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Complex solutions of the Dean equations and
non-uniqueness at all Reynolds numbers
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Steady incompressible flow down a slowly curving circular pipe is considered,
analytically and numerically. Both real and complex solutions are investigated.
Using high-order Hermite–Padé approximants, the Dean series solution is analytically
continued outside its circle of convergence, where it predicts a complex solution
branch for real positive Dean number, K. This is confirmed by numerical solution. It
is shown that other previously unknown solution branches exist for all K > 0, which
are related to an unforced complex eigensolution. This non-uniqueness is believed
to be generic to the Navier–Stokes equations in most geometries. By means of path
continuation, numerical solutions are followed around the complex K-plane. The
standard Dean two-vortex solution is shown to lie on the same hypersurface as the
eigensolution and the four-vortex solutions found in the literature. Elliptic pipes are
considered and shown to exhibit similar behaviour to the circular case. There is an
imaginary singularity limiting convergence of the Dean series, an unforced solution
at K = 0 and non-uniqueness for K > 0, culminating in a real bifurcation.
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1. Introduction
Functions of a real variable can rarely be fully understood without considering

their behaviour over a complex domain. Arguably, the same should be true for the
set of solutions to a system of nonlinear partial differential equations (PDEs). Just
as two complex roots of a function may coalesce and materialise on the real line as
a parameter is varied, so may real solution branches come into being above some
critical parameter value. Sometimes, these new solutions may be identified with a
subcritical bifurcation off a known solution branch at a higher parameter value. On
other occasions, the solution branches remain separate and the origin of the new
solutions remains a mystery if only real solutions are considered.

For the Navier–Stokes equations in a given geometry, it is well known that there is
a unique steady solution at sufficiently low Reynolds number, but for many problems,
multiple equilibria may exist at higher values. This statement requires qualification.
The energetic arguments used to prove uniqueness presuppose that the flow is real.
It is not known whether a low-Reynolds-number flow might have additional complex
solutions. In this paper, we shall for the first time demonstrate that, indeed, complex
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solutions can exist even at low values of the (real) Reynolds number. As we are
to consider complex solutions, it is natural to allow the Reynolds number to take
complex values also, and to investigate the entire solution space. The motivation for
seeking complex solutions is twofold. We wish not only to comprehend the global
structure of the solution space, but also to quantify how and when new real physical
equilibria may materialise as complex solutions merge.

In a previous paper (Boshier & Mestel 2014), henceforth referred to as BM, we
demonstrated that the classical problem of Dean flow, a small-curvature limit of
steady flow in a curved pipe, had a symmetry-breaking complex bifurcation at a
certain imaginary value of the Dean number, K. This value was known by Van Dyke
(1974) to limit the convergence of the Dean series. The complex solutions were
found both by extending the Dean series solution using the techniques of Drazin
& Tourigny (1996) and also by numerical solution of the complex Dean equations.
New solution branches were found for imaginary K, and it was shown that as K→ 0
along the imaginary axis, the solution approached an unforced ‘eigensolution’, with
an unbounded amplitude at K = 0. Although not previously observed, it is not hard
to demonstrate that this solution implies the existence of complex solutions for real
K> 0. Now, Dean flow is known to possess additional real solution branches for high
enough K > K2, known as ‘four-vortex solutions’ (McConalogue & Srivastava 1968;
Daskopoulos & Lenhoff 1989; Siggers & Waters 2008). It was found in BM that the
four-vortex solutions did not appear to bifurcate from the main branch at finite Dean
number. For K < K2, there are no real four-vortex flows, but they may continue to
exist as complex solutions. As we have new complex branches just above K = 0 and
just below K=K2, it is natural to suppose that they will join up as K increases from
zero. In fact, the picture is more complicated. In this paper, we will show that the
eigensolution for low real K and the first four-vortex branch are in fact continuously
linked, although smooth linkage requires a path through fully complex K-values. We
can therefore, in principle, locate the physical bifurcation from the main solution in a
rational and continuous manner, although the means of so doing is, for the classical
Dean problem, disappointingly laborious.

Historically, Dean flow has been studied predominantly in circular pipes, but this
is not necessary. In the final part of this paper, we perform analysis and numerics
for elliptical cross-sections, as in Machane (2010). We use elliptic coordinates and
obtain solutions by both a Dean series and direct Navier–Stokes simulation (DNS). A
range of eccentricities is considered, from squat pipes that approximate the rectangle
of Mestel & Zabielski (2012) to tall pipes that approach a Taylor–Couette geometry.
The elliptic solutions merge smoothly with those in a circle and qualitatively similar
behaviour is found. Square-root singularities exist on the imaginary Dean axis and
unforced complex solutions are believed to exist for ellipses also. In the high aspect-
ratio limit, these are shown to take a simple form.

The structure of this paper is as follows. In § 2 we formulate the problem and in § 3
we summarise the methods and results of BM. In § 4, numerous complex solution
branches for real K > 0 are described and linked to the four-vortex solutions. In § 5,
the corresponding problem for a pipe with elliptic cross-section is solved, and we
conclude in § 6.

2. The Dean equations

We consider steady fully developed incompressible flow of a Newtonian fluid with
viscosity µ and density ρ down a weakly curved circular pipe of radius a driven by a
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R

a

0

FIGURE 1. Coordinate system for a curved pipe with circular cross-section of radius a
and large curvature radius R.

down-pipe pressure gradient, G. We take local Cartesian (x∗, y∗) and polar coordinates
(r∗, θ) at the pipe centre as shown in figure 1, where the superscript ∗ denotes a
dimensional variable. It should be noted that the angle θ is defined differently in BM.
The radius of the pipe centreline is R, where a� R, and φ is the angular down-pipe
coordinate. The velocity components in the r∗, θ and φ directions are u∗, v∗ and w∗
respectively, and for fully developed flow these are independent of φ. We adopt the
non-dimensional variables

r∗ = ar, u∗ = ν
a

u, v∗ = ν
a
v, w∗ =w0w, (2.1a−d)

where w0= a2G/(4µ) is the maximal velocity that would be driven in a straight pipe
by the same pressure gradient and ν=µ/ρ is the kinematic viscosity. In addition, we
introduce the streamfunction ψ to satisfy the continuity equation, such that u=ψθ/r
and v = −ψr. The small-curvature Dean limit is obtained by letting (a/R)→ 0 and
defining the Dean number, K = (2a/R)(aw0/ν)

2, following Dean (1928). We obtain
the dimensionless Dean equations

∇4ψ =J (∇2ψ, ψ)−Kwwy, (2.2)
∇2w=J (w, ψ)− 4, (2.3)

where

∇2f = ∂
2f
∂r2
+ 1

r
∂f
∂r
+ 1

r2

∂2f
∂θ 2

, J ( f , g)= 1
r

(
∂f
∂r
∂g
∂θ
− ∂f
∂θ

∂g
∂r

)
. (2.4a,b)

Finally, we impose the solid-wall boundary conditions, requiring that at r= 1,

w= ∂ψ
∂r
=ψ = 0. (2.5)

The Dean equations (2.2) and (2.3) have the up–down symmetry θ 7→−θ , ψ 7→−ψ ,
which is preserved in all solutions. As we will be considering all complex values of
the Dean number K, it is useful to note the following additional invariances.

I1 : θ→π− θ, K 7→−K, w 7→w, ψ→−ψ. (2.6a−d)
I2 : K 7→K, w 7→w, ψ→ψ. (2.7a−c)
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Here, I1 corresponds to reflection in x= 0 inverting the inside and outside of the bend,
and I2 to complex conjugation.

3. Solution methods
We adopt two techniques to study complex solutions of the Dean equations: DNS

and analytic continuation of series expansions using high-order approximants (HOAs).
Details were given in BM, which we summarise below.

3.1. Direct Navier–Stokes simulation
To solve the Dean equations (2.2) and (2.3) numerically, we use a spectral
decomposition in θ and second-order central differences in the radial direction,

w(rj, θ)=
κ∑

k=0

Wk(rj) cos(kθ), ψ(rj, θ)=
κ∑

k=1

Ψk(rj) sin(kθ), (3.1a,b)

where rj = j/(M + 1) for 0 6 j 6 M + 1 are the radial gridpoints. The truncation
parameter κ and number of gridpoints M are varied to ensure adequate resolution.
In contrast to BM, for numerical efficiency we here restrict attention with this
decomposition to flows that are symmetric about the x axis,

w(r, θ)=w(r,−θ), ψ(r, θ)=−ψ(r,−θ). (3.2a,b)

No steady solutions, real or complex, violating this constraint have been found,
although some of the real four-vortex solutions are known to be unstable to
time-dependent symmetry-breaking perturbations (Daskopoulos & Lenhoff 1989).

The resulting algebraic system is solved by path continuation in the parameter K,
which may be complex. Bifurcation points are traversed using pseudo-arclength and
branch-switching techniques. As we shall see, due to the localised structures on some
of these solution branches, the resolution required varies greatly across the complex
branches studied. For each solution presented here, the robustness has been verified
and the resolution used is specified.

3.2. Series extension and analytic continuation by HOAs
Following Van Dyke (1974), we construct the Dean series of the solution, an
expansion in powers of K,

w(r, θ)=
∞∑

n=0

wn(r, θ)Kn and ψ(r, θ)=
∞∑

n=0

ψn(r, θ)Kn, (3.3a,b)

with the leading-order term being Poiseuille flow in a straight pipe,

w0(r, θ)= 1− r2 and ψ0(r, θ)= 0. (3.4a,b)

On substituting the series into (2.2) and (2.3) and collecting in powers of K, we
find that as n increases, ψn(r, θ) and wn(r, θ) satisfy a sequence of successively
more complicated linear problems in the lower-order coefficients which can be
represented as recurrence relations and solved exactly to all orders. Schematically,
wn ∼∑ Enijrj cos(iθ). At order n, roughly n3 coefficients need to be found. In total,
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Complex solutions of the Dean equations 245

approximately 107 coefficients have been calculated up to n= 196 using an arbitrary
precision package in C++ (Free Software Foundation 2013).

It is convenient to pick a global quantity as a measure for the flow. Here, we adopt
the flux ratio, Q, defined as the integral of w over the pipe cross-section divided by
the flux in a straight pipe. It only involves even values of n≡ 2m and its series has
the form

Q=
∞∑

m=0

am(K2)m, where am =
7m+1∑
j=0

2E2m0j

j+ 1
. (3.5)

The coefficient array Enij is given in BM and we have calculated the coefficients up to
a98. Another reference quantity used is Ω , the total vorticity in the upper semicircle,
or equivalently the integral of the velocity along y= 0.

We now use the high-order Hermite–Padé approximant method of Drazin &
Tourigny (1996) to find multiple solutions of the Dean equations and to analytically
continue the series beyond its radius of convergence. Truncating (3.5) to N terms, the
idea is to construct polynomial expressions in Q and K of increasing order, d, which
have (3.5) as one of their roots. Sometimes, other roots of these polynomials appear
and persist as d increases. These are identified as other possible solution branches.

We define the function S(K)= Q(K)− a0, so that S(0)= 0. From (3.5), S(K) has
the truncated series representation

SN(K)=
N∑

n=1

an(K2)n = S(K)+O(K2N+2) as K→ 0. (3.6)

We then assume that S(K) is an algebraic function of K and so seek a polynomial of
degree d > 2 in two variables Fd(K, s), which we write as

Fd(K, s)=
d∑

l=1

l∑
m=0

fl−m,m(K2)l−msm. (3.7)

We find the coefficients fi,j by imposing that s= SN(K) be an approximate solution,

Fd(K, SN(K))=O(K2N+2) as K→ 0. (3.8)

For definiteness, we fix f0,1=1 and set N= (d2+3d−2)/2 to ensure the same number
of unknown coefficients as defining equations in (3.8).

The polynomial equation Fd = 0 will have d solutions for s. These are found
and traced as K varies using standard path continuation techniques in MAPLE. By
construction, one branch approximates an analytic continuation of the known solution
s = SN(K) in the classical manner of Hermite–Padé approximants. Some of the
remaining d − 1 branches will be spurious, as identified by their transient nature
as d is increased. However, those solution branches that persist as d increases are
assumed to approximate new solutions which somewhere bifurcate from the main
branch s = S(K) (Drazin & Tourigny 1996). Thus, even though we start with a
series representation of a single-valued function, the HOA continuation method can
predict the emergence of multiple solutions, as well as extending the main solution
beyond its circle of convergence. An identical process may be performed with Ω and,
more laboriously, with the series representations of the entire flow (ψ, w) at every
gridpoint. Once the existence of a new solution branch is indicated by the HOA,
it can be confirmed using DNS, which requires a good initial estimate to converge.
Continuation techniques within DNS are then used to follow the solution branches
outside the region where the HOA is reliable.
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FIGURE 2. Schematic representation of the bifurcation diagram for Q(K2), where the
dashed lines represent a pair of complex solutions and the solid lines a single purely real
solution. To four significant figures, K1 = 585.8, K2 = 5.712× 104 and K3 = 3.888× 105.
On branches 1b, 2, 9 and 15, the imaginary part of w and the real part of ψ are left–right
anti-symmetric. Branches 1–4 and 14 are predicted by HOA, the others by continuation
and DNS. The dotted lines denote smooth linkage in complex K, keeping |K| constant.

4. Constructing complex solution branches
We will soon find that for K 6= 0 there are multiple complex solutions, even when

K is real and positive. The solution space is difficult to visualise. Even when we
represent the flow with the single parameter Q, the solutions Q(K) form hypersurfaces
in a four-dimensional space when we permit K and Q to be complex. If two solutions
lie on the same hypersurface, then it should be possible to move from one to the
other by continuously varying K. We are naturally most interested in real K > 0
and real solutions. New real solutions can be sought on a solution hypersurface by
seeking to minimise the imaginary component. For Dean flow, there are the main
‘two-vortex’ and ‘four-vortex’ solution branches, which are believed not to bifurcate
from each other for any real K. We shall now investigate whether it is possible to
locate the four-vortex solution from the main solution branch by continuously varying
complex K.

To aid visualisation, bearing in mind the known bifurcation at imaginary K (see
BM), we shall usually consider real values of K2 and plot Re(Q). Sometimes, we will
wish to move through complex K-space. Then, we shall keep |K| constant, to limit the
discussion to three dimensions.

In figure 2, we show schematically a portion of the bifurcation diagram found. It
incorporates branches 1–8, which are solutions found in previous studies (McConalogue
& Srivastava 1968; Daskopoulos & Lenhoff 1989; Machane 2010; Boshier & Mestel
2014) and reproduced here, and branches 9–15, which are found for the first time in
the current work. To ease visualisation, the diagram represents branches projected onto
the real K2 axis. The solid lines denote fully real solutions. The branches with dashed
lines are complex solutions, although for symmetry reasons the integral Q is in fact
real on branches 1b, 2, 9 and 15. The HOA technique predicts branches 1–4 and 14,
which are then extended using DNS and continuation in the complex parameter K.
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Complex solutions of the Dean equations 247

Each complex branch may in fact represent up to four solutions in the fully complex
K-space related by invariances (2.6) and (2.7). The dotted lines in the figure represent
solution paths along circles of constant |K|, as described below.

Branches 1a and 1b correspond to the characteristic two-vortex solution found from
the analytic Dean series (3.5). Branches 5–8 are the well-known four-vortex solutions,
with 5–6 corresponding to those first reported by McConalogue & Srivastava (1968)
and 7–8 those given by Daskopoulos & Lenhoff (1989). The four-vortex solutions can
be constructed numerically for large K by using an O(1) perturbation off branch 1 as
a starting point – until now, they have not been locatable in a continuous manner.
Once such a solution is found, the branch can be followed down to the bifurcation
points at K = K2 or K3, below which they become complex. Branches 2–4 bifurcate
from branch 1 at the square-root singularity at K2 =−K2

1 , which limits the radius of
convergence of the Dean series. Notably, branch 2 is a complex solution, with real
flux, on which w scales as |K|−1/2 as K→ 0 (BM). It follows that as K→ 0 along
branch 2, the forcing term −4 in (2.3) becomes negligible, and the solution approaches
an unforced complex solution, which we call an eigensolution.

We now discuss the properties of the new branches and the means by which they
were found.

4.1. Eigensolutions of the unforced Dean equations
In BM, we concluded that a solution of the form of branch 2 exists provided that
there is a complex solution to the unforced Dean equations

∇4ψ =J (∇2ψ, ψ)−Kw(cos θwθ/r+ sin θwr), (4.1)
∇2w=J (w, ψ). (4.2)

Here, we observe that in addition to invariances (2.6) and (2.7), the unforced equations
(4.1) and (4.2) have the following invariance.

I3 : K 7→ K
α2
, w 7→ αw, ψ→ψ, (4.3a−c)

where α ∈ C is a constant. It is clear that by choosing a suitable constant α, the
eigensolution for K2<0 can be transformed to a complex solution for real and positive
K. The forced solution is a perturbation of this scaled eigensolution. We therefore infer
the existence of solution branches 9–11 from their known asymptotic forms as K→ 0.
Good initial estimates to the solutions near K = 0 on branches 9–11 can be found by
scaling the branch-2 solution, and all four branches closely approximate the unforced
solution. As K→ 0, the solution hypersurface resembles a funnel about K = 0, along
which |Q| ∼Q0/|K|1/2.

Explicitly, we construct close initial approximations to solutions of the full Dean
equations (2.2) and (2.3) by applying (4.3) to solutions on branch 2, (w, ψ, K) =
(w2,ψ2, ik), where |k|�1. Specifically, branch 9 is found with an initial approximation
(−w2, ψ2, ik), branch 10 is constructed from the initial estimate (

√
iw2, ψ2, k)

and branch 11 from (−√iw2, ψ2, k). The iteration procedure then locates precise
solutions for the full problem. The contour plots of w on these branches are shown
in figure 3(a–d). For small |K|, the solutions are almost images of each other. The
corresponding plots for ψ are virtually indistinguishable across these branches and
so only that of branch 11 is shown in figure 3(e). Corresponding values of Q and Ω
are given in table 1. The solution patterns diverge as |K| increases.
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FIGURE 3. Contour plots of w near K = 0, which approximate the ‘eigensolution’:
(a) branch 2, (κ, M) = (28, 225), and (b) branch 9, (κ, M) = (28, 325), both at K =
0.576i; (c) branch 10, (κ, M) = (28, 350), and (d) branch 11, (κ, M) = (28, 350), at
K = 0.576. (e) The streamfunction ψ on branch 11, which is indistinguishable from ψ
on the other branches. The numbers in brackets denote the contour interval, I/O indicate
the inside/outside of the bend.
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Branch (κ,M) K Q Ω

2 (225, 28) 0.576i 61+ 0i 0+ 5.9i
9 (325, 28) 0.576i −59+ 0i 0+ 5.9i

10 (350, 28) 0.576 43+ 42i 0.0019+ 5.9i
11 (225, 28) 0.576 −41− 42i −0.0020+ 5.9i

TABLE 1. Flux Q and upper vorticity Ω for solutions near K = 0, as in figure 3.

Branch (κ,M) K Q Ω

10 (525, 24) 5.184× 104 0.65+ 0.061i 7.4+ 7.0i
11 (450, 28) 5.184× 104 0.49− 0.016i −8.7+ 0.57i
12 (250, 28) 5.184× 104 0.66− 0.031i 3.4+ 2.4i
13 (250, 48) 5.184× 104 0.66− 0.037i 6.1+ 0.26i
14 (225, 24) 5.184× 104 0.63+ 0.054i 8.9+ 5.6i

TABLE 2. Flux Q and upper vorticity Ω for solutions at K = 5.184× 104, corresponding
to figure 4.

As expected, on branch 9, the imaginary part of w and the real part of ψ are left–
right anti-symmetric. This is not the case for branches 10 and 11. A common feature
of all of the branches is that as K varies, they may develop a localised structure. On
branch 9, the localisation is symmetric about the origin and is well resolved by our
polar decomposition, but this is less so for the solutions on branches 10–14 where
the symmetry is broken. The development of these structures means that following
solutions can become computationally expensive. For example, a converged solution
at K = 10−3 on branch 10 requires a typical resolution (κ,M)= (28, 325), while for
K = 5.184 × 104 we need (κ, M) = (24, 525), and increasing K is laborious. As we
shall see, it is more fruitful to follow paths for complex K-values.

4.2. Path continuation in real K
In light of complex bifurcation theory (Henderson & Keller 1990), we expect complex
solutions to bifurcate from the four-vortex solutions at K2 = 5.712 × 104 and K3 =
3.888×105. As these are simple turning points for complex K, branches 12 and 13 are
found by branch-switching at K2 and K3 respectively. Two complex solution branches
that exist at K <K2 and K <K3 coalesce and become real at these points.

Five different complex solutions are plotted for K = 5.184× 104 in figure 4. They
exhibit great differences in structure. The relative sizes of the real and imaginary parts
suggest that branch 12 is closest to hitting a real solution, as is indeed the case. The
double-dipole structure exhibited in w on branch 13 is quite distinct from all other
solutions found, and it is possible that this solution lies on a separate hypersurface
from the others. The values of Q and Ω pertaining to these five flows are given in
table 2.

Ideally, we would like to be able to follow the complex solutions on branches 12
and 13 to K = 0, or connect them to any of the other branches that stem from the
singular eigensolution. Unfortunately, we find that as K is kept real and reduced,
the solutions develop a localised structure, making them computationally difficult
to resolve. Thus, for example, branch 12 is troublesome for K < 1.152 × 104.
Investigation in complex K-space reveals the proximity of another more structured
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FIGURE 4. Contour plots of the azimuthal velocity w and the streamfunction ψ at K =
5.184 × 104: (a) branch 10, (κ, M) = (24, 525); (b) branch 11, (κ, M) = (28, 450);
(c) branch 12, (κ, M) = (28, 250); (d) branch 13, (κ, M) = (48, 250); (e) branch 14,
(κ,M)= (24, 225).
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FIGURE 5. Branch 15 at K =−5.76× 104i, (κ,M)= (125, 16).

complex solution branch, which can be circumvented by choosing a different path.
This characteristic is visible in figure 4(e). Accordingly, we turn our attention to
constructing paths for fully complex K.

4.3. Path continuation in complex K
Selection of the best path to follow in complex K-space to connect known branches
is not trivial. In practice, we have limited our consideration to arcs of constant |K|
which are chosen so as to avoid regions where the solutions are difficult to resolve.
Such arcs are indicated by dotted lines in figure 2. The direction we take on these
paths, anti-clockwise or clockwise round the imaginary K-axis, is also chosen to avoid
any solution that develops localised structures. In this manner, we have been able to
identify new branches for real K as well as joining already identified branches in
complex K-space. Thus, for example, moving round the K= 0 axis connects branch 9
to branch 11 in a straightforward manner, while branches 3 and 4 join with the real
branch 1a. The behaviour from branch 2 is less obvious and may result in either
branch 10 or 14 because of the proximity to a highly structured branch.

We now construct a continuous solution path joining the complex eigensolution
branch 10 with branch 12. This path includes two circular arcs in complex K-space.
We start on branch 10 at K= 5.76× 103, a point chosen to lie well within the region
where branch 10 is easy to resolve. The circle |K| = 5.76 × 104 is then followed
anti-clockwise up to K=−5.76× 103i. Here, we find a new solution branch 15. This
branch has the same symmetry characteristics as branches 1, 2 and 9, in that the flux
is real and the total vorticity in the upper semicircle is imaginary, as can be inferred
from figure 5. Were we to continue anti-clockwise further on this circle, we would
encounter a region where solutions become difficult to resolve before reaching real K
again. Instead, we follow branch 15 to K = −1.44 × 104i. At this point, we follow
the circle |K| = 1.44 × 104 in a clockwise manner. We find that this path has no
difficulty in constructing solutions up to K= 1.44× 104, where we reach branch 12, a
safe distance from the value near K = 1.152× 104 which causes trouble. Hence, with
these two arcs, we form a continuous path which joins our eigensolution branch 10
to branch 12, the complex solution that bifurcates from the four-vortex solutions at
K = K2. Sample solutions along this path are shown in figure 6. Panels (a–c) link
onto figure 5 along |K| = 5.76 × 103, while (e–g) link branches 12 and 15 along
|K| = 1.44× 104.

We have thus achieved our goal of linking the real four-vortex solution branches 5
and 6 to the main solution branch 1. A continuous solution path runs respectively
through the complex branches 2, 10, 15 and 12, joining via semicircles in complex
values of K2. Despite some effort, we have been unable to link branches 7 and 8
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FIGURE 6. Contours of w and ψ for (a) K = 5760, (κ,M)= (225, 40); (b) K = 5120−
2602i, (κ, M) = (325, 16); (c) K = 1920 − 5462i, (κ, M) = (150, 16); (d) K = −5760i,
(κ, M) = (125, 16), see figure 5; (e) K = 5120 − 7926i, (κ, M) = (125, 16); ( f ) K =
11199− 6075i, (κ,M)= (125, 16); (g) K = 14400i, (κ,M)= (125, 16). Panels (a–d) link
branches 10 and 15 along |K| = 5760; (e–g) link branches 15 and 12 along |K| = 14400.
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R

0

FIGURE 7. Coordinate system for a curved pipe with elliptic cross-section; foci at F1 =
R− a and F2 = R+ a, and radius of centreline R.

via branch 13 to the main solution tree in this manner, and it is possible that the
second ‘four-vortex’ solution branch in fact lies on a disjoint complex hypersurface.
The double-dipole nature of figure 6(e) is quite different from the structures seen on
the other branches.

Despite this success, we cannot really claim that our branch-tracking procedure
provides a cost-effective way to predict the real multi-vortex solutions for this
problem. Nevertheless, the existence of such a path provides encouragement regarding
the value of studying the Navier–Stokes equations in the full complex domain. Other
problems with more solution branches have provided a more fruitful application of
the procedures employed in this paper, for example Vaz, Boshier & Mestel (2017).

5. Pipes of elliptic cross-section
Dean flows in circular pipes have received by far the most attention in the literature,

although rectangular and triangular ducts have also been considered. We now briefly
report on Dean flow in pipes of elliptic cross-section with various aspect ratios. As
expected, this problem is found to exhibit many features similar to those of the
circular pipe. Machane (2010) found multi-vortex solutions for elliptic cross-sections
of aspect ratio λ= 1.45, although his bifurcation diagram differs from that found for
the circular cross-section. Interestingly, in his study, he concluded that the number
of vortices on a particular branch may gradually change without running through a
singular point, suggesting that ‘number of vortices’ is not a robust diagnostic for
distinguishing between solutions in the elliptic case.

We take local coordinates at the pipe centre, as shown in figure 7, where the
superscript ∗ denotes a dimensional variable. The Cartesian and elliptic coordinates
are related by x∗ = a cosh η cos θ , y∗ = a sinh η sin θ . The boundary at η = η0 is an
ellipse with foci at x∗ =±a and corresponding aspect ratio λ= tanh η0. We note that
as η0→∞, λ→ 1, and in this limit the cross-section is a circle of infinite radius.
Thus, our scaling keeps a fixed distance between the two foci, rather than, say, fixing
the perimeter or the area of the ellipse. The velocity components in the η, θ and
φ directions are u∗, v∗ and w∗ respectively, and for fully developed flow these are
independent of φ. We adopt the non-dimensional variables

γ = γ ∗

a cosh η0
, u= νu∗

a cosh2 η0
, v = νv∗

a cosh2 η0
, w= w∗

w0
, (5.1a−d)
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where the scale factor γ ∗= a
√

cosh 2η− cos 2θ , w0 is the maximal azimuthal velocity
driven in a straight pipe by the same pressure gradient and ν is the kinematic viscosity.
The continuity equation is satisfied by introducing a streamfunction ψ such that u=
ψθ/γ and v =−ψη/γ . The dimensionless Dean equations are then

∇2w=J (ψ,w)− 2(1+ coth2 η0), (5.2a)

∇4ψ =J (ψ,∇2ψ)−K
w
γ 2

(
cosh η sin θ

cosh η0

∂w
∂η
+ sinh η cos θ

cosh η0

∂w
∂θ

)
, (5.2b)

where

∇2f = 1
γ 2

(
∂2f
∂η2
+ ∂

2f
∂θ 2

)
and J ( f , g)= 1

γ 2

(
∂f
∂θ

∂g
∂η
− ∂f
∂η

∂g
∂θ

)
. (5.3a,b)

The Dean number now takes the form K = 2a3w2
0 cosh3 η0/(ν

2R). Finally, we impose
the solid-wall boundary condition and require that at η= η0,

w= ∂ψ
∂η
=ψ = 0. (5.4)

We can also use the above equations to consider pipes with aspect ratio λ > 1 by
applying the transformation

η→ η+ i
π

2
and a→−ia. (5.5a,b)

We are therefore able to examine flows in ducts varying continuously between very
squat (λ→ 0) and very tall (λ→ ∞) cross-sections. The solutions pass smoothly
through the circular case λ= 1.

5.1. Small and large λ
For small λ, the top and bottom boundaries are close and almost parallel, so that ψ
and w are expected to be independent of x near the centre of the pipe. To leading
order in λ, the Dean equations (5.2a) and (5.2b) reduce to

d2w
dy2
=− 2
λ2
+O(1),

d4ψ

dy4
=−K

2
w

dw
dy
, (5.6a,b)

with solution

w= 1− y2

λ2
and ψ = Kλ3

840

(
1− y2

λ2

)2 (
5− y2

λ2

)
y
λ
. (5.7a,b)

This solution is in accordance with the rectangular Dean–Hele-Shaw flow considered
by Mestel & Zabielski (2012), in the context of dynamo theory. It was shown that
at moderately high Reynolds number, the above flow was prone to an inflection-point
type of instability, but that does not concern us here.

For large λ, we approach the thin-gap limit of Taylor–Couette flow. To leading order,
ψ and w are expected to be independent of y near the centre of the pipe. In this case,
the Dean equations (5.2a) and (5.2b) are solved to leading order by plane Poiseuille
flow,

w= 1− x2 and ψ = 0. (5.8a,b)

The secondary cross-pipe flow is driven by the distant horizontal boundaries, and is
small in the main body of the pipe.
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5.2. Numerical methods
We use a similar method to that for the circular cross-section, which is adaptable for
real or complex solutions. We use a spectral decomposition in θ and finite differences
on the grid η= ηj ≡ jη0/J for j= 1 . . . J,

ψ(ηj, θ)=
κ∑

k=−κ
fj,keikθ , w(ηj, θ)=

κ∑
k=−κ

wj,keikθ . (5.9a,b)

When constructing the numerical scheme for (5.2a) and (5.2b), we must be careful
near the two coordinate singularities at the foci F1 and F2 or η= 0, θ = 0, π, where
γ = 0. Care is also required on the line η= 0 joining the foci, providing a boundary
condition on the finite differencing. We require continuity of w, ψ and ∇2ψ across
this line. We ensure this by introducing fictitious points at j=−1 and note that w is
top–bottom symmetric while ψ and ∇2ψ are top–bottom anti-symmetric. For λ < 1,
this requires, for instance, that w−1,k=w1,−k, which we build into the finite difference
scheme. In contrast, for λ > 1, after using the transformation (5.5), the appropriate
condition is w−1,k = (−1)kw1,−k.

Path continuation techniques are used as before to follow solution branches.

5.3. Extended series solution and HOAs
Analogously to the circular pipe, we construct the Dean series

w(η, θ)=
∞∑

n=0

wn(η, θ)Kn and ψ(η, θ)=
∞∑

n=0

ψn(η, θ)Kn (5.10a,b)

and find that wn and ψn take the forms

wn =
In∑

i=0

In∑
j=0

Enij(η0)

{
cosh(2jη) cos(2iθ), n even,
cosh((2j+ 1)η) cos((2i+ 1)θ), n odd,

(5.11)

ψn =
Jn∑

i=0

Jn∑
j=0

Cnij(η0)

{
sinh(2jη) sin(2iθ), n even,
sinh((2j+ 1)η) sin((2i+ 1)θ), n odd,

(5.12)

where Jn= 7n/2 for even n, Jn= (7n− 1)/2 for odd n and In= Jn+ 1. The coefficients
Enij and Cnij are constant for a given ellipse and can once more be found precisely to
all orders. The leading term solves (5.2a), (5.2b) when K = 0 and is Poiseuille flow
in a straight elliptic pipe,

w0(η, θ)= (cosh 2η0 − cosh 2η)(cosh 2η0 − cos 2θ)
sinh2 2η0

, (5.13)

ψ0(η, θ)= 0. (5.14)

Subsequent terms for a given value of n can be expressed as recurrence relations
involving the known coefficients for smaller values of n. While the series could
be constructed for general λ, in practice, the storage required by the coefficients is
prohibitive, and it is best to obtain new series for particular values of λ. Using an
arbitrary precision GMP package in C++, coefficients up to n= 100 have been found
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λ Kc λ Kc

0.40 5416.767583 1.25 412.6356614
0.50 2952.430888 1.50 341.7175227
0.75 1069.355151 1.75 313.2575625
0.80 923.7600 2.00 305.5389223
1.00 585.7887750 (circle)

TABLE 3. Radius of convergence Kc for different aspect ratios λ.

for λ= 0.4, 0.5, 0.75, 0.80, and, by applying transformation (5.5), for λ= 1.25, 1.5,
1.75, 2.

As before, we use as a diagnostic the flux ratio Q defined as the integral of w over
the cross-section divided by the flux down a straight pipe with the same cross-section.
We derive its series from (5.10) and find that it involves only even powers of K,

Q(K)=
∞∑

n=0

an

a0
K2n, (5.15)

where

an =
Jn∑

j6=1

π

2

(
sinh(2( j− 1)η0)

2( j− 1)
+ sinh(2( j+ 1)η)

2( j+ 1)

)
En0j −

Jn∑
j=1

π

4j
sinh(2jη0)En1j

+ π

2

(
η0 + sinh 4η0

4

)
En01 − π

2
η0En10. (5.16)

For more details, see Tettamanti (2012). Using Domb–Sykes analysis on the series
for the flux Q as in Van Dyke (1974), we have found that for every λ, the circle of
convergence is limited by square-root singularities at the imaginary values K =±iKc.
The behaviour of Kc(λ) is shown in table 3. The value of the singularity varies with
λ, as one might expect, but while as λ→ 0 the radius of convergence of the series
increases without bound, it appears to plateau as λ increases beyond 1. In interpreting
this, it should be borne in mind that K has been defined to keep the focal separation
a constant.

The HOAs up to d = 7 have been constructed for each of the above λ values.
This is a lower-order approximant than we had available for the circular cross-section.
Nevertheless, we find that these approximants are able to identify reliably a bifurcation
diagram equivalent to branches (1a, b, 2–4) found for the circular cross-section.
We can conclude that the square-root singularities at K = ±iKc are also of the
symmetry-breaking type found for the circular case and discussed in BM. This leads
to a branch 2 that asymptotes towards K= 0, with the resultant complex eigenfunction.
This, in turn, implies the existence of complex solutions for real K > 0. Complex
solutions are believed to exist in all cases for K > 0, although unlike for the circle,
we have calculated insufficient coefficients for the HOAs to predict these explicitly.
Nevertheless, the DNS locates them without trouble based on the scaled branch-2
solution.

The eigenfunction takes a fairly simple form for high-aspect-ratio ellipses. As λ→
∞, the shape approaches an unbounded pipe with walls at x=±1, for which we can
find an unforced complex solution to the problem

J(ψ,∇2ψ)=∇4ψ, with ∇ψ = 0 on x=±1. (5.17)
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FIGURE 8. The real and imaginary parts of the unforced complex flow between two
parallel plates, the limit of a high-aspect-ratio ellipse. The streamfunction is ψ = yf (x)
or ψ = xf (y).

As the unforced streamfunction has left/right symmetry, we seek a solution of the form
ψ = yf (x), where

f ′f ′′ − ff ′′′ = f ′′′′, with f (±1)= 0= f ′(±1). (5.18)

The solution to this homogeneous problem is shown in figure 8. As w = 0 for this
solution, it is an example of an unforced complex solution to the two-dimensional
Navier–Stokes equation. An essentially identical unforced solution can be found as
λ→ 0.

In summary, so far as we are able to discern, the solution structure for ellipses of
moderate aspect ratio appears to resemble closely that of the circle. Unforced solutions
exist, as do complex solutions for real K.

6. Concluding remarks
In this paper, we have demonstrated that the unforced solution for small but

imaginary Dean number found in BM automatically leads to complex solutions
for real positive K. The existence of such extra complex solution branches has
not previously been reported, but has now been found in other simple problems.
Indeed, we conjecture that such solutions are usually, if not always, present for the
Navier–Stokes equations. With hindsight, their existence is very plausible. A complex
velocity field does not have the same energetic limitations as a physical real flow, and
need not require a forcing term. An unforced flow, whose magnitude is proportional
to the viscosity, satisfies a fully nonlinear PDE effectively at intermediate Reynolds
number,

u · ∇u=−∇p+∇2u, ∇ · u= 0. (6.1)

That such a nonlinear problem should possess a complex solution is no great surprise.
A further plausibility argument can be advanced for domains with a symmetry plane,
say at x=0. If we introduce an imaginary coordinate ξ = ix, then the elliptic Laplacian
operator becomes hyperbolic in terms of (ξ , y, z) and a real unforced solution to
that problem would raise no eyebrows, although mathematically it corresponds to a
complex unforced solution to the Navier–Stokes equations in real space.
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Granted that extra complex solutions to the forced Navier–Stokes equations exist,
one can nevertheless question the practical worth of finding and studying them.
Leaving aside any insight that might in time derive from a better understanding
of the full complex solution space, our intended justification is to understand and
perhaps predict bifurcations to new physical solutions, which may come into being at
the junction of two complex solution branches. In this paper, we have demonstrated
that the first pair of four-vortex solutions to the Dean equations can be continuously
linked onto the unforced eigensolution at K = 0, and thence onto the main solution
branch and its analytic continuation. Reversing the process, the four-vortex solution
branch could have been located continuously, rather than by using slightly arbitrary
initial conditions for DNS.

Yet, the authors would be the first to admit that for this problem at least, the effort
required to locate and predict the four-vortex solution was disproportionately intensive.
If K and the diagnostic parameter Q are regarded as complex, the solution space for
Q(K) may ‘only’ be four-dimensional, but it is nevertheless difficult to navigate and
comprehend, partly because it conceals much of the structure of the full PDE solution.
We have not presented here all of the complex solutions found and have, indeed,
in our numerical investigations, sometimes striven to avoid those with more intricate
structure.

A natural question to ask is whether the techniques described here, the pioneering
work of Van Dyke, computationally extended 100-fold and viewed through the
prismatic HOA lens of Drazin & Tourigny (1996), can be recommended for other
problems.

Inevitably, this is hard to answer. The HOA method is very good at locating
bifurcations off the main solution branch, but could not predict subcritical bifurcations
from infinity, such as the four-vortex solutions. It was natural to expect for our
problem that the complex solution branches known to exist for K slightly positive
would merge directly as K increased with the complex branches known to exist for
K < K2. However, the behaviour was more complex in our study and it is difficult
to predict what will happen in general. The techniques have, however, already been
applied with some success to problems in convection and planetary dynamics which
are known to possess more prominent bifurcations. In the former case, the singularity
limiting the convergence of the Stokes series was found to correspond to a physical
hysteresis at real Grashof number. The method led directly to the discovery of other
real solution branches (Vaz et al. 2017). Calculations have also been performed for
the flow between concentric rotating spheres.

It is, of course, also possible to investigate complex solutions without going through
the Stokes series/HOA route. An unforced solution to (6.1) depends only on geometry
and, once it is known, it can be used as the same numerical starting point for path
continuation of complex solutions to problems with varied physical forcing. Whether
or not as the Reynolds number is increased these complex solutions will end in
coalescence at real bifurcations will depend on the forcing in the particular problem,
but in our view it is certainly worth investigating.
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