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ABSTRACT

CAT bonds play an important role in transferring insurance risks to the capital
market. It has been observed that typical CAT bond premiums have changed
since the recent financial crisis, which has been attributed tomarket participants
being increasingly risk averse. In this work, we first propose a new premium
principle, the financial loss premium principle, which includes a termmeasuring
losses in the financial market that we represent here by the Conditional Tail Ex-
pectation (CTE) of the negative daily log-return of the S&P 500 index. Our anal-
ysis of empirical evidence suggests indeed that in the post-crisis market, instead
of simply increasing the fixed level of risk load universally, the increased risk
aversion should be modeled jointly by a fixed level of risk load and a financial
loss factor to reflect trends in the financial market. This new premium principle
is shown to be flexible with respect to the confidence/exceedance level of CTE.
In the second part, we focus on the particular example of extreme wildfire risk.
The distribution of the amount of precipitation in Fort McMurray, Canada,
which is a very important factor in the occurrence of wildfires, is analyzed using
extreme value modeling techniques. A wildfire bond with parametric trigger of
precipitation is then designed to mitigate extreme wildfire risk, and its premium
is predicted using an extreme value analysis of its expected loss. With an ap-
plication to the 2016 Fort McMurray wildfire, we demonstrate that the extreme
valuemodel is sensible, andwe further analyze how our results and construction
can be used to provide a design framework for CAT bonds which may appeal
to (re)insurers and investors alike.

KEYWORDS

CATbonds, Conditional Tail Expectation, extreme value theory, financial crisis,
financial loss principle.

1. INTRODUCTION

Catastrophic events are a major source of concern for insurance markets and
companies: in the case of climate-related events, their number has followed a
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FIGURE 1: A CAT bond transaction.

positive trend in recent years, see Hoeppe (2016). A single such event may cause
billions of dollars worth of losses in total: for example, Hurricane Katrina with
a loss of $84 billion, the 2008 Sichuan earthquake in China for $148 billion, the
2011 Tōhoku earthquake and tsunami in Japan for over $300 billion, Hurricane
Sandy for $75 billion, and the most recent 2016 Fort McMurray wildfire with
an estimated loss of $3.58 billion which makes it the most expensive disaster in
Canadian history. Catastrophe (CAT) bonds pay regular coupons to investors
and the principal is contingent on a predetermined catastrophic event defined
in the bond indenture. This type of insurance-linked securities (ILS) has grown
substantially in the past two decades and it has a high record of over $25 billion
outstandings in 2014. It is safe to say that CAT bonds have become an alterna-
tive to transfer insurance risks to the capital market.

As shown in Figure 1, a typical CAT bond transaction involves three parties.
In order to protect themselves frombig losses consecutive to catastrophic events,
the sponsor, which is usually an insurer or reinsurer, purchases a reinsurance
contract with a Special PurposeVehicle (SPV). In this contract, the sponsor pays
a premium ρ to receive a contingent payment from the SPV. If there is no trigger
event during the term, the SPV makes no payment to the sponsor at maturity.
If there is a trigger event, the SPV makes a payment up to a limit to the sponsor
to cover the loss due to the catastrophic event. On the other hand, to ensure
the payment, the SPV sells a CAT bond to investors, who expect to receive high
yields from the CAT bond and diversify their portfolios. The coupon rate is usu-
ally LIBOR plus the premium. At maturity, depending on the occurrence of the
trigger event, the investor receives all, part or even none of the principal back.
The most commonly and widely used type of trigger is the indemnity. Because it
usually takes a long time after a catastrophic event to determine the actual loss
and a quick settlement is generally not possible, CATbondswith indemnity trig-
ger have higher basis risks and moral hazards. A parametric trigger, meanwhile,
uses a physical measure, which can be obtained accurately and immediately af-
ter a catastrophic event. In general, non-indemnity triggers introduce basis risk
to the sponsor but eliminate the moral hazard for the investor. With a trade-off
between basis risk andmoral hazard, CATbondswith indemnity triggers can be
expected to have higher premiums (see e.g. Cummins andWeiss, 2009), although
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there is an ongoing debate as to whether this is always verified empirically (see
Gürtler et al., 2016).

Since CAT bonds are quoted using their premiums, or equivalently their
spreads over LIBOR in the market, the premium is sometimes referred to as the
price of a CAT bond. In this paper, we focus on the econometric approach to
pricing, which concentrates on the relationship between theCATbond premium
and the determining factors based on empirical analyses. Lane (2000) is proba-
bly the first paper usingCATbond primarymarket data to link the premiumand
the expected loss (EL) by a power function. Multiple factor linear models have
been used in Lane and Mahul (2008) and Braun (2016). Galeotti et al. (2013)
compared the fit of the linear model, of the log-linear model used in Major and
Kreps (2002) and of Wang’s distortion in Wang (2004). They concluded that
without taking the 2008 financial crisis into account, the Wang transformation
and the linear premium model are the most accurate ones.

Empirical studies have shown that the financial crisis has had a significant
impact on CAT bonds; see for example, Carayannopoulos and Perez (2015) and
Gürtler et al. (2016). In the first part of this paper, and through the study of the
2004 to 2014 primaryCATbondmarket, wewill show that CATbond premiums
have indeed been strongly correlated with the financial market since the finan-
cial crisis, and our estimates point to a correlation 50% higher than pre-crisis, an
increase that we attribute to investors becoming increasingly risk averse. How-
ever, we would not conclude that CAT bond premiums have increased after the
crisis. In fact, summary statistics of the data show that the median premium has
slightly increased, while the average premium has slightly decreased. We then
show that there is significant evidence of a structural break in the price structure
corresponding to the financial crisis. These reasons motivated us to introduce a
new premium principle, which we call the financial loss (FL) premium principle
in this paper and that, in addition to the EL, takes financial losses into account
through a Conditional Tail Expectation (CTE) of the negative daily log-return
of the S&P 500. We find that, in the post-crisis period, this new premium prin-
ciple recovers a quantity of information equivalent to the one lost by the linear
premium model after the financial crisis, and its goodness-of-fit is stable with
respect to the confidence/exceedance level of CTE.

An explanation put forward by Gürtler et al. (2016) regarding such changes
in CAT bond premium models is that investors now mistrust the EL calculated
by catastrophemodeling companies. Generally, standard statistical methods are
not efficient enough to study catastrophic risks due to the scarcity of obser-
vations. Extreme Value Theory (EVT) provides an adapted way to investigate
catastrophic risks with a moderate amount of data. Briefly, EVT allows one to,
under a condition called the Maximum Domain of Attraction (MDA) condi-
tion, approximate the distribution of the highest values in the sample by either
the Generalized Extreme Value (GEV) or Generalized Pareto (GP) distribu-
tions through two different techniques: the block maximamodel and the Peaks-
Over-Threshold (POT) approach. The MDA covers a wide range of commonly
used distributions which are especially appropriate to capture extreme risks.
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Moreover, the efficient use of the data by the POT method together with the
simplicity of the GP distribution generally gives EVT great flexibility to analyze
the right tail of a data set.Much research has showed the effectiveness of EVT in
estimating the likelihood of natural hazards or catastrophic losses; see for exam-
ple Beirlant et al. (1996), Simiu andHeckert (1996),McNeil and Saladin (1997),
Rootzén and Tajvidi (1997), Alvarado et al. (1998), Koutsoyiannis (2004) and
Zimbidis et al. (2007).

In the second part of the paper, and in order to provide an improvement
upon current practice in the calculation of ELs, we provide predictive pricing
models under EVT assumptions. Indeed, since CAT bonds usually cover the
last layer of loss, the EL crucially depends on the attachment point, which is the
level that the loss must exceed so that the coverage is triggered, and the exhaus-
tion point, which defines the maximum coverage of the contract. The idea of
CAT bonds being to insure against catastrophic events, one may consider both
points to be high but it is important to know how high they should be, and also
how the choices of these two points affect the premium. We then derive asymp-
totic equivalents of the linear premium andFL premiumprinciples, respectively,
when the layer is high under a general EVT condition on the trigger variable.
The asymptotic expressions are simple and provide valuable insight regarding
the behavior of the premium for high attachment and exhaustion points at the
designing stage of a CAT bond.

In the final part of the paper, we focus on the example of extreme wildfire
risk, and in particular on the 2016 Fort McMurray wildfire. This disaster high-
lighted that a better risk management system is urgently needed for extreme
wildfire risk. We tackle this problem using a two-step approach. Because wild-
fires often occur during the summer and following a dry fall and winter and
warm spring, we recognize that the amount of precipitation in the fall, winter
and spring seasons is a very important contributing factor to wildfires in the
summer season. In other words, precipitation is a good candidate for a para-
metric trigger in a wildfire CAT bond. By applying the POT method of EVT,
we first fit a GP distribution to (transformed) low precipitation data collected
in Fort McMurray. Second, once the distribution of low precipitation has been
estimated, we design a wildfire bond whose parametric trigger is the aggregated
amount of precipitation in the nine months before a given summer season, and
we apply this construction to the example of the 2016 Fort McMurray wildfire.
We further illustrate how the FL premium compares to the linear premium on
this situation.

The rest of the paper consists of five parts. In Section 2, through the study
of real CAT bond data, we analyze the structural change of CAT bond pre-
miums due to the financial crisis, and then propose our new premium prin-
ciple for a better fit of the post-crisis market. In Section 3, we carry out an
asymptotic analysis of the linear and FL premium models. In Section 4, a GP
distribution is fitted to a transformed sample of data for low precipitation in
Fort McMurray using the POT method, and we construct and analyze em-
pirically a nine-month wildfire bond with precipitation trigger. A conclusion
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then summarizes the contribution of this work. All proofs are postponed to the
Appendix.

2. THE FINANCIAL LOSS PREMIUM PRINCIPLE

In the pricing of CAT bonds, the EL is undoubtedly the most important factor,
see Froot (2001) for example. Before defining the EL, we start with some related
concepts. Let a non-negative random variable L represent the catastrophic risk.
With an attachment point t and an exhaustion point h, the loss related to this
layer is

L(t,h] =
⎧⎨⎩0, if L ≤ t,
L− t, if t < L ≤ h,
h − t, if L > h.

The payoff rate of a CAT bond covering this layer of loss, denoted by a random
variable Z, is given by

Z= (L− t)+ − (L− h)+
h − t

.

The EL is defined as the average value of Z:

EL = E[Z] = E
[
(L− t)+

] − E
[
(L− h)+

]
h − t

.

From this definition, EL is actually the average percentage of the maximum
payment h− t which is not paid back to the investor and kept by the sponsor at
maturity.

Due to the exposure to uncertain losses, the CAT bond premium usually
consists of two parts, EL and risk loading. Generally, a premium principle can
be expressed as

ρ(L) = EL + �,

where � represents the risk loading. The linear premium principle proposed
in Lane and Mahul (2008), which roots from the expected value principle, is
defined as

ρlinear(L) = a + bEL, for a, b > 0. (1)

As Lane and Mahul (2008) point out, a value of b larger than 1 means part of
the risk loading � is from the EL, and this will indeed be the case in our data
as our statistical analysis will show. In this section, and although we shall make
this clearer later, let us mention that two models for � will be examined: besides
the portion (b − 1)EL, we compare the linear premium principle with a fixed
level of risk load a as in (1), to our new model (see (4) below) incorporating a
further factor measuring risk loading through financial tail risk. Other possible
models would be to include part of the load in additional “central” (i.e. non-tail)
dispersion indicators such as variance or standard deviation (see e.g. Chapter 4
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of Bühlmann, 1970 in classical pricing contexts); this is not our purpose here,
since we specifically want to assess the effect of tail risk onCATbond premiums.
Let us also point out that, according toGaleotti et al. (2013), the linear premium
principle is the most accurate principle which does not take the 2008 financial
crisis into account. This motivated us to build our premium principle upon the
linear premium, and the latter will then be used as a benchmark for goodness-
of-fit in this section.

Since our focus in this section is on pricing models for CAT bonds, we re-
call that past studies, including Carayannopoulos and Perez (2015) and Gürtler
et al. (2016), have observed that the price structure of CAT bonds has changed
since the financial crisis, which suggests that there is a significant correlation be-
tween financial losses and CAT bond premiums. We first check this by using 10
years’ primary CAT bond market data and S&P 500 data. The CAT bond data
we consider here have been obtained from the primary ILS data provided by
Lane Financial LLC. After cleaning the data, for example, removing all non-
catastrophic risk-related ILSs and any implausible entries or any entries with
missing terms, there are 375 CAT bond tranches from the second quarter of
2004 to the first quarter of 2014. The information for each CAT bond entry
includes the (adjusted spread) premium ρ, the EL, the probability of first loss
(PFL = Pr (L > t)), the probability of last loss (PLL = Pr (L > h)), issue date
andmaturity. To test for correlation betweenCAT bond premiums and financial
losses, we take the average of the negative daily log-returns of S&P 500 over the
12 months preceding the issue date of the bond as the indicator of financial
loss. Let us recall that the log-return on day i is defined as log(pi/pi−1), with
p j denoting the price on day j , and the negative daily log-return we consider
in our analysis is simply minus this value, namely log(pi−1/pi ). The reason why
we choose an average over 12 months is that a 1-year period is long enough
to capture recent extreme movements in the market and thus assess their influ-
ence, while it is short enough to suppress the influence of any long-term trend
or dependence.

To analyze first the impact of the financial crisis on the CAT bond market,
the whole CAT bond data set 2004–2014 is separated into two periods: the pre-
financial crisis period 2004–2007 which is called “pre-crisis” and the financial
crisis-affected period 2008–2014which is called “post-crisis” for the sake of sim-
plicity (although the range does not cover the very latest years of the post-crisis
period). Summary statistics of the premium, EL, and 1-year average negative
daily log-return of S&P 500 in the pre- and post-crisis period are given in Ta-
ble 1. We note that there is an increase of the minimum and median premiums
and a decrease of the maximum and mean premiums in the post-crisis period
compared to the pre-crisis period, and as suchwewould not conclude that actual
premium values have generally increased after the financial crisis.

Our goal is now to assess if CAT bond premiums are correlated with move-
ments in the financial market, and especially if this potential correlation in-
creased after the financial crisis. With the help of the R function cor.test, we
reject the hypothesis that financial losses have zero correlation with CAT bond
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TABLE 1

SUMMARY STATISTICS OF THE PREMIUM, EL, AND 1-YEAR AVERAGE OF NEGATIVE DAILY LOG-RETURNS OF S&P 500 IN THE PRE- AND POST-CRISIS PERIODS.

Pre-Crisis

Variable Minimum 25% Quantile Median Mean 75% Quantile Maximum

Premium 0.00660 0.04423 0.07100 0.09152 0.11278 0.49880
EL 0.00010 0.00778 0.01295 0.02310 0.03455 0.12750

S&P Return −0.000755 −0.000499 −0.000364 −0.000413 −0.000294 −0.000116

Post-Crisis

Variable Minimum 25% Quantile Median Mean 75% Quantile Maximum

Premium 0.01770 0.05400 0.08110 0.08637 0.11410 0.22310
EL 0.00010 0.00890 0.01570 0.02113 0.02795 0.13060

S&P Return −0.001656 −0.000757 −0.000380 −0.000269 −0.000057 0.00236

https://doi.org/10.1017/asb.2017.32 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/asb.2017.32


382 G. STUPFLER AND F. YANG

TABLE 2

SAMPLE CORRELATION BETWEEN FINANCIAL LOSSES AND CAT BOND PREMIUMS.

t-Value p-Value 95% CI Sample Correlation

Global Data 3.7385 0.0002141 (0.0905, 0.2858) 0.1900
Pre-Crisis Data 2.3694 0.01912 (0.03208, 0.3431) 0.1924
Post-Crisis Data 4.6346 6.059e − 06 (0.1716, 0.4097) 0.2952

premiums for the whole CAT bond data set from 2004 to 2014. A similar con-
clusion is reached by Gürtler et al. (2016), although they use standard quarterly
returns of the S&P 500. The correlation during the post-financial crisis period
2008–2014 is estimated to be 50% higher than the correlation in the whole data
set or the pre-crisis period. The results are summarized in Table 2.

This estimated increasing correlation suggests that the financial crisis has
indeed had an impact on the structure of CAT bond prices. To assess this im-
pact, and recalling that Galeotti et al. (2013) showed that the linear premium
principle is the most accurate principle which does not take the 2008 financial
crisis into account, we start then by examining the presence of a change point
in the linear premium model at the time of the financial crisis. Since the CAT
bond data set comes from a time series, autocorrelation should be accounted
for; indeed, standard regression testing when the independence assumption of
the errors is violated very often results in higher t values and lower p-values,
potentially leading us to conclude that there is significant evidence for the exis-
tence of relationships in the data that are actually non-existent. In Figure 2, we
plot the autocorrelation functions (ACF) for the residuals of the linear premium
principle model in the whole, pre-crisis and post-crisis periods considered.

Figure 2 shows that there is indeed evidence of sizeable autocorrelation in the
data. Hence, we use heteroskedasticity- and autocorrelation-resistant testing;
the estimators remain the ordinary least squares estimators but testing is done
by replacing the usual denominators in the t-statistics by suitable estimators of
the true variance. The variance is estimated by theAndrews (1991) version of the
Newey-West (1987) estimator. We apply these adapted robust regression tech-
niques to fit the linear premium principle for three data sets: the whole data set,
the data set corresponding to the pre-crisis period and the one corresponding
to the post-crisis period. Results are reported in Table 3.

Results seem to indicate a change in the slope b of the regression model be-
tween the pre- and post-crisis periods, as well as a loss of explanatory power in
the post-crisis period, indicated by a smaller R2. These two observations suggest
that there exists a structural break in the regressionmodel, andmore specifically
that the linear premium principle does not fit the post-crisis data as well as it
fits the pre-crisis data. To accurately test whether there is indeed a significant
change in the slope b between the two periods, we use the following model:

ρ(L) = a + bEL + c Ind + d EL × Ind, (2)
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TABLE 3

REGRESSION RESULTS FOR THE LINEAR PRINCIPLE (1).

Coefficients Estimate Std. Error t-Value p-Value Adj. R2

Global
a 0.03900 0.003522 11.076 < 2.2e − 16∗∗∗

0.6433
b 2.2550 0.1805 12.491 < 2.2e − 16∗∗∗

Coefficients Estimate Std. Error t-Value p-value Adj. R2

Pre-Crisis
a 0.03020 0.003959 7.6301 2.787e − 12∗∗∗

0.7071
b 2.6548 0.2254 11.7789 < 2.2e − 16∗∗∗

Coefficients Estimate Std. Error t-Value p-value Adj. R2

Post-Crisis
a 0.04838 0.004045 11.961 < 2.2e − 16∗∗∗

0.5789
b 1.7982 0.1529 11.761 < 2.2e − 16∗∗∗
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FIGURE 2: ACFs of the residuals. Top left: global regression model (2004–2014) ρ(L) = a + bEL, top right:
pre-crisis model (2004–2007) ρ(L) = a + bEL, bottom left: post-crisis model (2008–2014) ρ(L) = a + bEL,
bottom right: global regression model (2004–2014) ρ(L) = a + bEL + c Ind + d EL × Ind with the dummy

variable Ind indicating the financial crisis. (Color online)
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TABLE 4

REGRESSION RESULTS FOR THE REGRESSION MODEL (2).

No Correction

Coefficients Estimate Std. Error t-Value p-Value

a 0.03020 0.003868 7.8090 5.963e − 14∗∗∗

b 2.6548 0.1154 23.005 < 2.2e − 16∗∗∗

c 0.01818 0.005182 3.5083 0.0005063∗∗∗

d −0.8566 0.1688 −5.0756 6.123e − 07∗∗∗

Andrews Weights

Coefficients Estimate Std. Error t-Value p-Value

a 0.03020 0.005067 5.9611 5.834e − 09∗∗∗

b 2.6548 0.2609 10.1765 < 2.2e − 16∗∗∗

c 0.01818 0.007228 2.5152 0.012318∗

d −0.8566 0.3058 −2.8008 0.005365∗∗

Lumley Weights

Coefficients Estimate Std. Error t-Value p-Value

a 0.03020 0.005124 5.8949 8.432e − 09∗∗∗

b 2.6548 0.2599 10.2142 < 2.2e − 16∗∗∗

c 0.01818 0.007795 2.3322 0.020222∗

d −0.8566 0.3008 −2.8477 0.004649∗∗

where Ind is the dummy variable 0 in pre-crisis and 1 afterwards. In other words,
ρ(L) = a + bEL in the pre-crisis period, and ρ(L) = (a + c) + (b + d)EL in
the post-crisis period. A structural break is indicated by (c, d) �= (0, 0). In par-
ticular, this shall be the case if we can check that d �= 0, which may be done
by simply computing a t-statistic. As there is again evidence of significant auto-
correlation in the data as shown in the bottom right panel of Figure 2, we use
heteroskedasticity- and autocorrelation-resistant testing here as well. Table 4 re-
ports what is obtained using Andrews (1991) and Lumley and Heagerty (1999)
weights, along with the results we would obtain if we did not account for the
autocorrelation.

Results are similar for both correction methods: the hypothesis d = 0 is
rejected at the 1% significance level and there is evidence of a structural break.
It is noteworthy that the hypothesis c = 0 is also rejected, at the 5% level. More
precisely, the intercept of model (1) actually increases after the financial crisis,
while the slope b, representing the influence the EL has on the premium, de-
creases (as suggested by Table 3 and then confirmed by the fact that d < 0 in
Table 4). Since, moreover, EL stayed broadly stable despite the financial crisis
(see Table 1), this suggests that investors lost some of the trust they had in EL
calculations after the financial crisis and appeared to favor a higher baseline
price (represented by a) instead.

This loss of fitting power and related structural changes in the model at the
time of the 2008 financial crisis are what motivated us to include the financial
loss factor in our CAT bond pricing model. Let us now discuss the choice of
financial risk measure we wish to use in this context. Guided by regulation rules
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such as the Basel II and III Accords for banking regulation and the Solvency II
Directive for insurance regulation, the Value-at-Risk (VaR) has been adopted
by risk managers as an essential measure of risk, and is therefore one obvious
candidate we could consider. Its formal definition is as follows: let X be a ran-
dom variable with cumulative distribution function (cdf) G. The VaR of X at
level p ∈ (0, 1) is defined as

VaRp(X) = G←(p) = inf {x : G(x) ≥ p} . (3)

However, the VaR risk measure has been criticized in that it fails to measure tail
losses when a tail event does occur; to put it differently, VaR only measures how
high a loss must be so as to be qualified as extreme, but does not indicate how
large such a loss typically is. By contrast, the CTE risk measure is the average
of the worst 100(1 − p)% of losses, which is defined as

CTEp(X) = 1
1 − p

∫ 1

p
VaRq(X)dq,

provided that E[X] < ∞. Its name comes from the fact that when X is a con-
tinuous random variable, then CTEp(X) = E[X | X > VaRp(X)], and as such
CTEp is exactly the average loss in the worst 100(1 − p)% of cases. It is, there-
fore, a measure of what the practitioner should expect if an extreme loss with
pre-defined probability actually occurs, which a single VaR cannot provide.

Moreover, VaR is not subadditive in general, and therefore does not define
a coherent risk measure, contrary to CTE. Using the CTE risk measure thus al-
lows the analyst to be flexible regarding how the risk variable is constructed: for
instance, one interesting possibility would be to consider several stock market
indices from different regions or some relevant assets, each acting as an individ-
ual risk, then compute their respective daily log-returns, and finally define the
risk variable X by pooling these returns (i.e. averaging them over the number
of indices/assets). This would give an idea of financial losses that can be either
more global than that given by a single market index, or more localized if assets
from a specific sector of the economy are chosen instead. In such a situation,
the risk X is a sum of individual risks, and the subadditivity property becomes
fully relevant. For the sake of simplicity, and since CAT bond premiums exhibit
significant correlation with movements in the wider financial market, we choose
here to work with a single risk variable constructed on the S&P 500 index, but
there is nothing preventing an extension as we have described here.

The fact that CTE is a coherent measure of tail risk beyond the VaR is the
main reason why the use of CTE instead of VaR is now being recommended
by a significant part of the risk community, and not least by regulators in the
Basel Committee on Banking Supervision (2013). Other, if more complicated,
interesting coherent risk instruments are the classes of spectral risk measures
and distortion risk measures (see e.g. Dowd and Blake, 2006) and, if one is will-
ing to move away from quantile-based risk measures, the class of expectiles (see
Newey and Powell, 1987; in an actuarial context, Kuan et al., 2009). The CTE
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risk measure, however, has the advantages of simplicity and, crucially, straight-
forward interpretability, something that is arguably less apparent for expectiles.

Finally, and because our focus is to take tail risk into account, we do not
consider central quantities such as the standard deviation, which do not capture
the structure of tail risk and may even be undefined when the second moment
of the loss variable does not exist. This is a distinct possibility since financial
losses have empirically been shown to be heavy-tailed (see e.g. Gabaix et al.,
2003 as well as Chavez-Demoulin et al., 2014). One alternative would have been
to follow Dowd and Blake (2006) and select another coherent quantile-based
risk measure, such as a spectral or distortion risk measure in order to assess tail
risk. From the asymptotic point of view, such risk measures are linearly related
to VaR when p is large (see Section 3.2 in El Methni and Stupfler, 2017a); that
is, they can be scaled to the same value asymptotically as p → 1. This makes
the choice of the risk measure in our new model, introduced in (4) below, not
essential for high p in the sense that we can always reach the same numerical
evaluation of risk by tuning its regression coefficient. The well-behaved and sim-
ple CTE, that does not have the structural disadvantages of VaR, is therefore a
natural choice for our work.

For the aforementioned reasons, we choose to work with the CTE risk mea-
sure in order to construct our financial loss variable. We are now ready to intro-
duce the FL premium principle

ρFL(L) = a + bEL + cCTEp(X), (4)

for a, b and c all positive, where X represents the indicator of financial loss,
which we take to be the negative daily log-return of S&P 500. A large positive
value of X then represents themost dangerous situation in financial terms, while
X negative can be considered as the profitable case. Let us also highlight that
in the data set we consider for X, the values of the daily log-returns of S&P
500 were concentrated between −0.110 and 0.095; consequently, when there is
a financial loss, namely X has taken positive values in the observation period
and the confidence level p of CTE is high enough (e.g. above 50%), the value of
CTEp(X) lies between 0 and 1 just as the value of EL does, and therefore the
values of EL and CTEp(X) are comparable. In the following, we show that the
FL premium principle with 90% CTE, ρFL(L) = a + bEL + cCTE0.90(X), fits
the post-crisis data better than the linear premium principle; we will also justify
that the choice of the level p = 0.9, although providing the best fit, appeared
to be largely inconsequential in terms of goodness-of-fit as long as one takes
p ≥ 0.5.

The empirical CTE is calculated based on 1 year of S&P 500 negative daily
log-return data preceding the issue date of each CAT bond. More specifically,
for any p ∈ (0, 1),

CTEp(X) ≈ 1
�(1 − p)n


n∑
i=�pn�

x[i ],
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TABLE 5

REGRESSION RESULTS FOR THE FL PREMIUM PRINCIPLE (4) WITH p = 90% IN THE POST-CRISIS MARKET.

Coefficients Estimate Std. Error t-Value p-Value Adj. R2

a 0.015820 0.004092 3.866 0.000145∗∗∗

0.7041b 1.7329 0.08564 20.234 < 2e − 16∗∗∗

c 1.3802 0.1408 9.805 < 2e − 16∗∗∗
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FIGURE 3: ACFs of the residuals, FL premium model ρ(L) = a + bEL + cCTE0.90(X). (Color online)

where x[i ] is the i th largest negative daily log-return in n days (for a 1-year pe-
riod, n ≈ 260). The ACF of the residuals of the fitted FL premium model are
provided in Figure 3, they motivate again a correction for autocorrelation and
heteroskedasticity. Numerical results, using such corrections, are reported in Ta-
ble 5. It appears from these results that coefficient c, corresponding to CTE0.90,
is indeed highly significant and the adjusted R2 markedly improves on that of
the linear premium principle. This adjusted R2 is essentially equivalent to that
of the pre-crisis linear premium model, which seems to indicate that the FL
model recovers a quantity of information equivalent to the one missing from
the post-crisis implementation of the linear premium model. Interestingly, the
coefficient b of EL in the FL premium model is only very slightly lower than in
the post-crisis linear premium model, while the intercept a is much lower (half
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of what it was pre-crisis in the linear premium model, and a third of its value
post-crisis). Our interpretation is that the perception of higher fixed risk load-
ing in the post-crisis linear premium model was actually masking the fact that
post-crisis premiums have been set in a significantly greater accordance with
the behavior of the financial market compared to the pre-crisis period. Let us
emphasis once more that our data does not seem to show that typical premium
levels increased after the financial crisis, which is a different conclusion from
that of Gürtler et al. (2016). This is because an increase in the intercept a of the
linear premium or FL premium models does not necessarily translate into an
increase of premium levels, as the occurrence of the latter also depends on other
coefficients in the model as well as on EL and/or CTE levels. What our results
do show, however, is that after the financial crisis, investors have been paying
much more attention to market conditions and not merely to EL calculations.
Thus, the incorporation of a financial loss term results in a model that reflects
investors’ expectations on the return of CAT bond more accurately.

Now we justify that the FL premium with 90% CTE provides a (marginally)
better fit than the FL premiums with other level of CTEs, but the choice of
p is actually very flexible. Since, from the above, the FL premium principle
is an improved model for the post-crisis data, we shall work with the 2008–
2014 CAT bond data and compare the FL premium regression models (4) for
p ∈ {50%, 60%, 70%, 80%, 90%, 95%}. We start at p = 0.5 because we primar-
ily wish to evaluate the influence of financial tail risk on CAT bond pricing;
furthermore, since the true value of CTEp(X) is unknown and estimated by the
above empirical estimator, and noting that a year of S&P 500 daily log-returns
data is made of roughly 260 observations, we cannot reasonably expect any such
estimator to deliver reliable results if p > 0.95.

Our aim is to calculate the log-likelihood of each model and select the one
with highest likelihood. To make sure that this procedure makes sense from the
statistical point of view, we first check whether the errors in the regressionmodel
(4) can be considered Gaussian. Figure 4 shows Gaussian QQ-plots of the stan-
dardized residuals for all six models. It appears that in each case, the left and
central parts of the distribution of the standardized residuals are fitted very well
by the standard Gaussian distribution and the right tail of the residuals looks a
bit longer in each case, but only for 7 or 8 points. Since the post-crisis data set
consists of 227 points, we consider this departure from normality reasonable for
modeling purposes.

Because there is correlation in the residuals, we need to account for this in the
correlation structure of the errors in order to compute a correct log-likelihood
for the model. To assess the correlation structure of the errors, we compute the
ACF and partial autocorrelation function (PACF) of the residuals in all six
cases, see Figures 5 and 6. In all six cases, the PACF cuts off after lag 1 and
the ACF tails off. This suggests an autoregressive structure of order 1 (AR(1))
structure for the errors in these models.

We then compute the log-likelihood under an AR(1) model for the errors;
results are summarized in Table 6. It is seen there that the log-likelihood is
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FIGURE 4: Gaussian QQ-plot of the standardized residuals for the regression model (4) with
p ∈ {50%, 60%, 70%, 80%, 90%, 95%}.

maximal for p = 90% among our six tested cases. We would therefore say
that there is evidence that the 90% CTE model fits our data best. The values
of adjusted R2 are, however, all very close to and not less than 0.6968 when
p ≥ 0.5, meaning that in our opinion the choice of p ≥ 0.5 is largely up to the
practitioner and depends on the final objective of the modeling effort.

We conclude this section by providing some insight and recommendations
regarding the choice of p. Let us first reiterate that an increasing risk aversion
of market participants means that conservative investors are concerned about
the potential impact of huge financial losses, and this is exactly the reason
we propose to incorporate risk loading based on financial losses. Considering
major financial losses, meanwhile, requires to consider the tail area of financial
losses. This suggests to choose a high-level p, but what such level should we
consider? In current regulation frameworks, the level of VaR is set as 99% (Basel
II) or 99.5% (Solvency II). Because VaR is criticized for being not informative
enough regarding tail risks, certain regulators have argued that CTE is a better

https://doi.org/10.1017/asb.2017.32 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.32


390 G. STUPFLER AND F. YANG

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F
CTE50 model

5 10 15 20

−
0.

1
0.

1
0.

3

Lag

P
ar

tia
l A

C
F

CTE50 model

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F

CTE60 model

5 10 15 20

−
0.

1
0.

1
0.

3
Lag

P
ar

tia
l A

C
F

CTE60 model

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F

CTE70 model

5 10 15 20

−
0.

1
0.

1
0.

3

Lag

P
ar

tia
l A

C
F

CTE70 model

FIGURE 5: ACF (left panels) and PACF (right panels) for the regression model (4), case
p ∈ {50%, 60%, 70%}. First row: p = 50%, second row: p = 60%, third row: p = 70%. (Color online)

risk measure and made recommendations for the confidence level p (e.g. 97.5%,
see the Basel Committee on Banking Supervision, 2013, or 99%, see p.25 of
McNeil et al., 2015). One way to determine a level of CTE that can be used is
to compute the value of p such that the value of the CTE equals that of VaR
at 99%. This value of p depends of course on the underlying distribution of the
risk. Many empirical studies have demonstrated the heavy-tailed character of
log-returns on various stocks and stock indices and the tail indices are often
found to lie between 1.5 and 3; see a summary of these findings in Ibragimov and
Walden (2007). A quick calculation shows that for Pareto distributions with tail
index ranging from 1.5 to 3, the level p required to make the CTE equal to the
99%VaR is ranging from 95% to 97%.This is of course even higher if the recom-
mended level of VaR is instead taken to be 99.5%, as the Solvency II regulatory
framework recommends. On the one hand, and through this simple calculation,
we can see why regulators, being inherently pessimistic, consider to propose
to use the 99% level of CTE. On the other hand, regulatory criteria have been
criticized by investors and financial firms precisely for being too pessimistic,
and as such too costly to implement. Finally, and back to our context, the value
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FIGURE 6: ACF (left panels) and PACF (right panels) for the regression model (4), case
p ∈ {80%, 90%, 95%}. First row: p = 80% , second row: p = 90%, third row: p = 95%. (Color online)

of p to choose should depend on what we wish to model. In this application
where we want to model the premium based on extreme behavior in the market,
we would recommend using CTE at level 90% because it realizes a compromise
between what the regulators recommend, what companies can comply with,
and ease of estimation (including, as is the case here, when the sample size is
in the hundreds). It also, we recall, provides a strong improvement in terms of
goodness-of-fit upon the naive linear premium model in the post-crisis period.

3. EXTREME VALUE RISK MODELING

Catastrophe risk modeling is, by design, a key factor determining the premium
of CAT bonds. Gürtler et al. (2016) argued though that their analysis of CAT
bond data showed that “investors react with distrust of the expected loss
calculated by catastrophe modeling companies”, suggesting that the modeling
effort should be improved. We propose here to use methods from EVT,
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TABLE 6

LOG-LIKELIHOODS FOR THE REGRESSION MODELS (4), WHERE p VARIES IN THE SET
{50%, 60%, 70%, 80%, 90%, 95%}.

CTE50 CTE60 CTE70 CTE80 CTE90 CTE95

Log-Likelihood 542.3423 542.3758 542.219 542.5585 542.8444 542.5407
Adjusted R2 0.6968 0.6981 0.6979 0.701 0.7041 0.7032

introduced in Section 3.1, to model catastrophic risks. Then, in Section 3.2,
asymptotic analyses of the resulting predicted CAT bond premiums are carried
out for any type of loss covered by a CAT bond, both in the linear premium
and FL premium models.

3.1. The context of Extreme Value Theory

For the purpose of asymptotic analysis of CAT premiums, we briefly introduce
the fundamental convergence result from EVT in this subsection.

A cdf F is said to belong to the MDA of a non-degenerate cdf H, denoted
by F ∈ MDA(H), if for an independent sample of size n from F , its properly
linearly normalized maximum has a distribution converging weakly to H as
n → ∞. The classical Fisher–Tippett–Gnedenko theorem, attributed to Fisher
and Tippett (1928) and Gnedenko (1943), states that up to location and scale,
H has to be the GEV distribution whose standard version is given by

Hγ (t) = exp
{
− (1 + γ t)−1/γ

}
, γ ∈ R, 1 + γ t > 0,

where the right-hand side is interpreted as exp
{−e−t} when γ = 0.

The regions γ > 0, γ = 0 and γ < 0 correspond to the so-called Fréchet,
Gumbel and Weibull domains of attraction, respectively. For a given distribu-
tion, belonging to such a domain of attraction is essentially a statement on the
tail behavior of its survival function: the Fréchet domain of attraction is the
class of distributions whose survival function F = 1 − F decays roughly like
a negative power of x, while belonging to the Gumbel domain of attraction
means that the survival function has essentially an exponential decay near its
right endpoint. Finally, a distribution which belongs to the Weibull domain of
attraction must have a finite right endpoint xF and its survival function then
decays roughly like a positive power of x− xF near the endpoint.

It should be pointed out that, while a statement such as F ∈ MDA(H) is
in effect an assumption, it is the minimal assumption necessary to conduct a
meaningful analysis of the extremes of a data set. Indeed, if the idea is to draw
informative conclusions using the high values in the sample of data, the mini-
mumone can ask for is that a distributional convergence result about the highest
value in the sample holds true.
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3.2. Asymptotic analysis

In this subsection, we consider the asymptotic properties of CAT bond premi-
ums as the attachment and exhaustion points get large. The analysis is valid for
any type of trigger as long as we can justify that the catastrophic risk L follows
an EVT model, no matter whether L represents the actual loss or a physical
measure, the latter being the case we consider in our real data analysis. Suppose
the term of the CAT bond can be divided into N ≥ 1 periods such that in each
period, the catastrophic risk can be quantified and (if N > 1) risks are mutually
independent.We denote the catastrophic risk in the i th period by a non-negative
random variable Li , for 1 ≤ i ≤ N, with cdf F(x) = 1 − F(x) = Pr (L ≤ x)
and upper endpoint l∗ ≤ ∞. The CAT bond is triggered by the maximum risk
MN = max{L1, . . . , LN} of the Li over N periods; that is, if MN exceeds the
attachment point t, then the CAT bond starts to cover the loss. Since the Li ’s
are independent and identically distributed randomvariables, themaximumMN
has cdf FN(x). The distribution of MN may not be easy to approximate near its
upper endpoint under no further hypothesis on F though. This is where EVT
plays a crucial role: to get more information about the distribution of MN, we
assume that for all 1 ≤ i ≤ N, Li ∈ MDA

(
Hγ

)
for some γ ∈ R. Let us em-

phasize again that the domain of attractionMDA
(
Hγ

)
includes a wide range of

commonly used distributions which are suited to the capture of extreme risks.
Moreover, and as we will show in Section 3 below, the particular parametric
family of GP distributions constitutes a very convenient and versatile frame-
work to model the excesses of the data above a high threshold.

Since aCATbond covers the last layer of loss, our firstmain result focuses on
the asymptotic behavior of the EL when the attachment and exhaustion points
are at very high levels, that is, near l∗. In other words, we study the asymptotic
behavior of

EL = E
[
(MN − t)+

] − E
[
(MN − h)+

]
h − t

, (5)

when t and h are approaching l∗. Intuitively, as the layer becomes higher, the
EL should decrease. And indeed, the result in Theorem 3.1 below shows that,
under some assumptions, the EL decreases proportionally with F(t). To make
the presentation concise, all the proofs in this section are postponed to the Ap-
pendix.

Theorem 3.1. Assume that F ∈ MDA(Hγ )with γ < 1. Suppose further that both
the exhaustion point t and the attachment point h are approaching l∗ and are such
that F(h)/F(t) eventually converges to some positive constant λ. Then as t ↑ l∗,
the EL (5) is approximated by

EL ∼ Nλγ (λγ−1 − 1)
(1 − λγ )(1 − γ )

F(t),

where the notation “∼” means that the quotient of both sides tends to 1 as t ↑ l∗.
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Such an asymptotic expression can be used to illustrate how the layer affects
the EL and the premiums. We show this by applying Theorem 3.1 to get the
asymptotics for the linear premium principle (1).

Corollary 3.1. Under the assumptions of Theorem 3.1, as t ↑ l∗, the linear pre-
mium is approximated by

ρlinear(L) ≈ a + bNλγ (λγ−1 − 1)
(1 − λγ )(1 − γ )

F(t). (6)

Our last result considers the asymptotics of the FL premium principle. To
obtain a result in the spirit of the previous corollary, we also consider the case
when the level p in CTEp(X) approaches 1. And because this translates into
considering the high quantiles of X only, we work in an extreme value frame-
work dedicated to the considerations of high losses. Since much of the empirical
evidence shows that the distribution of financial asset returns is heavy-tailed
(see e.g., Bradley and Taqqu, 2003, Resnick, 2007 and Chavez-Demoulin et al.,
2014), we assume thatG, the survival function of the financial losses, is regularly
varying; that is, G(·) ∈ RV−β , in the sense that

lim
t→∞

G (tx)

G (t)
= x−β, x > 0.

This implies that G(x) behaves roughly like x−β in a neighborhood of infinity,
and as such we assume that β > 1 in order to ensure the integrability of the
quantile function of X and thus the existence of CTEp(X).Wemay now state the
asymptotics of the FL premiumprinciple assuming heavy-tailed financial losses.

Theorem 3.2. Under the assumptions of Theorem 3.1, and as t ↑ l∗, the FL pre-
mium principle (4) is approximated by

ρFL(L) ≈ a + bNλγ (λγ−1 − 1)
(1 − λγ )(1 − γ )

F(t) + cCTEp(X). (7)

Furthermore, if the financial loss X has a survival function G(·) ∈ RV−β for some
β > 1, then as t ↑ l∗ and p ↑ 1, we have

ρFL(L) ≈ a + bNλγ (λγ−1 − 1)
(1 − λγ )(1 − γ )

F(t) + cβ
β − 1

G←(p), (8)

where G← denotes the quantile function related to G (see (3)).

Approximation (8) is of particular interest when the level p is chosen even
higher than 90% (i.e. when the idea is to focus on the influence of the very highest
losses on the premium) and/or when the size of the sample of data considered
is small, although it should be recalled that the value of the coefficient c may
depend on p since model (4) was originally stated for fixed p.
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4. APPLICATION

In this section, we first introduce the POT method in EVT, which makes an
efficient use of the data to fit the flexible parametric GP distribution to the high
values in our sample. In Section 4.2, using this method, we fit a GP distribution
to low precipitation data collected in Fort McMurray. Then, in Section 4.3, a
wildfire CAT bond is proposed with precipitation as the trigger.

4.1. Peaks-Over-Threshold approach

The assumption that linearly normalized maxima converge in distribution is
useful in theoretical derivations, for example to obtain the asymptotic expan-
sions of the CAT bond premiums in Section 3.2. One simple way to use this
condition in statistical applications is through the so-called blockmaximamodel:
the data is split into blocks of consecutive observations, whose sizes are so large
that the Fisher–Tippett–Gnedenko theorem can be used to provide an approx-
imation of the distribution of the maximum of the observations in each block.
Although this technique can be shown to possess interesting properties (for a
nice recent account, see Ferreira and de Haan, 2015), it may be very wasteful
of data since we only take one point, the maximum, in each block. In partic-
ular, if in a given block the second largest value is larger than all observations
in the other blocks, this data point is discarded although it can legitimately be
considered as part of the extremes of this sample.

In practice, the POT method, where all the data above some threshold (cho-
sen by the analyst) can be used, is often applied instead. This technique con-
siders all the data points above a high threshold, whose common distribution,
called the excess distribution over threshold u, is defined as

Fu(x) = Pr (X− u ≤ x|X > u) , (9)

for 0 ≤ x < xF − u, where xF is the right endpoint of the distribution F . By the
Pickands–Balkema–de Haan theorem (see e.g. Theorem 3.4.13(b) in Embrechts
et al., 1997), F ∈ MDA(Hγ ) if and only if there exists a positive function σ such
that the excess distribution Fu can be approximated by aGP distributionGγ,σ (u)
as the threshold u is approaching xF , where

Gγ,σ (x) = 1 − (1 + γ x/σ)−1/γ

is the cdf of the GP distribution; when γ = 0, the GP distribution Gγ,σ (x) is
understood as 1 − exp(−x/σ). In other words, and provided a suitable high
threshold u is chosen, the POT method allows one to retain all the data above
the value u and regard it as (approximately) following a GP distribution. Such a
technique, which we shall use in this work, allows one to have a comprehensive
look at the extremes of a sample.
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4.2. Analyzing the distribution of the Fort McMurray precipitation data

Wildfires have been a frequently occurring natural disaster during the summer
months in North America. There are many factors that contribute to a wildfire,
such as precipitation, temperature and wind speed. In this work, we consider
the precipitation factor, especially focusing on the wildfires in Fort McMur-
ray, Canada. Usually, dry fall and winter seasons along with a warm spring,
which are considered as the consequences of the natural El Niño cycle, have
high chances to cause a wildfire. Therefore, the amount of precipitation in three
consecutive seasons is an important indicator of the likelihood of big wildfires
during the following summer.We will show belowwith classical diagnostic plots
in EVT how to model the distribution of precipitation.

The precipitation data set used in this work is obtained from the historical
climate data provided on the website of the Government of Canada.1 It con-
tains the monthly total precipitation (in millimeters) in Fort McMurray from
September 1923 to May 2007. Since the fall, winter and spring seasons have a
major impact on the occurrence of wildfires, we aggregate, for the Nth year of
data, the total monthly precipitation from September 1 in year N to May 31 in
year N + 1. Usually, a low amount of precipitation is a major reason behind
the occurrence of wildfires, but the classical version of EVT we have introduced
here deals with the right tail of a random variable, i.e. its high values. Hence, we
simply transform the total of our nine months’ precipitation into its reciprocal
and then multiply it by 1,000 to avoid too much rounding error in our computa-
tions. That is, if Y represents the total amount of precipitation from September
to May in any two consecutive years, then the transformation

T(Y) = 1, 000
Y

= L (10)

is the quantity used in our work as an indicator of wildfire risk. This gives us
a total number of 83 data points Li . Again, the data points generated this way
come from a time series; while it is not clear that we are in the ideal situation
when the data are independent, we point out that extreme value techniques have
been shown to be resistant to autocorrelation and, more generally, violation
of the independence assumption, at the price of more complicated and often
wider confidence intervals; see e.g. Drees (2003). A crucial requirement for any
extreme value technique to work, of course, is the validity of the MDA assump-
tion, and we will then show first that it is reasonable to assume that the data can
be modeled by a distribution belonging toMDA(Hγ ). For that purpose, the use
of the POT approach, instead of the block maxima model, is especially justified
with such a small data set.

The most important step in the POTmethod is to choose a proper threshold
so that the GP distribution fits best the data beyond the threshold. If the thresh-
old is chosen too low, the estimates are biased; if the threshold is too high, then
too few exceedances remain which results in estimators having high variance.
So far, the choice of such a threshold has been a widely debated topic (see the
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recent review paper by Scarrott andMcDonald, 2012) but there is no universally
accepted, efficient approach, most situations requiring some kind of educated
guess. We first conduct an exploratory analysis of the data to determine a suit-
able threshold and then use theMaximumLikelihood (ML) method to estimate
the parameters.

A first, central question is to understand the type of tail behavior the data
features. Although this is not necessary per se to estimate the parameters via
the POT method, it will help us assess if our analysis gives plausible results.
We start by drawing a QQ-plot of the empirical quantiles of the log-data ver-
sus theoretical quantiles of the standard exponential distribution whose cdf is
F1(x) = 1 − exp(−x). The rationale behind this is the following: a flat line
at the right of the QQ-plot indicates that the data have a short-tailed distribu-
tion and thus may be modeled by a bounded distribution. We supplement this
plot by drawing location-scale GEV QQ-plots of the data using the R func-
tion fevd contained in the R package extRemes. These plots are reported in
Figure 7, where μ denotes location and σ denotes scale. All four plots suggest
that the distribution should be described by a distribution with a negative shape
parameter.

To get further insight into the right tail of the data, we draw a plot of the mo-
ment estimator of the extreme-value index γ of the data (Dekkers et al., 1989).
Let k+ 1 be the number of top order statistics taken into account for the esti-
mation; the highest, second, . . . , kth, (k + 1)th order statistics are denoted by
L(n), L(n−1), . . . , L(n−k+1), L(n−k), respectively. Let also

M(r)
n (k) = 1

k

k−1∑
i=0

(
log L(n−i) − log L(n−k)

)r
, r = 1, 2.

Then the moment estimator of γ is given by

γ̂Mom(k) = M(1)
n (k) + 1 − 1

2

(
1 −

(
M(1)
n (k)

)2
M(2)
n (k)

)−1

.

When the survival function of the modeling random variable L is further as-
sumed to be second order regularly varying (see de Haan and Ferreira, 2006), it
can be shown that γ̂Mom(k) is asymptotically Gaussian for k = k(n) → ∞ with
k/n → 0 and provided a bias condition holds, no matter what the value of γ

is, contrary to what happens for the Hill estimator M(1)
n (k) (Hill, 1975), whose

consistency requires that γ be positive. The pairs (k, γ̂Mom(k)) are represented
on Figure 8. This plot largely confirms the previous conclusion: the data seems
to give evidence of a short tail (i.e. negative shape parameter) or perhaps an
exponentially decreasing tail (i.e. zero shape parameter).

Let us now work on the proper modeling of the extremes of the data using
the POT approach. A commonly used device, as far as choosing the threshold
is concerned, is the mean excess plot. The mean excess function of a random
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FIGURE 7: Top left: exponential QQ-plot of the log-precipitation data, top right: GEV QQ-plot of the
precipitation data, estimates (μ̂, σ̂ , γ̂ ) = (4.084, 0.965,−0.025) given by an L-moments technique, bottom
left: GEV QQ-plot of the precipitation data, estimates (μ̂, σ̂ , γ̂ ) = (4.096, 0.951,−0.036) given by the MLE,
bottom right: GEV QQ-plot of the precipitation data, estimates (μ̂, σ̂ , γ̂ ) = (4.084, 0.965,−0.025) given by

the GMLE. (Color online)

variable L is defined as

e(u) = E[L− u|L > u]. (11)

It can be shown that if L follows aGP distributionwith γ < 1, then e(u) behaves
linearly in u:

L is Gγ,σ distributed ⇒ e(u) = σ + γ u
1 − γ

.

For more details, we refer the reader to Section 5.2 of McNeil et al. (2015) and
Section 5.3.2 of Beirlant et al. (2004). A straightforward estimator of e(u) based
on (11) is given by

en(u) =
∑n

i=1(Li − u)1{Li>u}∑n
i=1 1{Li>u}

. (12)
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FIGURE 8: Plot of the moment estimates γ̂Mom(k) as a function of k for the precipitation data.

If the data support the EVT assumption, then it should be accurately modeled
by aGP distribution over a high threshold and thus the plot of (12) as a function
of u should become approximately linear for larger values of u. An upward trend
indicates that the shape parameter γ is positive, a downward trend indicates that
γ is negative and a roughly horizontal line indicates that γ is close to 0. The
mean excess plot of the data, computed thanks to the function meplot from the
R package evir, is given in Figure 9. It looks from this plot that a good choice
for the threshold u would be u = 3.5, after which the function en looks roughly
linear indeedwith a downward trend, thus supporting our first conclusions. This
leaves us with 68 data points for the estimation. The corresponding QQ-plot of
empirical quantiles of the data versus quantiles of the adjusted GP distribution
using the ML estimator are given in Figure 10. The GP fit above u = 3.5 looks
fairly good, the most extreme points in the data (above the value 7) seem to
exhibit greater variability, although this is far from uncommon in extreme value
models (seeGhosh andResnick, 2010 andElMethni and Stupfler, 2017b). From
this GP fit, the estimated scale σ̂ is 1.990 and the estimated shape γ̂ is −0.389.
The right endpoint is estimated to be

l∗ = − σ̂

γ̂
+ u = 8.6125.
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FIGURE 9: Mean excess plot of the precipitation data.

Namely, the lowest possible total precipitation over nine months is estimated to
be 116.110 mm.

4.3. A wildfire bond

The 2016 Fort McMurray wildfire featured dry air mass, extremely high tem-
perature and strong wind gust, according to the “Daily Data Report for May
2016” from Environment Canada.2Low amounts of rainfall during the previ-
ous months were one of the major causes of exceptionally dry air and soil, and
therefore contributed to this wildfire significantly. To mitigate extreme wildfire
risk, we design a CAT bond for the wildfires in Fort McMurray. Due to the fact
that the aggregated precipitation amount is an important indicator for the oc-
currence of wildfires, our suggested CAT bond has a parametric trigger related
to precipitation.

To bemore specific, first denote the total precipitation amount from Septem-
ber 1 in a given year to May 31 in the next year by Y. The quantity used to
trigger the bond is the transformation L = T(Y) = 1000/Y described in (10).
We consider a nine-month bond which covers the months from September to
May. The bond has a pre-determined attachment point t and exhaustion point
h. If the transformed precipitation L is below t, then the bond is not triggered,
with the entire principal paid back to the investor. If L is in between t and h,
then the bond is triggered with a partial principal payment. If L is higher than
h, then the bond is triggered with no principal paid back. We note that this type
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FIGURE 10: GP QQ-plot of the precipitation data above threshold u = 3.5. Estimated parameters
(̂σ , γ̂ ) = (1.990,−0.389) using the MLE.

of bond lasts less than 1 year, but, if the data can be believed to be indepen-
dent, it is straightforward to extend it to multiple years. Indeed, and with the
notations of Section 3.2, an N-year bond would be triggered if the maximum
MN = max{L1, . . . , LN} of the transformed precipitation amounts L1, . . . , LN
over the N-year term exceeds the attachment point t. If MN exceeds the ex-
haustion point h, then the bond only covers the loss up to h. Again, we should
point out here that, the data being weather time series data, the validity of the
independence assumption is not clear, and therefore we consider it safer, from a
statistical point of view, to restrict the bond to a nine-month period.

Next, we illustrate how to utilize the results from the previous sections by
discussing the choice of premium for this wildfire bond. Suppose a nine-month
CAT bond on wildfire in Fort McMurray with precipitation as the parametric
trigger is issued on September 1, 2015. As concluded in Section 2, we would
recommend the use of the FL premium model with p = 90%:

ρFL(L) = 0.015820 + 1.7329 × EL + 1.3802 × CTE0.90, (13)

where the coefficients are taken from our data analysis and specifically Table
5. The value of CTE0.90 is calculated using S&P 500 data from September 1,
2014 to August 31, 2015. We also compare the results obtained using this model
with the premiums calculated using the global, pre-crisis and post-crisis linear
principle (1), with respective coefficients estimated in Section 2; see Table 3. In
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particular, the post-crisis linear premium model is

ρlinear(L) = 0.04838 + 1.7982 × EL. (14)

Of course, at this modeling stage, the value of EL is unknown, but we may ap-
proximate it using a combination of Theorem 3.1 and our statistical analysis in
Section 4.2. More precisely, by Theorem 3.2, the premium ρFL(L) in (13) can
be approximated by (7) when both t and h are large and F(h)/F(t) is approxi-
mately equal to some constant λ; similarly, the premium ρlinear(L) in (14) can be
approximated by (6) in Corollary 3.1. In order to use these approximations, once
the attachment point t is fixed, we need to calculate F(t) to apply our asymp-
totic relationships. Since the fitted excess distribution is the GP distribution, it
is a consequence of (9) that for x > u, we can approximate the true survival
probability by

F̂(x) = π̂(u)
(
1 + γ̂

x− u
σ̂

)−1/γ̂

where π̂(u), the proportion of exceedances above level u in the data, is the
straightforward empirical estimator of F(u). From Section 4.2, the estimated
parameters are σ̂ = 1.9895 and γ̂ = −0.3891, and π̂(u) = 68/83 = 0.8193.

We consider an attachment point t ranging from 5 to 8.6125. By making the
ratio λ vary in {0.1, 0.2, 0.3}, where λ ≈ F(h)/F(t) (or equivalently, by making
h vary with t previously fixed), we can report calculated premiums in Figure
11. These premiums are in basis points (bps) and are calculated according to
approximation (7). For a fixed PFL (i.e. fixed attachment point t), a higher λ

means a higher probability of exhaust (i.e. a lower exhaustion point h), which
yields a higher premium: this is expected since a shorter layer leads to a higher
likelihood of no payment to the investor at maturity. With the same ratio λ, as t
increases, the premium decreases: again, this makes sense because a higher layer
means a lower probability to have the bond triggered.

Next, we consider what happens if this simple wildfire bond had indeed been
issued on September 1, 2015. The total precipitation amount from September
2015 to May 2016 in Fort McMurray was 116.6 mm. With the transformation
(10), we have L = 8.5763, which is very close to the estimated right endpoint of
the precipitation distribution l∗ = 8.6125.With such a high L, and although the
definitive answer depends on the attachment and exhaustion points, the bond is
very likely to be triggered. Then part or all of the principal will be not returned
to the investor, and is instead kept by the (re)insurer to cover the huge claims
caused by the wildfire. In Table 7, we summarize the contingent principal pay-
ment Z, which is the percentage of principal not returned to the investor, and the
premium ρ for the bond, calculated in bps according to the FL premium model
and then to the global, pre-crisis and post-crisis linear premium models, with
different attachment and exhaustion points linked by the ratio λ. It is clearly
seen that when the coverage layer is very high, the principal is partially returned
and the premium is low. In other cases when the coverage layer is lower, the
bond is triggered without any part of the principal returned to investors (i.e.
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TABLE 7

THE CONTINGENT PRINCIPAL PAYMENT AND THE PREMIUM OF THE WILDFIRE BOND WITH VARIOUS
ATTACHMENT AND EXHAUSTION POINTS.

ρlinear ρlinear ρlinear

λ t h Z ρFL (Global) (Pre-Crisis) (Post-Crisis)

0.1
6 7.55 100% 1545.89 1884.11 2061.004 1675.24
7 7.95 100% 729.99 822.39 811.06 828.60

8.56 8.5911 43.76% 397.75 390.07 302.08 483.85

0.2
6 7.22 100% 1757.06 2158.89 2384.51 1894.36
7 7.75 100% 791.10 901.92 904.68 892.02

8.56 8.5844 55.65% 397.76 390.08 302.09 483.86

0.3
6 6.98 100% 1935.92 2391.65 2658.53 2079.97
7 7.60 100% 842.86 969.28 983.98 945.73

8.56 8.5796 69.24% 397.77 390.09 302.10 483.87
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FIGURE 11: CAT bond modeling: the premium of the proposed 1-year wildfire CAT bond, computed via the
FL premium principle (13) and linear premium principle (14), as a function of the attachment point

t ∈ [5, l∗] = [5, 8.6125], for different values of the ratio λ = F(h)/F(t). Blue solid line: λ = 0.1, red dashed
line: λ = 0.2, black dotted line: λ = 0.3. (Color online)

when t = 6, 7 for λ = 0.1, 0.2 and 0.3). It is also apparent that for a very
high attachment point t, and within a given premium principle, the calculated
premium is essentially a constant function of λ (and therefore of h). This is a
consequence of the fact that for high t, the influence of EL becomes negligible
due to it being asymptotically proportional to F(t); see Theorem 3.1.

From these last numerical results, it follows that the attachment and exhaus-
tion points can therefore be fine-tuned to yield a CAT bond adapted to the par-
ticular purpose of sponsors. For instance, in this example, if the goal is to only
focus on extreme wildfire risk, then the coverage layer can be set high, close to
the endpoint of the parametric trigger. This then yields a relatively low premium,

https://doi.org/10.1017/asb.2017.32 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.32


404 G. STUPFLER AND F. YANG

which is attractive to the sponsor. At the same time and in this example, for the
highest examined coverage layer, the FLpremiumprinciple returns a 32%higher
premium than the pre-crisis linear premium model, and a 2% higher premium
than the global linear premium model. By contrast, the FL premium is 18%
lower than its post-crisis linear counterpart. This is, again, due to the post-crisis
linear premiummodel predicting higher baseline premiums regardless ofmarket
behavior, while the FL premium principle reacts precisely tomarket movements.
The difference between the premium predicted by the FL and global linear prin-
ciples might appear insignificant; we would argue that this is simply due to the
fact that in this precise example, the risk loads not due to EL in both the global
linear model and FL premiummodel happened to be the same. If anything, this
testifies of the reactivity of the FL principle when pricing high-attachment point
CAT bonds: over the period considered here, the market did not experience any
unusual shocks, and as such we would not necessarily expect a strong departure
from price calculations under “stationary regime” computations. By contrast, if
the period considered had featured extreme market movements, then this would
have been reflected in the calculation of the premium by the FL principle, but
the linear premium model would not have captured this. It is also interesting to
note that for lower (but still high) attachment points, the FL principle yields the
lowest premium among the four principles tested here. This is because the EL
coefficient b is, among all four models, the lowest in the FL principle; besides,
in such cases, the premium is strongly driven by the EL (since F(t) is still rela-
tively high) and therefore, the higher the coefficient b in such amodel, the higher
the premium. The FL principle, which diverts the focus from EL calculations to
market conditions, appears therefore to be a liberal pricing principle in standard
cases, while it defines a conservative, but not overly pessimistic, prediction rule
if the focus is on the most extreme events.

These results also carry practical consequences. Our results show that if the
focus is to (re)insure the most extreme events (i.e. if a very high t is considered),
then CAT bond investors will tend to get at least a significant part of their in-
vestment back, and we may estimate this proportion using our extreme value
framework. The premium in this case is of course lower than if the coverage layer
was set at a lower level, but certain risk-averse investors may still be attracted
by this kind of financial products. (Re)insurers, meanwhile, should expect lower
prices when the market is going well, and higher premiums when the market
is on a downward trend. This is intuitive, since investors will understandably
find it riskier to invest when the market is volatile, and will therefore require
higher yields before investing. The fact that the value of the premium predicted
by the FL principle is conservative but not unreasonably pessimistic, and most
importantly more reactive to market behavior than standard solutions, should
come as an important step toward the generalization of CAT bonds for risk
diversification purposes. Let us finally conclude this data analysis by pointing
out again that the trigger used in the bond is actually determined based on in-
formation available before the wildfire season. The bond can thus be triggered
before the real disaster, which may serve as a warning system for (re)insurers to
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gather enough capital so as to be prepared for potential claims. It is, therefore,
our opinion that the present analysis shows how CAT bonds can be specifically
designed to diversify extreme (wildfire) risk to the capitalmarket, and simultane-
ously help (re)insurers to deal with the largest claims preventively, using adapted
extreme value tools. Part of our future research will be to refine the trigger: for
instance, if more relevant information, such as temperature and wind speed, is
incorporated, a combined trigger can then be expected to better indicate the
possibility of a big wildfire.

5. CONCLUSION

By examining the pre- and post-crisis financial market, we show with an empir-
ical study that financial losses are positively correlated with CAT bond premi-
ums, and we see an increase in estimated correlation levels. A main justification
for this is the increase in risk aversion of market participants after the crisis.
We also find evidence of a breakpoint in the linear premium model, happening
at the time of the financial crisis. In particular, the post-crisis linear premium
model points to an increase in the fixed level of risk load and a decrease in the
coefficient of EL, but we also find that this model does not explain the post-
crisis CAT bond market as well as it did before the crisis. We then propose an
FL premium principle for CAT bonds, which uses the risk measure CTE to
measure financial losses. We find that, in the post-crisis period, this new pre-
mium principle recovers a quantity of information equivalent to the one lost
by the linear premium model after the financial crisis. This indicates that in the
post-crisis market, the burden of modeling the increase in risk aversion levels of
investors should be shared between the fixed risk load and a separate financial
loss factor, instead of just universally increasing the level of the fixed risk load. A
further consequence is that, according to the FL premium principle, one should
expect lower CAT bond premiums when the financial market is going well, and
higher premiums when the market is on a downward trend. This new premium
principle is also shown to be flexible with respect to the confidence/exceedance
level of CTE. Our recommendation would be to use the 90% level, which seems
to be a good compromise between the regulators’ goals, the companies’ need to
stay competitive and accuracy of estimation.

Next, by using tools from EVT, we are able to obtain asymptotic expan-
sions of the FL premium. Such approximations, who illustrate how a premium
calculated via the FL principle reacts to changes in the position and width of
the coverage layer as well as to how long the CAT bond’s term is and the tail
behavior of the triggering risk variable, provide a significant amount of infor-
mation during the design stage of a CAT bond. This is then applied to the design
of a nine-month CAT bond for wildfire risk in Fort McMurray: we define the
triggering variable as the (suitably transformed) total amount of precipitation
recorded during the nine months preceding the summer season, and we fit a GP
distribution to the right tail of this random variable using the POTmethod. The
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advantage of designing a CAT bond in this way is that, as the amount of pre-
cipitation is an effective indicator of wildfires, (re)insurance companies can get
prepared before a potential disaster once the bond is triggered, and this clearly
helps (re)insurers share the risk with the capital market. We further illustrate
how different pricing models compare on this situation to complement the con-
clusions reached in our empirical CAT bond study.
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NOTES

1. The website is http://climate.weather.gc.ca/
2. The report can be accessed at http://climate.weather.gc.ca/climate data/daily data

e.html?StationID=27214&Year=2016&Month=5&Day=1
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APPENDIX A

The concept of extended regular variation (ERV) is useful for our unified derivation. By def-
inition, a positive measurable function f (·) is said to be extended regularly varying at +∞
with index γ ∈ R, denoted by f (·) ∈ ERVγ , if there is an auxiliary function a(·) > 0 such
that, for all s > 0,

lim
t→∞

f (st) − f (t)
a(t)

= sγ − 1
γ

, (A1)

where the right-hand side is interpreted as log s when γ = 0. The auxiliary function a(·) can
be chosen to be

a(t) =
⎧⎨⎩

γ f (t), γ > 0,
f (t) − t−1

∫ t
0 f (u)du, γ = 0,

−γ ( f (∞) − f (t)), γ < 0.
(A2)

Note that, for γ = 0, as t → ∞, we have a(t) = o( f (t)) provided f (∞) = ∞, while
a(t) = o( f (∞) − f (t)) provided f (∞) < ∞. See Appendix B of de Haan and Ferreira
(2006) for more discussions on ERV.

The MDA of the GEV distribution is related to ERV through the so-called tail quantile
function

U(x) =
(
1

F

)←
(x) = F←

(
1 − 1

x

)
, x > 1. (A3)
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We recall that in (A3), F← denotes the left-continuous inverse of the non-decreasing function
F , that is

F←(z) = inf{t ∈ R | F(t) ≥ z}.
We have F ∈ MDA(Hγ ) if and only if U(·) ∈ ERVγ with the auxiliary function a(·) given in
(A2) in terms of U(·); see Theorem 1.1.6 of de Haan and Ferreira (2006).

The following lemma is a restatement of Theorem B.2.18 of de Haan and Ferreira (2006),
originally attributed to Drees (1998):

Lemma A.1. Let f (·) ∈ ERVγ for γ ∈ R, namely, relation (A1) holds for all s > 0 and for
an auxiliary function a(·) given in (A2). Then for every small ε, δ > 0, there is t0 = t0(ε, δ) > 0
such that for all s, t with t > t0, st > t0, we have∣∣∣∣ f (st) − f (t)

a(t)
− sγ − 1

γ

∣∣∣∣ ≤ εmax
(
sγ+δ, sγ−δ

)
. (A4)

Taking the supremum of both sides of the inequality (A4) with respect to s over a closed
positive interval containing 1, and then letting the interval boil down to the point 1, we can
easily prove that

lim
t→∞

f (t ± 0) − f (t)
a(t)

= 0,

where f (t + 0) (resp. f (t − 0)) denotes the left (resp. right) limit of f at t, when it exists. It
follows from this and (A1) that, for all s > 0,

lim
t→∞

f (st) − f (t ± 0)
a(t)

= sγ − 1
γ

. (A5)

Since L1, . . . , LN are independent and identically distributed random variables with com-
mon cdf F , the cdf of the maximum MN = max{L1, . . . , LN} is Pr (MN ≤ x) = FN(x). For
any cdf F , we have the following general result: as x → ∞,

Pr (MN > x) = 1 − FN(x)

= (1 − F(x))(1 + F(x) + F2(x) + · · · + FN−1(x))

∼ NF(x). (A6)

This provides a simple connection between the Li and MN.

Proof of Theorem 3.1. Notice that as t → l∗,

E
[
(MN − t)+

] =
∫ l∗

t
(z− t)dFN(z)

=
∫ l∗−t

0

[
1 − FN(z+ t)

]
dz

∼ N
∫ l∗−t

0
F(z+ t)dz = NE

[
(L− t)+

]
,

where the penultimate step is due to (A6) together with the dominated convergence theorem
since γ < 1. This relation allows us to focus on E

[
(L− t)+

]
.
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Note now that the survival function F(t) is, in a left-neighborhood of its right endpoint
l∗, equivalent to a twice continuously differentiable and decreasing function F0(t) (see Re-
mark 1.2.8 in de Haan and Ferreira, 2006) having the same endpoint l∗ and the same regular
variation properties. As such, if the attachment point t → l∗, we have x = 1/F(t) → ∞.
Recall further the function U(·) defined in (A3) and let V be a random variable uniformly
distributed on (0, 1). It is easy to verify that L conditional on L > t is equal in distribution
to U (x/V); namely,

L| (L > t)
d= U (x/V) .

Hence,

E
[
(L− t)+

] = 1
x
E [L− t| L > t] = 1

x
E [U (x/V) − t]

= 1
x

∫ 1

0
[U (x/v) − t]dv.

We then have
xE

[
(L− t)+

]
a(x)

≤
∫ 1

0

U (x/v) −U(x)
a(x)

dv.

Recall that F ∈ MDA(Hγ ) if and only if U(·) ∈ ERVγ . It follows from Lemma A.1 that the
integrand in the right-hand side is such that∣∣∣∣U (x/v) −U(x)

a(x)

∣∣∣∣ ≤
∣∣∣∣U (x/v) −U(x)

a(x)
− v−γ − 1

γ

∣∣∣∣ + v−γ − 1
γ

≤ v−(γ+1)/2 + v−γ − 1
γ

for x large enough. The dominating function is integrable on (0, 1) because γ < 1 (when γ =
0, the second part is log(1/v) which is integrable as well). An application of the dominated
convergence theorem then yields that, as t → l∗,

lim
t↑l∗

xE
[
(L− t)+

]
a(x)

= lim
x→∞

∫ 1

0

U (x/v) −U(x)
a(x)

dv =
∫ 1

0

v−γ − 1
γ

dv.

Then when x/y = F(h)/F(t) → λ, we have thanks to (A5) and the inequalities

U(x) ≤ t ≤ U(x+ 0), U(y) ≤ h ≤ U(y+ 0)

that

E
[
(L− t)+

]
h − t

∼
a(x)

∫ 1
0

v−γ −1
γ

dv

x (U(y) −U(x))
∼ 1

x
γ

λ−γ − 1

∫ 1

0

v−γ − 1
γ

dv.

Similarly, we have

E
[
(L− h)+

]
h − t

∼
a(y)

∫ 1
0

v−γ −1
γ

dv

y (U(y) −U(x))
∼ 1

y
−γ

λγ − 1

∫ 1

0

v−γ − 1
γ

dv.
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Therefore, since again x/y = F(h)/F(t) → λ,

EL ∼ Nλγ (λγ−1 − 1)
(1 − λγ )(1 − γ )

F(t).

This ends the proof.

Proof of Theorem 3.2. We only need to focus on the asymptotic expansion of CTEp(X)

as p → 1, which, however, is well known in the literature. Here, we present the proof for
completeness. Since G(·) ∈ RV−β , we have that G←(1 − ·) ∈ RV−1/β(+0). Note that

1
1 − p

∫ 1

p
G←(q)dq = 1

1 − p

∫ 1

p
G←(1 − (1 − q))dq

= G←(p)
1 − p

∫ 1

p

G←(1 − (1 − q))

G←(1 − (1 − p))
dq

∼ G←(p)
1 − p

∫ 1

p

(
1 − q
1 − p

)−1/β

dq

= β

β − 1
G←(p),

where the third step is due to the uniform convergence properties of RV−1/β(+0) functions.
This ends the proof.
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