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Scaling bounds on dissipation in turbulent flows
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We propose a new rigorous method for estimating statistical quantities in fluid
dynamics such as the (average) energy dissipation rate directly from the equations
of motion. The method is tested on shear flow, channel flow, Rayleigh–Bénard
convection and porous medium convection.
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1. Introduction
One of the most fascinating features in turbulent flows is the emergence of

complicated chaotic structures involving a wide range of length scales behind which
‘typical’ flow patterns are still recognizable. The state of motion is too complex
to allow a detailed description of the fluid velocity and experimental or numerical
measurements of certain system quantities appear disorganized and unpredictable.
Yet, some statistical properties are reproducible (Frisch 1995). One of the challenges
in theoretical fluid dynamics is thus the derivation of quantitative statements on
turbulent flows. Many of the approaches consist of various approximation procedures,
the imposition of physically motivated but ad hoc assumptions (e.g. ‘closure’) or the
introduction of scaling hypotheses. Rigorous results beginning with the equations of
motion directly are therefore indispensable for checking the validity of the imposed
simplifications and for justifying secondary models and theories.

The idea of extracting information about driven turbulent flows via bounds on
physical quantities through mathematically justifiable operations and without imposing
ad hoc assumptions goes back to the pioneering works of Malkus (1954), Howard
(1972) and Busse (1970, 1979). These authors applied variational approaches for the
derivation of bounds on the energy dissipation rate in models for shear flow and heat
convection. In the 1990s, Constantin and Doering introduced a practical framework
for estimating physical quantities rigorously and directly from the equations of motion,
which they called the ‘background flow method’ (Doering & Constantin 1994, 1996;
Constantin & Doering 1995).

The background flow method is an extremely robust method for constructing
bounds in fluid dynamics and builds on techniques developed by Hopf (1941) to
generalize Leray solutions of the Navier–Stokes equations to finite geometries with
physical boundary conditions. In this method one manipulates the equations of motion
relative to a steady trial background state, which satisfies the forcing conditions. On
decomposing the quantity of interest, e.g. the energy dissipation, into a background
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and a fluctuating component, the background part yields an upper bound if the
fluctuation term satisfies a certain non-negativity condition, which is often referred
to as the spectral constraint. In a certain sense, finding the least upper bound using
Constantin and Doering’s method resembles a variational saddle point problem. The
equations imposed on the fluctuations necessarily include the equations of motion.
To simplify the derivation of the Euler–Lagrange equations corresponding to the
variational problem for the fluctuation term, however, fluctuations are often chosen
in a much larger class of functions. In other words, the spectral constraint in the
background method is required to hold for an infinite-dimensional set of vector fields,
that strictly contains the solutions of the equations of motion. In that case, enforcing
the spectral constraint may yield an overestimation of the quantity of primal interest.

After its introduction, the background flow method was the upper bound method
with applications ranging from various problems in turbulent heat convection and
boundary-force-driven and body-force-driven turbulence to idealized models in
magnetohydrodynamics. The method was soon improved by Nicodemus, Grossmann
& Holthaus (1997) who introduced an additional balance parameter, and Kerswell
(1998) showed that this improved method is actually ‘equivalent’ to the approaches
of Busse and Howard.

Apart from its practical performance, for many years the background flow method
was considered as a rigorous manifestation of Malkus’s marginally stable boundary
layer theory (Malkus 1954). The latter is based on the assumption that turbulent
boundary-driven flows organize themselves into marginally stable configurations. If
the well-mixed core is bounded by thin laminar boundary layers, the thickness of
these layers is determined by the condition of marginal stability. The association of the
background flow method with Malkus’s theory relies on the surprising observation
that the spectral condition in the background flow method resembles a nonlinear
stability condition on the background flow. A recent work of C. Nobili & F. Otto
(Personal observations), however, proves the failure of this association – at least
in the context of infinite Prandtl number Rayleigh–Bénard convection: the authors
compute the least upper bound on the Nusselt number (the quantity of interest in
Rayleigh–Bénard convection) within the framework of the background flow method.
This bound, however, exceeds the bound derived by Otto & Seis (2011) using
completely different methods. In the context of Rayleigh–Bénard convection, it thus
seems that this physical interpretation of the background flow method is misleading.
Whether the background flow method indeed gives physically relevant information
(apart from scaling bounds) in different problems of fluid dynamics can only be
speculated.

In this paper, we focus on the energy dissipation rate as an example of one specific
physical quantity and present a new method for its rigorous estimation directly
from the equations of motion. (In fact, the method has already been introduced
in Otto & Seis (2011), but its universality was not seen at that time.) To allow a
straight comparison with the background flow method, the method is tested on the
problems considered by Constantin and Doering in Doering & Constantin (1994),
Constantin & Doering (1995), Doering & Constantin (1996, 1998). More precisely,
we study the following classical fluid dynamics problems: shear flow, channel flow,
Rayleigh–Bénard convection and porous medium convection. All of these problems
can be considered as model problems for boundary-force-driven or body-force-driven
flows or for thermal convection. In fact, we will recover the same results as Constantin
and Doering in the above mentioned papers.

Our new approach presented in this paper is entirely different from the background
flow method in that it is based on (local) conservation laws. More precisely, at the
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Scaling bounds on dissipation in turbulent flows 593

heart of our method conservation laws for certain flux components are established. The
conservation laws are local in the direction of the symmetry axis and the conserved
quantity can be explicitly expressed in terms of the energy dissipation rate. Averaging
over small boundary layers and applying elementary estimates yields a bound on the
energy dissipation rate. How the new method applies to fluids with different boundary
conditions, e.g. no-stress, remains to be seen.

The author believes that the strength of the new method relies on the fact that
it uses the equations of motion and some secondary derived physical laws directly
instead of working with a rigid ‘upper bound construction’ which in some cases is
too restrictive to yield the optimal result, cf. Otto & Seis (2011). The mathematical
operations involved are elementary.

In order to advertise the new method as an alternative to the most widely
used background flow method, we choose quick applications at the expense of
not optimizing the numerical constants in our bounds. To give a flavour of how
competitive results can be obtained by the method, we compute the numerical
prefactor only in the first example (shear flow). We moreover caution the reader
that our results are only ‘formally’ true in the sense that many of the mathematical
operations performed apply only to sufficiently smooth solutions of the Navier–Stokes
equations. Of course, the results can be made rigorous if the analysis is performed
on suitable weak solutions, e.g. Leray solutions, in the appropriate framework.

The article is organized as follows: after fixing the notation in § 2, we will derive
upper bounds on the energy dissipation for shear flows (§ 3), channel flows (§ 4),
Rayleigh–Bénard convection (§ 5) and porous medium convection (§ 6).

2. Notation
In what follows, we will try to be as consistent as possible with regard to the

notation even though different physical problems will be considered.
Our models are non-dimensionalized.
Our system is a layer of fluid in the box [0, L)d−1

× [0, 1] where L is an
arbitrary positive number that will not enter our analysis. Throughout the article,
we will refer to the first d − 1 coordinates as the horizontal ones and the last
coordinate as the vertical one. We write x= (y, z)∈ Rd−1

× R accordingly, and denote
by {e1, . . . , ed−1, ed} the canonical basis of Rd

= Rd−1
× R.

We assume periodic boundary conditions in the horizontal directions for all variables
involved. The horizontal boundaries are rigid and the imposed conditions will depend
on the particular physical problem under consideration.

The fluid velocity is denoted by u, and we write u= (v,w)∈ Rd−1
× R to distinguish

the horizontal velocity vector from the vertical component. The hydrodynamic pressure
is p and T is the temperature field.

We consider the rate of energy dissipation

ε=

∫ 1

0
〈|∇u|2〉 dz, (2.1)

where 〈·〉 denotes the horizontal and time average, that is,

〈 f 〉 = lim
τ↑∞

1
τ

∫ τ

0

1
Ld−1

∫
[0,L)d−1

f (t, y) dy dt. (2.2)

In general, the long-time average need not exist, even if finite-time averages are
bounded, and we could be more careful at this point by choosing the lim sup instead
of the lim. However, for the sake of a clearer statement and to simplify the subsequent
analysis, we will be quite formal in most of our computations.
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594 C. Seis

3. Shear flow
As the simplest example of a boundary-driven flow, we consider a fluid which is

confined between two parallel plates that are moving at a constant speed relative
to each other. The equations of motion are the Navier–Stokes equations in a box
[0, L)d−1

× [0, 1],

∂tu+ u · ∇u−1u+∇p= 0, (3.1)
∇ · u= 0, (3.2)

and, as stated in the previous section, the velocity u and the pressure p are both
periodic in the horizontal variables. At the horizontal plates, we assume no-slip
boundary conditions for the velocity field. If the upper boundary plate is moving
with constant speed Re in direction e1 while the lower plate is at rest, we must have

u=
{

0 for z= 0
Re e1 for z= 1. (3.3)

Notice that all quantities are non-dimensionalized and Re is the Reynolds number.
The scaling of the energy dissipation rate ε as a function of the Reynolds number

is of fundamental importance in many engineering applications since, for steady states,
the energy dissipation rate measures the rate at which work must be done by an agent
to keep the upper plate moving.

The interest in understanding the energy dissipation rate in boundary-driven fluid
flows as a function of the Reynolds number dates back to Stokes. It is well-known
(Serrin 1959; Keller, Rubenfeld & Molyneux 1967) that solutions to the Stokes
equation minimize the dissipation rate among all divergence-free vector fields with a
fixed velocity at the boundary. In many situations of physical interest, this solution
is laminar and thus continues to exist as a solution of the Navier–Stokes equation.
In our case, the laminar solution is the so-called Couette flow uC(z) = Reze1 which
dissipates energy εC = Re2. For small Reynolds numbers, uC is a stable solution
of the Navier–Stokes equation in the sense that any sufficiently small perturbation
will decrease in time. For large Reynolds numbers, however, perturbations of the
laminar steady state are unstable and the flows can become chaotic or turbulent. The
energy dissipation rate is a monotone function of the Reynolds number and acts as a
measure of how turbulent the flow is. With regard to the presence of steady regular
solutions in the high Reynolds number regime also, absolute lower bounds on the
energy dissipation will be dictated by non-turbulent flows: ε > εC = Re2. A rigorous
scaling theory for the dissipation rate can hence only be an upper bound theory. An
upper bound, however, sets limits on the possible turbulent structures of the flow and
is thus an indispensable piece of information in the study of turbulence.

Developing a conventional statistical turbulence theory for high Reynolds numbers,
Doering & Constantin (1994, appendix A) predict the ‘logarithmic friction law’

ε∼
Re3

(log Re)2
for Re� 1, (3.4)

which is in accordance with the experimental data derived e.g. by Lathrop, Fineberg
& Swinney (1992). In the same paper, the authors derive a first upper bound which
proves the conjectured rate up to the logarithmic factor, that is, they prove that ε.Re3

using the background flow method. In the following, we reproduce Constantin and
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Scaling bounds on dissipation in turbulent flows 595

Doering’s bound using our new method. We will first derive a quick scaling bound
and then compute numerical constants in a second step.

As a starting point of our analysis, we recall that the energy dissipation can equally
be expressed, for instance, as the trace of the vertical derivative of v1 = u · e1 at the
top plate, that is,

ε= Re〈∂z|z=1v1〉. (3.5)

This is the averaged energy balance. The identity follows from testing (3.1) with u,
integrating by parts and using (3.2) and (3.3). Moreover, multiplying (3.1) by e1,
taking the horizontal and time average, and using (3.2) and the periodicity, we see
that

〈wv1 − ∂zv1〉 = const. for all z ∈ [0, 1], (3.6)

and thus, in view of (3.3) and (3.5), we obtain the formula

ε= Re〈∂zv1 −wv1〉 for all z ∈ [0, 1]. (3.7)

In particular, averaging this identity over some boundary layer [0, `], where 06 `6 1
has to be determined later, we have

ε=
Re
`

∫ `

0
〈∂zv1〉 dz−

Re
`

∫ `

0
〈wv1〉 dz. (3.8)

On the one hand, an application of Jensen’s inequality yields

1
`

∫ `

0
〈∂zv1〉 dz 6

(
1
`

∫ `

0
〈(∂zv1)

2
〉 dz
)1/2

. (3.9)

On the other hand, with the help of the Cauchy–Schwarz and Poincaré inequalities,
we estimate

1
`

∫ `

0
〈wv1〉 dz 6

1
`

(∫ `

0
〈w2
〉 dz

∫ `

0
〈v2

1〉 dz
)1/2

6
4`
π2

(∫ `

0
〈(∂zw)2〉 dz

∫ `

0
〈(∂zv1)

2
〉 dz
)1/2

. (3.10)

The optimal Poincaré constant 4`2/π2 is computed in the appendix A. Notice,
moreover, that the divergence-free condition (3.2) reveals that 〈(∂zw)2〉 6 〈|∇yv|

2
〉.

The above estimates can thus be combined into

ε

Re
6

(
1
`1/2
+

4`
√

2π2

(∫ 1/2

0
〈(∂zw)2 + |∇yv|

2
〉 dz
)1/2

)(∫ 1/2

0
〈(∂zv1)

2
〉 dz
)1/2

. (3.11)

To obtain a quick bound, we estimate the integral expressions by ε and obtain

ε.
Re
`1/2

ε1/2
+ Re`ε. (3.12)

Optimizing the last expression in ` yields `∼ ε−1/3
� 1, and thus ε . Reε2/3, which

entails
ε. Re3. (3.13)
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This estimate agrees with the bound derived by Doering & Constantin (1994).
To compute a numerical constant, we optimize (3.11) in ` and obtain

ε

Re
6

3
21/6π2/3

(∫ 1/2

0
〈(∂zw)2 + |∇yv|

2
〉 dz
)1/6 (∫ 1/2

0
〈(∂zv1)

2
〉 dz
)1/2

. (3.14)

With the help of Young’s inequality ab6 (1/p)ap
+ (1/q)bq for any p, q∈ (1,∞) with

1/p+ 1/q= 1, we further have

ε

Re
6

9δ
24/3π4/3

(∫ 1/2

0
〈(∂zw)2 + |∇yv|

2
〉 dz
)1/3

+
1
2δ

∫ 1/2

0
〈(∂zv1)

2
〉 dz

6

√
27
2
δ2

π2
+

1
2δ

∫ 1/2

0
〈(∂zw)2 + |∇yv|

2
+ (∂zv1)

2
〉 dz

6

√
27
2
δ2

π2
+

1
2δ

∫ 1/2

0
〈|∇u|2〉 dz, (3.15)

where δ > 0 is an arbitrary constant. For symmetry reasons, an analogous estimate can
be derived in the upper half of the box [0, L)d−1

× [0, 1]. Altogether we have

ε

Re
6

√
27
2

1
π2
δ2
+

1
4δ
ε. (3.16)

Optimizing in δ finally yields

ε

Re3
6

81
√

6
128π2

≈ 0.157. (3.17)

This bound is a factor of two larger than the bound derived by Doering & Constantin
(1994). To keep the present paper concise, we do not make any attempt at improving
the constant.

4. Channel flow
As the simplest example of a body-force-driven flow, we consider a fluid in a

rectangular domain, which is driven by a pressure gradient in the direction of one of
the horizontal boundary plates. The problem is modelled by the forced Navier–Stokes
equation

∂tu+ u · ∇u−1u+∇p=Gre1, (4.1)
∇ · u= 0, (4.2)

in [0, L)d−1
× [0, 1], supplemented with no-slip boundary conditions

u= 0 for z ∈ {0, 1}. (4.3)

Here, Gr denotes the non-dimensional Grashof number. We remark that when the
force is specified a priori as in the present situation, the Reynolds number is an
emergent quantity.

The channel flow problem has the laminar solution uP(z) = (Gr(z2
− z)e1)/2,

the so-called Poiseuille flow, for which the energy dissipation rate is εP = Gr2/12.
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Scaling bounds on dissipation in turbulent flows 597

The Poiseuille flow plays a similar role in the channel flow problem as the Couette
flow in the shear flow problem: uP solves the corresponding Stokes equation and is an
unstable solution of the Navier–Stokes equation in the high Grashof number regime.
When bounds are expressed in terms of the Grashof number instead of the Reynolds
number, the Stokes limit represents an upper bound on the energy dissipation rate:
ε6 εP =Gr2/12.

The scaling of the energy dissipation rate in the high Grashof number regime is
expected to obey the modified logarithmic friction law

ε∼
Gr3/2

(log Gr)2
, (4.4)

similar to the shear flow. The best we can hope for is a lower bound on the energy
dissipation rate since the Poiseuille flow always provides an upper bound. A first
rigorous lower bound on the energy dissipation rate was established by Constantin
& Doering (1995), ε & Gr3/2, which is optimal up to the logarithm. For further
improvements we refer to Petrov, Lu & Doering (2005) and references therein. In the
following, we will recover this scaling bound by applying our new method.

We see from testing (4.1) with u, integrating by parts and using (4.2) and (4.3) that
the energy dissipation rate is proportional to the average flow velocity

ε=Gr
∫ 1

0
〈v1〉 dz. (4.5)

Moreover, multiplying (4.1) by e1, taking the horizontal and time average, and using
(4.2) and periodicity, we obtain

∂z〈wv1 − ∂zv1〉 =Gr for all z ∈ [0, 1]. (4.6)

From the no-slip boundary conditions (4.3) we thus infer that

〈wv1 − ∂zv1〉 =Grz− 〈∂z|z=0v1〉 for all z ∈ [0, 1]. (4.7)

On the one hand, averaging in z over the strip [1− `, 1] of width `� 1 yields

Gr∼
1
`

∫ 1

1−`
〈v1w− ∂zv1〉 dz+ 〈∂z|z=0v1〉. (4.8)

On the other hand, averaging (4.7) over [0, `] yields

〈∂z|z=0v1〉 ∼
1
`

∫ `

0
〈∂zv1 − v1w〉 dz+ `Gr. (4.9)

Since `� 1, a combination of the previous two estimates gives

Gr .
1
`

∫ `

0
〈∂zv1 − v1w〉 dz+

1
`

∫ 1

1−`
〈v1w− ∂zv1〉 dz. (4.10)

We can apply the same arguments as in the shear flow case considered in the previous
section to deduce

Gr .
ε1/2

`1/2
+ `ε. (4.11)
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The optimal ` is of size `∼ ε−1/3, which implies that

Gr3/2 . ε. (4.12)

In view of (4.5), this bound is equivalent to

Gr1/2 .
∫ 1

0
〈v1〉 dz, (4.13)

which agrees with the bound derived by Constantin & Doering (1995) and appears to
be sharp to within logarithms.

5. Rayleigh–Bénard convection
Rayleigh–Bénard convection is the transport of heat by thermal convection in a fluid

layer that is heated from below and cooled from above. The problem is modelled by
the equations of the Boussinesq approximation

∂tT + u · ∇T −1T = 0, (5.1)
∇ · u= 0, (5.2)

1
Pr
(∂tu+ u · ∇u)−1u+∇p= Ra Ted. (5.3)

The system is non-dimensionalized and admits two controlling parameters, the
Rayleigh number Ra and the Prandtl number Pr. The equations are complemented by
the boundary conditions

T = 1 on z= 0, and T = 0 on z= 1, (5.4a,b)

representing heating at the bottom and cooling at the top, and no-slip boundary
conditions for the velocity field,

u= 0 on z ∈ {0, 1}. (5.5)

The quantity of interest in this model is the so-called Nusselt number, a measure for
the average upward heat flux. It is defined by

Nu=
∫ 1

0
〈(uT −∇T) · ed〉 dz=

∫ 1

0
〈wT − ∂zT〉 dz. (5.6)

The scaling of the Nusselt number in terms of Ra and Pr has been the subject of
enormous experimental, numerical and theoretical research for over fifty years. For a
recent review, we refer to Ahlers, Grossmann & Lohse (2009) and references therein.
For all values of Ra and Pr, a laminar solution is given by uc = 0 and Tc = 1 − z,
which corresponds to pure conduction. The corresponding Nusselt number is Nuc= 1,
and the laminar solution is unstable for large Rayleigh numbers.

In the high Rayleigh number regime, Ra� 1, the scaling of the Nusselt number
is proportional to the scaling of the energy dissipation rate. Indeed, testing (5.3)
with u, using the incompressibility assumption (5.2) and invoking the boundary
conditions (5.4) and (5.5) for T and u yields

ε= Ra(Nu− 1)∼ Ra Nu. (5.7)
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Scaling bounds on dissipation in turbulent flows 599

The bound on the Nusselt number in the ultimate turbulent regime is expected to be

Nu∼ Ra1/2, (5.8)

if Ra � 1, uniformly in Pr. In the following, we derive an upper bound on this
scaling with the help of different representations of the Nusselt number, similar to
the approach in the previous two sections. Averaging the heat equation (5.1) and using
periodicity and (5.2), it follows that the heat flux is constant on every horizontal slice,
that is

Nu= 〈Tw− ∂zT〉 for all z ∈ [0, 1]. (5.9)

Now, averaging this identity over a boundary layer of thickness ` ∈ [0, 1], and using
the maximum principle on the temperature, max |T| 6 1, which is enforced by the
boundary conditions (if not initially, then exponentially fast in time), we obtain that

Nu 6
1
`

∫ `

0
〈wT〉 dz+

1
`
6

1
`

∫ `

0
〈|w|〉 dz+

1
`
. (5.10)

We use Poincaré’s and Hölder’s inequalities and (5.5) to bound the integral over the
vertical velocity component by the energy dissipation rate ε, that is∫ `

0
〈|w|〉 dz 6 `

∫ `

0
〈|∂zw|〉 dz 6 `3/2

(∫ `

0
〈(∂zw)2〉 dz

)1/2

6 `3/2(Ra Nu)1/2 (5.11)

by (5.7), so that

Nu 6 `1/2(Ra Nu)1/2 +
1
`
. (5.12)

Optimizing in ` yields that `∼ (Ra Nu)−1/3, which entails that

Nu . Ra1/2. (5.13)

This is precisely the same scaling law as derived by Doering & Constantin (1996).
Notice that Whitehead & Doering (2011) prove the bound Nu . Ra5/12 for

two-dimensional Rayleigh–Bénard convection with free-stress boundary conditions.
The proof relies heavily on the two-dimensional structure (no vortex stretching)
and the free-slip boundary conditions (homogeneous vorticity boundary conditions).
Whether such a bound can be extended to our problem at hand is not clear to
the author. Recent numerical simulations at least indicate that the 5/12 scaling
should be expected for any solution of (5.1)–(5.3) with finite energy dissipation rate
(Hassanzadeh, Chini & Doering 2014).

Applying the same method combined with sophisticated maximal regularity
arguments, Chuffrut, Nobili & Otto (2014) recently obtained new bounds on Nu
which improve this bound in certain Ra–Pr regimes. The results in particular apply
to the large Prandtl number regime. The Nusselt number bound can be interpreted as
a bound on the average temperature gradient, cf. (6.9) below. Developing techniques
similar to those presented in this paper, the author has derived bounds on higher-order
derivatives of the temperature field in infinite Prandtl number convection and estimated
deviations of the average vertical temperature profile from linearity (Seis 2013).
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6. Porous medium convection

We finally consider thermal convection in a porous medium. In this case, Darcy’s
law approximates the Navier–Stokes equations, and the Rayleigh–Bénard system (5.1)–
(5.3) reduces to

∂tT + u · ∇T −1T = 0, (6.1)
∇ · u= 0, (6.2)

u+∇p= (Ra)Ted. (6.3)

As before, the non-dimensional number Ra is the Rayleigh number. The boundary
condition satisfied by the fluid velocity is

w= 0 on z ∈ {0, 1}, (6.4)

and we suppose that the container is cooled from above and heated from below,
modelled by

T =
{

1 on z= 0,
0 on z= 1. (6.5)

Again, we assume periodic boundary conditions in all horizontal directions for all
quantities involved.

As in the case of classical Rayleigh–Bénard convection, the quantity of interest here
is the Nusselt number

Nu=
∫ 1

0
〈wT − ∂zT〉 dz. (6.6)

Before estimating the energy dissipation rate in this example, we start with a study
of the Nusselt number. Experiments and numerics suggest that

Nu∼ Ra for Ra� 1, (6.7)

cf. Hewitt, Neufeld & Lister (2012). Because of the existence of laminar solutions, we
can only expect to prove the upper bound Nu.Ra, previously established by Doering
& Constantin (1998). We first need to establish some alternative identities for Nu. We
first recall that on averaging (6.1), we obtain 〈wT − ∂zT〉 = const., and thus

Nu= 〈wT − ∂zT〉 for all z ∈ [0, 1]. (6.8)

In particular, Nu = −〈∂z|z=0T〉 thanks to (6.4). Now testing (6.1) with T , integrating
by parts and using (6.2), (6.4) and (6.5), we see that

Nu=
∫ 1

0
〈|∇T|2〉 dz. (6.9)

On the other hand, by the definition of Nu and (6.5), testing (6.3) with u and using
(6.2) and (6.4), we obtain

Nu=
1

Ra

∫ 1

0
〈|u|2〉 dz+ 1. (6.10)
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We are now able to estimate the Nusselt number. Letting ` ∈ (0, 1) be an arbitrary
number, we estimate

Nu 6
1
`

∫ `

0
〈wT〉 dz+

1
`

(6.11)

as in the previous section. Because |T| 6 1 by the maximum principle for the
temperature, we obtain via Jensen’s inequality

Nu 6

(
1
`

∫ `

0
〈w2
〉 dz
)1/2

+
1
`
. (6.12)

By the Nusselt number representation (6.10), this yields

Nu .
(Ra Nu)1/2

`1/2
+

1
`
. (6.13)

This bound is optimized by `∼ 1, so that

Nu . Ra (6.14)

because Ra� 1.
In a final step, we would like to relate the current bound on the Nusselt number to

a bound on the viscous dissipation rate. In fact, we will show that ε . (Ra)2Nu, so
that the above statement turns into

ε. (Ra)3. (6.15)

We start noting that Darcy’s law (6.3) together with the boundary conditions (6.4) and
(6.5) provides us with Neumann boundary conditions for the pressure: ∂z|z=0p = Ra
and ∂z|z=1p= 0. In particular, differentiating the horizontal velocity components with
respect to z, ∂zv=−∇y∂zp, multiplying by v, averaging and integrating by parts yields

〈v · ∂zv〉 =−〈v · ∇y∂zp〉 = 〈(∇y · v)∂zp〉. (6.16)

In particular, the above values for ∂zp and the horizontal periodicity imply that

〈v · ∂zv〉|z=0,1 = 0. (6.17)

It thus follows via integration by parts that∫ 1

0
〈|∇v|2〉 dz= 〈v · ∂zv〉|

z=1
z=0 −

∫ 1

0
〈v ·1v〉 dz (6.17)

= −

∫ 1

0
〈v ·1v〉 dz. (6.18)

Now notice that −1v= (Ra)∇y∂zT . Indeed, taking the divergence of (6.3) yields 1p=
(Ra)∂zT , and thus −1v =∇y1p= (Ra)∇y∂zT . Therefore, (6.18) becomes∫ 1

0
〈|∇v|2〉 dz= Ra

∫ 1

0
〈v · ∇y∂zT〉 dz=−Ra

∫ 1

0
〈(∇y · v)∂zT〉 dz. (6.19)

Since |∇y · v|. |∇yv|6 |∇v|, we can use the Cauchy–Schwarz inequality to obtain∫ 1

0
〈|∇v|2〉 dz . Ra

(∫ 1

0
〈|∇v|2〉 dz

∫ 1

0
〈|∇T|2〉 dz

)1/2

, (6.20)
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and thus, via (6.9), ∫ 1

0
〈|∇v|2〉 dz . (Ra)2Nu. (6.21)

The estimate of the vertical velocity component is easier because of (6.4): testing
1w= (Ra)1T − ∂z1p= (Ra)1yT with w, integrating by parts and using the Cauchy–
Schwarz inequality yields ∫ 1

0
〈|∇w|2〉 dz . (Ra)2Nu. (6.22)

Combining the last two estimates finally yields ε. (Ra)2Nu as desired.
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Appendix A
In this appendix, we derive the Poincaré inequality∫ `

0
f 2 dz 6

4`2

π2

∫ `

0
(f ′)2 dz, (A 1)

for all functions f such that f (0) = 0. This estimate is sharp as can be seen by
choosing f (z)= sin (π/2`)z. Notice that (A 1) is equivalent to the Poincaré inequality∫ `

−`

g2 dz 6
4`2

π2

∫ `

−`

(g′)2 dz, (A 2)

for all functions g satisfying
∫ `
−`

g dz = 0 in the sense that the Poincaré constants
agree. Indeed, if f satisfies (A 1) and g is obtained from f by odd reflection at z= 0,
then g has mean zero on (−`, `) and satisfies (A 2). On the other hand, if g is an
odd function for which (A 2) holds and f is the restriction of g to (0, `) then f
satisfies (A 1).

The statement in (A 2) is equivalent to the variational problem

π2

4`
=min

{∫ `

−`

(g′)2 dz :
∫ `

−`

g dz= 0,
∫ `

−`

g2 dz= `
}
, (A 3)

and the expression on the right is minimized by g(z)= sin (π/2`)z.
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