured in the literature with no direct
relations provided between them. Figure 17(a) documents streak strength (1δ∗) as
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FIGURE 16. (Colour online) Two-dimensional base flow. Reynolds number based
on displacement thickness (Reδ∗) versus R and shape factor (H) versus R. Blasius
displacement thickness growth shown with - - - -. Equation is fit to CFD data. The leading
edge ends at R= 345.
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FIGURE 17. (Colour online) (a) Streak strength 1δ∗ versus R. (b) Streak amplitude (A)
versus R. Lines and markers as for figure 15.

measured by the maximum and minimum displacement thickness on a given cross-
sectional plane,

1δ∗ =
max

y,z
(δ∗)−min

y,z
(δ∗)

δ∗b
, (4.1)

where the subscript b indicates the two-dimensional flow with no streaks. Figure 17(b)
shows the corresponding streak amplitude (A) defined by,

A=
max

y,z
(U −Ub)−min

y,z
(U −Ub)

2U
. (4.2)

Both measures are linear with x0.5, downstream of an initial receptivity region, until
R≈ 1000.

The ratio of 1δ∗ to A beyond R> 400 is approximately 3.6 for all zithers except
the β = 40 % with σδ = 0.075 and β = 50 % with σδ = 0.075 zithers. For these
zithers, the ratio varies between 3.5 and 3.8 with increasing R. These zithers have
larger amplitude Fourier modes at low wavenumbers. The optimal non-modal growth
theory of Andersson et al. (1999) and Luchini (2000) explains that larger spanwise
wavelength disturbances will exhibit greater growth and peak further downstream.
Indeed, the β = 50 % with σδ = 0.075 zither generates the largest streak growth by
a substantial margin with a peak beyond the streamwise domain (R > 1600). The
growth of the weaker zither streaks can be seen to be slowing towards the end of
the streamwise domain.
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FIGURE 18. (Colour online) (a) Standard deviation of streak strength σ1δ∗ versus R. (b)
Standard deviation of streak amplitude σA versus R. (c) Standard deviation of normalised
skin friction σcf /cf versus R. (d) Streak strength scaled to zither wake before contraction
(As) versus R. Lines and markers as for figure 15.

The streak growth qualitatively agrees with the compiled Klebanoff streak data
of Westin et al. (1994), which shows linear growth with x0.5. Only three data-sets
extend beyond R= 1500, with one set showing a peak and then decrease downstream
while the other two show a rapid increase which probably indicates transition. Note
the experimental measures of Klebanoff streaks are urms and not directly the streak
amplitude measured here.

Streak strength and amplitude as defined are measures of minimum and maximum
deviation from the two-dimensional layer. The standard deviation of these quantities
for steady streaks is likely to have a closer relation to the experimental measures of
unsteady streaks (e.g. urms) and any possible correlation with TS-wave suppression.
The standard deviation of streak strength and amplitude are shown in figure 18. The
standard deviation of streak strength (σ1δ∗) at a given streamwise plane is defined by,

σ1δ∗ = 1
δ∗b

√
1
L

∫ L

0
δ∗2 dz, (4.3)

and the standard deviation of streak amplitude (σA) by,

σA =
√

1
U2L

∫ L

0
max

y,z
(U −Ub)2 dz. (4.4)

The standard deviation measures are significantly less than the maximal measures but
the same relative trends are observed.

Skin friction also provides a measure of streak growth. Figure 18 shows the
variation in skin friction defined by,

σcf =
2ν
U2

√
1
L

∫ L

0

(
∂U
∂y
− ∂U
∂y

)2

dz, cf = 2ν
U2

∂U
∂y
,

∂U
∂y
= 1

L

∫ L

0

∂U
∂y

dz, (4.5a−c)

1cf = σcf

cf
, (4.6)
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where 1cf is the ratio of skin-friction standard deviation to the spanwise mean value,
and the wall-normal velocity gradients are measured at the wall. The ratio of 1cf to
σA is not constant, varying between 1.65 and 1.9 for the current zither streaks. Skin
friction varies between 1.5 % and 18 % at R= 1550, an order of magnitude variation.
Bradshaw (1965) found turbulent skin-friction variation exceeding 10 % when screens
with β < 57 % were installed. Only the β = 50 % with σδ = 0.075 zither exceeds 10 %.

Based on the magnitude of skin-friction variation for the β = 50 % with σδ = 0.075
zither, it seems likely that the cause of the spanwise variation in the results of
Bradshaw (1965) is also present in the current simulations. Bradshaw (1965) attributed
the variation to a spatial ‘instability’ downstream of the screen, leading to the
coalescence of jets. The current simulations suggest the cause can be interpreted as
being due to the variation of wire drag and wire position across the zither.

4.2. Streak amplitude related to the zither
Ideally, a simple relation can be found to relate streak amplitude to the zither
geometry. Relating streak growth to a single measure of velocity variation in the
wake will fail, as streak growth is strongly dependent on spanwise wavelength. The
relation must be made in terms of vorticity and consider the spectral distribution.
However, the current zither wakes do share a similar spanwise wavelength as the
zither position is constant and the zither wake wavelength formula was found to be
accurate (see figure 8). The contraction and leading edge geometry are also identical.
Thus, the streak amplitude can be scaled by the wake strength entering the contraction.
If all zither wakes maintain the same wake decay rate, and the streak growth in the
test-section layer is linear with amplitude, then a measure of streak amplitude scaled
by a measure of the zither wake entering the contraction should collapse to a single
curve. Figure 18(d) shows the standard deviation of streak amplitude (σA) scaled by
the standard deviation of the zither wake strength entering the contraction (σ1u/U in),

As= σA

σ1u/U in
. (4.7)

The β = 66.67 % and β = 60 % zithers with σδ = 0.025 and σδ = 0.05 streak growth
collapses with this scaling. However, the β=60 % zithers with σδ=0.075 and σδ=0.1
show an increased scaled streak growth. This indicates a stronger wake, due to a
reduced wake decay rate far downstream of the zither. Decreasing β for a given σδ
also increases the scaled streak growth. This is highlighted by the β = 40 % with
σδ = 0.025 and β = 50 % with σδ = 0.075 zithers that have nearly identical scaled-
streak-growth. Their scaled-streak-amplitude is more than double that for the β =
66.67 % with σδ = 0.05 zither at R = 1500. Although the dominant Fourier mode in
the wake is of a similar wavelength, the spectral distribution is not. Figure 14 shows
they have larger amplitude Fourier coefficients below k = 10, creating larger streaks
further downstream. A simple relation between the zither wake strength and the streak
amplitude cannot be found.

4.3. Spanwise mean quantities
Figure 19(a) shows the zither streaks have a negligible effect on the spanwise mean
displacement thickness, consistent with experimental observations of Klebanoff streaks
(Westin et al. 1994). However, figure 19(b) reveals the mean shape factor decreases
with streamwise distance relative to the two-dimensional layer. Stronger streaks
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FIGURE 19. (Colour online) (a) Spanwise mean displacement thickness versus R. (b)
Spanwise mean shape factor (H) versus R. – · – · – Two-dimensional base-flow. Other lines
and markers as for figure 15.

produce a greater decrease. Westin et al. (1994) reported a decreasing shape factor
when FST induced Klebanoff streaks are present, observing a shape factor of 2.41
at R= 1260. Only the β = 50 % with σδ = 0.075 zither produces a comparable mean
shape factor but it occurs further downstream.

4.4. Streak wall-normal velocity profiles
Streaks cause a deviation in the velocity profile relative to the undisturbed two-
dimensional base flow. The deviation at a given spanwise position is defined by,

1U
Ue
= U −Ub

Ue
, (4.8)

where Ue is the edge velocity of the layer. Figure 20 shows zither streak profiles at
R = 1350 and a given spanwise position are either all in excess or decrement. The
spanwise average of the profiles exhibits an ‘s’-shape, except for the β = 60 % with
σδ = 0.025 and σδ = 0.05 zither streaks that have a slight excess across the layer. The
‘s’-shape develops further downstream when the streak amplitude increases. From
figure 20, increasing σδ (which increases streak amplitude) increases the magnitude
of the ‘s’-shape maximum (lower part of ‘s’) and minimum (upper part of ‘s’),
approximately 30-fold for the β = 50 % streaks. With increasing σδ, the ‘s’-shape
maximum moves towards the wall, and the minimum away. This is due to the
maximum of local profiles in excess shifting towards the wall, and the minimum of
profiles in decrement away. This agrees with the simulations by Jacobs & Durbin
(2001) where backwards jets (unsteady streaks) are lifted to the boundary-layer edge
prior to breakdown, and the PIV of Nolan & Walsh (2012) that observed the excess
maximum to move towards the wall while the low-speed streak moves away.

The ‘s’-shaped mean profile is similar to the observations of time-averaged,
Klebanoff streaks made by Westin et al. (1994) using a grid in the test section
to elevate the FST. At R = 1350 the maximum of the ‘s’-shape for the β = 50 %
with σδ = 0.075 zither streaks is approximately max(1U/Ue) u 0.01 and the mean
shape factor is 2.52, similar to Westin et al. (1994) (max(1U/Ue) u 0.011 when
H = 2.53). However, Kendall (1985, 1998) measured time-averaged velocity profiles
in the presence of Klebanoff streaks at R= 980, with FST elevated by a grid upstream
of the contraction, to be in decrement across the entire layer (min(1U/Ue)u−0.02).
The zither streak results combined with Westin et al. (1994) suggest the difference
cannot be attributed solely to a grid location upstream of the contraction.
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FIGURE 20. (Colour online) Wall-normal profiles of 1U/Ue, defined by (4.8), at various
spanwise positions and R = 1350. Lines: —— 1U/Ue at some spanwise position; - - - -
spanwise mean. (a) β = 40 %, σδ = 0.025; (b) β = 50 %, σδ = 0.025; (c) β = 50 %,
σδ = 0.050; (d) β = 50 %, σδ = 0.075; (e) β = 60 %, σδ = 0.025; (f ) β = 60 %, σδ = 0.050;
(g) β = 60 %, σδ = 0.075; (h) β = 60 %, σδ = 0.100; (i) β = 66.67 %, σδ = 0.025.

5. Zither streak linear stability

The analysis suggests the zither streaks share many similarities with Klebanoff
streaks, but are steady. If transition is to be predicted accurately in differing wind
tunnels, then the methodology must be able to predict transition for the current zither
streak base flows. Watmuff (1998) observed that initial flow quality improvements
related to the settling chamber screens shifted the transition location upstream to a
distance 67 % of that observed before the improvements. The computational results
of Cossu & Brandt (2004) for the optimal streak would suggest that transition was
promoted in the Watmuff (1998) wind tunnel as TS-wave growth was previously
damped by the presence of streaks. However, Vaughan & Zaki (2011) found steady,
free stream forced streaks with amplitudes .15 % can increase TS-wave growth rates.
These studies did not use streaks generated from a realistic free-stream disturbance.
Parabolized stability equations in three-dimensions (PSE-3D) will be used to assess
the linear stability of the zither streak base flows.

PSE-3D is an extension to traditional PSE that allows spanwise variation of the base
flow, first presented by Broadhurst & Sherwin (2008). A monochromatic disturbance
is described by the product of a shape function on a cross-stream plane, and a
spatially growing wave component with a complex streamwise wavenumber (α). The
streamwise wavenumber is adjusted marching downstream to keep the total energy
of the shape-function constant. A BiGlobal eigenvalue problem provides the initial
condition. Details of the numerical implementation can be found in Pook (2013).
Unless noted, Chebyshev polynomials are used to difference stability equations in the
wall-normal direction with 70 collocation points, and k= 25 Fourier modes are used
in the spanwise direction. First-order upwind differencing is used in the streamwise
direction.
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Conceptually, the PSE-3D can be used with the eN method in place of the
Orr–Sommerfeld or two-dimensional PSE equations. This would require a database
of streaky base-flow transition results and would inherit all the limitations and
assumptions of the eN method, with no guarantee it will be as successful.

5.1. Two-dimensional base-flow linear stability
The linear stability of the two-dimensional base-flow can be measured by the N-factor,
the ratio of disturbance amplitude growth from Branch 1, which is the streamwise
position when the disturbance first becomes unstable. The N-factor is defined by,

N-factor=
∫ x

Branch 1
αi(ζ ) dζ . (5.1)

The CFD base flow is of sufficient accuracy to provide results of at least qualitative
accuracy (see Pook 2013). A resolution check is performed later.

5.2. BiGlobal resolution of the eigenvalue spectrum
The β = 50 % with σδ = 0.075 zither streak base flow at R = 940 (Reδ∗ = 1615) is
used to examine spanwise resolution requirements. The streak peak amplitude (A) is
12.5 % and the standard deviation of amplitude (σA) is 5.4 %. The BiGlobal eigenvalue
spectrum is investigated for a disturbance non-dimensional frequency, F = 65 where,

F= ων
U2
× 106. (5.2)

The dimensional circular frequency is 326.8 rad−1. For this frequency and position,
the two-dimensional base flow is unstable (slightly upstream of Branch 2).

The BiGlobal spectrum, calculated using the modes k = −5 to 5, is shown in
figure 21 (αi<0 indicates streamwise growth). The streaky base flow is not symmetric,
which prevents using the even/odd assumption to reduce the eigenvalue problem size.
The QZ eigenvalue solver (Matlab eig function) is used. The spectrum is similar in
appearance to that of two-dimensional Blasius flow. The discrete approximation to
the continuous modes can be seen to the left of the spectrum. The spread of the
continuous modes is due to the wall-normal differencing not capturing the oscillations
of the eigenvectors. Four unstable, discrete eigenvalues can be seen near αrδ

∗
b u 0.3.

The eigenvalue spectrum in the region of the unstable eigenvalues is resolved more
accurately using an increasing number of spanwise modes and the Arnoldi eigenvalue
solver (Matlab eigs function). The increased resolution produces a ‘curved line’ of
discrete eigenvalues. Similar to the spectrum for TS modes with varying spanwise
wavenumber on a two-dimensional base flow. The most unstable eigenvalue appears by
itself. In the limit of two-dimensional flow, without providing direct proof, this mode
would correspond to the two-dimensional TS mode. Tracking this mode back towards
the leading edge (streak strength decreasing) produces an eigenvector with minimal
spanwise variation and an eigenvalue close to that for the two-dimensional layer. It
will be called the streaky TS mode following Cossu & Brandt (2004) and labelled A
in figure 21. The remaining eigenvalues can be seen to appear in pairs. In the limit of
two-dimensional flow they would be the oblique TS modes. They are split because the
streaky zither base flow is not spanwise symmetric. They will be called the streaky
oblique TS modes and two examples are labelled B and C in figure 21.
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FIGURE 21. (Colour online) The effect of spanwise resolution (Fourier modes k = −N
to N) on the eigenvalues for the β = 50 %, σδ = 0.075 zither at Reδ∗ = 1615 (R = 940).
Perturbation frequency is F = 65, ω = 326.8 rad−1. A is streak TS mode. B and C are
first streaky oblique TS modes. Markers:u N = 5 and QZ solver; + N = 10 and Arnoldi
Solver;0N=15 and Arnoldi Solver;EN=20 and Arnoldi Solver; × N=25 and Arnoldi
Solver.

k 5 10 15 20 25

αrδ
∗
b 0.3103 0.3079 0.3075 0.3074 0.3074

αiδ
∗
b −0.004075i −0.003384i −0.003237i −0.003167i −0.003171i

TABLE 3. Streaky TS-mode convergence with BiGlobal spanwise resolution.

The streaky oblique modes require increased resolution to resolve compared to the
streaky TS mode. The convergence of the streaky TS-mode eigenvalue is shown in
table 3. It does not change significantly beyond k = 20. The majority of the streak
base-flow energy is in modes k 6 15.

The eigenvectors of labelled eigenvalues A, B and C are shown in figure 22. The
urms maxima of the streaky TS is located in high-speed streak regions, while regions of
increased urms for the streaky oblique TS are offset from each other in the spanwise
direction but remain located in high-speed streak regions. The linear summation of
the oblique modes is also shown in figure 22. The eigenvectors have been scaled to
have the same total energy prior to addition. The majority of elevated urms for the
combined streaky oblique modes is located to the left of z/d= 500 while the streaky
TS mode is most elevated in regions to the right of z/d=500. The maximum spanwise
velocity component of the streaky oblique modes, ∼0.6urms, is considerably higher
than that for the streaky TS mode, ∼0.4urms (not shown). Increasing streak amplitude
by decreasing zither open-area ratio or increasing σε , increases the distortion of the
streaky TS relative to two-dimensional TS.

5.3. Zither streak N-factor
The effect of the zither wake on streaky TS growth and predicted transition is
evaluated with N-factor curves. Disturbance frequencies F= 30, 45, 65 are computed
and shown in figure 23. The F = 30 disturbance is also calculated using a base-flow
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FIGURE 22. (Colour online) (a) Contours of streamwise velocity for the β = 50 %,
σδ = 0.075 zither base flow at Reδ∗ = 1615 (R= 940). (b) Streaky TS mode, labelled A,
urms. (c) Streaky oblique TS mode, labelled B, urms. (d) Streaky oblique TS mode,
labelled C, urms. (e) Addition of modes B and C, urms.
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FIGURE 23. (Colour online) N-factor curves for the zither streak base flows. Lines: ——
two-dimensional base flow; F= 30 disturbance for β = 50 % with σδ = 0.025 zither
CFD base flow with increased mesh resolution; Other lines and markers as for figure 15.

mesh refined in each spatial direction by a factor of 1.5 in the boundary-layer region
(total mesh size ∼125 million CV, ∼60 CV across the boundary layer). The mesh
refinement modifies the calculated N-factor at R = 1550 by approximately 1 %, an
inconsequential error for the current level of analysis. Increasing the resolution of the
PSE-3D to 95 collocation points and k = 32 Fourier modes changes the N-factor by
0.5 %.

The F = 65 disturbance reaches Branch 2, the streamwise position where the
disturbance becomes stable again, just downstream of R = 1000. The greatest

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

65
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.658


284 D. A. Pook, J. H. Watmuff and A. C. Orifici

suppression of the streaky TS is observed for the β = 50 % with σδ = 0.075 zither.
However, the decrease in the Branch 2 N-factor is only 0.1.

The F = 45 TS mode reaches Branch 2 just downstream of R= 1300 on the two-
dimensional base flow. At R= 1300, the standard deviation of streak amplitude (σA)
for the β = 50 % with σδ = 0.075 zither has reached 7.8 %. The greater streamwise
extent of TS and streak growth leads to greater suppression. For the β = 50 % with
σδ = 0.075 zither, the reduction in the Branch 2 N-factor is 0.65. If transition were to
occur due to this frequency, N-factor= 5 for the two-dimensional base flow, then the
predicted position to reach the same mode amplitude ratio would be delayed from R=
1170 to R= 1250. For a wind-tunnel velocity of 8.6 m s−1 and air, this corresponds
to a shift from x = 2.33 m to x = 2.66 m; a delay of 15 %. For the weaker zither
streaks, the delay would be less than 3.5 %.

The F=30 disturbance Branch 2 N-factor is not observed in the streamwise domain.
However, the suppression of TS growth is considerable. At R= 1550, the maximum
reduction in N-factor is 1. If transition were to occur due to this frequency for the
two-dimensional base flow, N-factor= 6.5 at R= 1470, then the β = 50 % with σδ =
0.075 zither would reach the same amplitude ratio at R= 1560. For the stated tunnel
conditions, this corresponds to x=3.68 m and x=4.15 m. A delay of nearly 500 mm,
or 12.6 %. For all other zither wakes, the predicted delay is less than 100 mm, a delay
of 2.7 %.

The plausibility of a significant shift in the transition location due to a zither
more than 2 m upstream is supported by experimental observations. Watmuff (1998)
replaced screens in his wind tunnel and observed a 3-fold reduction in urms in the
layer, indicating significantly weaker streaks. For this intermediate configuration
(further flow quality improvements were made), turbulent bursting was observed
to shift from R ≈ 1500 upstream to R ≈ 1220. For the two-dimensional layer, this
corresponds to a reduction in N-factor from 7.3 (F = 30) to 5.4 (F = 45). Assuming
transition at R= 1500 for the β = 50 % with σδ = 0.075 zither gives an N-factor of 6.
Removing the streaks, an N-factor of 6 would predict transition at approximately
R= 1300 due to F= 42.5.

The streak influence on TS-wave secondary instability may be important. Liu, Zaki
& Durbin (2008a,b) found that increasing streak width would promote the growth
of the TS-wave secondary instability and transition, while suppressing growth of the
TS wave. However, for TS-wave amplitudes of 1 %, streak amplitudes in excess of
13 % were required to destabilise the TS-wave secondary instability. Considering that
the zither streaks are weak, and 75–85 % of the pre-transitional region is governed
by linear stability theory (Reed, Saric & Arnal 1996), i.e. TS amplitudes .1 %, then
the N-factor analysis which describes this region may provide a reasonable transition
prediction.

5.4. Streak secondary instability
An extensive search for a streak secondary instability of the β= 50 % with σδ = 0.075
zither streak base flow at R= 1550 was conducted. The QZ method was used with up
to 25 Fourier modes, and the Arnoldi method was used with up to 45 Fourier modes,
searching the phase velocity region of 0.6–0.85. Streak secondary instability is known
to occur at these phase velocities (Andersson et al. 2001). No secondary instability
was detected. The streaky base flow is still quite weak and for steady streaks, only
the results of Vaughan & Zaki (2011) would suggest a streak secondary instability
may be present at the current streak amplitudes.
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6. Discussion
6.1. Zither wakes and jet coalescence

For the majority of zithers with a uniform inflow, the wake-strength equation of
Böttcher & Wedemeyer (1989) due to the variation of wire position qualitatively
captures the wake decay (x−0.75) but under predicts the wake strength. It was
hypothesised that variation in wire position would modify wire drag and change the
wake decay rate from x−0.75 towards x−0.25, producing stronger far wakes. Only the
β = 50 % with σδ = 0.075 zither induced a substantial large-wavelength drag variation
that modified the far-wake decay. Velocity contours showed isolated instances of jet
deflection, but not as significant as experimental visualisations (comparing contour
plots from computations to experimental flow visualisation may be a contributory
factor). In the context of the linear diffusion equation, explaining a stronger far wake
in terms of the coalescence of jets is problematic. This phenomena occurs over a
short wavelength, i.e. the pairing, tripling, etc., of jets is wavelengths of the order of
2M. Short wavelengths have no influence on the far wake. Supporting the proposition
that the coalescence of jets is not responsible for increased spanwise variation of the
test-section layer, is the wire drag data of the β = 40 % with σδ = 0.025 zither. This
zither exhibited a unique Fourier spectrum for drag, with relatively larger coefficients
for wavenumbers approaching that for a wavelength 2M. Velocity contours revealed
more significant instances of jet deflection relative to the β = 50 % with σδ = 0.075
zither, yet the spanwise variation in the test-section layer was reduced.

Based on the zither simulations, it is hypothesised that for a given open-area ratio,
there is a variation in wire position (σδ) above which large wavelengths of drag are
excited and the far wake will be stronger, e.g. σδ = 0.075 for β = 50 %. Instances
of jet deflection may be apparent (a symptom) but it is not a cause. The allowable
variation in wire position is likely to be Reynolds-number dependent. Lower Reynolds
numbers reduce the change in drag (pressure drop) with changing open-area ratio, thus
larger errors in wire position will be required to induce significant variations at lower
Reynolds numbers. This may also explain the less substantial jet deflection in the
current simulations relative to experimental flow visualisations. Another consideration
is that the steady simulations may prevent a flow instability developing that creates a
different jet pattern. This would require time-dependent simulations to assess.

Screens may produce wakes in better agreement with the combined wake equation
(far wake ∝ x−0.25) as there is a variation in drag across the screen where wires
intersect. Assuming each intersection has a slightly different drag, then it may be
expected that large wavelengths, that most zithers failed to excite, could be present.
Experimental measurements of screen wake strength by Böttcher & Wedemeyer
(1989) observed a reduced wake decay beyond x ' 1, for two of the three screens
tested. Interestingly, the lowest open-area ratio tested (β = 53 %) did not exhibit the
wake decay change in the observed domain. The zither simulations would suggest a
non-uniform inflow could produce the observed response. However, the experiment
towed the screens through a water tank, eliminating non-uniform inflow as a factor.

The zither wakes from a non-uniform inflow showed increasingly stronger far wakes,
relative to a uniform inflow, with increasing open-area ratio. The non-uniform inflow
with large-wavelength velocity variation induced large-wavelength drag variations
and hence, wake decay tending to x−0.25. However, with decreasing open-area ratio,
the drag variation induced becomes near equal and opposite to the contribution
of the non-uniform inflow, cancelling out the non-uniform inflow as predicted by
Taylor & Batchelor (1949). The wake of the β = 40 % with σδ = 0.025 zither was
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near invariant to the non-uniform inflow. This result indicates that low open-area
ratio screens should be used to remove flow non-uniformity. However, a physically
constructed screen (zither) will have some dimensional error in wire positions (E)
introduced by the manufacturing process (say σE). This will create a wake described
by the equation of Böttcher & Wedemeyer (1989). From (2.17), the wake strength
is dependent on the product, q(Re, β)σE/

√
M. The mean source strength increases

rapidly (nonlinearly) with decreasing open-area ratio (see figure 5.1 of Pook 2013)
while M decreases linearly (for a zither) and σE is a constant. Hence, the imperfect,
low-open-area ratio zither can have a significantly stronger far wake despite cancelling
the non-uniform inflow. The onset of increased wake strength could appear rapidly
with a small change in open-area ratio. The non-dimensional standard deviation of
position error σδ will increase and this could further increase the far wake strength
if large-wavelength drag variation is induced, as was observed for the β = 50 % with
σδ = 0.075 zither with a uniform inflow. Increased far wake strengths can be ascribed
without resorting to the coalescence of jet phenomena.

6.2. Zither wake through the contraction
Contractions, while reducing streamwise velocity variation in proportion to the
inverse of the contraction ratio, tilt and stretch normal vorticity into streamwise
vorticity. The stretching of a 5:1 contraction can cancel out a significant amount of
wake decay near the contraction boundaries by converting it to streamwise vorticity.
At the measurement location downstream of the contraction, the streamwise vorticity
created from normal vorticity was 30–45 % of the normal vorticity entering the
contraction. The wake exiting the contraction will be nearly immeasurable in terms
of streamwise velocity (largest variation 0.015 % of U). Boundary layers are most
receptive to low-frequency streamwise vorticity (Schrader et al. 2010), and this
vortical disturbance can undergo considerable non-modal/algebraic growth in the
boundary layer (Andersson et al. 1999; Luchini 2000; Levin & Henningson 2003).
This can create significant spanwise variation of the test-section boundary layer.

6.3. Streak spacing
The Böttcher & Wedemeyer (1989) theory provides an explanation for consistent
Klebanoff streak spacing between differing experiments, that is not necessarily seen
in simulations that use ‘artificial free-stream turbulence’. The wake wavelength
is predicted to be independent of zither geometry. This agrees with Matsubara
& Alfredsson (2001) who observed physically constant Klebanoff streak spacing
with differing disturbance grids. It also concurs with the results of Swearingen
& Blackwelder (1987), who found that the mean spacing of Görtler vortices was
unaffected by changing the screen mesh size or the position of the final settling
chamber screen, but the actual spacing pattern was dependent on the individual
screen and repeatable. The apparent insensitivity to the screen streamwise location
could be attributed to the x0.5 dependence of the wake wavelength, combined with
large x. The wavelength will not change significantly downstream of a moderate or
high contraction ratio due to the reduced time for diffusion in the higher-speed flow.

6.4. Streak amplitude
The most substantial streaks were created by the β = 50 % with σδ = 0.075 zither
which had the strongest wake. The maximum streak amplitude (A) at R= 1500 was
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approximately 20 %. The standard deviation of streak amplitude (σA) was 9 %. The
maximum variation in the layer displacement thickness (1δ∗) was 70 %. The skin-
friction variation (σcf /cf ) was 17 %, of the order measured by Bradshaw (1965) in
a turbulent layer and attributed to the coalescence of jets.

Directly relating streak amplitude to a zither, or the zither wake strength upstream
of the contraction, was not achieved. The ratio of the standard deviation of streak
amplitude to the standard deviation of the wake strength entering the contraction
(σA/σ1u/U in), varied between 4.5 and 10.5 at R= 1500. Larger open-area ratio zithers
and smaller wire position errors (σδ) collapsed closely to 4.5. With decreasing
open-area ratio and increasing wire position error, this ratio increased. This is
attributed to the zither creating stronger, large-wavelength modes due to the increasing
variation in drag across the zither. The ratio σA/σ1u/U in will be wind-tunnel dependent.

6.5. Zither streak linear stability
PSE-3D computations to calculate an N-factor revealed only the β = 50 % with
σδ = 0.075 zither significantly altered TS-wave growth. For F = 30, the N-factor was
reduced by 1 in the streamwise domain (Branch 2 was not reached). The eN method
would predict a transition shift in excess of 10 %. However, the validity of using
a spanwise global growth rate to predict and correlate with transition is untested
although a greater than 10 % shift in transition due to streaks seems possible (see
Watmuff 1998).

All the zither streaks stabilised TS in the streamwise region examined. This is
consistent with the behaviour of the optimal streak (Cossu & Brandt 2004; Bagheri
& Hanifi 2007; Schlatter et al. 2011), steady roughness or vortex generator streaks
(Fransson et al. 2005a, 2006; Shahinfar et al. 2012), and Klebanoff streaks (Arnal
& Juillen 1978; Boiko et al. 1994; Watmuff 1998). However, it contrasts the results
of Vaughan & Zaki (2011) for steady streaks generated from the free stream with
a Squire mode that increased TS-wave growth rates at low streak amplitudes. The
source of the disturbance that generates the streak is important when determining its
effect on TS instabilities. Aforementioned experimental results indicate that Klebanoff
streaks generated from a screen or grid are stabilising. However, Kendall (1991)
has experimentally observed increased TS-wave-packet growth in the presence of
Klebanoff streaks generated from a disturbance upstream of the contraction. Work is
required to explain the anomalous observations. A secondary streak instability was
not detected for the zither streak base flows.
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