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Abstract

We present details of on-wafer-level 16-term error model calibration kits used for the char-
acterization of W-band circuits based on a grounded coplanar waveguide (GCPW). These cir-
cuits were fabricated on a thin gallium arsenide (GaAs) substrate, and via holes, were utilized
to ensure single mode propagation (i.e., eliminating the parallel-plate mode or surface mode).
To ensure the accuracy of the definition for the calibration kits, multi-line thru-reflect-line
(MTRL) assistant standards were also fabricated on the same wafer and measured. The
same wafer also contained passive and active devices, which were measured subject to both
16-term and conventional line-reflect-reflect-match calibrations. Measurement results show
that 16-term calibration kits are capable of determining the cross-talk more accurately.
Other typical calibration techniques were also implemented using the standards on the
GCPW calibration kits, and were compared with the MTRL calibration using a passive device
under test. This revealed that the proposed GCPW GaAs calibration substrate could be a feas-
ible alternative to conventional CPW impedance standard substrates, for on-wafer measure-
ments at W-band and above.

Introduction

A transistor is the fundamental element of complex monolithic microwave integrated active
circuits and can be characterized using on-wafer measurements. There are commercial imped-
ance standard substrates (ISSs), which allow different types of on-wafer calibrations, such as
short-open-load-thru (SOLT) [1], line-reflect-match (LRM) [2], line-reflect-reflect-match
(LRRM) [3], multi-line thru-reflect-line (MTRL) [4], etc. Commercial calibration standard
substrates have appealing advantages of relatively low cost and good durability. These ISSs
are usually based on thick ceramic substrates, with a thickness ranging from 250 to 600 µm,
and are designed to have coplanar waveguide (CPW) structures. These ISSs provide off-wafer
calibrations, when the devices are fabricated on gallium arsenide (GaAs), gallium nitride
(GaN), or indium phosphide (InP). Off-wafer measurement impairs the accuracy of calibra-
tion, as reported in [5] and [6]. The deviation in S-parameter (scattering parameters) meas-
urement, due to off-wafer effects, will become more significant as the frequency rises.

In recent years, on-wafer-level calibration, i.e., the Device Under Test (DUT) and the cali-
bration kits have identical substrates, boundaries, and parasitical influences, and have been
investigated extensively. A prescription for terahertz (THz) calibration kits was introduced
in [7], and calibration-kit design guidelines for millimeter-wave use were described in [8]
and [9] (these demonstrate an improved performance over off-wafer calibrations). Similar to
ISSs, the 625-μm thick ceramic substrate calibration kits in [9] and the complicated calibration
kits in [8] are not ideal choices for measurement of transistors fabricated on thin GaAs
substrates. As the frequency rises, the substrate thickness could be reduced to 70 µm or less,
to minimize parasitical resistance and inductance. Additionally, cross-talk between the probes
may need to be taken into account at W-band frequencies and above [7], to achieve the desired
measurement accuracy and results. To the best of the authors’ knowledge, on-wafer-level
calibration standards based on the thin substrate and operating at the W-band have not yet
been reported in open literature. TFMSL (thin film microstrip lines) [10] have the appealing
advantage of easing single-mode propagation and are therefore another promising type of
transmission line for use at millimeter-wave and THz frequencies. Compared to the CPW
type of structure, TFMSL is more difficult to access in a ground state: this may prevent its
wider application in the design of active circuits.

We report on W-band on-wafer-level calibration kits, based on a grounded coplanar
waveguide (GCPW) structure, and fabricated on a thin (70 µm) GaAs substrate.
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Thin substrates with a conductor on the back are undesirable, as
they can easily excite parallel-plate modes which could degrade
calibration accuracy [11, 12]. In this work, holes were utilized
to suppress the excitation of parallel-plate modes. Sixteen-term
calibration standards were designed for better predictions of
cross-talk at these high frequencies. A comparison between
16-term and other on-wafer and off-wafer calibration methods
was performed on both passive and active devices. The new
GCPW calibration substrate was also employed to realize four
conventional calibration methods. Investigation into their corre-
sponding performance, with respect to MTRL, was conducted.
The paper is organized as follows: Section “design of calibration
kits” introduces the design of calibration kits, and Section “def-
inition of the 16-term calibration” describes the definition of the
calibration standards. Experimental results are presented in
Section “experiment”, which is followed by the conclusion in
Section “conclusion”.

Design of calibration kits

The 16-term error model calibration method, as described in
[13 14], was utilized in this work. The 16-term calibration kits
include a 400-μm-long thru line and six pairs of lumped elements:
resistor–resistor, short–short, open–open, resistor–open, resistor–
short, and open–short, all with 200 µm offset from the beginning
of the line. To ensure the accuracy of the definition for 16-term
calibration kits, the TRL calibration algorithm, as reported in
[4, 15], has been utilized, with a calibration reference at the
probe tips.

For the 16-term or MTRL to work, three requirements need to
be fulfilled: (i) the transmission line should operate in quasi-
transverse electromagnetic mode; (ii) resonances need to be elimi-
nated within the frequency band of interest; and (iii) the charac-
teristic impedance Z0 of the transmission line should be uniform.
In this work, the GCPW type transmission line, which is effect-
ively a CPW with a finite metal boundary [16], has been adopted
and the thickness of the GaAs substrate is 70 µm. Such a thick
substrate with a conductor on the back can easily excite unwanted
multi-modes, e.g. the parallel-plate waveguide mode and surface
wave mode [17]. The ground-to-ground spacing (center con-
ductor width w plus twice the gap g between the center conductor
and the ground plane on each side) has been designed to help
to maintain single mode propagation [18] and to achieve the
desired Z0. Parallel-plate waveguide modes between the topside
ground plane and the conductor on the back can be suppressed
by introducing holes connecting the top and bottom grounds.
Parts of the calibration kits are shown in Fig. 1.

The Linecalc tool in the Advanced Design System was
employed to determine GCPW ground-to-ground spacing. To
achieve a 50 Ω characteristic impedance, w and g were calculated
to be 26 and 22 µm, respectively. These calculations utilized a sub-
strate dielectric constant of 12.9, a substrate thickness of 70 µm, a
metal conductivity of 5.7 × 106 S/m and a metal thickness of
0.5 µm. Holes with a diameter of 30 µm were added between
the topside ground and the rear conductor, and these holes are
uniformly distributed along the GCPW line with the separation
c, as shown in Fig. 1(b). The distance d, shown in Fig. 1(b),
between the center of the holes to the edge of the ground plane
was set to 45 µm. The optimum hole separation c was obtained
from full-wave simulations in CST Microwave Studio [19]. The
simulation results indicate that a separation c of 100 µm is desired,
in terms of the ease of fabrication and a wide spurious free band.

Therefore, c was chosen as 100 µm in this work. Note that CST
simulations assumed that the holes are perfect cylinders, however
in practice these holes were fabricated to have sloping side walls
owing to the etching process used. The influence of this is
believed to be negligible. Figure 2 shows the layout of the final
calibration kits.

Definition of the 16-term calibration

The MTRL calibration determines S-parameters directly in
printed transmission lines and avoids many of the systemic errors
associated with lumped calibrations. Here, the TRL calibration
standards were fabricated with a 400-μm-long GCPW thru line
(the identical Thru for 16-term), four lines with additional
lengths of 100, 300, 500, and 2600 µm, and identical shorts
with 16-term short–short elements. GaAs is a low-loss substrate
material, and therefore it is feasible to calculate the transmission

Fig. 1. Calibration standards. (a) Side view of CPW transmission line conductor on the
back. (b) Short–short, open–open, resistor–resistor, and Thru elements.

Fig. 2. Optical image showing parts of the fabricated standards.
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line capacitance [20], and to correct the reference impedance of
the system to 50 Ω by following the method outlined in [21].
The transmission line was found, by measurement, to have a
smooth attenuation constant and a flat effective permittivity
(Fig. 3). This indicates that the transmission line operates mostly
in single-mode propagation with little dispersion. Finally, 16-term
calibration kits are defined by the MTRL corrected vector network
analyzer (VNA) mentioned below, including a thru-line and the
reflection coefficient of six pairs of lumped elements.

Experiment

The experimental set-up comprised: a Keysight N5245A, a
Cascade 12 000 probe station, two OML W-band V10VNA2
extension modules, and two Cascade Infinity i110-T-GSG-
100-BT probes. The pitch size of these probes is 100 µm. The
DUTs are resistor–resistor and active high-electron-mobility-
transistor (HEMT), both of which were fabricated on the same
70-μm-thick GaAs substrate with a conductor on the back. A sin-
gle measurement of the raw (i.e., uncorrected) measurement data
was acquired for each of these DUTs: a different calibration was
then applied to the raw measurement data to obtain the corrected
measurement data.

Measurement results: resistor–resistor

The GCPW calibration substrate includes two sets of resistor–
resistor configurations with the same design. One of these
was used as a standard for the 16-term calibration.
Measurement was conducted on the other device, subject to
two different types of calibrations, i.e., LRRM using ISS
104-783A and 16-term using the calibration kit developed
here. In this work, Wincal XE 4.6 [22] was adopted to define
and manage different calibrations. Figure 4 shows S21 responses

(i.e., isolation) of the resistor–resistor. It can be observed that
the 16-term calibration improves the isolation by around 10
to 15 dB, compared with the LRRM technique. This demon-
strates that 16-term calibration kits are capable of factoring in
the effects of cross-talk.

Measurement results: high electron mobility transistor

The pHEMT transistor with a gate width of 25 µm × 4 was mea-
sured without correction. Four different types of calibrations were
then applied to the raw data, to get the corrected results. These
four calibrations are: LRRM using ISS placed on metal, LRRM
using ISS placed on the absorbing material, 16-term using the fab-
ricated kit placed on metal, and MTRL using the fabricated kit
placed on metal. Figure 5 illustrates the results of the transistor

Fig. 3. Propagation constant and effective permit-
tivity real part of the transmission line. (a)
Attenuation constant and (b) effective permittivity
(real part).

Fig. 4. Comparison of S21 responses between two calibration kits for resistor–resistor,
as shown in Fig. 1(b).

Fig. 5. Measurement results: (a) S21 magnitude and (b) Maxgain, associated with four
calibration techniques. LRRM 1 corresponds to ISS on metal, LRRM 2 represents ISS
on the absorbing material, MTRL and 16-term configurations were tested by using a
GCPW calibration substrate placed on metal.
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subject to these four calibrations. It can be observed from Fig. 5
that the testing environment affects the ISS, with the absorbing
material yielding the better result. There is good agreement
between the results from MTRL and 16-term calibrations. This
indicates that cross-talk is not a dominant factor in the measure-
ment of transistors. Note that other transistors fabricated on the
same batch were also found to produce similar results.

Comparison of different calibrations using standards on GCPW
substrate

The fabricated GCPW calibration substrate was also used to
implement different calibrations, i.e., SOLT, LRM, LRRM, and
MTRL. A calibration comparison [5] was carried out to qualify
the differences between these calibrations with respect to the
MTRL (a well-known, and precise, technique). Figure 6 shows
the maximum difference between the results obtained from
MTRL and the other three techniques. LRRM returns the worst
difference of 0.17, this may be attributed to LRRM’s assumption
of an intrinsic shunt-load [23]. SOLT and LRM demonstrate a
promising result and exhibit a difference of less than 0.1 across
the whole W-band. The small difference between the two
MTRL results demonstrates the good measurement repeatability.
As shown in Fig. 6, the difference between a MTRL and an
LRM or LRRM calibration using standards pre-characterized
with MTRL is higher than the system drift (i.e., MTRL2–
MTRL1). It is believed that this is attributed to errors in fabrica-
tion, resulting in a characteristic impedance of the transmission
line of 48.6 Ω and a match resistance of 51.8 Ω, instead of the
designed nominal value of 50 Ω. This deviation can be addressed
when the process becomes more developed.

Conclusion

Thin GaAs calibration kits based on GCPW structures have been
presented. This new type of calibration kit enables accurate
on-wafer-level measurements, at W-band frequencies and beyond.
Sixteen-term calibration was conducted and was compared with off-
wafer LRRM and on-wafer MTRL calibrations. The comparison, on
both passive and active devices, demonstrates that 16-term is cap-
able of better determining isolation: however, the difference between
16-term andMTRL is insignificant, and therefore the lattermight be
sufficient when cross-talk or isolation is not critical. Different
calibration techniques were investigated using standards set by the
new calibration kits. Generally, SOLT and LRMoffered better results

over LRRM, assuming MTRL gives an accurate and reliable result.
This investigation was carried out at W-band frequencies, and all
measurements were the on-wafer-level (i.e., the DUT and the cali-
bration standards were fabricated on the same substrate). Overall,
thework presented in this paper demonstrates the promising poten-
tial for the utilization of thin GaAs calibration kits, with GCPW
structures, for high-frequency on-wafer-level probing.

Acknowledgement. The authors thank Southeast University, China, for
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the research described herein.
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