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We consider the hydrodynamics of wave energy converter (WEC) arrays consisting
of periodically repeated single bodies or sub-arrays. Of special interest is the array
gain due to wave interactions as a function of the spatial configuration of the array.
For simplicity, we assume identical WECs oscillating in heave only, although the
results should extend to general motions. We find that array gains can be as high as
O(10) compared to the same WECs operating in isolation. We show that prominent
decreases in array gain are associated with Laue resonances, involving the incident
and scattered wave modes, for which we obtain an explicit condition. We also show
theoretically that Bragg resonances can result in large decreases in gain with as
few as two rows of strong absorbers. For general WEC geometries, we develop a
multiple-scattering method of wave–body interactions applicable to generally spaced
periodic arrays. For arrays of truncated vertical cylinders, we perform numerical
investigations confirming our theoretical predictions for Laue and Bragg resonances.
For a special class of multiple-row rectangular WEC arrays, our numerical results
show that motion-trapped Rayleigh–Bloch waves can exist and be excited by an
incident wave, resulting in sharp, narrow-banded spikes in the array gain.

Key words: surface gravity waves, wave scattering, wave–structure interactions

1. Introduction
Among the myriad of currently available concepts for ocean wave energy extraction

(Drew, Plummer & Sahinkaya 2009; Babarit 2015), there is still no consensus as to
which one offers the greatest potential for practical implementation. We focus here
on energy extraction by oscillating buoys placed in close proximity to each other
to form wave energy converter (WEC) arrays; this concept offers a realistic and
practical approach for achieving industrial-level wave energy harvesting. A particularly
attractive aspect of this system is that carefully designed WEC arrays could offer
a possibility of significantly improving the energy extraction performance over the
same number of isolated extractors.

Most of the proposed or existing WEC arrays have converters placed in a lattice-like
arrangement, usually forming a (finite-size) square or a rectangular lattice (e.g. Weller,
Stallard & Stansby 2010; Stratigaki et al. 2014). This spatial arrangement makes it

† Email address for correspondence: yue@mit.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

91
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-7365-2785
http://orcid.org/0000-0003-1273-9964
mailto:yue@mit.edu
https://doi.org/10.1017/jfm.2018.911


Hydrodynamics of periodic WEC arrays 35

particularly suitable to model these as periodic arrays, especially as the number of
bodies grows along one direction. However, our understanding of the performance of
periodic WEC arrays and the physics that describes it is lacking when compared to
that of other periodic systems immersed in a wave-supporting medium (e.g. photonic
crystals in optics (Joannopoulos et al. 2008), phononic crystals in acoustics (Craster
& Guenneau 2013)).

Theoretical analysis of WEC array performance was first conducted for point
absorbers (Evans 1980; Falnes 1980) – idealized energy extractors that do not
scatter waves, but respond to the resultant wave field created by the incident
wave and radiated waves from each of the extractors. An appealing feature of
the point-absorber approach is that it obtains the optimal array gain solely based
on the spatial configuration of the bodies, without requiring specification of body
properties. Srokosz (1980) was the first to apply the point-absorber approximation
to calculate the performance of a periodic WEC array, deriving the maximum gain
of an infinite row of point absorbers for normal incidence. Falnes & Budal (1982)
and Falnes (1984) generalized the result by Srokosz for rectangular periodic arrays
and arbitrary incidence angles. They showed that abrupt changes in array gain occur
at wavelengths where new scattering modes emerge from the array. While relevant
for optimal (usually large amplitude) motion, for non-optimal motion (or strongly
scattering devices) the point-absorber approximation leads to large errors due to
the neglected scattered waves (McIver 1994). These shortcomings were somewhat
rectified in the multiple-scattering approach based on the plane-wave approximation
(Simon 1982), which includes the finite-size body effects and non-optimal motion,
but relies on the far-spacing assumption and is formulated only for finite-sized arrays
of axisymmetric heaving bodies.

Garnaud & Mei (2009, 2010) included the body effects by using multiple-scale
analysis and homogenization theory to study the energy extraction by a large number
of rows of small, weakly absorbing bodies (small relative to the wavelength). The
spacing between the rows is uniform, and both the spacing and the periodicity are
assumed to be large and of the same order of magnitude as the wavelength. They
found that there is a substantial decrease in energy extraction in the vicinity of Bragg
resonances. However, weakly absorbing buoys are economically ineffective, and the
required assumptions on spacings and the number of rows limit the applicability of
the theory to more general problems of practical interest.

An approach that in principle does not involve any approximations of the wave
scattering and interaction problem is based on multiple-scattering theory (Kagemoto
& Yue 1986). It is regularly used to calculate the performance of finite-size WEC
arrays (e.g. Child & Venugopal 2010), but a formulation for periodic WEC arrays is
currently missing. For non-WEC arrays, Peter, Meylan & Linton (2006) expanded the
multiple-scattering framework to calculate the performance of a single periodic row
of fixed or floating objects. Peter & Meylan (2009) later extended the theory using
reflection and transmission matrices of a row as a whole to study the energy transfer
across multiple periodic rows of bodies spaced far apart. Bennetts & Squire (2009)
used a similar transfer-matrix approach for multiple periodic rows of floating bodies,
but they were able to account for closely spaced rows and include both propagating
and evanescent modes. However, the transfer-matrix approach is not well suited for
analysis of WEC arrays because it lacks the ability to calculate the performance of
particular bodies in the array (e.g. body motions, forces), which is of interest to actual
design.

Our current understanding of periodic WEC array performance is thus largely
limited to the effects of scattering mode creation and Bragg resonances on energy
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36 G. Tokić and D. K. P. Yue

extraction, both in highly idealized cases. It is yet unknown how well these
simplified approximations (point absorbers or weak, far-spaced absorbers) describe
the performance of periodic WEC arrays consisting of realistic, strong scatterers
and absorbers. For example, it is known that trapped waves (also known as
Rayleigh–Bloch waves) exist in some periodic systems with fixed bodies, causing
large spikes in array response. Rayleigh–Bloch waves were found in periodic arrays of
fixed, bottom-mounted cylinders (Maniar & Newman 1997; Evans & Porter 1998) and
in similar periodic systems in other branches of physics (e.g. Hsu et al. 2013). These
trapped waves found for fixed structures (also called ‘sloshing’ trapped waves) usually
cannot be excited when the structure is free to oscillate (McIver 2005; McIver &
McIver 2007). Motion-trapped waves, on the other hand, are trapped waves that exist
around some freely oscillating bodies, at wavenumbers close to those for sloshing
trapped waves. They have been found for isolated three-dimensional bodies (McIver
& McIver 2007), but such solutions for a periodic array of freely floating bodies
are currently absent. Consequently, it is not yet established whether Rayleigh–Bloch
waves exist in periodic WEC arrays where bodies are in motion, or what their effects
might be.

We set out to address these questions in this study. Specifically, we uncover Bragg
and Laue resonances that occur in periodic arrays of point absorbers and relate
them to prominent decreases in array gain (§ 3). An important contribution is the
development of a novel multiple-scattering method for periodic arrays of bodies (§ 4,
appendix A). This method is then used to study array-related resonances in realistic
WEC arrays. For single-body periodic WEC arrays, we perform a systematic analysis
of array performance and show that the array gain for body-resonant wavenumbers
closely matches that of optimal point-absorber arrays (§ 5). We also find that even a
single row of freely oscillating bodies in a periodic array can act as a perfect reflector
at particular wavenumbers. For multiple-row rectangular periodic WEC arrays, we
find that Bragg and Laue resonances are present at all frequencies, closely resembling
the performance of point-absorber arrays (§ 6). We also obtain numerical evidence of
the existence of motion-trapped Rayleigh–Bloch waves occurring in energy-extracting
or freely oscillating arrays of truncated cylinders, a phenomenon not present in
point-absorber arrays. Before addressing these new findings, in § 2 we first outline
the description of WEC arrays studied here and give a brief summary of the basic
characteristics of general periodic arrays.

2. Overview of periodic (WEC) systems
We consider systems where a sub-array A of N three-dimensional oscillating,

energy-extracting bodies is periodically repeated along one dimension, say in the
y-direction, figure 1(a). The spacing between the repeated sub-arrays or, equivalently,
the width of a basic cell containing the sub-array, is defined as periodicity d. The
spatial configuration C of a periodic array specifies the positions of the bodies in
A and periodicity d. We use the term ‘row’ to refer to a subset of the entire array,
which consists of only one body from A periodically repeated. The water depth h is
assumed constant. The array interacts with an inviscid, monochromatic plane wave
(angular frequency ω, wavenumber k, amplitude A) that propagates at an incident
angle θI relative to the array normal (x-axis). We consider here the case of small
wave steepness (kA� 1) and small body motion, so the system can be studied in the
context of linear potential flow.

The problem is governed by the three-dimensional Laplace equation ∇2Φ = 0,
where Φ(x, y, z) is the complex velocity potential (the real-valued velocity potential
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FIGURE 1. (a) Top view of the spatial configuration of a periodic array of sub-arrays A
with N=3 bodies; periodicity is denoted by d. (b) Side view of the problem. (c) Scattering
mode directions θm in the far field. The array is represented by the grey strip.

is Φ̂(x, y, z, t) = Re(Φe−iωt)). The linear dynamic–kinematic boundary on the free
surface leads to the dispersion relation ω2

=gk tanh kh (g is the acceleration of gravity).
In the open domain, i.e. away from the virtual vertical cylinders containing each body,
the depth dependence can be factored out; consequently, the three-dimensional Laplace
equation reduces to the two-dimensional Helmholtz equation ∇2

HΦ + k2Φ = 0, where
∇H = (∂x, ∂y) is the gradient operator in the horizontal plane.

In addition to the standard boundary conditions on the body surfaces and the
bottom (z=−h) (Mei, Stiassnie & Yue 2005), the potential Φ satisfies the periodicity
condition imposed by the periodicity of the underlying array. This condition is called
Bloch theorem (Ashcroft & Mermin 1976), and it states that in a periodic system the
values of a field at equivalent locations in two different cells differ only in the phase
caused by the incident wave at those locations. For periodic arrays considered here,
the Bloch theorem reads

Φ(x, y+ d, z)= eiβdΦ(x, y, z), (2.1)

where β ≡ k sin θI . β is the component of the wavevector along the array (also known
as the Bloch wavenumber or as the crystal wavevector in solid-state physics).

The periodic nature of the problem requires that only plane waves are present in
the far field, and are allowed to propagate in certain directions only. The propagation
directions θm depend solely on the periodicity d, wavenumber k and the incident angle
θI and are governed by the grating equation (e.g. Twersky 1956; Falnes & Budal 1982;
Maystre 2012)

sin θm = sin θI +
2π

kd
m, m= 0,±1,±2, . . . . (2.2)

Here, the index m denotes the scattering mode, i.e. a planar wave propagating in
direction θm with amplitude Am in the far field. We consider incident waves that are
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propagating from the left half-plane (−π/2< θI <π/2), so the transmitted waves are
plane waves occupying the right half-plane, and the reflected waves the left one. We
denote the transmitted wave properties as θ+m and A+m , and the reflected wave properties
as θ−m and A−m . Note that θ+m ≡ θm and θ−m ≡π− θm; in particular θ+0 = θI and θ−0 =π− θI

(mirror reflection).
As evident from (2.2), when the value of kd increases past a certain critical value,

a new scattering mode appears in the far field. The emergence of, say, the mth mode
occurs when |sin θm| = 1, resulting in the critical wavenumber (kd)cr

m

(kd)cr
m =m

2π

±1− sin θI
. (2.3)

The new mode emerges at the so-called grazing angle |θm| = π/2, i.e. it propagates
along the grating. A further increase in kd past (kd)cr

m results in aligning θ+m closer
to θI (or for reflected waves θ−m closer to π − θI). For θI > 0, the lowest critical
wavenumber occurs for m = −1. We denote by M the set of all indices of the
propagating modes in the far field

M(θI, kd)=
{

m :
∣∣∣∣sin θI +

2πm
kd

∣∣∣∣< 1,m ∈Z
}
. (2.4)

The scattered free surface ηS in the far field can then be written as a superposition of
planar waves propagating in directions θm:

η±S =
∑
m∈M

A±meikr cos(ϑ−θ±m ), r| cos ϑ |→∞, (2.5)

where (r, ϑ, z) is a cylindrical coordinate system centred at the origin.
When a new scattering mode appears, there is a redistribution of energies (or,

equivalently, of amplitudes |Am|) among the existing scattering modes, generally
resulting in abrupt changes in the performance. Rayleigh (1907) was the first to derive
(2.3) as an attempt to describe the ‘anomalies’ in the optical diffraction spectrum of a
metallic grating that were observed by Wood (1902). Although it was later shown that
Rayleigh’s theory did not fully explain these Wood anomalies (Maystre 2012), the
abrupt changes at (kd)cr

m in periodic systems are called Rayleigh anomalies (Hessel
& Oliner 1965). Although not strictly resonances, for terminological convenience, we
hereafter refer to these anomalies as Rayleigh resonances, and we call (kd)cr

m (for
a given d) the (mth) Rayleigh wavenumber. In general, any kd–θI combination for
which a scattering mode of any order appears (i.e. for which the condition (2.3)
holds) we call the (mth) Rayleigh critical condition. In fluid mechanics, Linton &
Thompson (2007) studied the resonant effects at the Rayleigh critical condition caused
by an incident acoustic wave on a periodic array of cylinders.

In this study, we focus on the performance of lattice-like configurations of periodic
arrays, rectangular-lattice arrays in particular. Here, lattice-like configurations refer to
periodic arrays where the bodies are positioned according to the lattice vectors a1 and
a2 = dêy, with only N bodies in the a1 direction (i.e. N rows). For rectangular-lattice
arrays (or rectangular arrays for brevity), a1 = dx êx, where dx is the row spacing. In
addition, we consider arrays consisting of bodies of identical type only. We remark
that the multiple-scattering framework presented in § 4 is valid for lattice and non-
lattice periodic arrays alike, and possibly composed of different body types.
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Hydrodynamics of periodic WEC arrays 39

In terms of significant wave interaction effects, the prominent physical phenomena
occurring in general lattice-like periodic arrays are Bragg and Laue scattering, which
are well known in crystallography and solid-state physics (Ashcroft & Mermin 1976).
Bragg scattering is the occurrence of a strong reflection due to the constructive
interference between the waves reflected from different rows in the lattice. It occurs
when the condition (Bragg law)

kdx cos θI = nπ, n= 1, 2, . . . (2.6)

is satisfied. In the context of water waves, Bragg scattering effects have been studied
for a wide range of problem domains, including periodic bottom ripples (Porter &
Porter 2003), periodic arrays of vertical cylinders (Li & Mei 2007a) and periodic
arrays of horizontal cylinders (Linton 2011). Laue scattering, which is a generalization
of Bragg scattering, is the condition when the incident wave and a scattered Rayleigh
mode (mth one, say) are in such relationship that they are in phase at every lattice
point (i.e. at every body). This condition is governed by the Laue equation

(k− km) · a1 = 2πn, n= 1, 2, . . . , (2.7)

where k is the wavevector of the incident wave, and km the wavevector of the mth
scattered mode.

A striking phenomenon that occurs at isolated wavenumbers in some periodic
systems and that is also caused by wave interactions is the presence of embedded
Rayleigh–Bloch waves. These waves are the solutions of the homogeneous boundary
value problem that do not radiate to the far field, but stay ‘trapped’ around the array.
Usually they are found as modes with frequency below the cutoff frequency for
propagation in the far field and as such cannot couple with the incident wave field
on a periodic system. (For finite arrays, these Rayleigh–Bloch modes can couple
with the incident field, and are often called near-trapped waves as some of their
energy ‘leaks’ away to the far field (e.g. Evans & Porter 1997). This coupling has
recently been applied to arrays with slowly varying properties (so-called ‘chirped’ or
‘graded’ arrays) to achieve large amplifications of the wave field inside the array for
a wide spectrum of incident frequencies (Cebrecos et al. 2014; Bennetts, Peter &
Craster 2018).) In some rare cases, however, the Rayleigh–Bloch waves for periodic
systems are found embedded in the continuous spectrum (Evans & Porter 1998;
McIver, Linton & McIver 1998; Linton & McIver 2007) so they can be excited by
an incident wave, causing sharp changes in the array response. At the wavenumber
kdRB at which an embedded Rayleigh–Bloch wave occurs, the response exhibits a
sharp, narrow-banded jump; for wavenumbers away from the jump, the response
is unaffected by its presence. The response values are significantly different for
wavenumbers just below and above the jump wavenumber. When the response is
plotted as a function of wavenumber, this results in an asymmetric response line
shape relative to kdRB. These narrow-banded line shapes in the response are also
called Fano features or resonances, after Fano (1941) who first discussed them as the
(correct) explanation of Wood anomalies (Hessel & Oliner 1965; Maystre 2012).

In WEC arrays, each body is connected to a power take-off (PTO) device, which
converts the kinetic energy of the body motion into another, more useful, form. We
consider here only linear PTO devices, i.e. those where the power take-off rate bPTO

is the constant of proportionality between the device velocity and the force exerted
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by a PTO. For a body j in a WEC array oscillating with a complex amplitude Xj, the
mean extracted power Pj (i.e. per one time period) is, thus

Pj(ω)=
1
2ω

2bPTO|Xj|
2. (2.8)

The mean extracted power of a periodic array Pa=
∑N

j=1 Pj (per one cell) is the sum of
the mean extracted powers by all the bodies in the sub-array A. The most important
quantity describing the performance of WEC arrays is the array gain q, which for a
configuration C with N identical WECs is defined as

q(k, θI; C)=
Pa(k, θI; C)

NPiso
, (2.9)

where Piso is the power extracted by the same WECs operating in isolation. The
capture width W=Piso/Pw of a body relates Piso with the power flux Pw= (1/2)ρgA2cg
of the incident wave. An optimal isolated WEC oscillating and extracting energy in
heave achieves kW = 1 (Evans 1976; Mei et al. 2005). The capture width of an
array Wa = Pa/Pw is a measure of efficiency of available energy extraction, where
Wa = d cos θI indicates that all incident energy is extracted. In general, the array gain
and the array capture width can be defined for arrays of heterogeneous WECs (both
in terms of body geometry and extraction characteristics), as well as for directional
irregular seas. For simplicity, we focus here only on the array gain for periodic arrays
of identical WECs in monochromatic waves.

3. Performance of optimal rectangular-lattice point-absorber arrays
Before considering periodic arrays of general, finite-size WECs, we first consider

rectangular periodic arrays with N rows of point absorbers. Although the point-
absorber approximation is strictly valid for small bodies (ka � 1), this assumption
simplifies the theoretical treatment and provides a useful foundation for studying
periodic WEC arrays of bodies of general shape. The point-absorber theory for
periodic arrays was developed by Srokosz (1980), Falnes & Budal (1982) and
Falnes (1984). Here, we identify new underlying physical phenomena that were not
recognized before, and discuss their effects. These phenomena serve as a basis for
comparison with the performance of realistic periodic WEC arrays (in §§ 5 and 6).

For a rectangular periodic array of point absorbers where all the absorbers are
heaving with the same amplitude, Falnes & Budal (1982) derived an expression for
the optimal gain q̃

q̃=Nkd

[∑
m∈M

Sm,N

cos θm

]−1

, (3.1)

where

Sm,N =
sin2(Nkdx(cos θI − cos θm)/2)
sin2(kdx(cos θI − cos θm)/2)

+
sin2(Nkdx(cos θI + cos θm)/2)
sin2(kdx(cos θI + cos θm)/2)

. (3.2)

In order to achieve q̃, the phases of motion amplitudes of individual point absorbers
are determined from an optimality condition. Since the motion of the point absorbers
is constrained to equal amplitudes, q̃ does not represent maximum achievable gain
by a periodic array of point absorbers. Nevertheless, the existence of an explicit
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expression for q̃ provides a helpful insight into the phenomena that occur at certain
wavenumbers – phenomena that exist in more general cases for which there is no
such expression. For N = 1, however, the equal-amplitude constraint is no longer
relevant, and (3.1) becomes the unconstrained optimal gain. The expression for N = 1
was first derived by Srokosz (1980), for θI = 0◦ only.

We can obtain a general upper limit of gain, i.e. the maximum attainable array
gain, by considering the incident energy flux on a general periodic WEC array. The
maximum energy that any periodic WEC array can extract is limited by the normal
component of the incident energy flux, resulting in the maximum array capture width
(Wa)max = d cos θI . Since the array gain can equivalently be expressed as q=Wa/NW
and the maximum capture width of a heaving isolated body is (kW)max= 1, we obtain
the maximum attainable gain qmax for an array with N rows

qmax =
kd
N

cos θI, (3.3)

relative to the optimal isolated absorbers. This expression is valid for general bodies
and general heave amplitudes (if non-heave motion or additional degrees of freedom
of motion are considered and (kW)max is increased (e.g. Evans 1976), qmax will
be proportionally reduced). As such, (3.3) is also valid for the point-absorber arrays
studied in this section, and qmax can be recognized as the maximum achievable q̃ from
(3.1). Since both Sm,N and cos θm are greater than or equal to zero, q̃ is maximum
when the denominator is kept to a single (m= 0) term. For m= 0, (3.2) becomes

S0,N =N2
+

sin2(Nkdx cos θI)

sin2(kdx cos θI)
, (3.4)

which results in qmax = q̃ for cases when the fraction in (3.4) is zero, i.e. when

kdx cos θI =
nπ

N
, n= 1, . . . ,N − 1. (3.5)

The expression (3.3) is intuitively understandable – increasing the number of rows
N decreases qmax as back rows can extract relatively less energy when the front
ones are extracting as much as possible. Non-normal incident angles also reduce
qmax, proportionally to the reduction in the energy flux across the array. An increase
in kd, on the other hand, leads to an increase in qmax as the performance of an
isolated absorber can potentially be significantly improved through favourable wave
interactions occurring in arrays. This potential, however, is difficult to attain for most
(especially greater) kd values.

Evaluating q̃ for a range of kd values and for specific dx/d, N and θI values reveals
that q̃ undergoes significant oscillations, but also possesses some consistent features,
figure 2. The complex oscillatory behaviour of q̃ as a function of wavenumber kd
increases with kd, dx/d, and N. At every Rayleigh wavenumber (kd)cr

m , q̃ drops
abruptly to zero. Mathematically, this follows from the emergence of a new mode
at |θm| = π/2, causing (one of the terms in the sum in) the denominator in (3.1) to
become unbounded. For N> 1, q̃= qmax for some wavenumbers, in which case all the
incident energy is extracted (Wa= d). This mostly occurs for wavenumbers below the
first Rayleigh wavenumber (kd)cr

1 (i.e. (3.5) holds). For larger kd values, q̃ in general
does not achieve qmax, but the values of q̃ get larger as qmax increases. Note that q̃ for
single-row arrays never attains qmax – it is at most q̃= 0.5 qmax (for kd below (kd)cr

1 ),
confirming that (Wa/d)max = 0.5 for a single-row array (Srokosz 1980).
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FIGURE 2. Array gain q̃ as a function of kd for θI = 0◦ for rectangular periodic point-
absorber arrays of different aspect ratios dx/d. The vertical dashed lines at kd = const.
denote Rayleigh critical conditions. The sloped dashed coloured lines denote the maximum
achievable gain qmax. Note that q̃ for the single-row array (N = 1) is unaffected by dx/d
and is shown as a reference in both plots.

We can gain an insight into the complex variation of q̃ with kd by considering the
underlying wave interaction mechanisms in periodic arrays. We argue here that there
are three important phenomena that lead to a significant reduction in array gain –
(i) the aforementioned Rayleigh resonances due to the emergence of new scattering
modes; (ii) Bragg resonances occurring for lattice-like arrays of N > 1 rows; and
(iii) Laue resonances occurring in lattice-like arrays of N> 1 rows when one or more
scattering modes are present. The first two of these effects were already studied, with
some limitations, in the literature, as discussed in § 1. The third phenomenon – Laue
resonances – has not been previously discussed in the context of WEC arrays. (A
different type of Laue scattering in the context of doubly periodic arrays of bottom-
mounted cylinders was studied by Li & Mei 2007b.)

We argue that for WEC arrays, Laue interference results in a reduced surface
elevation at the bodies, leading to a reduced array gain. The Laue equation (2.7) for
rectangular periodic arrays with a1 = dx êx becomes

kdx(cos θI − cos θm)= 2πn, n= 1, 2, . . . . (3.6)

Mathematically, we recognize that (3.6), when approaching the limit, is the condition
that would make the first fraction in (3.2) become N2, thus reducing q̃. We refer to
(3.6) (and to (2.7)) as Laue resonance conditions, and label these resonances according
to indices (m, n). Note that this is purely an array-configuration-type resonance and is
independent of body type and body resonances. The Bragg resonance condition (2.6)
can be seen as a special case of Laue equation when θm= θ

−

0 =π− θI , i.e. when there
is strong reflection as a result of interference of the incident and the reflected wave.

To help elucidate the structure of optimal array gain, we plot the contours of q̃
in kdx–kd space, figure 3. The domain is criss-crossed by well-defined lines along
which q̃ is noticeably reduced – these lines represent Rayleigh, Bragg and Laue
resonances. Rayleigh wavenumbers (kd)cr

m , calculated from (2.3), are the horizontal
lines across which there is an abrupt change in q̃ – (cf. figure 2). Bragg resonances
are the vertical, equispaced lines, calculated from (2.6), along which there is a
reduction in q̃. Laue resonances are the family of curved lines, obtained from (3.6)
for each Rayleigh–Bragg (m, n) pair, along which q̃ is also reduced. For a particular
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FIGURE 3. Contours of array gain q̃ for rectangular periodic point-absorber arrays of
N = 3 (a,b) and N = 5 (c,d) rows; each column corresponds to one incident angle θI .
Horizontal green lines represent Rayleigh critical conditions, vertical (grey) lines Bragg
resonances and magenta lines Laue resonances. Note that some of the ‘high-frequency’
oscillations in q̃ (cf. figure 2) are smoothed when plotted as contours due to the limited
image resolution.

(m,n)-Laue-resonance curve, the line asymptotes to a vertical for small kdx. For θI=0,
this vertical is the nth Bragg line. For large kdx, the Laue resonance curve grows
monotonically with kdx. At the intersection with the 2nth Bragg line, the (m, n)
Laue curve is tangent to the mth Rayleigh critical condition line. Where several
Laue resonances coincide, the decrease in q̃ is more pronounced – at the particular
kd–kdx value as well as for the values around it. As kd and kdx are increased, Laue
resonances become progressively denser, increasing the portion of the domain where
q̃ is significantly reduced (relative to qmax). Increasing the number of bodies N in the
array decreases the overall q̃, as expected from (3.3), and the troughs in q̃ caused by
Bragg and Laue resonances become narrower. Increasing the incident angle θI reduces
the overall q̃ (in accordance with (3.3)). Furthermore, the non-normal incident angle
results in a larger number of distinctive Rayleigh modes, thus increasing the number
(i.e. the density) of Laue resonances and, as a result, further reducing q̃ in an
increased portion of the domain (relative to normal incidence).

The optimal gain q̃ as a function of kdx is shown is figure 4, for two incident
angles (θI = 0◦, 15◦) and two kd values. Here, we recognize Bragg resonances as
troughs in q̃ at kdx values given by (2.6). Unlike q̃ at the Rayleigh critical points,
q̃ at Bragg resonances exhibits smooth behaviour. For kd below the lowest Rayleigh
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FIGURE 4. Array gain q̃ for rectangular periodic point-absorber arrays of N rows as a
function of kdx, for kd = π (a,b) and kd = 2.5π (c,d) and θI = 0◦ (a,c) and θI = 15◦
(b,d). Bragg resonances are marked by dashed vertical lines. Thin horizontal lines in
corresponding colour mark the maximum attainable gain qmax for each N (in (c) and (d)
the qmax line for N = 2 is outside the presented range).

wavenumber (kd)cr
−1 (figure 4a,b), q̃ oscillates between a minimum value q̃min – which

occurs at Bragg resonances (2.6) – and qmax. In between Bragg resonances, q̃ achieves
N − 1 peaks, given by (3.5). We can calculate q̃min from S0,N by using the Bragg
condition (2.6), giving

q̃min =
kd
2N

cos θI =
qmax

2
. (3.7)

If an additional scattering mode is present (i.e. kd>(kd)cr
−1), the maximum values of q̃

reach qmax only for large values of kdx (figure 4c,d). In these cases, deep troughs away
from Bragg resonances are the result of Laue resonances. A particularly prominent
reduction in q̃ at kdx = 5π in figure 4(c) is a result of combined Bragg, and (1, 1)-
and (1, 4)-Laue resonances. Bragg resonances are also clearly visible in figure 2 for
the dx/d= 1.5, N > 1 arrays as two prominent, smooth dips in q̃ for kd< (kd)cr

1 .
Note that troughs at Bragg resonances are pronounced even for a two-row array

(N = 2), indicating that strong reflection occurs at these conditions. This is different
from the Bragg-resonance-related decrease in performance found by Garnaud & Mei
(2010), where, because of the weak-absorber assumption, significant effects due to
Bragg resonance accumulate only after a large number of rows.

The sharp, abrupt changes in q̃ at Rayleigh wavenumbers are in contrast to the
smooth, symmetric behaviour of q̃ around Bragg resonances. However, Rayleigh and
Bragg resonances can occur together at the same wavenumber (figure 3), and it is of
interest to study how q̃ is affected by these contrasting behaviour patterns. We call
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FIGURE 5. Array gain q̃ in the presence of matched Rayleigh–Bragg resonances as a
function of kd for three different configurations of rectangular periodic point-absorber
arrays with N = 3 rows (θI = 0◦). Rayleigh resonances in these cases always occur every
2π in this figure; matched Rayleigh–Bragg resonances are marked by red vertical lines;
isolated Bragg resonances are marked by green vertical lines. Notice that the asymmetry
in q̃ for wavenumbers kd just above and below the matched resonances (red lines) is much
smaller than that around the isolated Rayleigh resonances.

this condition matched Rayleigh–Bragg resonance, and its existence depends solely on
the array configuration dx/d. For normal incidence, if dx/d is a rational number, there
exist wavenumbers for which the matched Rayleigh–Bragg resonance occurs. Among
the set of rational numbers, the arrays with dx/d = 1/2 are special in that Rayleigh
and Bragg resonances always occur together, i.e. every occurrence of a Rayleigh
resonance is accompanied by a Bragg resonance and vice versa. For dx/d < 1/2,
there are isolated Rayleigh resonances, and for dx/d > 1/2 there are isolated Bragg
resonances. In figure 5, we show q̃ for three-row periodic point-absorber arrays
of different configurations dx/d at normal incidence. We contrast the response
at matched Rayleigh–Bragg resonances with that at isolated Rayleigh and Bragg
resonances. When a matched Rayleigh–Bragg resonance occurs, q̃ still exhibits a
sharp, narrow-banded drop to zero as for an isolated Rayleigh resonance, but q̃
values for wavenumbers below and above the resonance are more similar. As a result,
the behaviour of q̃ across the matched Rayleigh–Bragg is smoothed out.

Finally, we remark that the physics behind Laue resonances relies on the lattice-like
arrangement of the scatterers in a periodic array, so these resonances should exist
in other lattice-like periodic WEC arrays, with similar effects. For example, for
an oblique periodic array with the lattice vectors a1 = (c cos γ , c sin γ ), the
Laue-resonance condition (2.7) becomes

kc(cos(θI − γ )− cos(θm − γ ))= 2πn, n= 1, 2, . . . . (3.8)

The skewness of the array lattice in that case would affect the incidence angle
at which Laue resonances are most prominent. Furthermore, the equal-amplitude
constraint imposed on point-absorber arrays presented in this section is purely
for mathematical convenience; we argue here and show in § 6 that the salient
phenomena presented here also exist for lattice-like WEC arrays of finite-size bodies
in unconstrained motion.

While the point-absorber theory provides a valuable insight into the absorption
dynamics of periodic WEC arrays, it is an approximation that neglects several
aspects (e.g. diffraction effects, evanescent waves) that are important for practical
applications. We present a method that is capable of treating general, realistic WEC
arrays next.
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FIGURE 6. (a) Infinite array of periodically repeated sub-arrays of scatterers. The
decomposition of the distance vector R̂p between the bodies B̂ and Bp into R̂ j and Rjp
is shown. (b) Local coordinate systems of bodies Bj and Bp.

4. A direct algebraic method for general-shape multi-body periodic arrays

In this section, we present a new multiple-scattering method for periodic arrays
consisting of sub-arrays of closely spaced bodies of arbitrary geometry. The approach
is based on the Kagemoto & Yue (1986) method for arrays with a finite number of
bodies; it generalizes the formulation for a single-body periodic array (Peter et al.
2006) and that for periodic rows spaced far apart (Peter & Meylan 2009). It uses
only the isolated body hydrodynamic coefficients, without the need for calculating
those of the array itself. The method is applicable to fixed, freely oscillating or energy-
extracting bodies in any number of degrees of freedom, or a combination thereof. The
full formulation is somewhat involved with a number of important intermediate results,
and the details are provided in appendix A. For clarity, we highlight below the key
steps of the derivation and the main results.

Consider an infinite array formed by a periodically repeating sub-array A of N
bodies along the y-axis with periodicity d, figure 6. The bodies Bi in the array are
spaced far enough so that the virtual vertical cylinders that contain each body do not
intersect (i.e. so that the potential outside the cylinders can be expressed in terms
of cylindrical harmonics, see (A 4)); the spatial configuration of the sub-array A is
otherwise without constraints. Each of the bodies Bi in A can be of an arbitrary
shape. The position of body Bj is given by a vector Rj = (Rj, αj). A local cylindrical
coordinate system rj= (rj, ϑj, z) with the origin Oj centred at the body Bj is defined for
each body. The bodies can be fixed, or can be oscillating according to some known
equation of motion.

The standard approach in the multiple-scattering framework is to express the total
potential as a sum of the incident wave potential and the unknown scattered wave
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potentials (and radiated wave potentials if the bodies are oscillating) for each of the
bodies in the array. This can also be expressed relative to a particular body as the total
incident potential for that body (consisting of the incident plane-wave potential and the
scattered wave potentials of other bodies) and the scattered wave potential of that body
alone. In order to determine the unknown potentials, we express the total incident
and the scattered wave potential on a particular body in terms of partial waves (with
propagating and evanescent radial components, and angular components), which are
represented by a number of unknown coefficients that need to be determined. These
coefficients can be represented by unknown vectors, say cp and dp for the scattered
and the incoming wave potential on body Bp, respectively. The goal is to express the
incoming and scattered wave potentials on a body in terms of the same coordinate
system so that the diffraction boundary condition imposed on that body can be used
to determine the relationship between cp and dp. Since the overall problem is linear,
we can express that relationship in a matrix form as

cp
= T p

· dp, (4.1)

where T p is the diffraction transfer matrix or T -matrix of body Bp (Kagemoto & Yue
1986; Martin 2006). The T -matrix depends only on the body shape and is independent
of the actual wave field around the body, so it can be pre-calculated (analytically
or numerically) for a body in isolation. To solve the array problem, we express the
unknown part of the incident potential on body Bp (i.e. the unknown part of dp) in
terms of cp and use (4.1) to close the system.

To express the potentials in terms of the same coordinate system, the standard
approach is to use the Graf addition theorem for Bessel functions that result from
partial wave decomposition of the potentials. The use of the addition theorem results
in an expression that explicitly depends on distance vectors between the bodies;
the distance vector R̂p between bodies B̂ and Bp is shown in figure 6(a). However,
unlike for the case of finite arrays, this approach applied to periodic arrays results in a
summation over the infinite number of bodies across the cells. For single-row periodic
arrays, Peter et al. (2006) expressed the contributions from the infinite number of
bodies in the form of rapidly converging lattice sum. For multiple, far-spaced rows,
Peter & Meylan (2009) used the far-field transmission and reflection matrices to
account for the wave interactions between the rows.

In contrast to those efforts, we consider a general case where multiple rows can
be closely spaced. To tackle the summation over the infinite number of bodies while
accounting for the exact, near-field interaction between the bodies, we (i) use Bloch
theorem (2.1) to transform the partial wave coefficients, (ii) decompose the distance
vector R̂p as in figure 6(a) and (iii) use the Graf addition theorem again on the
resulting vectors. This approach results in two separate summations. The first one
accounts for the interactions among the bodies within a sub-array, and it depends
only on the distance vectors Rjp between these bodies. The terms can be organized
into a separation matrix Sjp (matrix elements given by (A 14)), which is identical
to that for scattering by a finite, non-periodic array (Kagemoto & Yue 1986). The
second summation accounts for the interactions among bodies across different cells,
and is expressed in terms of a periodicity matrix Qjp (matrix elements given by (A 18)
or (A 20)). The sum over the infinite number of cells in the periodicity matrix is
expressed in a rapidly converging form (Linton 1998).

As a result, all the potentials are expressed in the same coordinate system, and
we use (4.1) to relate the scattered and incident wave coefficients. Thus, we obtain
a linear system for the unknown coefficients of the scattered partial waves

(I − T (S +Q)TH)c= Td, (4.2)
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where c, d, T , S, Q, H are the global block vectors and matrices representing
scattered wave coefficients, incident planar wave coefficients, T -matrix, separation
matrix, periodicity matrix and radiation transfer matrix, respectively; the superscript
(·)T denotes a matrix transpose. The expression (4.2) has several desirable properties.
It is valid for bodies of general shape, not necessarily all equal. The bodies are
allowed to be closely spaced, and the evanescent near field is fully taken into
account. The bodies can be fixed or freely oscillating, and they can also extract
energy.

The periodicity matrix Q is a new addition to the original theory for non-periodic
arrays. It depends on the periodicity d of the array and the relative position of bodies
in the sub-array A, but not on the properties or the motion of the bodies. For a
periodic array with a single body (N = 1), Q reduces to the well-known Schlömilch
sum ((A 19); Linton 1998; Peter et al. 2006). If we set Q = 0, we recover the linear
system for finite arrays (Kagemoto & Yue 1986).

The (global) radiation transfer matrix H is another new component in our
multiple-scattering formulation. It contains all the information about the dynamics and
the radiation properties of the bodies. A body Bp is represented by an independent
block Hp

Hp
= I + cRp

·$ pT (4.3)

in the global matrix H, where cRp is a known matrix of coefficients of radiated waves
for unit oscillation velocity of Bp, and $ p is the velocity transfer matrix. The velocity
transfer matrix relates the complex oscillation velocity vector Vp of the body Bp to
the scattered wave coefficients through

Vp
=$ pT

· cp. (4.4)

This matrix is obtained from the equation of motion (A 27) for Bp, which, for multiple
degrees-of-freedom motion, can be expressed as

Ap(ω) ·Xp
=Fp(ω, C), (4.5)

where Ap is the body dynamics matrix (containing added mass and damping matrices
for Bp), Xp the complex motion amplitude and Fp the total diffraction force on Bp.
Due to the linearity of wave–body interaction, the diffraction force on a body can be
related to the coefficients cp of the scattered partial waves by

Fp
= F̂

pT
· cp, (4.6)

where F̂
p

is the diffraction force transfer matrix of body p, which can be calculated
for a body in isolation. By relating the velocity to the motion amplitude Xp

= iVp/ω
and by using (4.4)–(4.6), we obtain the velocity transfer matrix as

$ p
=−iωF̂

p
· (Ap)−1. (4.7)

In this new formulation, only the isolated-body hydrodynamic coefficients (added
mass, radiation damping) are required, while their array counterparts are never needed.
The diffraction force on a body is dependent on the array configuration, but it is
expressed through a configuration-independent transfer matrix F̂

p
. The body dynamics

is, thus, completely included and accounted for in the global system matrix (4.2), and
both the hydrodynamics and the body dynamics are essentially solved simultaneously.
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Once the equation (4.2) is solved, the dynamics of any body can be trivially evaluated
from (4.4).

For practical computations, we truncate the infinite system (4.2) to a sufficient
number of evanescent and angular modes, denoted by M and Np, respectively. With
such truncation, cj and dj are of the size Mt × 1, where Mt ≡ (2Np + 1) × (M + 1),
while T j, Sjp, Qjp and H j are of the size Mt ×Mt. The degree-of-freedom-dependent
matrices F̂

p
, cR j and $ j are of the size Mt × nDOF, where nDOF is the number of

degrees of freedom of the body. The total size of system matrices (i.e. T , S, Q, H)
is NMt × NMt, while the size of the scattered wave coefficient vector c for the
entire system is NMt × 1. The matrices T and H depend only on the isolated-body
properties, and can be pre-calculated. If the spatial configuration of the sub-array
is changed, only the separation matrix S and the periodicity matrix Q need to be
re-evaluated, requiring O(N2) effort. Since N is usually very small (N . 10), these
matrices can be assembled quickly. If the array periodicity is changed, the lattice
sums in Q have to be recalculated as well. We note that while the formulation (4.2)
is valid for general array/sub-array configurations, the convergence of the sum (A 20)
contained in Q deteriorates when the maximum distance between any two bodies in
a sub-array becomes greater than the periodicity d (see appendix A).

Once the global system (4.2) is solved, we can also obtain the free-surface elevation
as

η= ηI + ηS = ηI +
iω
g

N∑
j=1

∞∑
B=−∞

∞∑
n=−∞

∞∑
m=0

cj
mnPBKn(kmrj,B)einϑj,Bψm(0), (4.8)

where PB ≡ eiBkd sin θI is the phase factor for cell B, Kn(x) is the modified Bessel
function of the second kind and the index j, B refers to body j in cell B (see (A 2)).
While the expression (4.8) gives a detailed picture of the free-surface elevation around
the array, it is not helpful in revealing the far-field structure. We obtain the complex
amplitudes A+µ and A−µ of transmitted and reflected waves in the far field as (details
given in § A.2)

A±µ =∓
ωπ

g kd
1

cos θµ

N∑
p=1

e∓ikRp cos(θµ∓αp)

∞∑
n=−∞

(±1)ncp
0ne±inθµ, µ ∈M, (4.9)

where M is defined in (2.4). For a single fixed body in the basic cell (Rp ≡ 0), the
expression (4.9) reduces to the well-known result (Twersky 1962; Peter et al. 2006)

A±µ =∓
ωπ

g kd
1

cos θµ

∞∑
n=−∞

(±1)nc0ne±inθµ, µ ∈M. (4.10)

These complex far-field amplitudes satisfy the energy conservation equation∑
µ∈M

(|A+µ + δµ0|
2
− |A−µ |

2) cos θµ = cos θI −1E, (4.11)

where 1E=Pa/(1/2)ρgcgd accounts for the total power Pa extracted by all absorbers
(cg is the group velocity). If no energy is extracted (fixed or freely oscillating bodies),
1E=0. This energy conservation check is performed in all our calculations and (4.11)
is satisfied to O(10−8) at least.

The generality of this method makes it a valuable tool in the analysis of periodic
arrays of general bodies. Its computational speed and the ability to calculate the
necessary details of overall array performance, as well as the performance of every
body in the array, make it a useful tool for the practical design of WEC arrays.
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FIGURE 7. Isolated-body performance of a truncated cylinder of radius a/h = 0.3 and
draft H/h = 0.2. (a) Non-dimensional amplitude of heave diffraction force (ρ is the
fluid density). (b) Heave amplitude. (c) Non-dimensional capture width kW. Red dashed
line marks the resonant wavenumber kra, green dash-dot line marks the super-resonant
wavenumber ksra= 1.2kra.

5. Energy extraction by a single-row periodic arrays
In this section, we apply the multiple-scattering method presented in § 4 to the

analysis of single-row (N= 1) periodic arrays consisting of finite-sized heaving WECs.
We study the effects of periodicity d on the array performance in monochromatic
waves.

The body geometry we consider here is a truncated vertical cylinder of radius a/h=
0.3 and draft H/h = 0.2; the body mass equals that of the displaced volume. The
body is connected to a linear PTO device with a constant power take-off rate bPTO.
For simplicity, we set the value of bPTO to be equal to the body radiation damping at
the resonant wavenumber kra, which results in optimal energy extraction at kra (i.e.
kW|kra= 1) when the body operates in isolation (Mei et al. 2005). This bPTO value is
in general not optimal when a body is a part of an array, but it serves as a good basis
for comparison. The T -matrix and diffraction force transfer matrix F̂

j
for the truncated

vertical cylinder are calculated based on the approach by Garrett (1971); the added
mass and radiation damping coefficients and the radiated wave coefficient matrix cR

are calculated based on the approach by Yeung (1981). The response of this converter
when operating in isolation is shown in figure 7, as a function of wavenumber ka. We
truncate the partial wave decomposition to Np = 5 and M = 2, which give converged
results for the analyses presented in this study. In addition to quantities presented in
figure 7, array gain q, reflection and transmission coefficients |A±| are generally within
O(1 %).

The dependency of array gain q on the periodicity d and wavenumber is plotted
in figure 8. In the d/2a–kd space, figure 8(a,b), the vertical slices (constant d/2a)
correspond to the performance of a particular array, while the Rayleigh wavenumbers
(kd)cr

m are represented by horizontal lines. The calculations are performed for a
range of array configurations, from closely spaced configurations (d/2a = 1.1) to
far-spaced ones (d/2a = 7). The performance of arrays for a particular wavenumber
ka is obtained by observing the values along a ray emanating from the origin
(ka=π/2 (kd/π)/(d/2a); the performance is calculated up to ka= 3.0). The rays for
the body-resonant wavenumber kra and the super-resonant wavenumber ksra= 1.2kra
are plotted to indicate the bandwidth of significant energy extraction by an isolated
body (cf. figure 7c). The figure reveals that the troughs of q = 0 always occur at
Rayleigh wavenumbers (kd)cr

m . The overall highest values of q occur for ka > ksra,
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FIGURE 8. (a,b) Contour plots of array gain q for single-row periodic arrays of truncated
vertical cylinders as a function of periodicity d/2a and wavenumber kd, for θI = 0.0◦
and 15◦. The yellow dashed line denotes the body resonant wavenumber kra; green dashed
line the super-resonant wavenumber ksra. The contours are computed for wavenumbers
ka < 3.0 (cf. figure 7c). The contour colour range is cropped to allow for a better
resolution at q-values of interest (around 1). The arrows mark the configurations that are
plotted in (c,d). (c,d) Array gain q for three different configurations (d/2a= 2.0, 3.0, 3.6)
as a function of wavenumber ka, for two incident angles (θI=0◦ and 15◦). The red vertical
line denotes the resonant wavenumber kra.

reaching values q& 10 around ka≈ 3 for certain arrays (e.g. for θI = 0◦, max q= 11.3
at kd= 3.87π for d/2a= 2.02 array). This indicates that wave interactions in periodic
arrays can lead to a significant improvement of otherwise sub-optimal performance of
a realistic WEC in the super-resonant regime (figure 7c). For wavenumbers ka close
to kra, the maximum value of q is around 2. For ka< kra, q≈ 1, indicating that the
array is ineffective in improving the energy extraction in sub-resonant regime over
that of an isolated body. The array gain q for three different array configurations
(d/2a = 2.0, 3.0, 3.6) as a function of wavenumber ka for θI = 0◦, 15◦ is shown
in figure 8(c,d). The d/2a = 3.0 array attains a (local) gain maximum (q ≈ 1.9) at
body-resonant wavenumber kra for θI = 0◦. For d/2a = 3.6, kra coincides with the
(first) Rayleigh critical condition (kd)cr

1 , resulting in no energy extraction (q ≈ 0) at
the wavenumber where the body is most efficient at it. For these three configurations,
the highest value of q = 7.93 occurs for d/2a = 2.0 array at ka = 3.0 (kd = 3.82π)
and θI = 0◦. The width of the Rayleigh resonances, i.e. the range around the Rayleigh
wavenumber (kd)cr

m where q ≈ 0, is in general much narrower for θI = 15◦ than for
θI = 0◦ (e.g. compare the width at the lowest Rayleigh wavenumber for θI = 0◦
and 15◦).

The performance for incident angles θI = 0◦ and 15◦ presented in figure 8 provides
some indication of how q changes with respect to θI . A more detailed picture of
that dependency is shown in figure 9 for two different array configurations (d/2a =
2.0 and d/2a= 3.0), where gain is shown as a function of the wavenumber kd and
βd = kd sin θI . In this coordinate system, a ray emanating from the origin represents
a particular incident angle θI , so that the y-axis corresponds to θI = 0◦, and y = x
ray to θI = 90◦. In the βd–kd plane, the critical values (kd)cr

m are represented by
mutually perpendicular families of parallel lines (defined by ±(2πm− kd sin θI)) that
intersect the y-axis at (positive) multiples of 2π. (This type of presentation is often
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FIGURE 9. Contour plot of array gain q as a function of wavenumbers kd sin θI and
kd, for single-row truncated-vertical-cylinder periodic arrays of periodicity d/2a= 2.0 and
d/2a= 3.0.

used in optics, and it is called light cone because the area above y= |x| lines contains
the kd–kd sin θI values for which light can propagate in free space. This, of course,
holds for water waves as well.) The plots show that the high q values are corralled
within regions bounded by Rayleigh critical lines (kd)cr

m , along which q is zero. The
highest values of q within each region are skewed toward larger kd values. Within the
plotted range, the highest q value for the d/2a= 2.0 array is max q= 3.83, achieved
for θI = 27◦ and kd= 2.50π.

To gauge how well single-row periodic arrays of truncated vertical cylinders
perform at their best, we compare the gain at two particular wavenumbers, kra and
ksra, with the optimal gain q̃ of single-row periodic point-absorber arrays, figure 10.
The performance of a realistic-body periodic array at resonant wavenumber kra
generally follows that of optimal point absorber for both incident angles. However, q
does not attain the same maximal values as q̃ (maximum values at kra are 1.94 and
1.72 for θI = 0◦ and θI = 15◦, respectively), and q does not exhibit such an abrupt
drop to zero as that of q̃. The lower maximum values of q at kra are due to the fact
that the PTO damping rate bPTO that is optimal for isolated-body operation at kra is
no longer optimally tuned for maximum extraction in array configuration. We can see
the effect of different (constant) values of bPTO on q(kra) in figure 11. Lowering bPTO

generally brings q closer to the maximum peaks of q̃. However, the optimal bPTO for
a WEC array is a function of both the wavenumber ka and the periodicity d because
the global (array) radiation damping coefficient is also a function of kd as a result of
the wave interaction effects. Tuning bPTO to the optimal value at each wavenumber
would bring q closer to q̃.

The body motion at super-resonant wavenumber ksra is far from being optimal,
so the gain q(ksrd) does not follow that of optimal point-absorber arrays, figure 10.
Consequently, the configurations (i.e. periodicities) for which q(ksrd) > q̃ do not
indicate the configurations of realistic WEC arrays that outperform the optimal
point-absorber arrays, but indicate the configurations where array effects can
significantly improve otherwise severely sub-optimal performance of an isolated body.
For non-normal incidence θI = 15◦, we again observe that the width of the Rayleigh
resonances is narrower than that at θI = 0◦. Surprisingly, for some configurations that
operate above the first Rayleigh critical point, q(krd) > q̃, indicating that in this case
the truncated-vertical-cylinder array is outperforming the point-absorber array, as the
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FIGURE 10. Comparison of array gain q of single-row periodic arrays of truncated vertical
cylinders for resonant kra and super-resonant ksra wavenumbers with the theoretical
prediction for optimal gain q̃ of point absorbers (3.1), as a function of periodicity d.
Rayleigh critical conditions occur at vertical jumps in q̃.
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FIGURE 11. Comparison of array gain q at resonant wavenumber kra for single-row arrays
of truncated vertical cylinders with different (constant) bPTO values, with the theoretical
prediction for optimal gain q̃ of point absorbers (3.1) as a function of periodicity d.

isolated performance of both absorbers is equal at kra. The gain q is still lower than
the maximum attainable gain qmax, as expected.

The amplitudes of transmission and reflection coefficients |A±m| for d/2a = 3.0
array for θI = 0◦ and θI = 30◦ are shown in figure 12. We compare the performance
of arrays consisting of energy-extracting, freely oscillating or fixed bodies as a
function of wavenumber kd. (Note that we plot the combined amplitude |1+ A+0 | of
the incident wave and the zeroth transmitted mode.) In general, when a new mode
appears, there are abrupt changes in the amplitudes of other modes, as discussed
in § 2. All the variations in mode amplitudes satisfy the energy conservation equation
(4.11). The body-resonant wavenumber krd is below the first Rayleigh wavenumber
(kd)cr

1 for normal incidence. For the WEC array at normal incidence, figure 12(a), the
amplitudes of the modes |A±0 | achieve extremes near krd, which is accompanied by a
maximum of array gain q (cf. figure 8c). This maximum in q is achieved by extracting
a significant energy from both the transmitted A+0 and the reflected mode A−0 , as the
comparison with the freely oscillating array shows (figure 12b). For non-normal

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

91
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.911


54 G. Tokić and D. K. P. Yue

0

0.2

0.4

0.6

|∂
m

0 +
 A

m+
|, 

|A
m-

|
|∂

m
0 +

 A
m+

|, 
|A

m-
|

|∂
m

0 +
 A

m+
|, 

|A
m-

|

0.8

1.0(a) (d)

(b)

(c)

15b

15a

15c 15d 15e

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3
kd/π

ka

4 5

0 1 2 3 4

kd/π
5

0 0.5 1.0 1.5 2.0 2.5

0 0.5 1.0

|A0
±|

|A1
±|

|A-1
±|

|A-2
±|

|A-3
±|

|A-4
±|

1.5

ka
2.0 2.5

œI = 0° œI = 15°

FIGURE 12. Transmission |δm0+A+m | (thick line) and reflection |A−m | (thin line) amplitudes
for a single-row truncated-vertical-cylinder periodic array of periodicity d/2a = 3.0, for
θI = 0◦, 30◦ (δm0 is Kronecker delta). (a,d) Energy-extracting buoys. (b) Freely oscillating
buoys. (c) Fixed buoys. Note that A±1 is hidden below A±−1 for θI = 0◦.

incidence, krd falls between (kd)cr
1 and (kd)cr

2 , so there are additional modes present
in the far field that radiate energy away from that array (figure 12d). None of these
modes, however, exhibits an extreme at krd, and neither does q (not shown). Note
that for non-normal incidence the modes are not symmetric with respect to the array
normal (x axis), so A±m 6= A±

−m and both are visible in figure 12(d). For wavenumbers
much larger than krd, the body motion becomes small (cf. figure 7b), so the mode
amplitudes are virtually identical between the energy-extracting, freely oscillating and
fixed-body arrays. This is true for both normal and non-normal incidence.

It is interesting to note that the freely oscillating array at wavenumber kdFR (close
to krd) behaves as a perfect reflector – the transmitted mode amplitude |1+A+0 | drops
sharply to zero, and the reflected mode amplitude |A−0 | becomes one (figure 12b).
This is solely due to the body motion and not due to some underlying array resonance
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FIGURE 13. Contour plot of the reflected mode amplitude |A−0 | for a single-row periodic
array of freely oscillating truncated vertical cylinders (no energy extraction), as a function
of wavenumbers kd sin θI and kd, for d/2a= 2.0 and 3.0.

as the comparison with the periodic array of identical configuration with fixed bodies
(figure 12c reveals no distinguishable features present around kdFR). For perfect
reflection by single-row periodic arrays of heaving bodies, kdFR has to be below
(kd)cr

−1 in order for only one transmitted and reflected mode to be present, figure 13.
If more modes are present, the one-degree-of-freedom motion cannot produce the
wave field that would simultaneously cancel energy radiation in more than one
direction, thus destroying the perfect reflection. The exact value of kdFR depends
on periodicity d and the incident angle θI , figure 14. The reflected mode amplitude
|A−0 | as a function of d for a given wavenumber kra and incident angles θI = 0◦ and
15◦ is shown in figure 14(a). The amplitude |A−0 | attains 1 at a single wavenumber
kdFR, for both incident angles. For normal incidence, kdFR is only slightly larger
than krd for the d/2a = 3.0 array, as expected from figure 12(b). With an increase
in θI , kdFR is reduced. The dependency of kdFR on d is shown in figure 14(b). The
kdFR values monotonically increase as a function of d/2a until reaching (kd)cr

−1 for
a given θI , beyond which there are no perfect reflections. Correspondingly, kaFR
values monotonically decrease from ∼1.2 to ∼0.7. We note that the geometry of this
heaving body has not been optimized to achieve the perfect reflection, indicating that
this phenomenon is present for more general class of bodies. We confirmed this by
conducting numerical simulations (not shown here) on heaving vertical cylinders of
different shapes (a/h= 0.5, H/h= 0.1; a/h= 0.1, H/h= 0.1) and found that perfect
reflection is present at wavenumbers below (kd)cr

−1 for those geometries as well.
The free-surface amplitude |η| for the d/2a = 3.0 array at specific wavenumbers

and incident angles (marked in figure 12) is shown in figure 15. The effect of
perfect reflection is demonstrated in figure 15(a), where freely oscillating bodies at
body-resonant wavenumber kra exhibit large heaving motion and almost completely
reduce the free-surface amplitude behind the array (|η| ≈ 0). In front, |η| is modulated
with an increased amplitude between the nodes, as required by energy conservation.
When energy extraction is present at the same wavenumber, figure 15(b), the bodies
still perform large motions (significant energy extraction), but the array no longer
acts like a perfect reflector (|η| > 0 behind the array). At a wavenumber just above
(kd)cr

1 , figure 15(c), a new mode of relatively large amplitude has just emerged
and is propagating almost perpendicular to the incident wave, causing a significant
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FIGURE 14. (a) The reflected mode amplitude |A−0 | for two different incident angles
as a function of periodicity d (at body-resonant wavenumber kra). Thin vertical dashed
lines mark corresponding (kd)cr

−1; thick vertical dashed red line marks d/2a = 3.0 array.
(b) Wavenumber kdFR (left y-axis, dots) and kaFR (right y-axis, dashed line) at which full
reflection occurs as a function of spacing d, for two different incident angles. Horizontal
lines in matching colour mark corresponding (kd)cr

−1; thick red dashed horizontal line
marks kra.
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FIGURE 15. Free-surface amplitude |η| contours for a single-body periodic array of
truncated vertical cylinders of periodicity d/2a = 3.0. Waves are incident from the left.
(a) kd = 1.67π (ka = kra), freely oscillating. (b) kd = 1.67π (ka = kra). (c) kd = 2.01π
(ka = 1.05). (d) kd = 3.72π (ka = 1.95). (e) kd = 2.01π (ka = 1.05). The body colour
corresponds to the heave amplitude (lower colour bar).

modulation of the surface amplitude. The bodies are located in the low value troughs
of the free-surface amplitude, resulting in almost zero |X| and q. At kd = 3.72π,
figure 15(d), which is still between (kd)cr

1 and (kd)cr
2 , |1+A+0 | ≈ 1 and the rest of the

modes are almost zero (cf. figure 12), so the array minimally disturbs the free surface
in the far field. Close to the array, however, the surface modulation is significant.
The body motion amplitude |X| in figure 15(c,d) is small, but for different reasons.
In figure 15(c), the small |X| is caused by a Rayleigh resonance, and it would be
significantly larger if the wavenumber were slightly different. In figure 15(d), on the
other hand, the small |X| is caused by the fact that the wavenumber ka is much
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FIGURE 16. Array gain q for a three-row periodic array of truncated vertical cylinders
at resonant wavenumber kra (a,b) and super-resonant wavenumber ksra (c,d) as a function
of row spacing dx and periodicity d. Each column corresponds to one incident angle θI .
Only the values for array configurations that satisfy the domain constraint (N − 1)dx 6 d
are plotted. Bragg resonances are marked by green vertical dashed lines; Rayleigh critical
conditions are marked by magenta horizontal dashed lines. For comparison, point-absorber
Laue-resonance lines based on (3.6) are marked by thin green lines.

larger than kra, so the isolated-body amplitude is very small to start with and a
small variation in ka would not change |X| significantly. For a non-normal incidence
(θI= 30◦) case, figure 15(e), the bodies exhibit large motion amplitudes, corresponding
to large energy extraction (q= 1.77). The wide bands of nearly zero amplitude behind
the array are a good indication of that.

6. Energy extraction by multi-row periodic arrays
One of the advantages of the multiple-scattering method presented in § 4 is that

it is applicable to periodic WEC arrays of closely spaced sub-arrays of general, not
necessarily identical bodies. We apply the method here to study the effect of the
periodicity d and row spacing dx on the array performance of rectangular periodic
arrays with N = 3 rows. For simplicity, we focus on arrays of identical truncated
vertical cylinders, having the same shape and PTO characteristic as in § 5; the
extraction rate bPTO is kept constant and equal for all the bodies in the array. This
choice of bPTO values provides for an insightful study of the phenomena occurring in
general (not just optimal) WEC arrays, with a simply defined bPTO distribution.

The array gain q as a function of periodicity d and row spacing dx for resonant
and super-resonant wavenumbers (kra, ksra) and two incident angles (θI = 0◦, 15◦)
is shown in figure 16. To avoid the slow convergence of the periodicity matrix Q
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FIGURE 17. Comparison of array gain q for three-row truncated-cylinder periodic WEC
arrays at resonance wavenumber kra (dashed lines) with array gain q̃ for point-absorber
arrays of equivalent configuration in equal-amplitude motion (solid lines), as a function
of row spacing dx. The results are plotted only for the range where the domain constraint
(N − 1)dx 6 d is satisfied. Vertical dashed lines denote Bragg resonances.

discussed in § 4, we consider here only array configurations that satisfy the domain
constraint (N − 1)dx 6 d. The overall structure of q resembles that of q̃ (cf. figure 3).
The decrease in q due to Rayleigh resonances and Bragg resonances are present at all
wavenumbers and incident angles, confirming that these phenomena are an inherent
feature of lattice-like periodic WEC systems, and not only of the point-absorber
ones. Laue-resonance lines for the finite-body periodic arrays are, in general, slightly
perturbed from those given by (3.6) due to the small phase shifts in the scattered
modes relative to those for point-absorber arrays. For the sake of comparison with the
point-absorber arrays, we plot the Laue resonance lines based on (3.6). We find that
the regions of lower q in general align well with the point-absorber Laue-resonance
lines; the instances where these Laue-resonance lines cross the areas of high q
indicate that a larger phase shift in the scattered modes is present. The decrease in q
due to Laue resonances is more obvious for larger wavenumbers (ksra) where Laue
resonances are denser. Overall, q obtains maximum values of 1.98 and 3.72 at θI = 0◦
for kra and ksra, respectively, and 1.66 and 2.28 for θI = 15◦. Further increases in q
would be possible if the PTOs in a given array configuration were optimally tuned
(cf. figure 11) for a specific wavenumber (kra or any other). In that case, bPTO of
each body in the sub-array would have a different optimal value in general.

The comparison of the array gain q at the body-resonant wavenumber kra with the
array gain q̃ for point-absorber arrays of equivalent configuration in equal-amplitude
motion as a function of row spacing dx is shown in figure 17. Despite the absence
of the equal-motion constraint for the truncated-cylinder WEC arrays, q at kra
in general follows the behaviour of q̃, but it is even greater than q̃ within some
intervals. The high values of q in this case are not a result of the sub-optimal
performance of the isolated body (extracted power by an isolated body at resonance
is equivalent to that of an optimal point absorber), but are gains caused directly by
favourable array interactions. The intervals where q > q̃ indicate the configurations
for which the equal-amplitude motion of periodic point-absorber arrays is clearly
sub-optimal because periodic arrays of non-optimized WECs (in terms of bPTO,
shape) are performing better than the point-absorber arrays of identical configuration.
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FIGURE 18. Light-cone plot of array gain q for two different three-row periodic arrays
of truncated vertical cylinders. Rayleigh critical conditions marked by dashed white lines,
Bragg resonances by thick magenta lines, Laue resonances based on (3.6) by thin, dashed
magenta lines and the body-resonant wavenumber by a dashed horizontal cyan line.

The light-cone plot of q for two different array configurations, figure 18, reveals
the detailed dependence of q on kd and θI . The overall structure resembles that of
an isolated body (cf. figure 9), with additional troughs in q due to Bragg and Laue
resonances. The Laue-resonance lines for point-absorber arrays (i.e. based on (3.6))
are plotted for comparison. Away from Bragg and Laue resonances high gains are
attainable, especially for super-resonant wavenumbers (e.g. for θI = 24◦, max q= 6.08
at kd= 5.03π; for θI = 47◦, max q= 5.98 at kd= 4.34π).

The array gain q for a range of wavenumbers and periodicities in arrays of two
different aspect ratios dx/d = 0.45, 0.495, is plotted in figure 19. For aspect ratios
dx/d . 0.5, the structure of q is similar to that of dx/d = 0.45. Compared to single-
row performance (figure 8), q still preserves the band-like structure determined by
Rayleigh wavenumbers, but it is more intricate due to the presence of Bragg and Laue
resonances. Higher values of q still occur for larger ka values (e.g. for dx/d = 0.45
configurations at θI = 0◦, max q= 8.60 occurs for d/2a= 4.85 and kd= 8.50π (ka=
2.75)). For ka< kra, q≈ 1, which indicates that limited gains, in general, are possible
in the sub-resonant regime; this behaviour is also similar to that found in single-row
periodic arrays (cf. figure 8).

For configurations with the dx/d ≈ 0.5 aspect ratio, however, we find new
features that cannot be attributed to the Rayleigh, Bragg or Laue resonances
identified so far. These new features appear as sharp increases in q that intersect
the constant-wavenumber lines at an oblique angle. Consequently, they appear as
narrow-banded features in the kd-space for a given array configuration. These are,
in fact, Fano features we discussed in § 2 and are the signatures of Rayleigh–Bloch
waves. The striking feature of these Rayleigh–Bloch waves is that they are excited
by the incident wave, i.e. they are embedded in the continuous spectrum, and their
effect is easily recognizable in the response. Since these waves appear in a system
where bodies are inherently moving, we borrow the terminology from McIver &
McIver (2007) and refer to them as motion-trapped Rayleigh–Bloch waves. Note
that these Rayleigh–Bloch waves are absent in the response of point-absorber arrays
studied in § 3, including for the array configurations identical to those represented in
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FIGURE 19. Contour plot of array gain q of a three-row truncated-vertical-cylinder
periodic array with aspect ratios dx/d = 0.45 (a,b) and dx/d = 0.495 (c,d). The
yellow dashed line denotes the body-resonant wavenumber kra; green dashed line the
super-resonant wavenumber ksra. The contours are computed for wavenumbers ka < 3.0
(cf. figure 7c). The contour colour range is cropped to allow for a better resolution at
q-values of interest (around 1).

figure 19. This stems from the fact that the phenomenon of Rayleigh–Bloch waves is
inherently related to finite-size bodies and their interaction with the wave field.

In order to study the structure and the sensitivity of the Rayleigh–Bloch waves, in
the following we focus on three periodic arrays that appear to support Rayleigh–Bloch
waves, but of slightly different configurations: configuration I with periodicity d/2a=
5.14 and row spacing dx/d= 0.48, configuration II with d/2a= 5.19 and dx/d= 0.50
and configuration III with d/2a = 5.20 and dx/d = 0.50. The minor differences in
periodicity and row spacing between these configurations provide a good basis for the
sensitivity analysis of trapped waves with respect to configuration perturbations.

The array gain q for configurations I, II and III as functions of wavenumber kd are
shown in figure 20. While all three configurations exhibit very similar behaviour for
the most of the kd range for θI = 0◦, figure 20(a), configurations II and III exhibit
sharp, narrow-bandwidth spikes – Fano features – at distinct wavenumbers kdRB. Both
configurations exhibit two Fano features in the plotted interval, one occurring at kdRB

below the Rayleigh wavelength (kd)cr
1 , and one just above it. The first wavenumbers

kdRB at which Rayleigh–Bloch waves occur are noticeably different between the two
configurations, as are the magnitudes of Fano features, which indicates high sensitivity
to perturbations in periodicity. Note that the orientations of the two Fano features for
configuration II are different – the first exhibits a small decrease in q followed by a
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FIGURE 20. Array gain q as a function of wavenumber kd for three-row periodic
arrays of truncated vertical cylinders. (a) Three different array configurations at θI = 0◦;
(b) configuration II at θI = 0◦, 1◦; (c) non-normal incidence for configuration I. Rayleigh
wavenumbers (kd)cr

−1 are marked by thin vertical lines (in corresponding colour in (c)); the
body-resonant wavenumber is marked in dashed red vertical line. Arrows in (a) mark the
cases that are plotted in figure 23.

sharp jump, while the second is preceded by an increase in q followed by a sharp drop.
Comparison of q for configuration II at θI = 0◦ and θI = 1◦, figure 20(b), reveals that
the presence of Rayleigh–Bloch waves is very sensitive to angular perturbations. While
for the most of the plotted kd range the two lines are virtually indistinguishable, q(θI=

1◦) exhibits no significant Fano features despite only a minor variation in incident
angle. Rayleigh–Bloch waves are not limited to normal incidence, however. Array gain
q for configuration I at specific non-normal incidence angles is shown in figure 20(c).
Fano features below the lowest Rayleigh wavenumber (kd)cr

−1 are present for all plotted
incident angles. In the same way as in figure 20(b), a slight variation in θI will destroy
the Rayleigh–Bloch waves.

While the presence of embedded Rayleigh–Bloch waves is highly sensitive to
perturbations of k and θI , based on figure 19 we can argue that a large range of
three-body rectangular periodic arrays with dx/d≈ 0.5 support one or more embedded
Rayleigh–Bloch waves at some kd and θI . Changing the periodicity (while keeping
the same aspect ratio dx/d) merely changes k and θI at which Rayleigh–Bloch waves
occur.

The effect of trapped waves on power extraction effectiveness of each body –
the percentage of power pi = Pi/Pa extracted by body i – is shown in figure 21.
For configuration I, all the bodies are almost equally effective in energy extraction
for wavenumbers below the first Rayleigh wavenumber. Above the first Rayleigh
wavenumber, such balance is no longer present and the variation of pi with kd is
different for each body, usually with all three bodies extracting different amounts of
energy. At the resonant wavenumber kra, all the values of pi are again almost equal.
For configuration II, on the other hand, the sharp Fano features are present again –
pi at trapped-wave wavenumbers exhibits an abrupt increase or decrease, and it is
most prominent for bodies 1 and 2. Note that the Fano features are also observed
in the motion response (not shown). The heave amplitude |Xi| of each body can be
calculated from (2.8) and (2.9) as |Xi| = |X|

√
Nqpi, where |X| is the heave amplitude

of an isolated body, figure 7(b).
Comparison of the amplitudes of the zeroth scattering modes |A±0 | for the three

configurations is shown in figure 22. At the first trapped-wave wavenumber kdRB, |A+0 |
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FIGURE 21. Comparison of the percentage of extracted power pi by each of the bodies
in a three-row periodic array of truncated vertical cylinders, for two different array
configurations at θI = 0◦. Rayleigh wavenumbers are marked by grey vertical lines; the
body-resonant wavenumber is marked by dashed red vertical lines.

for configurations II and III exhibits a sharp decrease, matched by an equally sharp
increase in |A−0 |, as required for energy conservation. The Fano features at the second
trapped wavenumber are somewhat less pronounced. Interestingly, the Fano features
persist even for same-configuration arrays of freely oscillating bodies (no power
extraction) and of fixed bodies, although they are less pronounced in the latter case.
This indicates that WEC arrays that support motion-trapped Rayleigh–Bloch waves
also support trapped waves in arrays of fixed bodies at the same, or nearly the same,
wavenumbers. The trapped waves that occur in fixed structures are called sloshing
trapped waves; they have been observed, for example, in isolated three-dimensional
bodies with a central moonpool (McIver & McIver 2007).

Note that Fano features in |A±0 | for these three-row periodic arrays are different
from the narrow-banded, total reflection features in |A±0 | occurring for single-row
periodic arrays (figure 12). In single-row periodic arrays, the narrow-banded feature
is only present for arrays with freely oscillating bodies; it is smoothed out when
the bodies are extracting energy, and it is absent for fixed bodies. Furthermore, the
free-surface elevation amplitude |η| is much lower in the perfect reflection case
(figure 15a), compared to |η| at trapped-wave wavenumbers (figure 23a,c,d).

The amplitude of the free-surface elevation |η| for the three configurations at
specific wavenumbers for θI = 0◦ is shown in figure 23. The free-surface amplitude
around the configuration-II array at its first trapped-wave wavenumber (figure 23a)
shows very high elevation (|η| ∼ 10.7) around bodies 1 and 3. Body 1 extracts most
of the energy (and undergoes largest heave motions |X1|), while body 2 extracts
almost no energy at all (i.e. is barely moving). The high q achieved in this case
is manifested by a significant decrease in |η| everywhere behind the array. For
configuration II, we also consider two distinct wavenumbers around the second
trapped-wave wavenumber, one from each side of the (asymmetric) jump: kd= 2.08π
before the jump, corresponding to the higher q value (figure 23b), and kd = 2.10π
after the jump, corresponding to the lower q value (figure 23c). In this case, high-q
values do not correspond to high-|η| values – |η| is higher for the low-q case. The
high elevation |η| occurs around bodies 1 and 3, but also between the bodies in the
second row. Furthermore, the distribution of power among the bodies is different
between the two wavenumbers: in the high-q case the middle body extracts the most
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FIGURE 22. The transmitted |A+0 | (thick lines) and reflected mode |A−0 | (thin lines)
amplitudes for three-row periodic arrays of truncated vertical cylinders at θI= 0◦ incidence.
(a) Energy-extracting bodies; (b) freely oscillating bodies; (c) fixed bodies. Rayleigh
wavenumber (indistinguishable difference in (kd)cr

1 between the three configurations) is
marked by a grey vertical line; body-resonant wavenumber by a dashed red line.

power, while in the low-q case, the middle body is barely moving. Overall, the
performance of the array is starkly different across the Fano feature.

The free-surface amplitude at the first and second trapped-wave wavenumbers for
configuration III (figure 23d,e) follows a similar pattern to that of configuration II.
For both trapped-wave wavenumbers, the middle body extracts almost no energy
(i.e. is barely moving), with the highest elevations occurring at bodies 1 and 3. At
the body-resonant wavenumber kra, all the bodies in configuration I extract energy
equally (figure 23f ). The free-surface elevation behind the array is significantly
reduced, which, together with a relatively mild modulation of the free surface in
front, indicates efficient energy extraction and a high q value.

The amplitude of free-surface elevation along the x and y axes for configurations I
and II is shown in figure 24. For configuration I, the free surface is shown for
the body-resonant wavenumber kra where there is significant energy extraction. The
free-surface amplitude behind the array exhibits much longer modulation compared to
that in front. The mean amplitude along a row, i.e. along x= 0, dx, 2dx, is generally
decreasing for larger x. For configuration II, |η| is shown for kd = 1.45π, which
corresponds to the first trapped-wave wavenumber (cf. figure 23a), and for kd= 2.08π
and 2.10π, corresponding to wavenumbers surrounding the second trapped-wave
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FIGURE 23. Free-surface amplitude |η| contours for three slightly perturbed configurations
of three-row truncated-vertical-cylinder periodic arrays at specific wavenumbers, for θI=0◦.
(a) Configuration II, kd = 1.45π. (b) Configuration II, kd = 2.08π. (c) Configuration II,
kd = 2.10π. (d) Configuration III, kd = 1.69π. (e) Configuration III, kd = 2.05π.
( f ) Configuration I, kd= 2.86π. The body colour denotes the power extraction percentage
pi of each body (according to the right colour bar).

wavenumber (cf. figure 23b,c). High free-surface elevations at the cylinder surface
are visible for the first trapped-wave wavenumber, as well as the high elevation in
between the bodies in the second row at the third wavenumber (kd= 2.10π).

We remark on the numerical convergence of the results in this section. As in § 5,
the results presented in this section generally converge to O(1 %). The exceptions are
the values obtained for wavenumbers close to kdRB, where the qualitative conclusions
about the Rayleigh–Bloch waves remain valid as the number of modes in partial wave
decomposition is increased, although the quantitative values may be affected. We also
note that the large free-surface elevations due to Rayleigh–Bloch waves indicate that
the linear wave theory is not strictly valid at those wavenumbers because the small-
wave-steepness assumption is violated. For an accurate analysis of array performance
at trapped-wave wavenumbers, one should conduct nonlinear computations based on
the models that include nonlinear wave dynamics and wave–body interactions.

Finally, we remark that while we focus here on the three-row periodic WEC
arrays only, we have performed similar computations (and analyses) for two- and
four-row periodic arrays (not presented). The results for these configurations show
a similar character as those for the three-row arrays presented here, including the
decrease in the array gain at Rayleigh, Bragg and Laue resonances, as well as the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

91
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.911


Hydrodynamics of periodic WEC arrays 65

0

2.5

5.0

7.5
Configuration I

Configuration II

10.0
kd = 2.86π

x = 0 x = dx x = 2dx

kd = 1.45π
kd = 2.08π
kd = 2.10π

(a) (b)

(c) (d)

0

2.5

5.0|˙|

|˙|

7.5

10.0

-4 -2 0 2 4
x/h y/h

6 8 10 0 3 6 9

FIGURE 24. Free-surface amplitude |η| for two slightly perturbed configurations of three-
row truncated-vertical-cylinder periodic arrays at specific wavenumbers, for θI = 0◦. The
amplitude is plotted for y = 0 (a,c) and at three different x = const. (b,d). Grey vertical
bars in both views denote the locations of the bodies.

presence of embedded motion-trapped Rayleigh–Bloch waves for configurations with
dx/d≈ 1/(N − 1). Furthermore, our choice of the body shape is purely arbitrary and
not special in any way. This indicates that these findings should also be valid for
arrays consisting of bodies of general (axisymmetric) shape.

7. Conclusion
We conduct a systematic parametric study of array configurations of single- and

multi-row periodic WEC arrays in the context of linear potential flow. We consider
important physical phenomena that strongly affect the energy extraction performance
of point-absorber periodic arrays and periodic arrays of general WEC geometries and
power take-off rates. Some of these phenomena (Rayleigh and Bragg resonances) have
been discussed before in the WEC array context, but we extend here the understanding
and validity of those discussions. Some phenomena – Laue resonances and embedded
motion-trapped Rayleigh–Bloch waves – have not been discussed before in the
WEC-array context. An important development is a new multiple-scattering method for
periodic arrays consisting of sub-arrays of bodies of general shape. The method fully
accounts for wave–body interactions, including evanescent waves and close-spacing
effects. The method also allows the analysis of performance of each of the bodies in
the array (motion and force amplitudes, individually extracted powers) as well as the
calculation of the near- and far-field free surface.

Using both theoretical considerations and extensive computations based on the new
exact interaction method, we analyse the effect of spatial configuration on the array
performance in monochromatic waves. For a single periodic row, we show that the
array gain q of a realistic WEC array of truncated vertical cylinders closely matches
that of optimal point-absorber arrays, although not reaching the same maximum values.
At Rayleigh wavenumbers, q= 0 for both array types. We also identify an interesting
result where a single row of freely oscillating bodies can act as a perfect reflector of
the incident wave for a range of incident angles.
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For multi-row periodic arrays, we relate the significant reductions in the achieved
array gain q, away from Rayleigh wavenumbers, to Laue and Bragg resonances. Laue
resonances have not been identified in the WEC array context before, and we show
that they cause a large, smooth decrease in q for wavenumbers around the resonance
condition. Where different Laue resonances coincide, the decrease in q is larger and of
wider bandwidth. We also show that the reductions in gain due to Bragg resonances
can be appreciable even for a small number of strong absorbers, in contrast to the
previously discussed case for a large number of rows of weakly absorbing bodies. We
show that these phenomena are persistent in rectangular periodic arrays, regardless of
whether they are point-absorber ones or those consisting of general, finite bodies in
non-optimal motion.

The most significant difference between the multi-row point-absorber arrays
and multi-row arrays of truncated vertical cylinders is the presence of embedded
motion-trapped Rayleigh–Bloch waves, which occur only in the latter case. Our
development of a computational method that is capable of exactly accounting for
wave–body interactions in periodic arrays is crucial for finding these heretofore
undiscovered trapped waves. We provide evidence of their existence in rectangular
arrays with an aspect ratio (N − 1)dx/d ≈ 1, being excited by an incident planar
wave (not necessarily normal). For a given array configuration that can support
Rayleigh–Bloch waves, these Rayleigh–Bloch waves occur for isolated wavenumbers
and incident angles. A perturbation in spatial configuration that preserves the aspect
ratio of the array does not destroy them but merely makes them occur at a different
wavenumber and incident angle. In WEC arrays, Rayleigh–Bloch waves lead to a
sharp increase in the array gain q at wavenumbers where they occur. These waves
are also present in arrays of freely oscillating or fixed bodies, in which cases they
lead to abrupt changes in reflection and transmission coefficients.

We remark that while the analysis conducted here is for relatively simple bodies
(truncated cylinders) and motions (heave only), the multiple-scattering method applies
to general body geometries and motions. We postulate that the general conclusions on
Bragg and Laue resonances would hold even for more complicated body geometries
and for arrays consisting of different body types, provided that the bodies are
arranged in a lattice-like configuration (as it holds, for example, in polyatomic crystals
(Ashcroft & Mermin 1976)). Finally, while we have focused here on monochromatic
incident waves only, the analyses and computations generalize in a straightforward
way to studying array performance in irregular (directional) seas and are presented in
Tokić (2016).

The present results are useful for practical design of WEC arrays. For example,
they provide an insight into how to design an array configuration to achieve high
gain q, while avoiding the resonances that lead to significant decreases in q. In
practice, additional factors may be of importance. For example, the trade-off between
q (relevant for effectiveness of the installed devices) and the capture width Wa/d
(relevant for the total extracted energy per unit of coastline) may need to be carefully
considered. The computational method presented in this work can be directly applied
to such analyses.
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Appendix A. Derivation of the multiple-scattering formulation
For simplicity of exposition, we first present the diffraction problem for periodic

arrays (i.e. for arrays of fixed bodies); the extension to oscillating (and energy
extracting) bodies is made in § A.1. In general, the total potential Φ for a periodic
array of fixed bodies can be written as

Φ =Φ I
+ φS
=Φ I

+

∑
̂∈Z

ΦS, ̂ , (A 1)

where Φ I represents the incoming planar wave potential, ΦS, ̂ the scattering potential
of body B̂ , and φS the total scattering potential. We label the bodies by the index ̂
in a cell-first manner, i.e. such that we first label all the bodies within cell B before
moving to cell B+ 1; B= 0 denotes the cell where the origin of the coordinate system
is, say (figure 6). The labelling within a cell is done in the same manner for every B.
With this convention, we can relate a general body index ̂ to an index j in the basic
cell B= 0 by

B=
⌊
̂

N

⌋
j= ̂ − BN,

 (A 2)

where b·c denotes the floor function.
The total potential in the reference frame of body Bp can also be written as Φ =

Φ I, p
+ΦS, p, where

Φ I, p(rp)=Φ
I
+

∑
̂∈Z,̂ 6=p

ΦS, ̂ (r̂ ) (A 3)

is the incoming potential at Bp, consisting of the ambient incoming wave and of the
scattered waves from all the other bodies in the array. The body Bp can be in the
basic cell B = 0, without the loss of generality. We can expand the potentials near
Bp in terms of radial incident and outgoing partial waves, i.e. Hankel functions and
modified Bessel functions, which are fundamental solutions of the Helmholtz equation.
In the cylindrical coordinate system (rp, ϑp, z) of body Bp, the general incident and
scattering potentials can be written as

Φ I, p
=

∑
m,n

dp
mnIn(kmrp)einϑpψm(z), (A 4a)

ΦS, p
=

∑
m,n

cp
mnKn(kmrp)einϑpψm(z), (A 4b)

where In(z) and Kn(z) are the modified Bessel function of the first and the second
kind, dj

nm and cj
nm are the coefficients of the incident and outgoing (scattered) partial

waves, ψm(z) is the finite-depth eigenfunction (Mei et al. 2005), and

∑
m,n

≡

∞∑
m=0

∞∑
n=−∞

. (A 5)

In the above expressions, m = 0 corresponds to the propagating mode with a
wavenumber k0 ≡ −ik, while m > 0 corresponds to the evanescent modes with
wavenumbers km that are the real solutions of the modified dispersion relation
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ω2
= −gkm tan kmh. We have also used the well-known identities between modified

Bessel functions and Hankel and Bessel functions

Kn(−ik)=
π

2
in+1H(1)

n (k)

In(−ik)= i−nJn(k)

 (A 6)

to simplify the expressions. Hankel function H(1)
n (x) = Jn(x) + iYn(x) represents an

outward propagating wave. We expand φI into partial waves around Bp in a similar
way to obtain

φI(rp)=

∞∑
n=−∞

dI,p
n In(k0rp)einϑpψ0(z), dI,p

n ≡ Pp(−1)ne−inθI , (A 7)

where dI,p
n are the (known) coefficients of the incident wave decomposition, and Pp=

eikRp cos(θI−αp) is the phase of the incident wave at Bp. Combining (A 3) and (A 7), Φ I, p

becomes

Φ I, p
=

∞∑
n=−∞

dI,p
n In(k0rp)einϑpψ0(z)+

∑
̂∈Z,
̂ 6=p

∑
m,n

ĉmnKn(kmr̂ )einϑ̂ψm(z). (A 8)

We can transform the body B̂ -based coordinate system (r̂ , ϑ̂ , z) into a Bp-based
(rp, ϑp, z) coordinate system by using Graf addition theorem for Bessel functions
(Abramowitz & Stegun 1964)

Kn(kmr̂ )einϑ̂ =

∞∑
l=−∞

(−1)l Kn−l(kmR̂p)ei(n−l)α̂pIl(kmrp)eilϑp, rp < R̂p, (A 9)

where R̂p is the distance between bodies ̂ and p, and α̂p the angle between them,
figure 6. Comparing the potential Φ I, p with (A 4a) results in an expression for the
incident partial wave coefficients for Bp

dp
ml = δm0dI,p

l +
∑
̂∈Z,
̂ 6=p

∞∑
n=−∞

(−1)lĉmnKn−l(kmR̂p)ei(n−l)α̂p, (A 10)

where δmn is the Kronecker delta.
The summation over infinite number of bodies in (A 10) can be simplified by

reorganizing the summation itself and by using Bloch’s theorem (2.1). First, the
summation can be split into two by recognizing

∑
̂∈Z,
̂ 6=p

=

N∑
j=1,
j6=p,
B=0

+

∞∑
B=−∞,

B6=0

N∑
j=1

. (A 11)

Second, we can use (2.1) to relate the scattering coefficients of body ̂ to those of
body j through

ĉmn = cj
mnPB, (A 12)
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where PB ≡ eiBkd sin θI is the phase factor for cell B. The decomposition (A 11) splits
the summation over all bodies into the summation over a finite number of bodies in
the basic (B= 0) cell and the summation over all the other bodies.

With (A 11) and (A 12), the second term in (A 10) becomes

N∑
j=1,
j6=p,
B=0

∞∑
n=−∞

cj
mn(S

jp)n,l,m + (−1)l
N∑

j=1

∞∑
n=−∞

cj
mn

∞∑
B=−∞,

B6=0

PBKn−l(kmR̂p)ei(n−l)α̂p, (A 13)

where (Sjp)n,l,m represents elements of a separation matrix Sjp for bodies Bj and Bp

(Sjp)n,l,m = (−1)lKn−l(kmRjp)ei(n−l)αjp . (A 14)

The separation matrix only depends on the relative position between the two bodies
in a sub-array and is, thus, identical to that for scattering by a finite array (Kagemoto
& Yue 1986).

The second term in (A 13) needs further treatment because the summation indices j
and B are not explicitly expressed in R̂p and α̂p. That can be rectified by considering
the decomposition of the distance vector R̂p into

R̂p =R̂ j +Rjp, (A 15)

where R̂ j = −Bd ey, figure 6(a). For the case when |R̂ j| > |Rjp|, which is certainly
valid for large B, Graf’s addition theorem (A 9) applied to vectors in (A 15) gives

Kµ(kmR̂p)eiµα̂p =

∞∑
ν=−∞

(−1)νKµ−ν(km|B|d)ei(µ−ν)αBIν(kmRjp)eiναjp, (A 16)

where

αB =


−

π

2
, B> 0

π

2
, B< 0.

(A 17)

Let us first consider the case where the maximal distance between the bodies in a
cell is smaller than the periodicity d, i.e. max{Rjp : j, p∈ {1, . . . ,N}}< d. In that case,
the expression (A 16) is valid for all cells B, and the second sum in (A 13) becomes∑N

j=1

∑
∞

n=−∞ cj
nm(Q

jp)n,l,m, where (Qjp)n,l,m represents the elements of a periodicity
matrix Qjp for bodies j and p

(Qjp)n,l,m ≡ (−1)l
∞∑

ν=−∞

(−i)µ+νIν(kmRjp)eiναjpσµ−ν,m(θI, d), µ≡ n− l, (A 18)

and σn,m is the so-called lattice sum (or Schlömilch sum) (Linton 1998)

σn,m(θI, d)=
∞∑

B=1

[PB + (−1)nP−B]Kn(Bkmd). (A 19)

The lattice sum σn,m depends only on the periodicity d of the lattice and the incident
wave angle θI , and not on the number of bodies in the sub-array A or on its
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spatial configuration. For evanescent waves (m> 0), it can be summed directly as it
converges rapidly. For propagating waves (m = 0), we use an accelerated expression
to evaluate (A 19) (Linton 1998), otherwise the sum is extremely slowly convergent;
for evanescent waves (m> 0), (A 19) can be summed directly.

If Rjp > d, (A 18) has to be modified. Let BR denote the largest integer B for which
the condition Rjp> |B|d is valid. The Graf addition theorem (A 16) can then be applied
only for |B| > BR terms in the second summand of (A 13), while the sum over the
finite number of terms |B| = 1, . . . , BR is left in its original form. This results in the
modified expression for (Qjp)n,l,m

(Qjp)n,l,m ≡ (−1)l
∞∑

ν=−∞

(−i)µ+νIν(kmRjp)eiναjpσ ′µ−ν,m(θI, d),

+ (−1)l
BR∑

B=−BR,
B6=0

PBKµ(kmR̂p)eiµα̂p, µ≡ n− l, (A 20)

where σ ′n,m(θI, d) is the corrected lattice sum

σ ′n,m(θI, d)= σn,m(θI, d)−
BR∑

B=1

[PB + (−1)nP−B]Kn(Bkmd). (A 21)

The finite sum in (A 21) accounts for the terms that had to be added to the infinite
sum over the bodies (that initially excludes |B| = 1, . . . , BR cells) to cast it into
a true Schlömilch sum σn,m for which fast analytical expressions exist. While the
formulation (A 20) is in theory convergent as the infinite sum over ν contains only
the contributions from bodies for which Graf’s addition formula (A 16) is valid, a
floating-problem arithmetic problem occurs when calculating σ ′n,m(θI, kmd) for large n
that arise in the summation over ν. As a result, the infinite sum in (A 20) is polluted
and its convergence deteriorates.

Adding all together, the coefficients of the incident partial waves on Bp can be
written as

dp
ml = δm0dI,p

l +

N∑
j=1,

j6=p,B=0

∞∑
n=−∞

cj
mn(S

jp)n,l,m +

N∑
j=1

∞∑
n=−∞

cj
mn(Q

jp)n,l,m,

= δm0dI,p
l +

N∑
j=1

∞∑
n=−∞

((1− δjp)(S
jp)n,l,m + (Q

jp)n,l,m)cj
mn. (A 22)

The scattered and incident wave coefficients cp
nm, dp

nm are related by (4.1), through the
T -matrix of body Bp. Thus, we obtain a linear system for the unknown coefficients
of the scattered partial waves on body Bp as

N∑
j=1

[δjp − T p((1− δjp)S
jp
+Qjp)T]cj

= T pdI,p, p= 1, . . . ,N. (A 23)

The global system is obtained when (A 23) is constructed for all bodies in the sub-
array, resulting in a global form

(I − T (S +Q)T)c= Td, (A 24)

which is the fixed-body version of (4.2).
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A.1. Modification for oscillating bodies
If the bodies in a periodic array are allowed to oscillate, the total potential Φ can be
written as

Φ =Φ I
+ φS
=Φ I

+

∑
̂∈Z

(
ΦS, ̂
+

∑
k

V ̂

kΦ
R, ̂
k

)
, (A 25)

where the new component is the radiation potential ΦR, ̂
k of body ̂ oscillating in

mode k with a unit velocity amplitude, and V ̂

k is the actual complex velocity in mode
k of body ̂ . Mode k denotes one of six degrees of freedom (k ∈ K̂ ; K̂ ⊆ D =
{1, 2, . . . , 6}), where directions 1, 2, 3 correspond to the translation modes of motion
(surge, sway, heave) and 4, 5, 6 to the rotational modes (roll, pitch, yaw).

Analogous to (A 4), we can express the radiation potential of body Bp as

Φ
R, p
k =

∑
m,n

cR,k,p
mn Kn(kmrp)einϑpψm(z), (A 26)

where cR,k,p
nm are the coefficients of the radiated, outgoing partial waves due to unit

velocity of body Bp in direction k. These are the elements on the radiated wave
coefficient matrix cRp, which depends solely on the isolated-body properties so it can
be calculated beforehand.

The linear equation of motion of a body in the frequency domain is given by
(cf. (4.5))

[−ω2(Mb +Ma(ω))− iω(Λ(ω)+ BPTO)+ (C + CPTO)] ·X= A ·X=F(ω), (A 27)

where A is the body dynamics matrix, Mb is the mass matrix, Ma(ω) and Λ(ω) are
the conventional real-valued, frequency-dependent added mass and radiation damping
matrices of the body obtained from a complex restoring force matrix (Mei et al.
2005), BPTO and CPTO are the PTO extraction rate and stiffness matrices, C is the
restoring coefficient matrix due to the changes in buoyancy, X is the complex motion
amplitude and F(ω) is the diffraction force. While the optimal power extraction
can be determined from excitation force alone (e.g. Evans 1976), for non-optimal
power extraction the full equation of motion (A 27) is needed. We note that obtaining
the optimal bPTO distribution for a WEC array based on (A 27), while possible in
principle, is a non-trivial task due to the dependency of F(ω) on motion (and, thus,
on bPTO values) of other bodies.

Since the radiation potential (A 26) is of the same form as the scattered potential
(A 4b), it can easily be incorporated into the derivation for fixed bodies presented
above. We only have to replace the vector of scattered wave coefficients cj in (A 22)
with

cj
→ (I + cR j

·$ jT)cj
= H j
· cj, (A 28)

where we used (4.4)–(4.7) to relate Vj to cj. This effectively casts (A 25) into (A 1).
The derivation otherwise proceeds analogously. In the end, by combining (A 22) and
(A 28), we obtain the global system equation (4.2).

In the computations presented in this study, we only focused on a single degree-of-
freedom motion so (A 27) reduces to a scalar equation, and matrices A, Mb, Ma, Λ,
BPTO, CPTO and C reduce to scalars. In our calculations, CPTO = 0 and BPTO = bPTO.
For a truncated cylinder of radius a, C = ρga2π.
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A.2. Transmission and reflection coefficients
The total scattering potential of the entire periodic array is

φS
=

∑
̂∈Z

∞∑
n=−∞

∞∑
m=0

ĉmnKn(kmr̂ )einϑ̂ψm(z). (A 29)

Far away from the array, i.e. |x|→∞, evanescent waves are absent, and, using (A 2),
(A 12) and Bessel function identities (A 6), the (A 29) simplifies to

φS
=

iπ
2
ψ0(z)

∞∑
n=−∞

N∑
j=1

cj
0n

∞∑
B=−∞

PBHn(krj,B)ineinϑj,B, (A 30)

where we have retained only the propagating m= 0 mode and expressed it in terms
of Hankel function (k= |k0|); (rj,B, ϑj,B) refers to the cylindrical coordinate system of
body j in cell B (according to (A 2)). We can further simplify this expression using
the Sommerfeld integral representation of Hankel function (Sommerfeld 1964)

Hn(krj,B)einϑj,B in
=

1
π

∫
∞

−∞

eik(yj−Bd)teikxj

√
1−t2 ein arcsin t

√
1− t2

dt (A 31)

and the Poisson summation formula
∞∑

B=−∞

∫
∞

−∞

f (t)e−i2πBt dt=
∞∑

µ=−∞

f (µ). (A 32)

To cast PBHn(krj,B)ineinϑj,B in the form required for (A 32), we set f (t; xj, yj) =

eikyjteikxj

√
1−t2ein arcsin t/

√
1− t2 and use substitution t = γ (t′) = sin θI + 2πt′/kd. This

results in
∞∑

B=−∞

PBHn(krj,B)einϑj,B in
=

2
kd

∞∑
µ=−∞

f (γ (µ); xj, yj). (A 33)

However, for f (γ (µ); xj, yj) to be finite as xj→∞, |γ (µ)|6 1. This is only possible
for µ∈M(θI, kd), where M is the set of all the indices of propagating modes in the
far field introduced in (2.4). Recognizing that γ (µ)= sin θµ, we obtain

∞∑
B=−∞

PBHn(krj,B)einϑj,B in
=

2
kd

∑
µ∈M

ei(kxj cos θµ+kyj sin θµ)

cos θµ
einθµ . (A 34)

We transform the coordinates from the body Bj-coordinate system into the global one
to obtain kxj cos θµ + kyj sin θµ = kr cos(ϑ − θµ) − kRj cos(αj − θµ), where (Rj, αj) is
the position of Bj in the global cylindrical system. Finally, the scattered potential in
the far field is

φS
=

πi
kd
ψ0(z)

∑
µ∈M

eikr cos(ϑ−θµ)

cos θµ

N∑
j=1

e−ikRj cos(αj−θµ)

∞∑
n=−∞

cj
0neinθµ . (A 35)

Using ηS = iω/gφS(r, ϑ, 0) and comparing the above expression to (2.5), we obtain
(4.9), where the expression for the reflected wave amplitudes is obtained by using
θ−µ =π− θµ.
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