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Factorials are huge and widespread
The product over the integers 1 to  is written as , is called

factorial, and is defined as:
N N! N

N! = 1 × 2 × 3 ×  …  × (N − 1) × N. (1)
Factorials have two important characteristics, the frequency with which

they occur in mathematics and the sheer size of their values. They occur
often in combination problems, probablilty theory, power series expansions
for many familiar functions, and so forth. Factorials are also common in the
physics branch of statistical mechanics, where probability is applied to large
collections of particles. ‘Large collections’ means numbers like
or , so  is an astromomical number. In Planck's paper that gave birth
to quantum theory, he applied probability theory and factorials to the atoms
in a ‘blackbody’.

N = 1019

1022 N!

The sum over the integers  to , , can be
simplified to . However, there is no formula for  that is both
exact and relatively easy to compute. Mathematicians have worked on the
problem for nearly 300 years and have discovered many good estimates. In
1730, Leonard Euler found symbolically that for any integer ,  was equal
to the Area (from  to ) under the curve :

1 N {1 + 2 + 3 +  … +(N − 1) + N}
1
2N (N + 1) N!

N N!
x = 0 ∞ yN (x) = xNe−x

∫
∞

0
xNe−xdx = N! , (2)

where  is Euler’s number.e = 2.7182…
It turns out that the approximation process is considerably easier to

visualise by making a simple change of variable, , in the integral in
(2). The expression for  is now

x = t2

N!

∫
∞

0
2t(2N + 1)e−t2

dt = N! . (3)

The approach used here starts by first plotting the curves
 for different values of  on a computer, to see what

connection they have with . Because the  values are so large, even for
small , they have to be scaled to fit on the computer screen. Once the
scaled curves are displayed, they look remarkably similar, leading to a
simple first working approximation for . Next, plotting the ratio between

 and the first approximation to  leads to a straightforward second
approximation. This second estimate is accurate enough for many
applications.

yN = 2t(2N + 1)e−t2 N
N! yN

N

N!
N! N!
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FIGURE 1: The area under the curves  is shown for  and
. The maximum values for each curve are shown by the circles.

yN (t) = 2t(2N + 1)e−t2 N = 2
N = 3

How is Euler's area under the integral related to factorials?
Figure 1 shows what the unscaled curves  and

 and 3 look like. The curves for all values of  have the same general
shape, with a single maximum and decreasing to 0 as  or . For any

, calculus shows that the maximum value is 

yN (t) = 2t(2N + 1)e−t2

N = 2 N
t → 0 ∞

N

YMAXN = YMAX (tM) = 2 ⎡⎢⎣
N + 1

2

e
⎤⎥⎦

N + 1
2

,

which occurs when  or . What does the area
under these curves have to do with 2! and 3! ? First of all, the ratio of their
maximum values,  nearly satisfies the definition of ,

. This simple observation is essentially the key to all that
follows; the maximum value of Euler's (modified) curve for any  contains
almost all the information needed to evaluate . Table 1 shows this
property holds for the first few integers.

2t2
M = 2N + 1 tM = N + 1

2

4.84 / 1.62 ≈ 2.986 N!
N! / (N − 1)! = N

N
N!
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N 2 3 4 5 6 7 8 9 10
R 1.979 2.986 3.989 4.991 5.993 6.994 7.995 8.995 9.996

TABLE 1: The ratio  calculated for  to 10.R =
YMAXN

YMAXN − 1
N = 2

Secondly, the identity in (3) can be confirmed, at least for small , by
calculating the area numerically using a simple midpoint approximation to
sum the areas of 12 rectangles, from  to 6. This process is shown in
Figure 1; add up the areas under the rectangles to approximate the
curve. The rectangle widths all equal ; the heights are computed at

. The area under the
curves can be computed with surprising accuracy by this process. (Some
rectangle heights are so small that they blend in with the horizontal axis.)
The results are shown in Table 2.

N

t = 0
N = 2

1
2

t = 0.25,  0.75,  … ,  5.25,  5.75 yN (t) = 2t(2N − 1)e−t2

N 2 4 6 8 10

N! 2 24 720 40,320 3,628,000
N!app 2.00016 24.00003 720.0001 40,320 3,628,000

TABLE 2:  values are compared to results from approximating the area ( )
under the curves  using midpoint rectangles such as those shown

in Figure 1.

N! N!APP

yN (t) = 2t2N + 1e−t2

Finally, the identity in (3) is formally proved by using the identity

 and repeated integration by parts:2t(2N + 1)e−t2
= (2te−t2) t2N = −

d (e−t2)
dt

t2N

∫
∞

0
2t(2N + 1)e−t2

dt = N ∫
∞

0
2t(2N − 1)e−t2

dt = N (N − 1) ∫
∞

0
2t(2N − 3)e−t2

, … ,

where .∫
∞

0
2t(1)e−t2

dt = 1

Scaling the curves on a computer screen: first approximation to N!
The maximum values of the  curves for , 10 and 20 are

,  and . Because the maximum values increase so
dramatically, in order to compare these curves on a computer monitor it
makes sense to divide each curve by its maximum value. Figure 2 shows
what the scaled curves  for , 10 and 20 look like. The
scaled curves are very similar to each other and to the familiar bell-shaped
(Gaussian normal) curve.

yN (t) N = 5
1 × 102 3 × 106 2 × 1018

yN (t) / YMAXN N = 5
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FIGURE 2: The  curves for ,  and  are each scaled by
their maximum value ,  and , respectively

yN (t) = 2t(2N + 1)e−t2
5! 10! 20!

YMAXN : 102 3 × 106 2 × 1018

To further show the similarity of the curves, we simply shift them so
that the maximum values from each curve are plotted at the same point on
the horizontal axis. Figure 3 shows the same three scaled curves, but now
shifted and overlaid. This is equivalent to plotting them against the variable

. The similarity of the three curves is strikingly clear. The
curves are now exceptionally close to each other (there really are three
curves). Figure 3 suggests that as  increases, the curves approach what we
shall term a universal curve, which will be discussed shortly.

T = t − N + 1
2

N

0
0
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FIGURE 3: The same curves as in Figure 2,  curves for
 and 20 and scaled by their maximum values, but now overlaid such that

their maximum values coincide with each other.

yN (t) = 2t(2N + 1)e−t2

N = 5,  10

To obtain a first approximation for , we now unravel the process that
generated Figure 3. To produce the universal curve, we divided the  axis of

each  curve by . Figure 3 suggests that all scaled

N!
y

N! 2 [(N + 1
2) / e]

N + 1
2

N!
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curves fall effectively on this same curve. To compute any particular
back from the universal curve, we simply reverse the process and multiply
the area under the universal curve by . So, the first
approximation for calculating  efficiently is

N!

2 [(N + 1
2) / e]N + 1

2

N!

N! ≈ C1

⎧
⎩
⎨2 ⎡⎢⎣

N + 1
2

e
⎤⎥⎦

N + 1
2⎫
⎭
⎬ , (4)

where  is a coefficient that measures the area under the universal curve in
Figure 3.

C1

Second approximation for N!
A direct way to estimate the coefficient  is to divide the exact

value by the term , as given by (4). Table 3 shows the

estimates for , 10, 15 and 20.  is not an exact constant; this is also
shown by the fact that the scaled curves for , 10 and 20 in Figure 3
do not coincide precisely. As  increases, the difference between
consecutive  values decreases, suggesting that  approaches a limiting
value as  gets large. One way to estimate the limit is to plot  against the
variable . As  goes from 1 to ,  only varies between
2/3 and 0, greatly compressing the horizontal axis and making the value of
the limit more apparent.

C1 N!
⎧
⎩
⎨2 ⎡⎢⎣

N + 1
2

e
⎤⎥⎦

N + 1
2⎫
⎭
⎬ C1

N = 5 C1
N = 5

N
C1 C1

N C1
1 / (N + 1

2) N ∞ 1 / (N + 1
2)

N N! / N!(app) C1

5 120 / 96.47 1.2439
10 3.6288 × / 2.9069 × 106 106 1.2484
15 1.3077 ×  / 1.0462 × 1012 1012 1.2500
20 2.4329 ×  / 1.9451 × 1018 1018 1.2508

TABLE 3: For , 10, 15 and 20, the coefficient  is computed.

 is labelled 

N = 5 C1 = N! / N!(app)

⎧
⎩
⎨2 ⎡⎢⎣

N + 1
2

e
⎤⎥⎦

N + 1
2⎫
⎭
⎬ N!(app)

Figure 4 shows the plotted values of  against . Two
features are apparent; the values appear to converge as ,
and they lie on a (nearly) straight line. The values converge to
as . The second approximation is now

C1 1 / (N + 1
2)

1 / (N + 1
2) → 0

C∞ = 1.2533
1 / (N + 1

2) → 0

N! ≈ 1.2533
⎧
⎩
⎨2 ⎡⎢⎣

N + 1
2

e
⎤⎥⎦

N + 1
2⎫
⎭
⎬ = 2.5066 ⎡⎢⎣

N + 1
2

e
⎤⎥⎦

N + 1
2

.

Using  values at  and  (7-digit accuracy) to estimate
the slope of the line, the value is . A more detailed analysis shows
the value multiplying  to be , resulting in a more accurate
estimate for .

C1 N = 10 N = 20
−1 / 24.09

1 / (N + 1
2) −1 / 24

N!
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The limiting value of  is actually , so our
final estimate here for  is

C1 C∞ = π / 2 = 1.2533…
N!

N! ≈ 2π ⎡⎢⎣
N + 1

2

e
⎤⎥⎦

N + 1
2
⎡
⎢⎣
1 −

1
24 (N + 1

2)
⎤
⎥⎦

. (5)

This is very similar to Stirling's approximation for , discovered within a
year of Euler's integral definition for .
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FIGURE 4: The coefficient  plotted against the variable , as .
The line is an actual straight line (drawn by hand).

C1 1 / (N + 0.5) N → ∞

How accurate is the approximation?
Table 4 shows the accuracy of the approximation in (5), for values of

, 10 and 20, and also for 70!, which displays an Overflow message on
my hand calculator. The goodness-of-fit depends on the criterion. The
approximation for 10! is 36 less than the actual value but is also 99.999% of
the actual value.

N = 5

5! 120 ≈ 119.995

10! 3,628,800 ≈ 3,628,764

20! 2.43290 … ×1018 ≈ 2.43289 … ×1018

70! 1.1978571 .... ×10100 ≈ 1.1978569 .... ×10100

TABLE 4: Comparison of  to the approximation given by (5), shown by the ( )
symbol.

N! ≈

The approximation works very well, especially considering the range of the
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numbers involved. There are better approximations (remember that
mathematicians have been working on this for almost 300 years), but this is
sufficient for even fairly advanced work.

Universal curve and the area under it
The scaled curves in Figure 3 closely resemble Gaussian normal curves,

so I assumed that the universal curve had the form , with
. As , , so the limits of

integration for the universal curve are  to . I first determined the
constant  by this method. The numerical work from Figure 4 (and about
300 years of mathematical analysis) shows that the area under the Gaussian-
like curve . The integral , so

. From this, ,
which is where the original choice of  comes from. This is a
global way of showing that . Figure 5 shows the scaled curves for

 and 15 plotted against the universal curve  . As
gets larger, the scaled factorial curves approach the universal curve.

U (T) = exp(−aT2)
T = (t − tM) = [t − N + 1

2] N → ∞ T → −∞
−∞ ∞

a

≈ 1.2533… ∫
 ∞
−∞ e−at2dt = π / a

a = π / 1.2533 ≈ 1.41423 a = 1.414232 ≈ 2.00005
exp (−2T2)

a = 2
N = 5 U (T) = exp(−2T2) N

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

T

U (T)

FIGURE 5: The broken curves are the scaled curve values for  (circles) and
 (squares). The solid curve is the universal curve, , where

.

N = 5
N = 15 U (T) = exp(−2T2)

T = (t − tM)

The constant  can also be determined locally by showing that as

, the sequence of scaled curves , for any .

a

N → ∞
yN (t)

yN (tM)
→ exp (−2T2) T

yN (t)
yN (tM)

=
2t(2N + 1)e−t2

2t(2N + 1)
M e−t2

M
=

(tM + T)(2N + 1) e
−(tM + T)2

t(2N + 1)
M e−t2

M

=
⎡
⎢
⎣
1 + ( T

tM
)2N + 1⎤

⎥
⎦
e−(T2 + 2TtM) =

⎡
⎢
⎣
1 + ( T

N + 1
2
)2N + 1⎤

⎥
⎦
e−(T2 + T N + 1

2).
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The question is, for what value of  doesa

⎡
⎢⎣
1 +

T
N + 1

2

⎤
⎥⎦

(2N + 1)

e−[T2 + 2T N + 1
2] → e−aT2

as ?N → ∞
It is simpler if we separate the terms by first taking the natural logarithm

of the scaled factorial, find the limit as , then exponentiate the
result.

N → ∞

(2N + 1) ln ⎡
⎢⎣
1 +

T
N + 1

2

⎤
⎥⎦

− [T2 + 2T N + 1
2] → (−aT2)

as N → ∞?
Dividing by  gives−T2

1 +
2 ( T

N + 1
2 ) − 2 ln [1 + T

N + 1
2 ]

( T
N + 1

2 )2 → a as  N → ∞. (6)

Figure 6 shows this expression plotted against the variable ,
for various values of  ranging from  to +3. The  values go from

 to . Convergence to the limit  as  or
is evident. Although not shown, for larger values of  the (nearly) straight
line convergence to 2 is still evident; it just occurs at larger values of .

1 / N + 1
2

T T = −3 N
104 108 a = 2 N → ∞ 1 / N + 1

2 → 0
T

N
The formal proof that the sequence in expression (6) converges to the

limit , for all , requires the Cesàro-Stolz Lemma. This lemma is a
discrete version of L'Hôpital's rule; it uses differences instead of derivatives.
However, in this particular case, using the lemma tends to disguise the result
rather than explain it, so I use a simpler approach which still captures the
essentials of the argument.

a = 2 T

Set ; as . Now evaluate the expressionv ≡ 1 / N + 1
2 N → ∞, v → 0

Q = 1 +
2 [vT − ln (1 + vT)]

(vT)2
, as  v → 0. (7)

This continuous function is a model for the actual sequence. As ,
both the numerator, , and the denominator, , also
tend to zero. Using L'Hôpital's rule we find that

v → 0
2 [vT − ln (1 + vT)] (vT)2

d
dv

{2 [vT − ln (1 + vT)]} =
2vT2

1 + vT
, (8)

d
dv

{(vT)2} = 2vT2. (9)

Dividing (8) by (9) results in . As , the term
, for all , so

1 / (1 + vT) v → 0
1 / (1 + vT) → 1 T

1 + 1 = 2 → a and  ln ⎡
⎢⎣

yN (t)
yN (tM)

⎤
⎥⎦

→ −2T2 as  N → ∞.
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The scaled curve  as .
yN (t)

yN (tM)
→ e−2T2

N → ∞

Both chains of reasoning, global and local, reproduce what Figure 5
suggests is true.
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FIGURE 6: Let . The quantity in expression (6) from the text,
, is plotted against the variable ,

for values of  ranging from  to . Convergence to the limit 2 is shown for
several values of  ranging from  to .

v ≡ 1 / N + 1
2

Q = 1 + 2 [vT − ln (1 + vT)] / (vT)2 1 / N + 1
2

N 104 108

T −3 +3
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