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Abstract

We characterize various forms of positive dependence, such as association, positive
supermodular association and dependence, and positive orthant dependence, for jump-
Feller processes. Such jump processes can be studied through their state-space dependent
Lévy measures. It is through these Lévy measures that we will provide our characteriza-
tion. Finally, we present applications of these results to stochastically monotone Feller
processes, including Lévy processes, the Ornstein–Uhlenbeck process, pseudo-Poisson
processes, and subordinated Feller processes.
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1. Introduction

Multi-dimensional Feller processes have been useful for modelling the evolution of
dynamical systems that are spatially inhomogeneous. These processes have been important
models in finance and physics [3]. Of particular interest is the study of the dependence between
the marginal processes. Some different notions of positive dependence include association
(A), positive supermodular association (PSA), positive supermodular dependence (PSD), and
positive orthant dependence (POD). If a process exemplifies a certain notion of positive
dependence between the marginals, then one can better study the evolution of the process.

It is known that Lévy processes in R
d can be characterized by their characteristic triplet

(b, �, ν), where b ∈R
d is the nonrandom linear drift, � is the covariance matrix of the

(continuous) Brownian motion, and ν is the Lévy measure which characterizes the jump
behaviour of the process. Feller processes have behaviour that is ‘locally Lévy’, that is,
for a Feller process (Xx

t )t≥0 that starts at point x (Xx
0 = x a.s.), there exists a Lévy process

(Yt)t≥0 such that, over a short time, the behaviour of (Xx
t )t≥0 can be approximated by the

behaviour of (Yt + x)t≥0 [5, p. 46]. This idea is related to the notion that, if the domain D(A)
is ‘rich’, i.e. contains C∞

c (Rd), the space of smooth functions with compact support, then
the Feller process can be described by a characteristic triplet (b(x), �(x), ν(x, dy)), where
the function b : Rd →R

d represents the nonrandom component, � : Rd →R
d×d represents

the continuous diffusion-like behaviour, and x �→ ν(x, dy) is a measurable kernel representing
the jump behaviour of the process. Unlike the Lévy process, the Feller process triplet has
dependence on x, the state variable of the process, representing its spatial inhomogeneity. We
will characterize the different notions of positive dependence via these triplets.
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Association, the strongest form of positive dependence that we will examine, has been
well studied for infinitely divisible distributions. Infinitely divisible random vectors X also
have a characteristic triplet (b, �, ν) by the famous Lévy–Khintchine formula, where b
represents the nonrandom component, � is covariance of the Gaussian component, and ν is
the Lévy measure of the Poisson component. Pitt [21] characterized association for Gaussian
distributions (b,Q, 0) under the condition that the entries �ij of � are nonnegative. Resnick
[22] proved that a sufficient condition for association of Poisson distributions (0, 0, ν) is that
ν be concentrated on the positive and negative orthants Rd+ and R

d−, i.e.

ν((Rd+ ∪R
d−)c) = 0. (1.1)

These results lead to the characterization of association between the marginal processes of a
Lévy process, since, for a Lévy process Y = (Yt)t≥0, Yt is infinitely divisible for each t ≥ 0, and
the process can be described by its characteristic triplet (b, �, ν). Herbst and Pitt [13] extended
Pitt’s result in [21] to Brownian motion with covariance matrix �. For jump-Lévy processes
Y ∼ (0, 0, ν), Samorodnitsky [25] showed that condition (1.1) is a sufficient and necessary
condition for the association of each Yt. This result was also proved by Houdré et al. [14]
using a covariance identity. Bäuerle et al. [2] extended Samorodnitsky’s results for jump-Lévy
processes to association in time, and showed that condition (1.1) is also equivalent to PSD and
POD. Liggett [18] proved a necessary and sufficient condition for association of stochastically
monotone Markov processes on compact state spaces based on the generator of the process.
Szekli [29, Chapter 3.7] and Rüschendorf [23, Corollary 3.1] extended this result to more
general state spaces. Rüschendorf [23, Corollary 3.4] also extended the Liggett condition for
PSA of the Markov process.

In this paper, we want to characterize various forms of positive dependence for stochas-
tically monotone Feller process. Those forms of dependence include association, weak
association (WA), PSA, PSD, POD, positive upper orthant dependence (PUOD), and
positive lower orthant dependence (PLOD). The association of diffusion processes, i.e.
(b(x), �(x), 0), has been characterized by Chen [7], so we will only focus on jump-Feller
process (b(x), 0, ν(x, dy)). Association of jump-Feller processes, i.e. (b(x), 0, ν(x, dy)), was
given by Wang [32, Theorem 1.4], but under certain continuity and integrability conditions
on the characteristic triplet (see Remark 2.2). Here, we will relax those conditions, allowing
us to consider a larger class of Feller processes. Additionally, we characterize WA, PSA, PSD,
POD, PUOD, and PLOD for jump-Feller processes. Our techniques extend the ideas of Liggett,
Szekli, and Rüschendorf to the extended generator of the process, an integro-differential
operator. We use ideas of the probabilistic symbol p(x, ξ ) of the process developed by Jacob
and Schilling [5, pp. 57–58]. Furthermore, for proving the necessary condition of association,
WA, PSA, PSD, POD, PUOD, PLOD, we use the technique of small-time asymptotics of the
Feller process [16], which will allow us to avoid the use of the (extended) generator and use
solely the state-space dependent Lévy measure ν(x, dy). Finally, we provide examples of Feller
processes satisfying the conditions of our main results.

In a concurrent paper of ours, entitled ‘Association and other forms of positive depen-
dence for Feller evolution systems’ [31], we characterize dependence structures for Feller
evolution processes (FEP), which are time-inhomogeneous Markov processes having strongly
continuous Markov evolutions and Lévy-type behaviour. These FEPs are more general than
the Feller processes (time-homogeneous) in this paper, but we need the results of this paper
in order to characterize dependence structures of FEPs. We utilize Böttcher’s transforma-
tion of time-inhomogeneous FEPs into time-homogeneous Feller processes (see [4]) and,
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in a nontrivial way, use our results in this paper to prove characterizations of positive
dependence for FEPs. This yields positive dependence characterizations for interesting time-
inhomogeneous processes, such as additive processes. For a more comprehensive overview of
time-inhomogeneous Markov processes, we recommend that the reader explore the paper by
Rüschendorf et al. [24], which also discusses comparison theorems of time-inhomogeneous
Markov processes.

The present paper is organized in the following way. In Section 2, we give some background
on the positive dependence structures, association, WA, PSA, PSD, POD, PUOD, and PLOD,
along with definitions of various stochastic orderings. We also provide background on Lévy
processes, Feller processes, and the different tools we use to analyse them. In Section 3,
we state and prove our main results about the positive dependence structures of jump-
Feller processes. Finally, in Section 4, we give a collection of interesting examples of
multi-dimensional Feller processes to which we can apply these results.

2. Background

2.1. Dependence and stochastic orderings

Let X = (X1, . . . , Xd) be a random vector in R
d. We say X is positively correlated (PC)

if Cov(Xi, Xj) ≥ 0 for all i, j ∈ {1, . . . , d}. This is one of the weakest forms of positive
dependence, and we are interested in stronger forms of positive dependence which will be
of greater use in our study of stochastic processes. Association is the strongest form of positive
dependence that we will study.

Definition 2.1. X = (X1, . . . , Xd) is associated (A) if we have

Cov( f (X), g(X)) ≥ 0,

for all f , g : Rd →R nondecreasing in each component, such that Cov( f (X), g(X)) exists.

We will also study other forms of positive dependence that are weaker than association but
stronger than positive correlation. We list them below.

Definition 2.2. A random vector X = (X1, . . . , Xd) is weakly associated (WA) if, for any pair
of disjoint subsets I, J ⊆ {1, . . . , d}, with |I| = k, |J| = n,

Cov( f (XI), g(XJ)) ≥ 0,

where XI := (Xi : i ∈ I), XJ := (Xj : j ∈ J), for any f : Rk →R, g : Rn →R nondecreasing, such
that Cov( f (XI), g(XJ)) exists.

Definition 2.3. X is positive supermodular associated (PSA) if Cov( f (X), g(X)) ≥ 0 for all
f , g ∈Fism := {h : Rd →R, nondecreasing, supermodular}. Here, f supermodular means, for
all x, y ∈R

d, f (x ∧ y) + f (x ∨ y) ≥ f (x) + f (y), where x ∧ y is the component-wise minimum,
and x ∨ y is the component-wise maximum.

Now let X̂ = (X̂1, . . . , X̂d) be a random vector such that for all i, X̂i
d= Xi and X̂i are mutually

independent.

Definition 2.4. X is positive supermodular dependent (PSD) if, for all f : Rd →R supermod-
ular, E f (X̂) ≤E f (X).
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FIGURE 1: Implication map of various positive dependence structures.

Definition 2.5. X is positive upper orthant dependent (PUOD) if, for all t1, . . . , td ∈R,

P(X1 > t1, . . . , Xd > td) ≥ P(X1 > t1) · · · P(Xd > td).

Definition 2.6. X is positive lower orthant dependent (PLOD) if, for all t1, . . . , td ∈R,

P(X1 ≤ t1, . . . , Xd ≤ td) ≥ P(X1 ≤ t1) · · · P(Xd ≤ td).

Definition 2.7. X is positive orthant dependent (POD) if X is PUOD and PLOD.
One can state another equivalent definition to PUOD (PLOD). For i = 1, . . . , d, let fi : R→

R+ be nondecreasing (nonincreasing) functions. Then X = (X1, . . . , Xd) PUOD (PLOD) if and
only if

E

( d∏
i=1

fi(Xi)

)
≥

d∏
i=1

E fi(Xi).

Note. Definition 2.1 first appeared in [11], and as Definition 2.2 in [6], Definition 2.3 in [23,
p. 284], Definition 2.4 in [15], and Definitions 2.5–2.7 in [17]. Definitions 2.4–2.7 can also
be stated in terms of stochastic orderings. For more on this, we refer the reader to Müller and
Stoyan’s book [19, Chapter 3]. It is useful to see the relationship between these different forms
of positive dependence. We state the relationships in the following proposition.

Proposition 2.1. The implications in Figure 1 hold.

Proof. Proofs for these implications can be found in Müller and Stoyan’s book [19,
Chapter 3], and implications involving PSD can be found in [8]. �

These notions of dependence can be extended from random vectors to stochastic processes.
Let X = (Xt)t≥0 be a stochastic process in R

d.

Definition 2.8. (a) Process X is associated in space or spatially associated if, for every
t ≥ 0, the random vector Xt = (X(1)

t , . . . , X(d)
t ) is associated.

(b) Process X is associated in time or temporally associated if, for all 0 ≤ t1 < · · ·< tn, the
random vector (Xt1, . . . , Xtn ) in R

dn is associated.

Remark 2.1. (i) Clearly, (b) is stronger than (a) in the above definition.

(ii) We can define other forms of positive dependence in stochastic processes if we replace
‘associated’ in Definitions 2.8 (a) and (b) with ‘WA’, ‘PSA’, ‘PSD’, ‘POD’, ‘PUOD’,
‘PLOD’.

(iii) Definition (a) is equivalent to the statement that the ‘process preserves positive
correlations’, as given in [18, p. 80] and [7].

https://doi.org/10.1017/jpr.2019.36 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.36


628 E. TU

2.2. Feller processes, extended generators, small-time asymptotics

2.2.1. Feller process. Consider a time-homogeneous Markov process X = (Xt)t≥0 on the space
(�, G, (Gt)t≥0, P

x)x∈Rd on state space R
d. Here (Gt)t≥0 is the filtration, and the index ‘x’

indicates the starting point of the process: Px(X0 = x) = 1. We associate with a Markov process
X a positivity-preserving, contraction semigroup of bounded operators (Tt)t≥0 defined by

Tt f (x) :=E
xf (Xt), x ∈R

d,

where f ∈ Bb(Rd), the space of bounded measurable functions on R
d. Let (C0(Rd), ‖ · ‖∞)

be the Banach space of continuous functions that vanish at infinity, i.e. lim|x|→∞ f (x) = 0,
where ‖ · ‖∞ is the sup-norm. Define Fi := {f : Rd →R, nondecreasing in each component}.
A Markov process is stochastically monotone if Tt f ∈Fi for all f ∈Fi. We define the generator
A of the process X to be

A f := lim
t↘0

Tt f − f

t
, (2.1)

for all f ∈D(A), where D(A) is the domain of the generator defined to be

D(A) = {u ∈ C0(Rd) : limit on right-hand side of (2.1) exists uniformly}.
The Markov process is a Feller process if the semigroup (Tt)t≥0 satisfies the following
properties:

(i) Tt : C0(Rd) → C0(Rd),

(ii) limt→0 ‖Ttu − u‖∞ = 0.

If, additionally, the domain of the generator contains smooth functions with compact
support, i.e. D(A) ⊃ C∞

c (Rd), we call the process X a rich Feller process. It follows from
Courrège’s theorem [9] that −A becomes a pseudo-differential operator p(x,D) on the space
of C∞

c (Rd): A|C∞
c (Rd) = −p(x,D), where p(x,D) is defined to be

A f (x) = −p(x,D) f (x) = (2π )−d/2
∫
Rd

eiξ ·xp(x, ξ ) f̂ (ξ ) dξ, f ∈ C∞
c (Rd). (2.2)

The function −p(x, ·) is a continuous negative definite function, in the sense of Schoenberg,
for all x ∈R

d, which yields a Lévy–Khintchine representation for each x:

− p(x, ξ ) = −ib(x) · ξ + 1

2
ξ ·�(x)ξ −

∫
Rd\{0}

(eiξ ·y − 1 − iξ · yχ (y))ν(x, dy), (2.3)

where χ : Rd →R is a cut-off function. In this paper, unless otherwise mentioned, we will
assume χ (y) = 1(0,1)(|y|). For each x, (b(x), �(x), ν(x, dy)) is the (Lévy) characteristic triplet,
where b(x) ∈R

d, �(x) ∈R
d×d a symmetric positive definite matrix, and ν(x, dy), the Lévy

measure, is a σ -finite measure on R
d \ {0} satisfying

∫
Rd\{0} (1 ∧ |y|2)ν(x, dy)<∞. We call the

function p(x, ξ ) the symbol of the process. We also write X ∼ (b(x), �(x), ν(x, dy)) to signify
that X is a Feller process with that characteristic triplet.

When the symbol and the corresponding triplet are constant in x, i.e. p(x, ξ ) = p(ξ ) and
triplet (b(x), �(x), ν(x, dy)) = (b, �, ν), then process X is a Lévy process, i.e. a stochastically
continuous Markov process with stationary and independent increments. The symbol p(ξ )
is also the Lévy symbol of the process, with characteristic function φXt (ξ ) = etp(ξ ). In the
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Lévy case, b is the nonrandom linear drift, � is covariance of the Brownian motion, and ν
is a measure representing the jumps of the process.

Continuous negative definite functions p(x, ξ ) which are associated with a Feller process
have a form of local boundedness in the first argument. In other words, we say the symbol
p(x, ξ ) is locally bounded if, for all K ⊂R

d compact, there exists cK > 0 such that

sup
x∈K

|p(x, ξ )| ≤ cK(1 + |ξ |2). (2.4)

We say the symbol is bounded if (2.4) holds for K =R
d. The local boundedness (or

boundedness) of the symbol corresponds to the local boundedness (boundedness) of the
characteristics (b(x), �(x), ν(x, dy)) (see [27, Lemma 2.1]).

2.2.2. Integro-differential operator. For any rich Feller process, the triplet (b(x), �(x),
ν(x, dy)) characterizes the behaviour of the process, with b(x) representing nonrandom
continuous behaviour, �(x) representing the diffusion-like continuous behaviour, and ν(x, dy)
representing the jump behaviour. To analyse the process, one of the crucial tools we will use is
the extended generator. For the case of rich Feller processes, when we substitute (2.3) into the
right-hand side of (2.2), by elementary Fourier analysis, we get an integro-differential operator
I(p),

I(p) f (x) = b(x) · ∇f (x) + 1

2
∇ ·�(x)∇f (x) +

∫
y �=0

( f (x + y) − f (x) − y · ∇f (x)χ (y))ν(x, dy),

(2.5)
where

∇ ·�(x)∇f (x) =
d∑

j,k=1

�jk(x)∂j∂k f (x).

Clearly, the operator I(p) is defined on C2
b(Rd), the space of continuous twice-differentiable

bounded functions. When the symbol p(x, ξ ) is bounded, I(p) is an extension of −p(x,D),

I(p)|C∞
c (Rd) = −p(x,D) =A|C∞

c (Rd),

and an extension of generator A: I(p)|D(A) =A, as shown by Schilling [27, Lemma 2.3]. Our
interest in this integro-differential operator I(p) comes with wanting to use the idea of Liggett’s
characterization of association via the generator.

Theorem 2.1. (Liggett [18], p. 80.) Let X = (Xt)t≥0 be a Feller process on state space E with
generator (A,D(A)) and semigroup (Tt)t≥0. If X is stochastically monotone, then

A fg ≥ gA f + fAg for all f , g ∈Fi ∩D(A) (2.6)

if and only if Xt is associated for all t ≥ 0 with respect to P
x for all x ∈ E.

Liggett proved this for E compact and A bounded. This was extended by Szekli and
Rüschendorf to more general Polish spaces E and A unbounded ([29, Chapter 3.7], [23,
Corollary 3.1]). For the Feller processes we consider in the above setting, particularly those
of the jump variety, the domain D(A) is often defined to be a dense subspace of C0(Rd), and
thus D(A) ∩Fi = {f ≡ 0}. Hence, in that case, inequality (2.6) would always hold. Thus, we
would like to extend Theorem 2.1 to the extended generator I(p).
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2.2.3. Small-time asymptotics. The (extended) generator gives us a connection between the
notion of association and the Lévy characteristics (b(x), �(x), ν(x, dy)) due to the representa-
tion of the integro-differential operator. Thus, to characterize association for Feller processes
using the Lévy characteristics, an extension of Theorem 2.1 becomes quite useful. However,
under weaker conditions on the symbol p(x, ξ ), such as local boundedness, it is useful to avoid
using the generator (as we will show in Section 3) and show a more direct connection between
the Lévy characteristics and the notion of association. We will establish such a connection by
looking at small-time asymptotics of a Feller process. Additionally, this notion will allow us to
characterize weaker forms of positive dependence under the Lévy characteristics.

The classical results of small-time asymptotics have been primarily established for Lévy
processes. For a given Lévy process L = (Lt)t≥0, it is known that, for all f ∈ Cc(Rd \ {0}),

lim
t↘0

1

t
E

0f (Lt) =
∫
Rd\{0}

f (y)ν(dy) (2.7)

(see [16, p. 2] for a reference). Thus, by the Portmanteau Theorem, (2.7) implies

lim
t↘0

1

t
P

0(Lt ∈ A) = ν(A)

for all A ∈B(Rd \ {0}) with 0 /∈ A and ν(∂A) = 0. This result naturally extends to a general
starting point x: for every x ∈R

d, limt↘0
1
t P

x(Lt − x ∈ A) = ν(A) by translation invariance of a
Lévy process. Until recently, an analogous statement of the above for Feller processes was not
known. However, Kühn and Schilling [16] proved such a statement for these processes.

Theorem 2.2. (Kühn, Schilling (2016) [16], Corollary 3.3.) Let X = (Xt)t≥0 be a rich Feller
process with symbol p(x, ξ ) and characteristics (b(x), �(x), ν(x, dy)). If f ∈ C0(Rd) and
f |B(0,δ) = 0 for some δ > 0, then

lim
t↘0

1

t
E

xf (Xt − x) =
∫
Rd\{0}

f (y)ν(x, dy).

Additionally, by the Portmanteau Theorem,

lim
t↘0

1

t
P

x(Xt − x ∈ A) = ν(x, A)

for all A ∈B(Rd \ {0}) such that 0 /∈ A and ν(x, ∂A) = 0.

The small-time asymptotics given by Theorem 2.2 give us a direct connection between the
Lévy measure and the Feller process, avoiding the representation of the generator. Also, note
that the result holds for more general, locally bounded symbols.

Our interest focuses on jump-Feller processes, i.e. X ∼ (b(x), 0, ν(x, dy)), since the asso-
ciation of diffusion processes X ∼ (b(x), �(x), 0) was completed by Mu-Fa Chen [7]. In the
following section, we will prove a sufficient and necessary condition for the jump-Feller
process to be associated, WA, PSA, PSD, POD, PUOD, and PLOD in space, where the
condition is

ν(x, (Rd+ ∪R
d−)c) = 0 for all x ∈R

d. (2.8)

Remark 2.2. We note that Jie Ming Wang [32, Theorem 1.4] proved that spatial association is
equivalent to (2.8) under certain continuity and integrability conditions (unknown to the author
at the time). These assumptions include the following:
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FIGURE 2: Equivalence of dependences under condition (2.8) for Feller processes.

• bi, �ij ∈ C(Rd), for all i, j,

• ∫
hi(z)(ν(·, dz) − ν(·, d(−z))) ∈ C(Rd), where h : Rd →R

d is defined by

hi(z) = sgn(zi)(1 ∧ |zi|),
• ∫

A |h(z)|2ν(·, dz) ∈ C(Rd) for all A ∈B(Rd),

• ∫
g(z)ν(·, dz) ∈ C(Rd) for any g ∈ Cb(Rd) that is 0 near the origin.

We relax these conditions, and furthermore our work includes characterizations of the other
dependence structures mentioned in Definitions 2.1–2.7.

3. Main results

Consider a rich Feller process X = (Xt)t≥0 on the space (�, G, (Gt)t≥0, P
x)x∈Rd with

Lévy characteristics (b(x), 0, ν(x, dy)). If we assume that X is stochastically monotone, then
condition (2.8) is a necessary and sufficient condition for the association, WA, PSA, PSD,
POD, PUOD, and PLOD in the space of the process X. These equivalences can be illustrated
in the implication map in Figure 2. The dashed arrows are the implications we will prove.

To show these equivalences, we first give a proof that, under stochastic monotonicity,
condition (2.8) is equivalent to association in space. We show this in Section 3.1. Then, in
Section 3.2, we show that PUOD in space (and, similarly, PLOD) implies condition (2.8).

3.1. Association is equivalent to condition (2.8)

Theorem 3.1. Let X = (Xt)t≥0 be a rich Feller process with stochastically monotone transition
semigroup (Tt)t≥0, a generator (A,D(A)), bounded symbol p(x, ξ ), and (b(x), 0, ν(x, dy)).
Then Xt is associated for all t ≥ 0 if and only if (2.8), ν(x, (Rd+ ∪R

d−)c) = 0, is satisfied.

We prove this by first showing that association of Xt is equivalent to a Liggett-type
inequality for the extended generator, the statement of which is in the following theorem.

Theorem 3.2. Let X = (Xt)t≥0 be a rich Feller processes with stochastically monotone tran-
sition semigroup (Tt)t≥0, a generator (A,D(A)), bounded symbol p(x, ξ ), and an (extended)
integro-differential operator I(p). Assume x �→ p(x, 0) is continuous. Then

I(p) fg ≥ fI(p)g + gI(p) f for all f , g ∈ C2
b(Rd) ∩Fi (3.1)

if and only if, for all t ≥ 0,

Tt fg ≥ Tt f · Ttg for all f , g ∈ Cb(Rd) ∩Fi. (3.2)

Inequality (3.2) in Theorem 3.2 is another way to formulate that Xt is associated for all
t ≥ 0. Since (3.2) means, for all x ∈R

d, Exf (Xt)g(Xt) ≥E
xf (Xt)Exg(Xt), then Xt is associated
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with respect to P
x. Inequality (3.1) intuitively means that the process moves either up or down,

which, in multidimensional Euclidean space, means that if the process is currently at point x,
then it can only move to another point y if y ≥ x or y ≤ x component-wise.

Note that in Theorem 3.2 we are using the extended generator I(p). In previous statements of
Liggett’s characterization, the generator A is used, but we need to use I(p) for the reasons given
in the comments after Theorem 2.1. Hence, it is necessary to show the Liggett-type inequality
as a characterization of association for rich Feller processes. Such an extension has not been
seen by the author of this paper. We first need the following lemmas to prove Theorem 2.1. We
will often assume Setting 3.1 throughout this section.

Setting 3.1. Let X = (Xt)t≥0 be a rich Feller process, semigroup (Tt)t≥0, generator (A,D(A)),
symbol p(x, ξ ), (extended) integro-differential operator I(p), and characteristics

(a(x), b(x), �(x), ν(x, dy)),

where b, �, ν are the same as before, except that we have an additional characteristic a : Rd →
R+ which represents the ‘killing rate’.

Remark 3.1. With the additional characteristic a(x), function −p(x, ξ ) would look like a(x) +
the right-hand side of equation (2.3). Also, I(p)f (x) would look like −a(x) f (x) + the right-hand
side of equation (2.5). Unless stated otherwise, we will assume that a(x) ≡ 0. For more on the
case when a(x) �≡ 0, see the paper by Schnurr [28], which discusses such processes satisfying
a(x) �≡ 0 and their connection to the symbol.

Lemma 3.1. Assume Setting 3.1 and that p(x, ξ ) is bounded. Then I(p) generates the
semigroup (Tt)t≥0 locally uniformly, i.e.

I(p) f = lim
t↘0

1

t
(Tt f − f ), f ∈ C2

b(Rd),

where the convergence is locally uniform.

For a detailed proof, see the appendix.

Lemma 3.2. Assume Setting 3.1 and the symbol p(x, ξ ) is bounded. For all f ∈ C2
b(Rd),

d

dt
Tt f = I(p)Tt f = TtI(p) f ,

where the derivative is defined based on locally uniform convergence.

For a detailed proof, see the appendix. Finally, we can extend Liggett’s solution to a Cauchy
problem [18, Theorem 2.15, p. 19] to integro-differential operators that generate a semigroup
locally uniformly.

Lemma 3.3. (Cauchy problem.) Let (A,D(A)) be a (rich) Feller generator of a semigroup
(Tt)t≥0 with bounded Lévy characteristics and symbol p(x, ξ ) Let I(p) be the extended
generator on C2

b(Rd). Suppose F,G : [0,∞) → Cb(Rd) such that

(a) F(t) ∈D(I(p)) for all t ≥ 0,

(b) G(t) is continuous on [0,∞) (locally uniformly),

(c) F′(t) = I(p)F(t) + G(t) for all t ≥ 0.
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Then F(t) = Tt f (0) + ∫ t
0 Tt−sG(s) ds.

For a detailed proof, see the appendix. We are now ready to prove the main theorems of this
section.

Proof of Theorem 3.2. ( ⇐ ) Assume Tt fg ≥ Tt f Ttg for all f , g ∈ C2
b(Rd) ∩Fi. This im-

plies

Tt fg − fg ≥ Ttf Ttg − fg = Ttf Ttg − fg + g Tt f − g Tt f = Tt f [Ttg − g] + g[Tt f − f ].

Hence, for all t> 0,
1

t
(Tt fg − fg) ≥ Tt f

Ttg − g

t
+ g

Tt f − f

t
.

Therefore,

I(p) fg = lim
t↘0

1

t
(Tt fg − fg) ≥ lim

t↘0

(
Tt f

Ttg − g

t
+ g

Tt f − f

t

)

=
(

lim
t↘0

Tt f

) (
lim
t↘0

Ttg − g

t

)
+ g

(
lim
t↘0

Tt f − f

t

)
= fI(p)g + gI(p) f ,

where the convergence is locally uniform.
( ⇒ ) Assume I(p) fg ≥ fI(p)g + gI(p) f for all f , g ∈ C2

b(Rd) ∩Fi. By monotonicity,
Tt f , Ttg ∈ C2

b(Rd) ∩Fi, which implies

I(p)(Tt f )(Ttg) ≥ Ttf [I(p)Ttg] + Ttg[I(p)Ttf ]. (3.3)

Define F(t) := Tt fg − Tt f Ttg. Then, by Lemma 3.2, we have

F′(t) = I(p)Tt fg − (Tt f [I(p)Ttg] + Ttg[I(p)Tt f ]) ≥ I(p)Tt fg − (I(p)Tt f Ttg)

= I(p)(Tt fg − Tt f Ttg)

= I(p)F(t),

where the inequality comes from (3.3). Define G(t) := F′(t) − I(p)F(t) ≥ 0. Then, by
Lemma 3.3, the solution to the Cauchy problem F′(t) = G(t) + I(p)F(t) is given by

F(t) = Tt f (0) +
∫ t

0
Tt−sG(s) ds =

∫ t

0
Tt−sG(s) ds

since F(0) = 0. Since G(s) ≥ 0 for all s, and Tt−s is a positivity-preserving linear operator,
F(t) ≥ 0 for all t ≥ 0. Thus, Tt fg ≥ Tt f · Ttg for all f , g ∈ C2

b(Rd) ∩Fi. This inequality
also holds for all f , g ∈ Cb(Rd) ∩Fi, since we can approximate nondecreasing, continuous,
bounded functions by nondecreasing smooth, bounded functions, and then use a dominated
convergence argument. �

Remark 3.2. For the necessary condition, we did not need stochastic monotonicity.
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Proof of Theorem 3.1. ( ⇐ ) Fix x ∈R
d. Assume ν(x, (Rd+ ∪R

d−)c) = 0. Then, for all f , g ∈
C2

b(Rd) ∩Fi,

I(p) fg(x) − g(x)I(p) f (x) − f (x)I(p)g(x)

= b(x) · ∇fg(x) +
∫

y �=0
( f (x + y)g(x + y) − f (x)g(x) − y · ∇fg(x)1(0,1)(|y|))ν(x, dy)

− b(x) · g(x)∇f (x) −
∫

y �=0
( f (x + y)g(x) − f (x)g(x) − y · g(x)∇f (x)1(0,1)(|y|))ν(x, dy)

− b(x) · f (x)∇g(x) −
∫

y �=0
( f (x)g(x + y) − f (x)g(x) − y · f (x)∇g(x)1(0,1)(|y|))ν(x, dy)

=
∫

y �=0
( f (x + y)g(x + y) − f (x + y)g(x) − f (x)g(x + y) + f (x)g(x))ν(x, dy)

=
∫

y �=0
( f (x + y) − f (x))(g(x + y) − g(x))ν(x, dy)

=
∫
R

d+
( f (x + y) − f (x))(g(x + y) − g(x))ν(x, dy)

+
∫
R

d−
( f (x + y) − f (x))(g(x + y) − g(x))ν(x, dy)

≥ 0,

where the drift terms and the cut-off term in the integrand vanish because

∇fg(x) = f (x)∇g(x) + g(x)∇f (x).

Additionally, we get positivity at the end there because, for all y ∈R
d+, f (x + y) − f (x) ≥ 0,

and g(x + y) − g(x) ≥ 0, so ( f (x + y) − f (x))(g(x + y) − g(x)) ≥ 0 on R
d+. A similar result holds

on R
d−. By Theorem 3.2, this implies Tt fg(x) ≥ Tt f (x)Ttg(x), where f , g ∈ C2

b(Rd) ∩Fi. Now,
to obtain association of Xt, this inequality needs to hold for all f , g ∈ Cb(Rd) ∩Fi. However,
we can use an approximation of a function f ∈ Cb(Rd) ∩Fi by fn ∈ C∞

b (Rd) ∩Fi, which gives
us the desired result.

( ⇒ ) Assume that Xt is associated for all t ≥ 0. This means Tt fg(x) ≥ Ttf (x)Ttg(x) for all
x ∈R

d, for all f , g ∈ Cb(Rd) ∩Fi. So this inequality of course holds for f , g ∈ C2
b(Rd) ∩Fi,

which yields I(p)fg ≥ gI(p) f + fI(p)g for such f , g by Theorem 3.2. This implies, by a similar
calculation in the ( ⇐ ) direction, that∫

y �=0
( f (x + y) − f (x))(g(x + y) − g(x))ν(x, dy) ≥ 0.

For simplicity, assume d = 2, but note that we can easily generalize this result to higher
dimensions using correction functions. Fix x = (x1, x2) ∈R

2. Assume for contradiction that
Resnick’s condition is not satisfied. Without loss of generality, let us say ν(x, (0,∞) ×
(−∞, 0))> 0. By continuity of measure, there exists a> 0 such that ν(x, (a,∞) ×
(−∞, a))> 0. Let ε ∈ (0, 1), and define f , g ∈ C∞

b (R2) ∩Fi by

f (y1, y2) =
{

0 if y1 ≤ x1 + εa,

1 if y1 ≥ x1 + a,
g(y1, y2) =

{
0 if y2 ≥ x2 − εa,

−1 if y2 ≤ x2 − a.
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This implies f (x) = g(x) = 0. Hence,

0 ≤
∫

y �=0
( f (x + y) − f (x))(g(x + y) − g(x))ν(x, dy)

=
∫

y �=0
f (x + y)g(x + y)ν(x, dy)

=
∫

(a,∞)×(−∞,−a)
f (x + y)g(x + y)ν(x, dy) +

∫
(a,∞)×[−a,−εa]

f (x + y)g(x + y)ν(x, dy)

+
∫

[εa,a]×(−∞,−a)
f (x + y)g(x + y)ν(x, dy) +

∫
[εa,a]×[−a,−εa]

f (x + y)g(x + y)ν(x, dy)

= −ν(x, (a,∞) × (−∞,−a)) −
∫

(a,∞)×[−a,−εa]
g(x + y)ν(x, dy)

+
∫

[εa,a]×(−∞,−a)
f (x + y)ν(x, dy) +

∫
[εa,a]×[−a,−εa]

f (x + y)g(x + y)ν(x, dy)

≤ −ν(x, (a,∞) × (−∞,−a)),

implying ν(x, (a,∞) × (−∞,−a)) ≤ 0. Hence, ν(x, (a,∞) × (−∞,−a)) = 0, a contra-
diction. �

3.2. PUOD implies condition (2.8)

Lemma 3.4. If Y = (Y1, . . . , Yd) is PUOD, then (Yk1, . . . , Ykn ) is PUOD for all multi-indices
{kj}n

j=1 ⊂ {1, . . . , d}.
Proof. If Y PUOD, then we know E(

∏d
i=1 fi(Yi)) ≥ ∏d

i=1 E fi(Yi), where fi : R→R+ non-
decreasing. So for all i ∈ {1, . . . , d} \ {kj}n

j=1, set fi = 1R. Then the above inequality becomes

E

( n∏
j=1

fj(Ykj)

)
≥

n∏
j=1

E fj(Ykj).

Thus, (Yk1, . . . , Ykn ) is PUOD. �
Theorem 3.3. Let X = (Xt)t≥0 be a rich Feller process with symbol p(x, ξ ) and triplet

(b(x), 0, ν(x, dy)).

If Xt is PUOD for each t ≥ 0, then condition (2.8) is satisfied, i.e.

ν(x, (Rd+ ∪R
d−)c) = 0.

Proof. Assume Xt is PUOD (with respect to P
x) for each t ≥ 0. Fix x = (x1, . . . , xd) ∈R

d.
Since Xt is PUOD, then Xt − x is PUOD for all t ≥ 0. Assume for contradiction that ν is not
concentrated on R

d+ ∪R
d−. Without loss of generality, say ν(x, (0,∞)d−1 × (−∞, 0))> 0. By

continuity of measure, there exists a> 0 such that

ν(x, (a,∞)d−1 × (−∞,−a))> 0

and
ν(x, ∂[(a,∞)d−1 × (−∞,−a)]) = ν(x, ∂[(a,∞) ×R

d−1]) = 0.
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Then, by Theorem 2.2,

lim
t→0

1

t
P

x(Xt − x ∈ (a,∞)d−1 × (−∞,−a)) = ν(x, (a,∞)d−1 × (−∞,−a)).

Hence,

0< ν(x, (a,∞)d−1 × (−∞,−a))

= lim
t→0

1

t
P

x(Xt − x ∈ (a,∞)d−1 × (−∞,−a))

= lim
t→0

1

t
P

x(X(1)
t − x1 > a, . . . , X(d−1)

t − xd−1 > a, X(d)
t − xd <−a)

≤ lim
t→0

1

t
P

x(X(1)
t − x1 > a, . . . , X(d−1)

t − xd−1 > a, X(d)
t − xd ≤ −a)

= lim
t→0

1

t
P

x({X(1)
t − x1 > a} \ [{X(1)

t − x1 > a} ∩ {X(2)
t − x2 > a, . . . , X(d)

t − xd ≤ −a}c])

= lim
t→0

1

t
[Px(X(1)

t − x1 > a)

− P
x({X(1)

t − x1 > a} ∩ {X(2)
t − x2 > a, . . . , X(d)

t − xd ≤ −a}c)]

= lim
t→0

1

t
[Px(X(1)

t − x1 > a)

− P
x({X(1)

t − x1 > a} ∩ [{X(2)
t − x2 ≤ a} ∪ · · · ∪ {X(d)

t − xd >−a}]])]

= lim
t→0

1

t
[Px(X(1)

t − x1 > a)

− P
x({X(1)

t − x1 > a, X(2)
t − x2 ≤ a} ∪ · · · ∪ {X(1)

t − x1 > a, X(d)
t − xd >−a}])]

≤ lim
t→0

1

t
[Px(X(1)

t − x1 > a) − P
x(X(1)

t − x1 > a, X(d)
t − xd >−a])]

≤ lim
t→0

1

t
[Px(X(1)

t − x1 > a) − P
x(X(1)

t − x1 > a)Px(X(d)
t − xd >−a])]

= lim
t→0

1

t
[Px(X(1)

t − x1 > a)(1 − P
x(X(d)

t − xd >−a]))]

= lim
t→0

1

t
P

x(X(1)
t − x1 > a)Px(X(d)

t − xd ≤ −a])

=
[

lim
t→0

1

t
P

x(X(1)
t − x1 > a)

][
lim
t→0

P
x(X(d)

t − xd ≤ −a])

]

= ν(x, (a,∞) ×R
d−1)Px(X(d)

0 − xd ≤ −a)

= 0.

We obtain lines 4, 9 by set containment, line 5 by the fact that A ∩ B = A \ (A ∩ Bc), line 10 by
Lemma 3.4, and line 14 by Theorem 2.2. This contradiction gives us the desired result. �
Remark 3.3. (i) We could also have shown that PLOD implies condition (2.8) using

techniques similar to those above.

(ii) Symbol p(x, ξ ) in the above theorem need not be bounded, only locally bounded.
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Corollary 3.1. For stochastically monotone jump-Feller processes, i.e. X ∼ (b(x), 0, ν(x, dy))
with bounded symbols p(x, ξ ), then condition (2.8), ν(x, (Rd+ ∪R

d−)c) = 0, is equivalent to X
being associated, WA, PSA, PSD, POD, PUOD, and PLOD in space.

Proof. This holds by Theorems 3.1 and 3.3. �

3.3. Association in time

Our results can also be used to study the temporal association of Feller processes. We first
examine the case of Lévy processes, a subclass of Feller processes with constant characteristic
triplet (b,Q, ν). For Lévy processes, spatial association is equivalent to temporal association.

Theorem 3.4. Let X = (Xt)t≥0 be a stochastic process in R
d with independent and stationary

increments, i.e. Xt − Xs ⊥⊥ Xs − Xr, for all 0 ≤ r< s< t, and Xt − Xs
d= Xt−s for all 0 ≤ s< t.

Then X is associated in time if and only if X is associated in space.

Proof. The forward direction is trivial by definition. We only need to prove the backward
direction. Assume Xt is associated in R

d for every t ≥ 0. Choose 0 ≤ t1 < · · ·< tn. Then

(Xt1 , . . . , Xtn ) = (Xt1, Xt1 + (Xt2 − Xt1 ), . . . , Xt1 + (Xt2 − Xt1 ) + · · · + (Xtn − Xtn−1 ))

= (Xt1, . . . , Xt1 ) + (0, Xt2 − Xt1 , . . . , Xt2 − Xt1 ) + · · · + (0, . . . , 0, Xtn − Xtn−1 ).

Now observe that by stationary increments, Xtk+1 − Xtk
d= Xtk+1−tk and Xtk+1−tk is associated,

which makes Xtk+1 − Xtk associated (association is preserved under equality in distribution), for
all k ∈ {1, . . . , n − 1}. Further, if X̂ is associated in R

d, then each block (0, . . . , 0, X̂, . . . , X̂)
is associated in R

dn, where there are k 0 vectors and (n − k) X̂ vectors. Therefore, each block
(0, . . . , 0, Xtk+1 − Xtk , . . . , Xtk+1 − Xtk ) is associated, for each k ∈ {1, . . . , n − 1}. By indepen-
dent increments, each block is independent. Therefore, since the sum of independent random
vectors, each of which is associated, is associated, then (Xt1, . . . , Xtn ) is associated. �
Corollary 3.2. Any Lévy process X that is associated in space is also associated in
time. Additionally, if X has triplet (b, 0, ν), then X is associated in time if and only if
ν((Rd+ ∪R

d−)c) = 0.

Proof. Any Lévy process has independent and stationary increments, thus the result holds
by Theorem 3.4. �

We would also like to consider conditions for temporal association of general Feller
processes. Early work on this has been done by Harris [12, Corollary 1.2] and Liggett [18,
p. 82] for Feller processes with a countable state space. This can be extended to more general
state spaces, as given in the following theorem.

Theorem 3.5. Let X = (Xt)t≥0 be a time-homogeneous, stochastically monotone Feller pro-
cess on R

d. If X is spatially associated, and X0 ∼μ, where μ satisfies∫
fg dμ≥

∫
f dμ

∫
g dμ, f , g ∈ Bb(Rd) ∩Fi,

then X is temporally associated.

The proof is similar to Liggett’s proof found in [18, p. 82]. For details on the proof, we refer
the reader to the author’s dissertation [30, p. 59]. Theorem 3.5 yields the following corollary
about jump-Feller processes.
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Corollary 3.3. Let X = (Xt)t≥0 be a stochastically monotone Feller process with characteris-
tics (b(x), 0, ν(x, dy)). Assume X0 ∼μ ∈Ma. Then ν(x, (Rd+ ∪R

d−)c) = 0 if and only if X is
associated in time.

Proof. The proof follows from Theorems 3.1 and 3.5. �

4. Examples

We give a collection of interesting Feller processes that satisfy stochastic monotonicity.

4.1. Lévy processes

Any Lévy process satisfies stochastic monotonicity. Let (Tt)t≥0 be a semigroup of a Lévy
process. Then, for f ∈Fi, we have

Tt f (x) =E
xf (Xt) =E

0f (Xt + x).

Thus monotonicity of function f and of the expectation E
0 gives us Tt f ∈Fi.

Let X = (Xt)t≥0 be a jump-Lévy process whose Lévy characteristics look like (b, 0, ν),
where there is no state-space dependence. Then ν((Rd+ ∪R

d−)c) = 0 is equivalent to Xt

being associated, WA, PSA, PSD, POD, PUOD, and PLOD since all Lévy processes are
stochastically monotone. This was proved in [2] for association, PSD, and POD, but not for
the other dependence structures. Furthermore, the technique in [2] to prove condition (1.1) is
equivalent to PSD and POD, and required Lévy copulas. Our method of short-time asymptotics
avoids Lévy copulas altogether, and solely uses the Lévy measure. Additionally, condition (1.1)
is equivalent to temporal association of X, by Corollary 3.3.

4.2. Ornstein–Uhlenbeck process

An Ornstein–Uhlenbeck (OU) process X = (Xt)t≥0 in R
d is the solution to the general

Langevin equation

dXt = −λXt dt + dLt,

X0 = x a.s.,

where λ> 0, L = (Lt)t≥0 ∼ (bL, �L, νL) is a Lévy process in R
d, and x ∈R

d. Then the OU
process looks like

Xt = e−λtx +
∫ t

0
e−λ(t−s) dLt

The semigroup (Tt)t≥0 of this process is called the Mehler semigroup and is given by

Tt f (x) =
∫
Rd

f (eλtx + y)μt(dy), Lt ∼μt.

Claim 4.1. The OU process is stochastically monotone.

Proof. Let f ∈ Bb(Rd) be an increasing function. Assume x< y, and fix some t ≥ 0. Then
e−λtx< e−λty. This implies f (e−λtx + z) ≤ f (e−λty + z) for all z ∈R

d. Hence,

Tt f (x) =
∫
Rd

f (e−λtx + z)μt(dz) ≤
∫
Rd

f (e−λty + z)μt(dz) = Tt f (y).

Thus, Tt f is an increasing function on R
d. �
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Process X has a characteristic triplet, (bL − λx, �L, νL) [1]. Thus, the characterization of
positive dependence (association, WA, PSA, PSD, POD, PUOD, PLOD) is equivalent to
νL((Rd+ ∪R

d−)c) = 0 when � = 0.

4.3. Feller’s pseudo-Poisson process

Here we construct a stochastically monotone pseudo-Poisson process. Let S = (S(n))n∈N be
a homogeneous Markov process taking values in R

d. Let (q(n))n∈N define the n-step transition
probabilities,

q(n)(x, B) = P(S(n) ∈ B|S(0) = x),

for all B ∈B(Rd). Let Q be the transition operator of S, defined by

(Q f )(x) =
∫
Rd

f (y)q(x, dy)

for all f ∈ Bb(Rd), x ∈R
d. Note that Qnf (x) = ∫

Rd f (y)q(n)(x, dy). Let N = (Nt)t≥0 be a Poisson
process with rate λ that is independent of S. Define X = (Xt)t≥0 by subordination:

Xt := S(Nt) for all t ≥ 0.

Process X, called Feller’s pseudo-Poisson process, is a Feller process.
The semigroup (Tt)t≥0 and generator A of X are given by

Tt f (x) = et[λ(Q−I)]f (x) = e−λt
∞∑

n=0

(λt)n

n! Qnf (x),

A f (x) = λ(Q − I) f (x) =
∫
Rd

[f (y) − f (x)]λq(x, dy).

Claim 4.2. If S is a stochastically monotone Markov process, then X is stochastically
monotone.

Proof. We will show that if f ∈Fi then Tt f ∈Fi. Observe that, since S is stochastically
monotone, we deduce that q(x, B) is a monotone function in x for any monotone set B ∈B(Rd).
Additionally, for f ∈ Bb(Rd) ∩Fi, Qf (x) = ∫

Rd f (y)q(x, dy) is a monotone function. We show,
by induction, that for all n

Gn := e−λt (λt)n

n! Qnf

is a nondecreasing function.
For the base case, n = 0, G0(x) = e−λtf (x) is nondecreasing. For n = 1,

G1(x) = e−λtλt Qf (x) = e−λtλt
∫
Rd

f (z)q(x, dz)

is nondecreasing.
Induction hypothesis. Assume that

Gn(x) = e−λt (λt)n

n! Qnf (x) = e−λt (λt)n

n!
∫
Rd

f (z)q(n)(x, dz)

is a nondecreasing function.
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Inductive step. We have

Gn+1(x) = e−λt (λt)n+1

(n + 1)!Qn+1f (x)

= e−λt (λt)n+1

(n + 1)!
∫
Rd

f (z) q(n+1)(x, dz)

= e−λt (λt)n+1

(n + 1)!
∫
Rd

( ∫
Rd

f (z) q(n)(y, dz)

)
q(x, dy)

=: e−λt (λt)n+1

(n + 1)!
∫
Rd

H(y)q(x, dy),

where H(y) = ∫
Rd f (z)q(n)(y, dz) is a nondecreasing function in y by induction hypothesis,

and we have used the Chapman–Kolmogorov equations. Thus, by the base case, the integral∫
Rd H(y)q(x, dy) is nondecreasing in x. Hence we deduce that Gn is a nondecreasing function

for all n. Hence, Ttf is nondecreasing, giving us our desired result. �
Now, to find the characteristic triplet (b(x), �(x), ν(x, dy)), we consider the generator:

A f (x) =
∫
Rd

( f (z) − f (x))λq(x, dz)

=
∫
Rd

( f (x + z) − f (x))λq(x, dz + x)

=
∫
Rd

( f (x + z) − f (x))λq̂(x, dz), where q̂(x, B) := q(x, B + x),

=
∫
Rd

( f (x + z) − f (x) − ∇f (x) · zχ (z))λq̂(x, dz) +
∫
Rd

∇f (x) · zχ (z)λq̂(x, dz)

=
∫
Rd

( f (x + z) − f (x) − ∇f (x) · zχ (z))λq̂(x, dz) + ∇f (x) ·
( ∫

Rd
zχ (z)λq̂(x, dz)

)
.

Thus, the Lévy triplet will be (b(x), �(x), ν(x, dy)), where

b(x) =
∫
Rd

zχ (z)λq̂(x, dz), �(x) = 0, ν(x, A) = λq̂(x, A) = λq(x, A + x).

4.4. Bochner’s subordination of a Feller process

Consider a continuous-time Feller process Y = (Y(t))t≥0 with semigroup (Tt)t≥0 and genera-
tor (A,D(A)). Let N = Nt be a subordinator independent of Y with Lévy characteristics (b, λ),
i.e. it has Lévy symbol η(u) = ibu + ∫ ∞

0 (eiuy − 1)λ(dy), where E eiuNt = etη(u). Additionally,
we can attain a Laplace transform of the subordinator, E e−uNt = e−tψ(u), where

ψ(u) := −η(iu) = bu +
∫ ∞

0
(1 − e−uy)λ(dy).

Function ψ is called the Laplace symbol or Bernstein function of the subordinator. The
following is a theorem of Phillips.

Theorem 4.1. (Phillips [20].) Let X = (Xt)t≥0 be given by the prescription Xt = Y(Nt). Then X
is a Feller process with semigroup (TX

t )t≥0 and generator (AX,D(AX)), given by

TX
t f =

∫ ∞

0
(Tsf )μNt (ds), AXf = bA f +

∫ ∞

0
(Tsf − f )λ(ds).
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Claim 4.3. If Y is a stochastically monotone Feller process with semigroup (Tt)t≥0, i.e. Tt f ∈
Fi for f ∈Fi, and N = (Nt)t≥0 is a subordinator, then X = (Xt)t≥0 given by Xt = Y(Nt) is a
stochastically monotone Feller process.

Proof. We already know that X is Feller with semigroup (TX
t )t≥0. So choose f ∈Fi ∩

Cb(Rd). Then Tsf ∈Fi ∩ Cb(Rd) for all s ≥ 0. Choose x< y. Then Tsf (x) ≤ Tsf (y) for all s ≥ 0.
Hence,

TX
t f (x) =

∫ ∞

0
(Tsf )(x)μNt (ds) ≤

∫ ∞

0
(Tsf )(y)μNt (ds) = TX

t f (y).

Thus, TX
t f ∈Fi. �

Let Y have symbol p(x, ξ ). Then X = Y(N) is a Feller process with symbol pX(x, ξ ) that is
given by

pX(x, ξ ) =ψ(p(x, ξ )) + lower-order perturbation.

This ‘perturbation’ is ‘measured in a suitable scale of anisotropic function spaces’ [5, p. 104].
Particularly interesting examples are when N is an α-stable subordinator, inverse Gaussian
subordinator, and Gamma subordinator, and Y is a diffusion process Y ∼ (b(x),Q(x), 0).

Example 4.1. Let Y be a stochastically monotone diffusion process in R
d. This means that

Y has Lévy characteristics (b(x),Q(x), 0). Mu-Fa Chen and Feng-yu Wang [7] proved that
such a process is stochastically monotone if and only if qij(x) only depends on xi and xj, and
bi(x) ≤ bi(y) whenever x ≤ y with xi = yi. The generator of Y is given by

AY f (x) = b(x) · ∇f (x) + 1

2
∇ · Q(x)∇f (x).

Let N be an α-stable subordinator with Lévy characteristics (0, λ), where

λ(dy) = α

�(1 − α)

1

y1+α dy.

The generator AX of process X = Y(N) looks like

AXf (x) =
∫ ∞

0
(Tsf (x) − f (x))λ(ds) =

∫ ∞

0
(Tsf (x) − f (x))

α

�(1 − α)

1

s1+α ds.

Appendix A. Proofs of some lemmas from Section 3

Throughout this appendix, we assume Setting 3.1.

Lemma A.1. (Schilling [26], Theorem 4.3.) Assume p(x, ξ ) is bounded. If x �→ p(x, 0) is
continuous, then (Tt)t≥0 extends to a Cb-Feller semigroup, i.e. it satisfies

(a) Tt : Cb(Rd) → Cb(Rd),

(b) limh↘0 ‖Tt+hu − Ttu‖∞,K = 0 for all K ⊂R
d compact, u ∈ Cb(Rd), t ≥ 0, where

‖u‖∞,K := supy∈K |u(y)|, i.e. locally uniformly continuous.

Proof. For a proof, see [26, p. 247]. �
Proof of Lemma 3.1. The process

Mf
t := f (Xt) − f (X0) −

∫ t

0
I(p) f (Xs−) ds
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is, for every f ∈ C2
b(Rd), a martingale with respect to P

x, for all x (see [27, Lemma 3.2, p. 579]).
This implies

0 =E
xf (Xt) −E

xf (X0) −E
x
∫ t

0
I(p) f (Xs−) ds

= Tt f (x) − f (x) −
∫ t

0
E

xI(p) f (Xs−) ds

= Tt f (x) − f (x) −
∫ t

0
TsI(p) f (x) ds

for every x ∈R
d, t ≥ 0. Note that we can switch integrals in line 2 because I(p)f ∈ Cb(Rd) by

Remark 4.5(ii) in [26]. This implies

1

t
(Tt f − f ) = 1

t

∫ t

0
TsI(p) f ds.

We argue that when taking the limit as t ↘ 0, the right-hand side converges locally uniformly
to I(p) f . Note that since I(p)f ∈ Cb(Rd), then (TsI(p) f )1K is continuous in s for every compact
set K by the Cb-Feller property, i.e.

‖(Ts+hI(p) f )1K − (TsI(p) f )1K‖∞ = sup
x∈K

|Ts+hI(p) f (x) − TsI(p) f (x)| → 0.

So, the function T(·)I(p) f 1K is the integrand of a Bochner-type integral that is continuous
in s and integrable on any closed interval [a, b]. Therefore, by the Fundamental Theorem of
Calculus for Bochner integrals [10, pp. 21–22],

lim
t↘0

1

t
(Tt f − f )1K = lim

t↘0

1

t

∫ t

0
(TsI(p) f )1K ds = (I(p) f )1K

for all K ⊂R
d compact. Hence, I(p)f = limt↘0

1
t (Tt f − f ), where convergence is locally

uniform. �
Proof of Lemma 3.2. By Lemma A.1, our semigroup (Tt)t≥0 satisfies the Cb-Feller prop-

erty. Choose f ∈ C2
b(Rd). Observe that for all x ∈R

d,

Tt+hf (x) − Ttf (x) = Tt(Thf (x) − f (x))

= Tt

∫ h

0
TsI(p) f (x) ds

=E
x
∫ h

0
TsI(p) f (Xt) ds

=
∫ h

0
E

xTsI(p) f (Xt) ds, by Fubini’s theorem,

=
∫ h

0
TtTsI(p) f (x) ds

=
∫ h

0
TsTtI(p) f (x) ds.

https://doi.org/10.1017/jpr.2019.36 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.36


On association and other forms of positive dependence for Feller processes 643

Thus,

lim
h→0

1

h
(Tt+hf − Ttf ) = lim

h→0

1

h

∫ h

0
TsTtI(p) f ds = TtI(p) f

because TtI(p) f ∈ Cb(Rd) by the Cb-Feller property, thus making TsTtI(p) f 1K continuous in
s for every compact K. Once again, by the Fundamental Theorem of Calculus for Bochner
integrals (see [10, pp. 21–22]), we get the convergence shown above.

Finally, we want to show I(p)Tt f = TtI(p) f . We choose (φn)n∈N ⊂ C∞
c (Rd) such that

1B(0,n) ≤ φn ≤ 1 for all n. Hence, fφn ∈ C2
c (Rd) ⊂D(A), the domain of generator A, and we

have I(p)Tt fφn = TtI(p) fφn. By an approximation argument, we get our desired result. �
Proof of Lemma 3.3. Observe that all limits (and corresponding derivatives) we take here

are with respect to locally uniform convergence. Note that by the assumption that x �→ p(x, 0)
is continuous, our semigroup (Tt)t≥0 satisfies the Cb-Feller property by Lemma A.1. Also, by
Lemma 3.1, we have limt↘0

1
t (Ttu − u) = I(p)u for all u ∈ C2

b(Rd). Observe that we will define
the derivative F′(s) by

F′(s) = lim
h→0

F(s + h) − F(s)

h
,

where the limit is under locally uniform convergence. Also, our statement of (b) is different
from that of Liggett.

Liggett’s: if tn → t, then ‖G(tn) − G(t)‖∞ → 0 as n → ∞.

Ours: if tn → t, then ‖G(tn) − G(t)‖∞,K → 0 as n → ∞ for all K compact.

Although Liggett’s assumption would be sufficient, we do not need something that strong in our
setting, and our G will satisfy locally uniform continuity. Choosing any compact set K ⊂R

d,
we have

Tt−s−hF(s + h) − Tt−sF(s)

h
· 1K

= Tt−s−hF(s + h)

h
· 1K − Tt−sF(s)

h
· 1K

+ [Tt−s−h − Tt−s]F
′(s) · 1K − [Tt−s−h − Tt−s]F

′(s) · 1K

+ Tt−s−hF(s)

h
· 1K − Tt−s−hF(s)

h
· 1K

+ Tt−sF(s + h)

h
· 1K − Tt−sF(s + h)

h
· 1K

+ Tt−sF(s)

h
· 1K − Tt−sF(s)

h
· 1K

=: (1) + (2) + (3) + (4) + (5) + (6) + (7) + (8) + (9) + (10)

= [(2) + (7)] + [(5) + (10)] + [(3)] + [(4) + (1) + (9) + (8) + (6)]

= Tt−s

[
F(s + h) − F(s)

h

]
· 1K +

[
Tt−s−h − Tt−s

h

]
F(s) · 1K

+ [Tt−s−h − Tt−s]F
′(s) · 1K + [Tt−s−h − Tt−s]

[
F(s + h) − F(s)

h
− F′(s)

]
· 1K

=: (I) + (II) + (III) + (IV).
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Now we consider the limits as h goes to 0 for each of these four terms.

(I)

lim
h↘0

Tt−s

[
F(s + h) − F(s)

h

]
· 1K = Tt−s lim

h↘0

[
F(s + h) − F(s)

h

]
· 1K

= Tt−sF
′(s) · 1K

because Tt−s is a bounded operator, which means it is a continuous operator.

(II) Let u = t − s. Then s = t − u and ds = −du. For a function f ∈ Cb(Rd),

lim
h↘0

[
Tt−s−h − Tt−s

h

]
f · 1K = d

ds
Tt−s f · 1K

= − d

du
Tu f · 1K

= −I(p)Tu f · 1K

= −I(p)Tt−s f · 1K .

Therefore,

lim
h↘0

[
Tt−s−h − Tt−s

h

]
F(s) · 1K = −I(p)Tt−sF(s) · 1K = −Tt−sI(p)F(s) · 1K .

(III) By the Cb-Feller property, since F′(s) ∈ Cb(Rd), limh↘0 [Tt−s−h − Tt−s]F′(s) · 1K = 0
uniformly.

(IV) Observe that Tt−s−h and Tt−s are both contractions. Hence,∥∥∥∥|[Tt−s−h − Tt−s]

[
F(s + h) − F(s)

h
− F′(s)

]∥∥∥∥∞,K

≤
∥∥∥∥Tt−s−h − Tt−s

∥∥∥∥ ·
∥∥∥∥
[

F(s + h) − F(s)

h
− F′(s)

]∥∥∥∥∞,K

≤ 2

∥∥∥∥
[

F(s + h) − F(s)

h
− F′(s)

]∥∥∥∥∞,K
−→ 0

as h → 0. Thus, we have, for 0< s< t,

d

ds
Tt−sF(s) · 1K = lim

h↘0

Tt−(s+h)F(s + h) − Tt−sF(s)

h
· 1K

= lim
h↘0

[(I) + (II) + (III) + (IV)]

= Tt−sF
′(s) · 1K − Tt−sI(p)F(s) · 1K

= Tt−s[F
′(s) − I(p)F(s)] · 1K

(c)= Tt−sG(s) · 1K .

The right-hand side is a continuous function of s because G is a continuous function of
s and the semigroup is uniformly continuous on K by the Cb-Feller property. We justify
this as follows.
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Let ε > 0. Then there exists N such that ‖G(sn) − G(s)‖∞,K < ε/2 for all n ≥ N. Also,
there exists N′ such that ‖Tt−sn G(sN) − Tt−sG(sN)‖∞,K = ‖(Tt−sn − Tt−s)G(sN)‖∞,K <

ε/2 for all n ≥ N′, since the semigroup operator is uniformly continuous on compact
sets. Let M = max (N,N′). Then,

‖Tt−sM G(sM) − Tt−sG(s)‖∞,K

= ‖Tt−sM G(sM) − Tt−sG(sM) + Tt−sG(sM) − Tt−sG(s)‖∞,K

≤ ‖Tt−sM G(sM) − Tt−sG(sM)‖∞,K + ‖Tt−sG(sM) − Tt−sG(s)‖∞,K

≤ ‖Tt−sM G(sM) − Tt−sG(sM)‖∞,K + ‖G(sM) − G(s)‖∞,K

<
ε

2
+ ε

2
= ε.

Therefore we can integrate these functions with respect to s from 0 to t. By the
Fundamental Theorem of Calculus for Bochner integrals (see [10, pp. 21–22]), we obtain∫ t

0
Tt−sG(s) ds · 1K =

∫ t

0

d

ds
Tt−sF(s) ds · 1K

= (Tt−tF(t) − Tt f (0))1K

= (F(t) − Tt f (0))1K .

Since K was an arbitrary compact set, we have established our desired result: F(t) =
Tt f (0) + ∫ t

0 Tt−sG(s) ds. �
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