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Abstract

For an arbitrary discrete probability-measure-preserving groupoid G, we provide a characterization of
property (T) for G in terms of the groupoid von Neumann algebra L(G). More generally, we obtain a
characterization of relative property (T) for a subgroupoid H ⊂ G in terms of the inclusions L(H) ⊂ L(G).
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1. Introduction

Property (T) for countable probability-measure-preserving (pmp) equivalence
relations has been introduced by Zimmer in [23]. The natural generalization to discrete
pmp groupoids has been studied by Anantharaman-Delaroche in [2]. In view of the
importance of property (T) in the setting of operator algebras, and the key role it
plays in Popa’s deformation/rigidity theory, it is valuable to have a characterization
of property (T) for a discrete pmp groupoid G solely in terms of the inclusion
L∞(G0) ⊂ L(G), where L(G) is the groupoid von Neumann algebra of G and G0 is
the unit space of G. Such a characterization has been established by Connes and Jones
in the case where G is a countable discrete group with infinite conjugacy classes, in
which case L(G) is a II1 factor. They showed in [5] that, under those assumptions,
G has property (T) if and only if L(G) has property (T) in the sense defined therein.
When G is an ergodic II1 equivalence relation, in which case L(G) is a II1 factor and
L∞(G0) is a Cartan subalgebra of L(G), a characterization of property (T) in terms of
the corresponding von Neumann algebra has been established by Popa in [17]. It is
shown there that, under those assumptions, G has property (T) as defined by Zimmer
if and only if the inclusion L(G0) ⊂ L(G) is co-rigid in the sense of [18, Remark 5.6.1].
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(The idea of characterizing property (T) of a countable pmp equivalence relation by a
property of the associated Cartan pair can be traced back to [14].) The purpose of this
paper is to provide a common generalization of such characterizations, applicable to
an arbitrary discrete pmp groupoid G.

More generally, given a subgroupoid H of G, we consider the natural notion of
relative property (T) of H in G, generalizing the usual notion for groups. We then
obtain a characterization of relative property (T) of H in G in terms of the inclusion
L∞(X) ⊂ L(H) ⊂ L(G), where X is the common unit space of G and H. Again, such
a characterization is applicable to an arbitrary pair of discrete pmp groupoids. In the
case of groups, relative property (T) has been characterized in terms of the group von
Neumann algebra by Popa in [18, Proposition 5.1]. It is shown there that the pair
H ≤ G has property (T) if and only if the inclusion L(H) ⊂ L(G) is rigid in the sense
defined therein (see [18, Definition 4.2]).

More generally, we consider a notion of property (T) for a triple K ≤ H ≤ G
consisting of a discrete pmp groupoid G together with nested subgroupoids K,H. Such
a notion has been considered in the setting of groups in [7, Definition 2.3]. It subsumes
property (T) for a pair H ≤ G in the case when K is the trivial subgroupoid of G, that
is, the unit space. Again we obtain, for an arbitrary such triple, a characterization of
property (T) in terms of the inclusions L∞(X) ⊂ L(K) ⊂ L(H) ⊂ L(G). We also provide
a cohomological characterization of such a notion and, in particular, of the notion
of relative property (T). In the case of property (T) for a single groupoid, such a
characterization has been obtained by Anantharaman-Delaroche in [2].

The rest of this paper is divided into two sections, apart from this introduction. In
Section 2, we recall the fundamental notions and definitions concerning groupoids to
be used in the rest of the paper, introduce the notion of property (T) for triples of
groupoids and obtain the cohomological characterization of property (T) for triples
of groupoids mentioned above. In Section 3, we obtain a von Neumann algebra
characterization of property (T) for triples of groupoids in terms of the groupoid von
Neumann algebras.

Throughout the paper, we follow the convention that scalar products in Hilbert
spaces are linear in the second variable and conjugate linear in the first variable.

2. Property (T) for groupoids

2.1. Groupoids. A groupoid is, briefly, a small category G where every morphism
is invertible. In this case, the objects of G are also called units, and the set of units
is denoted by G0. The morphisms in G are also called arrows. As is customary, we
canonically identify every object with the corresponding identity arrow. This allows
one to regard G0 as a subset of G. There are canonical source and range maps
s, r : G→G0 that map each arrow γ in G to the objects s(γ), r(γ) ∈G0 such that γ is an
arrow from s(γ) to r(γ). A pair of arrows (γ, ρ) is composable if s(γ) = r(ρ). The set of
pairs of composable arrows of G is denoted by G2. One can then regard composition
of arrows as a function G2 → G, (γ, ρ) 7→ γρ. Since, by assumption, every arrow of
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G is invertible, one can also consider the function G → G, γ 7→ γ−1 that maps each
arrow to its inverse. In the following, given subsets A, B of G, we let AB be the set of
arrows γρ for (γ, ρ) ∈ G2 ∩ (A × B). If γ ∈ G, we also write Aγ and γA for A{γ} and
{γ}A, respectively. Consistently, if x is a unit of G, then xA is the set of arrows in A
with range x, and Ax is the set of arrows in A with source x.

A Borel groupoid is a groupoid G endowed with a standard Borel structure such that
the set of objects is Borel, and composition and inversion of arrows are Borel maps.
A countable Borel groupoid is a standard Borel groupoid such that xG and Gx are
countable sets for every x ∈ G0 or, equivalently, source and range maps are countable-
to-one. In the following, we will tacitly use classical Borel selection theorems for
countable-to-one Borel maps as can be found in [13, Section 18.C]. A discrete pmp
groupoid is a pair (G, µ) where G is a countable Borel groupoid and µ is a Borel
probability measure on G0 satisfying∫

x∈G0
|xA| dµ(x) =

∫
x∈G0
|Ax| dµ(x)

for every Borel subset A of G. In such a case, this expression defines an extension of
µ to a σ-finite Borel measure defined on the whole of G. In the following, we regard a
discrete pmp groupoid G as a measure space endowed with such a measure. One can
also define a canonical measure on G2 given by

µG2 (A) =

∫
x∈G0

(A ∩ (Gx × xG)) dµ(x).

Given a nonnull Borel subset A of G0, one can define the reduction G|A to be the
groupoid AGA with set of objects A endowed with the measure µA := (1/µ(A))µ. Such
a reduction is called inessential if A is conull. In the following, we identify two discrete
pmp groupoids whenever they have isomorphic inessential reductions. A Borel subset
A of G is invariant if r(GA) = A. The groupoid G is ergodic if every invariant set
A ⊂ G0 is either null or conull.

Suppose that G is a discrete pmp groupoid and that H is a standard Borel groupoid.
A homomorphism from G to H is a Borel map f : G→ H satisfying s( f (γ)) = f (s(γ))
and r( f (γ)) = f (r(γ)) for almost every (a.e.) γ ∈ G, and f (γρ) = f (γ) f (ρ) for a.e.
(γ, ρ) ∈ G2. This is equivalent to the assertion that there exists a conull Borel subset
A of G0 such that s( f (γ)) = f (s(γ)), r( f (γ)) = f (r(γ)) and f (γρ) = f (γ) f (ρ) for every
γ, ρ ∈ AGA [19, Lemma 5.2]. A subgroupoid of G is a Borel subset H of G that is also
a groupoid, such that G and H have the same unit space (X, µ), and the inclusion map
H ⊂ G is a homomorphism from H to G.

A (Borel) bisection of a discrete pmp groupoid G is a Borel subset t of G such that
xt and tx have size at most one for every x ∈ G0. Borel bisections naturally form an
inverse semigroup with respect to the operation

(t0, t1) 7→ t0t1 = {γρ : (γ, ρ) ∈ (t0 × t1) ∩G2}.

The full pseudogroup [[G]] of G is the inverse semigroup consisting of Borel bisections
modulo the relation of being equal almost everywhere. In the following, we will always
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identify Borel bisections when they agree almost everywhere. The full group [G] is the
subset of [[G]] consisting of the Borel bisections t such that tt−1 = t−1t = G0. This is a
Polish group with respect to the topology induced by the metric d(t0, t1) = µ(t0 4 t1).
A countable subgroup Γ of [G] covers G if G =

⋃
Γ. If G is ergodic and A, B are Borel

subsets of G0, then µ(A) = µ(B) if and only if there exists t ∈ [G] such that B = r(tA).
Clearly, any countable discrete group is, in particular, a discrete pmp groupoid.

Indeed, these are precisely the discrete pmp groupoids whose unit space contains a
single element. At the opposite end of the spectrum, every countable pmp equivalence
relation is a discrete pmp groupoid. Indeed, these are precisely the discrete pmp
groupoids G that are principal, in the sense that the function G → G0 × G0, γ 7→
(r(γ), s(γ)) is one-to-one. Thus, the class of discrete pmp groupoids subsumes both
countable discrete groups and countable pmp equivalence relations.

2.2. Representations of groupoids. Suppose that X is a standard probability space.
A standard Borel space fibered over X is a standard Borel space Z endowed with a
distinguished Borel map p : Z → X. In this case, we let, for x ∈ X, Zx := p−1{x} be
the corresponding fiber over x. We denote the space Z also by

⊔
x∈X Zx. Given two

standard Borel spaces Z,Z′ fibered over X, one can define the fibered product

Z ∗ Z′ = {(z, z′) ∈ Zx × Z′x : x ∈ X} ⊂ Z × Z′,

which is still a standard Borel space fibered over X. A fibered map f from Z to Z′

is a Borel function that maps Zx to Z′x for x ∈ X. If Y is a standard Borel space, then
we regard Y × X as a standard Borel space fibered over X with respect to the product
Borel structure and the projection to the second factor. In particular, we regard X as a
standard Borel space fibered over itself via the identity map. A section σ for a standard
Borel space Z fibered over X is a fibered map from X to Z, that is, a Borel function
X → Z, x 7→ σx such that σx ∈ Zx for x ∈ X.

A (Borel, complex) Hilbert bundle over X is a standard Borel space H fibered
over X endowed fibered functions 0 : X →H (zero section), + :H ∗ H →H (sum)
and C × H → H (scalar multiplication) that define on each fiber Hx for x ∈ X a
(complex) vector space structure, and such that there exists a sequence of sections
(σn)n∈N ofH such that {σn,x : n ∈ N} has dense linear span inHx. The Gram–Schmidt
orthonormalization process shows that one can furthermore assume that {σn,x : n ∈ N}
is an orthonormal basis of Hx for x ∈ X. In this case, we call (σn)n∈N an orthonormal
basic sequence for H . The unitary groupoid U(H) is the groupoid consisting of the
unitary operators U :Hx →Hy for x, y ∈ X. This is a standard Borel groupoid when
endowed with the standard Borel structure generated by the source and range maps
together with the functions (U : Hx → Hy) 7→ 〈σn,y,Uσm,x〉 for n,m ∈ N. The unit
space of U(H) can be identified with X. One can also consider the space L2(X,H) of
sections forH satisfying ∫

‖ξx‖
2 dµ(x) < +∞
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identified when they agree almost everywhere. This is a Hilbert space with respect to
the inner product

〈ξ, η〉 =

∫
〈ξx, ηx〉 dµ(x)

for ξ, η ∈ L2(X,H).
Suppose that G is a discrete pmp groupoid and H is a (complex) Hilbert bundle

over G0. A (unitary) representation of π on H is a homomorphism from G to U(H)
that is the identity on the unit space. An invariant sub-bundle of H is a Borel subset
K ofH such that Kx is a subspace ofH for a.e. x ∈ G0, and πγ maps Ks(γ) onto Kr(γ)
for a.e. γ ∈ G. When G is ergodic, the Borel function x 7→ dimKx is constant almost
everywhere. Hence, one can define its constant value to be the dimension of K . Real
Hilbert bundles and (orthogonal) representations of discrete pmp groupoids on real
Hilbert bundles can be defined in a similar fashion.

A representation π of G on H induces a representation [[π]] of the inverse
semigroup [[G]] on L2(G0,H). This is defined by setting

([[π]]σξ)x =

{
πxσξs(xσ) if x ∈ σσ−1,
0 otherwise.

In particular, the restriction [π] of [[π]] to [G] is a continuous representation of the
Polish group [G].

A unit section forH is a section ξ such that ‖ξx‖ = 1 for a.e. x ∈ G0. A unit section
ξ for H is invariant if πγξs(γ) = ξr(γ) for a.e. γ ∈ G. We say that the representation
π of an ergodic discrete pmp groupoid G on H is ergodic if it has no invariant
unit sections. This is equivalent to the assertion that, for some (equivalently, every)
countable subgroup Γ of [G] that covers G, [π]|Γ is ergodic. Let ξ be a unit section
for H . We say that ξ is cyclic if, for a.e. x ∈ G0, one has that {πγξs(γ) : γ ∈ xG} has
dense linear span inHx.

Let H :=
⊔

x∈Hx
H x, where H x denotes the conjugate Hilbert space of Hx

with canonical conjugate linear isomorphism Hx → H x, ξ 7→ ξx. The conjugate
representation π of G onH is defined by πγξ = πγξ for γ ∈ G and ξ ∈ Hs(γ).

Suppose that π0 and π1 are representations of G on Hilbert bundles H0 and H1.
Then one can consider the Hilbert bundle H0 ⊗ H1 :=

⊔
x∈G0 H0,x ⊗ H1,x and the

representation π0 ⊗ π1 of G onH0 ⊗H1 defined in the obvious way.

Remark 2.1. We will frequently use the following observation. Suppose that G is an
ergodic discrete pmp groupoid, A ⊂ G0 is a nonnull Borel set and π is a representation
of G on H . Then one can consider the representation πA of G|A on H|A =

⊔
x∈AHx

obtained from π by restriction. If η is an invariant section for H|A, then there exists a
unique invariant section ξ for G such that ξx = ηx for x ∈ A. In particular, π is ergodic
if and only if πA is ergodic.

The notion of a weak mixing representation has been introduced in [7, Definition
3.11]. The representation π of an ergodic groupoid G on H is weak mixing if, for

https://doi.org/10.1017/S144678871800040X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871800040X


368 M. Lupini [6]

every ε > 0, n ∈ N and sections ξ1, . . . , ξn for H , there exists t ∈ [G] such that, for
every i, j ∈ {1, 2, . . . , n}, ∫

G0
|〈ξ j,x, πxtξi,s(xt)〉| dµ(x) ≤ ε.

Several equivalent characterizations of such a notion have been established in [7,
Section 3.3] in analogy with the case of representations of groups. In particular, a
representation π of an ergodic discrete pmp groupoid G on H is weak mixing if and
only if for some (equivalently, every) countable subgroup Γ of [G] that covers G, [π]|Γ
is weak mixing, if and only if H does not have a finite-dimensional invariant sub-
bundle, if and only if π ⊗ π is ergodic.

2.3. Property (T). Suppose that Γ is a countable discrete group and π is a
representation of Γ on a Hilbert space H . If F is a subset of Γ and ε > 0, then a
unit vector ξ of H is (F, ε)-invariant if it satisfies ‖πγξ − ξ‖ ≤ ε for every γ ∈ F. The
representation π has almost invariant vectors if, for every finite subset F of Γ and for
every ε > 0, it has an (F, ε)-invariant vector. The group Γ has property (T) if every
representation of Γ that has almost invariant unit vectors has an invariant unit vector
[3]. A standard reference for the theory of property (T) groups is [3].

The notion of property (T) for pmp equivalence relations has been introduced in
[23]. A natural common generalization of the notion of property (T) for discrete groups
and pmp equivalence relations has been considered in [2]. Let G be a discrete pmp
groupoid with unit space X, and let π be a representation of G on a Hilbert bundleH .
If F is a subset of [G] and ε > 0, then we say that a unit section ξ for H is (F, ε)-
invariant if it satisfies ‖[π]tξ − ξ‖L2(X,H) ≤ ε for every t ∈ F. The representation π has
almost invariant unit sections if, for every finite subset F of [G] and ε > 0, it has an
(F, ε)-invariant unit section. The discrete pmp groupoid G has property (T) if every
representation π of G that has almost invariant unit sections also has an invariant unit
section [2, Definition 4.3].

The notion of property (T) admits a natural relative version for subgroups. Suppose
that Γ is a countable discrete group and that Λ ≤ Γ is a subgroup. If π is a representation
of Γ on a Hilbert spaceH , then a unit vector ξ inH is Λ-invariant if it is invariant for
the restriction of π to Λ. Then Λ has relative property (T) in Γ, or the pair Λ ≤ Γ has
property (T) if every representation of Γ that has almost invariant unit vectors has a
Λ-invariant unit vector. This notion admits a natural generalization to discrete pmp
groupoids. Suppose that G is a discrete pmp groupoid, H is a subgroupoid of G and
π is a unitary representation of G on a Hilbert bundle H . Then a unit section ξ for H
is H-invariant if it is invariant for the restriction of π to H. Then H has the relative
property (T) in G, or the pair H ≤ G has property (T), if every representation of G that
has almost invariant unit sections admits an H-invariant unit section. Clearly, when
H = G, this recovers property (T) for a single discrete pmp groupoid.

A natural generalization of property (T) from pairs of groups to triples of groups
has been considered in [7, Definition 2.3]. Suppose that Γ is a countable discrete group
and that ∆ ≤ Λ ≤ Γ are nested subgroups. Then the triple ∆ ≤ Λ ≤ Γ has property (T)
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if every representation of Γ with almost invariant ∆-invariant unit vectors admits a Λ-
invariant unit vector. Clearly, when ∆ is the trivial subgroup, one recovers the notion
of property (T) for pairs of groups. Naturally, one can generalize such a notion to
discrete pmp groupoids, as follows. Suppose that G is a discrete pmp groupoid and
that K ≤ H ≤ G are nested subgroupoids.

Definition 2.2. The triple K ≤ H ≤ G has property (T) if, for every representation π
of G and if π has almost invariant K-invariant unit sections, then π has an H-invariant
unit section.

Remark 2.3. When H is ergodic, in Definition 2.2 one can, equivalently, require that
every representation of G with almost invariant K-invariant unit sections has a nonzero
H-invariant section ξ. Indeed, in this case, one has that there exists δ > 0 such that
‖ξx‖ = δ for a.e. x ∈ H0. Therefore δ−1ξ is an H-invariant unit section.

Again, when K is the trivial subgroupoid of H—that is, K is equal to the common
unit space of H and G—one recovers the notion of property (T) for pairs H ≤ G.

Several equivalent characterizations of property (T) for pairs of groups are
established in [11]. Furthermore, a cohomological characterization of property (T)
for discrete pmp groupoids is the main result of [2]. In this section, we provide a
characterization of property (T) for triples of discrete pmp groupoids, subsuming the
characterizations from [2, 11].

2.4. Cohomology of representations. Let G be a discrete pmp groupoid, with
subgroupoids K ≤ H ≤ G. Denote by X their common unit space. In the space of
complex-valued Borel functions on G, consider the (Polish) topology generated by
the pseudometrics

dt(ϕ, ϕ′) :=
∫

x∈X

|ϕ(tx) − ϕ′(tx)|
1 + |ϕ(tx) − ϕ′(tx)|

dµG0 (x),

where t ranges within (a dense subset of) [G]. IfH is a Hilbert bundle over X, then we
let S (G,H) be the space of Borel functions G→H , γ 7→ bγ ∈ Hr(γ) endowed with the
topology generated by the pseudometrics

dt(b, b′) =

∫
x∈X

‖btx − b′tx‖
1 + ‖btx − b′tx‖

dµG0 (x).

Suppose that π is a representation of G on the Hilbert bundle H . A cocycle for π
is an element b of S (G,H) such that bγ1γ2 = bγ1 + πγ1 (bγ2 ) for a.e. (γ1, γ2) ∈ G2. A
cocycle b for π is K-trivial if bγ = 0 for a.e. γ ∈ K. A section ξ forH defines a cocycle
cπ(ξ) for π by setting cπ(ξ)γ = ξr(γ) − πγξs(γ) for γ ∈G. Cocycles of this form are called
coboundaries. The section ξ is K-invariant if and only if cπ(ξ) is K-trivial. We denote
the space of K-trivial cocycles for π by Z1

:K(π) and the space of K-trivial coboundaries
for π by B1

:K(π). We let Z1
:K,H(π) be the set of restrictions to H of elements of Z1

:K(π).
The K-invariant H-relative cohomology group H1

:K,H(π) of π is the quotient of Z1
:K,H(π)

by the subgroup B1
:K(π|H). The same argument as in [2, Proposition 3.9] shows that

Z1
:K,H(π) is a closed subset of S (H,H).

The following result is established in [2, Theorem 3.19].
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Theorem 2.4 (Anantharaman-Delaroche). Suppose that G is a measured groupoid. Let
π be a representation of G, and let b be a cocycle b for π. Consider the following
conditions:

(1) b is a coboundary;
(2) There exists a nonnull Borel subset A of G0 such that the function AGA→ R,

γ 7→ ‖bγ‖ is bounded.
(3) There exists a nonnull Borel subset A of G0 such that, for every x ∈ A, the function

AGx→ R, γ 7→ ‖bγ‖ is bounded.

Then (1)⇒(2)⇒(3).
If, furthermore, G is an ergodic discrete measured groupoid, then (1), (2) and (3)

are equivalent.

2.5. Functions of positive and negative type. Suppose that G is a discrete pmp
groupoid and K ⊂ G is a subgroupoid. The following is a standard definition (see [20,
Definition 4.1.2]).

Definition 2.5. A complex-valued function ϕ : G→ C is of positive type if it is Borel
and, for a.e. x ∈ X, for every n ≥ 1, γ1, . . . , γn ∈ xG and λ1, . . . , λn ∈ C, one has that

n∑
i, j=1

λiλ jϕ(γ−1
i γ j) ≥ 0.

A real-valued function ϕ : G→ R is of positive type if it is Borel, ϕ(γ) = ϕ(γ−1) for
a.e. γ ∈ G and, for a.e. x ∈ X, for every n ≥ 1, γ1, . . . , γn ∈ xG and λ1, . . . , λn ∈ R, one
has that

n∑
i, j=1

λiλ jϕ(γ−1
i γ j) ≥ 0.

The function ϕ is K-invariant if ϕ(ρ0γ) = ϕ(γ) = ϕ(γρ1) for every ρ0, ρ1 ∈ K and
γ ∈G such that (ρ0, γ), (γ, ρ1) ∈G2. The function ϕ is called normalized if ϕ(x) = 1 for
a.e. x ∈ G0.

The same proof as in [9, Proposition 5.3] gives the following proposition.

Proposition 2.6. Suppose that ϕ is a Borel complex-valued (respectively, real-valued)
function on G. The following assertions are equivalent.

(1) ϕ is a normalized K-invariant function of positive type.
(2) There exists a representation πϕ of G on a complex (respectively, real) Hilbert

bundle Hϕ and a K-invariant cyclic unit section ξϕ for Hϕ such that ϕ(γ) =

〈ξr(γ), πγξs(γ)〉 for a.e. γ ∈ G.

The representation (πϕ,Hϕ, ξϕ) of G is uniquely determined up to isomorphism, and
we will call it the GNS representation of ϕ.

The following definition is considered in [2, Proposition 5.19].
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Definition 2.7. A real-valued function ψ : G → R on G is of conditionally negative
type if it is Borel, ψ(γ−1) = ψ(γ) for a.e. γ ∈ G, ψ(x) = 0 for a.e. x ∈ G0 and

n∑
i, j=1

λiλ jψ(γ−1
i γ j) ≤ 0

for a.e. x ∈ G0, for every n ≥ 2, for λ1, . . . , λn ∈ R satisfying λ1 + · · · + λn = 0 and for
every γ1, . . . , γn ∈ xG.

A complex-valued function ψ : G→ C is of conditionally negative type if it satisfies
the same properties where one consider complex scalars instead of real scalars.

The following proposition is essentially established in [2, Proposition 5.21].

Proposition 2.8. Suppose that ψ is a Borel real-valued function on G. The following
assertions are equivalent.

(1) ψ is a K-invariant function of conditionally negative type.
(2) There exists a real Hilbert bundle Hψ, a representation πψ of G on Hψ and a

K-trivial cocycle bψ for πψ such that {bψγ : γ ∈ xG} has dense linear span in Hψ

and such that ψ(ργ) = ‖bψγ − bψ
ρ−1‖

2 for a.e. (ρ, γ) ∈ G2.

The following two lemmas are consequences of [3, Theorem C.3.2] and [9,
Proposition 5.18].

Lemma 2.9. Suppose that ψ : G→ R is a Borel real-valued function such that ψ(x) = 0
for a.e. x ∈ X and ψ(γ) = ψ(γ−1) for a.e. γ ∈ G. Then the following assertions are
equivalent.

(1) ψ is conditionally of negative type.
(2) The function γ 7→ exp(−tψ(γ)) is of positive type for every t > 0.

Lemma 2.10. Suppose that ψ : G → C is a complex-valued function of conditionally
negative type. Then Re(ψ) is a real-valued function of conditionally positive type.
Furthermore, ψ is bounded if and only if Re(ψ) is bounded and, for every x ∈ G0,
Re(ψ)|Gx is bounded if and only if ψ|Gx is bounded.

2.6. A cohomological characterization. We now provide a characterization of
property (T) for triples of groupoids, including, in particular, a cohomological
characterization (see Theorem 2.13 below). Such a cohomological characterization
generalizes the one in [2] for single groupoids. Even in this case, some parts of the
proof presented here are different and are, in fact, closer in spirit to the group case as
in [11].

Lemma 2.11. Suppose that G is a discrete pmp groupoid with unit space (X, µ) and H
is an ergodic subgroupoid of G. Let ψ : G→ R be a function of conditionally negative
type. For t > 0, let π(t) be the representation on the Hilbert bundle H (t) and let ξ(t) be
the section of H (t) obtained from the function of positive type exp(−tψ) via the GNS
construction. The following assertions are equivalent.
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(1) There exists a nonnull Borel subset A of X such that, for a.e. x ∈ A, ψ|AHx is
bounded.

(2) For every t > 0, π(t)|H is not ergodic.
(3) There exists t > 0 such that π(t)|H is not weak mixing.
(4) For every nonnull Borel subset B of X, there exists a nonnull Borel subset A of X

contained in B such that, for a.e. x ∈ A, ψ|AHx is bounded.
(5) For every nonnull Borel subset B of X, there exists a nonnull Borel subset A of X

contained in B such that ψ|AHA is bounded.

Proof. (1)⇒(2) Suppose that ψ|AHx is bounded by cx for a.e. x ∈ A, where A is a
nonnull Borel subset of X. In view of Remark 2.1, after replacing G with G|A, we
can assume that A = X. Fix t > 0. Set c :=

∫
exp(−tcx) dµ(x) for t > 0. Define C to be

the closed convex hull of {[π(t)]ξ(t) : σ ∈ [H]}. We claim that ‖ξ‖ ≥ c for every ξ ∈ C.
It is enough to consider the case when ξ =

∑n
i=1 si[π(t)]σiξ

(t) for σi ∈ [H] and si ∈ [0, 1]
such that s1 + · · · + sn = 1. In this case,∥∥∥∥∥∑

i

si[π(t)]σiξ
(t)
∥∥∥∥∥2

=
∑

i j

sis j〈ξ
(t), [π(t)]σ−1

i σ j
ξ(t)〉 dµ(x)

=
∑

i j

sis j

∫
exp(−tψ(σ−1

i σ jx)) dµ(x)

≥
∑

i j

sis j

∫
exp(−tcx) dµ(x) = c.

Now pick an element ξ of C of minimal norm. Observe that ξ is nonzero, and it is
H-invariant by uniqueness.

(2)⇒(3) This is obvious.
(3)⇒(1) Suppose that (1) does not hold. Thus, for every nonnull Borel subset A of X,

there exists a nonnull Borel subset B such that, for every x ∈ B, ψ|AHx is unbounded.

Fix t > 0. We claim that this implies that, for any unit section η for H (t) ⊗ H
(t)

and
ε ∈ (0, 1), there exists ρ ∈ [H] such that∣∣∣‖[π(t) ⊗ π(t)]ρη − η‖2 − 2

∣∣∣ < ε.
In particular, this shows that (π(t) ⊗ π(t))|H is ergodic, and hence π(t)|H is weak mixing.
Since ξ(t) is a cyclic unit section forH (t), it suffices to prove the claim when η is of the
form

x 7→
n∑

i j=1

ai j(x)([π(t)]σiξ
(t))x ⊗ ([π(t)]σ′jξ

(t)
)x,

where n ∈ N, ai j ∈ L∞(X) and σi, σ
′
j ∈ [G] for i, j = 1, 2, . . . , n. For z ∈ X, fix M(z) > 0

such that
max{|ai j(r(σ−1

k z))| exp(−tM(z)) : 1 ≤ i, j, k ≤ n} ≤
ε

n4 . (2.1)
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By assumption, for every nonnull Borel subset A of X there exists a nonnull Borel
subset B of A such that, for every x ∈ B, ψ|AHx is unbounded. This easily implies that
there exists ρ ∈ [H] such that, for a.e. z,w ∈ X, for every 1 ≤ i, k ≤ n,

ψ(zρw) ≥ M(z)1/2 + ψ(σkz)1/2 + ψ(wσ′i)
1/2. (2.2)

We have that
1
2

∣∣∣‖([π]ρ ⊗ [π]ρ)η − η‖2 − 2
∣∣∣

= Re
n∑

i, j,k,l=1

∫
x∈X

akl(x)ai j(x)

×
〈
ξ(t)

x ⊗ ξ
(t)
x , π

(t)
xσ−1

k ρσ′i
ξ(t)

s(xσ−1
k ρσ′i )

⊗ π(t)
xσ−1

l ρσ′j
ξ

(t)
s(xσ−1

l ρσ′j)

〉
dµ(x)

= Re
n∑

i, j,k,l=1

∫
x∈X

akl(x)ai j(x) exp(−tψ(xσ−1
k ρσ′i) − tψ(xσ−1

l ρσ′j)) dµ(x).

Now let (Hψ, bψ, πψ) be a triple obtained from ψ as in Proposition 2.8. Thus we
have thatHψ is a real Hilbert bundle over X, πψ is a representation of G onHψ and bψ

is a cocycle for πψ such that

ψ(g−1h) = ‖bψg − bψh ‖
2

for g, h ∈ G. Thus, for a.e. x ∈ X, by the choice of ρ,

ψ(xσ−1
k ρσ′i) = ‖br(σk x)ρσ′i − bσk x‖

2

= ‖br(σk x)ρ + πr(σk x)ρbs(r(σk x)ρ)σ′i − bσk x‖
2

≥ (‖br(σk x)ρ‖ − ‖bs(r(σk x)ρ)σ′i ‖ − ‖bσk x‖)2

= (ψ(r(σk x)ρ)1/2 − ψ(s(ρ)σ′i)
1/2 − ψ(σk x)1/2)2

≥ M(r(σk x)),

where we used (2.2) at the last step. Similarly, for a.e. x ∈ X,

ψ(xγ−1
l ργ′j) ≥ M(r(σlx)).

Hence∣∣∣‖([π]ρ ⊗ [π]ρ)η − η‖2 − 2
∣∣∣

= Re
n∑

i, j,k,l=1

∫
x∈X

akl(x)ai j(x) exp(−tψ(xσ−1
k ρσ′i) − tψ(xσ−1

l ρσ′j)) dµ(x)

≤ Re
n∑

i, j,k,l=1

∫
x∈X

akl(x)ai j(x) exp(−tM(r(σk x)) − tM(r(σlx))) dµ(x) ≤ ε

by (2.1). This concludes the proof.
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(1)⇔(4) Suppose that B is a nonnull Borel subset of X and π is a representation
of G. Since H is ergodic, by Remark 2.1 the equivalence (1)⇔(4) follows from the
equivalence (1)⇔(2) after replacing G with G|B.

(4)⇔(5) This follows from Theorem 2.4. �

Lemma 2.12. Let π be a representation of a discrete pmp groupoid G on H and fix
δ > 0. Suppose that ξ is a unit section for H . Assume that, for every γ ∈ G, one
has that ‖ξr(γ) − πγξs(γ)‖ ≤ δ. Then there exists an invariant section η of H such that
‖ηx − ξx‖ ≤ δ for a.e. x ∈ X.

Proof. For every x ∈ G0, let Cx be the closed convex hull of {πγ−1ξr(γ) : γ ∈ Gx}. Then
let ηx be the (unique) element of minimal norm of Cx for x ∈ G0. If x ∈ X, then, for
every γ1, . . . , γn ∈ Gx and s1, . . . , sn ∈ [0, 1] such that s1 + · · · + sn = 1,∥∥∥∥∥∑

i

siπγ−1
i
ξr(γi) − ξx

∥∥∥∥∥ ≤∑
i

si‖ξr(γi) − πγiξx‖ ≤ δ.

Therefore
‖ζ − ξx‖ ≤ δ

for every ζ ∈ Cx and, in particular,

‖ηx − ξx‖ ≤ δ.

By the uniqueness of the element of least norm in Cx, one also has that η is invariant. �

The proof of the following result is inspired by [11, Theorem 1.2] and [2, Theorems
4.8 and 4.12].

Theorem 2.13. Let G be a discrete pmp groupoid and let K ≤ H ≤ G be subgroupoids.
Fix a countable subgroup Γ of [G] that covers G. Let (X, µ) be the common unit space
of K,H,G. Suppose that H is ergodic. The following statements are equivalent.

(1) There exists a finite subset F of [G] and δ > 0 such that, whenever a
representation π of G has an (F, δ)-invariant K-invariant unit section, π has an
H-invariant unit section.

(2) There exists a finite subset F of [G] and δ > 0 such that, whenever a
representation π of G on a Hilbert bundleH has an (F, δ)-invariant K-invariant
unit section,H contains a finite-dimensional π|H-invariant sub-bundle.

(3) For every complex-valued K-invariant Borel function ψ on G that is conditionally
of negative type, there exists a nonnull Borel set A of X such that, for every x ∈ A,
ψ|AHx is bounded.

(4) For any representation π of G, one has that H1
:K,H(π) is trivial.

(5) The triple K ≤ H ≤ G has property (T).
(6) For every ε > 0 and nonnull Borel subset B of X, there exists a finite subset F

of Γ and δ > 0 such that, for every normalized K-invariant function of positive
type ϕ on G such that maxt∈F

∫
x∈X |ϕ(xt) − 1|2 dµ(x) ≤ δ, there is a nonnull Borel

subset A of B such that Re(1 − ϕ(γ)) ≤ ε for a.e. γ ∈ AHA.
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(7) For every ε > 0 and nonnull Borel subset B of X, there exists a finite subset F of
Γ and δ > 0 such that, if π is a representation of G on a Hilbert bundleH and ξ
is a (F, δ)-invariant K-invariant unit section forH , then there is a nonnull Borel
subset A of B and an H-invariant section η for π such that ‖ξx − ηx‖ ≤ ε for a.e.
x ∈ A.

(8) For every ε > 0, there exists a finite subset F of [G] and δ > 0 such that,
for every normalized K-invariant function of positive type ϕ on G such that
maxt∈F

∫
x∈X |ϕ(xt) − 1|2 dµ(x) ≤ δ, there is a nonnull Borel subset A of X such

that Re(1 − ϕ(γ)) ≤ ε for a.e. γ ∈ AHA.
(9) For every ε > 0, there exists a finite subset F of [G] and δ > 0 such that, if π

is a representation of G on a Hilbert bundle H and ξ is a (F, δ)-invariant K-
invariant unit section for H , then there is a nonnull Borel subset A of X and an
H-invariant section η for π such that ‖ξx − ηx‖ ≤ ε for a.e. x ∈ A.

Proof. Fix an increasing sequence (Fn) of finite subsets of [G] whose union is Γ.
(1)⇒(2) This is obvious.
(2)⇒(3) This is a consequence of Lemma 2.11.
(3)⇒(4) As in the proof of [2, Proposition 4.13], it is enough to consider the

case when π is a representation of G on a bundle of real Hilbert spaces (see also [2,
Lemma 4.11] and [9, page 49]). Suppose that b is a K-trivial cocycle for π. Define the
K-invariant function of conditional negative type ψ : G→ R by ψ(γ) = ‖bγ‖2. Then, by
assumption, there exists a nonnull Borel subset A of X such that, for every x ∈ A, ψ|AHx

is bounded. This implies, by Theorem 2.4, that the restriction of b to H is a coboundary
for π|H . Thus H1

:K,H(π) is trivial.
(4)⇒(5) Suppose, by contradiction, that there exists a representation π of G that

has almost invariant K-invariant unit sections but it does not have an H-invariant unit
section. The hypothesis implies that B1

:K(π|H) = Z1
:K,H(π). In particular, B1

:K(π|H) is a
closed subspace of S (H,H). Let S :K(X,H) be the space of K-invariant unit sections
for H , which is a closed subspace of the space S (X,H) of sections for H . Define a
map β from the space S :K(X,H) to B1

:K(π|H) by

β(ξ)γ := ξr(γ) − πγξs(γ)

for ξ ∈ S (X,H) and γ ∈ H. This map is a continuous linear map from S :K(X,H)
onto B1

:K(π|H). Since, by assumption, π does not have an H-invariant unit section,
such a map is injective. Since a continuous linear isomorphism between metrizable
complete topological vector spaces is a homeomorphism, β is a homeomorphism.
Since, by assumption, π has almost invariant K-invariant unit sections, we can find
a sequence (ξ(n)) of K-invariant unit sections in S :K(X,H) such that β(ξ(n))→ 0.
Therefore ξ(n) → 0, which contradicts the fact that the ξ(n) are unit sections.

(5)⇒(1) Assume that (1) does not hold. Then, for every n ∈ N, there exists a
representation π(n) on H (n) without H-invariant unit sections that has a (Fn, 2−n)-
invariant K-invariant unit section ξ(n). One can then consider the direct sum π of π(n) for
n ∈ N. Then π has almost invariant K-invariant unit sections. Hence, by assumption, it
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has an H-invariant unit section ξ. One can write ξ as the direct sum of sections ξ(n) for
H (n) for n ∈ N. Since ξ is H-invariant, one has that ξ(n) is H-invariant for every n ∈ N.
Since ξ is a unit section, there exists n ∈ N such that ξ(n) is not identically zero. Since
H is ergodic, this contradicts the assumption that π(n) does not have H-invariant unit
sections.

(3)⇒(6) Suppose that (6) fails. Then there exists c > 0 and a nonnull Borel subset B
of X such that, for every n ∈ N, one can find a K-invariant function of positive type ϕ
on G such that maxt∈Fn

∫
x∈X |ϕ(xt) − 1| dµ(x) ≤ 2−n and, for every nonnull Borel subset

A of B, the set of γ ∈ AHA such that Re(1 − ϕ(γ)) ≥ c is nonnull. This allows one to
find a sequence (ϕn) of K-invariant functions of positive type on G and Borel subsets
Xn of X such that µ(Xn) ≥ 1 − 2−n, |ϕ(xt) − 1| ≤ 2−n for x ∈ Xn and t ∈ Fn, and such that,
for every nonnull Borel subset A of B, the set of γ ∈ AHA such that Re(1 − ϕ(γ)) ≥ c
is nonnull. One can then define, for a.e. γ ∈ G,

ψ(γ) =
∑
n∈N

2nRe(1 − ϕn(γ)).

This gives a K-invariant function of conditionally negative type on G such that ψ|AHA
is unbounded for every nonnull Borel subset A of B. By Lemma 2.11, this implies
that, for every nonnull Borel subset A of X, for a.e. x ∈ A, ψ|AHx is unbounded. Thus ψ
contradicts (3).

(6)⇒(7) Fix ε > 0 and a nonnull Borel subset B of X. By assumption there exist a
finite subset F of Γ and δ > 0 such that, for every K-invariant normalized function of
positive type ϕ on G such that maxt∈F

∫
x∈X |ϕ(xt) − 1| dµ(x) ≤ δ, there is a nonnull

Borel subset A of B such that Re(1 − ϕ(γ)) ≤ ε for every γ ∈ AHA. Suppose that
π is a representation of G on H that has a K-invariant unit section ξ satisfying
‖[π]tξ − ξ‖L2(X,H) ≤ δ for t ∈ F. Define the K-invariant normalized function of positive
type ϕ on G by ϕ(γ) = 〈ξr(γ), πγξs(γ)〉. Then, for t ∈ F,∫

x∈X
|ϕ(xt) − 1| dµ(x) =

∫
x∈X
|〈ξx, πxtξs(xt)〉 − 1| dµ(x)

=

∫
x∈X
|〈ξx, πxtξs(xt) − ξx〉| dµ(x)

= |〈ξ, [π]tξ − ξ〉| ≤ ‖[π]tξ − ξ‖ ≤ δ.

Therefore, by assumption, there exists a nonnull Borel subset A of B such that, for
γ ∈ AHA, one has that Re(1 − ϕ(γ)) ≤ ε. Therefore, for γ ∈ AHA,

1
2‖πγξs(γ) − ξr(γ)‖

2 = Re(1 − ϕ(γ)) ≤ ε.

Therefore, by Lemma 2.12 applied to the representation πA of H|A on H|A obtained
from π by restriction, we have that there exists a unit section η forH|A that is invariant
for πA and such that ‖ξx − ηx‖ ≤ ε for x ∈ A. Since H is ergodic, this concludes the
proof by Remark 2.1.

(8)⇒(9) This is the same as (6)⇒(7).
Finally, the implications (7)⇒(1), (6)⇒(8) and (9)⇒(1) are obvious. �
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Remark 2.14. Theorem 2.13 in the case when G is a countable discrete group and
K is the trivial subgroup recovers [11, Theorem 1]. Theorem 2.13 recovers [2,
Theorems 4.8, 4.12 and 5.22] in the case when H = G and K is the trivial subgroupoid.

2.7. Property (T) for action groupoids. Suppose that (X, µ) is a standard
probability space. A standard probability space fibered over (X, µ) is a triple (Y, ν, p),
where (Y, ν) is a standard probability space and p : Z → X is a Borel map such
that p∗ν = µ. We also write (Y, ν) =

⊔
x∈X(Yx, νx), where (νx)x∈X is the disintegration

of ν with respect to µ. One can consider the space Aut(
⊔

x∈X Yx) of Borel maps
T : Yx → Yy for x, y ∈ X such that T∗νx = νy. One can define a standard Borel structure
on Aut(

⊔
x∈X Yx) that turns it into a standard Borel groupoid, whose unit space can be

identified with X.
Suppose that G is a discrete pmp groupoid and

⊔
x∈X Yx is a standard probability

space fibered over G0. A pmp action θ of G on
⊔

x∈X Yx is a homomorphism γ 7→ θγ
from G to Aut(

⊔
x∈X Yx) that is the identity on the unit space. We set γ ·θ y = θγ(y) for

γ ∈ G and y ∈ Ys(γ). One can then define the transformation groupoid G nθ Y . This is
the set of pairs (γ, y) such that γ ∈ G and y ∈ Ys(γ), which is a Borel subset of G × Y
endowed with the product topology. Identifying an element y of Yx for x ∈ X with the
pair (x, y), one can identify Y with the unit space of G nθ Y . The source and range
maps on G nθ Y are defined by s(γ, y) = y and r(γ, y) = γ ·θ y. Composition of arrows
is given by (γ, y)(γ′, y′) = (γγ′, y′) whenever γ′ ·θ y′ = y.

Suppose that G is a discrete pmp groupoid and θ is an action of G on the standard
probability space Y =

⊔
x∈G0 Yx. One can then consider the transformation groupoid

G nθ Y . Suppose that K ≤ H ≤ G are subgroupoids. A representation π of G on H
induces a representation π nθ Y of G nθ Y onH defined by (π nθ Y)γnθx(ξ) = πγ(ξ) for
ξ ∈ Hx. Let b ∈ S (G,H) be a cocycle for π. Then one can define a cocycle b nθ Y for
π nθ Y by setting (b nθ Y)γnθx = bγ. It is clear that if b is K-trivial, then b nθ Y is K nθ Y-
trivial. Furthermore, if b|H is a coboundary for π|H , then b|H nθ Y is a coboundary
for (π nθ Y)|HnθY . Therefore the assignment b 7→ b nθ Y defines a homomorphism
H1

:K,H(π)→ H1
:KnθY,HnθY (π n Y). The following lemma is an immediate consequence

of [2, Lemma 5.12].

Lemma 2.15. Adopting the notation above, suppose that H is ergodic and the action
θ|H of H on Y is ergodic. Then the homomorphism H1

:K,H(π)→ H1
:KnθY,HnθY (π n Y) is

injective.

Proof. Suppose that b is a K-invariant cocycle for π on H . Assume that (b nθ Y)|HnθY
is a coboundary. Then, by [2, Lemma 5.12], b|H is a coboundary. Thus the map
H1

:K,H(π)→ H1
:KnθY,HnθY (π n Y) is injective. �

Suppose now, adopting the notation above, that π is a representation of H nθ Y
onH . One can then define the induced representation π̂ of G as follows. Consider the
Hilbert bundle Ĥ =

⊔
x∈X L2(Yx) ⊗ Hx �

⊔
x∈X L2(Yx,Hx). Then the representation π̂
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on Ĥ is defined by setting, for γ ∈ G and ξ ∈ L2(Ys(γ),Hs(γ)), π̂γξ to be the element of
L2(Yr(γ),Hr(γ)) given by

(π̂γξ)(y) = πγnθγ−1yξ(γ−1 ·θ y)

for y ∈ Yr(γ). Observe that this is indeed a representation. In fact,

π̂γ(π̂ρξ) = πγnθγ−1y(π̂ρξ)(γ−1 ·θ y) = πγnθγ−1y(πρoθρ−1γ−1y)ξ(ρ−1γ−1 ·θ y)

= πγρnθ(γρ)−1yξ((γρ)−1 ·θ y) = π̂γρ(y).

Given a section ξ for H , one can define the section ξ̂ of Ĥ by setting ξ̂x = ξ|Yx ∈

L2(Yx,Hx) for x ∈ G0. It is clear that if ξ is K n Y-invariant, then ξ̂ is K-invariant.
Furthermore, it is shown in [2, Section 5] that if (ξn) is a sequence of almost π-invariant
unit sections for H , then (ξ̂n) is a sequence of almost π̂-invariant unit sections for Ĥ .
As in the proof of [2, Theorem 5.15], one can deduce the following theorem from
Lemma 2.15 and these observations.

Theorem 2.16. Suppose that G is a discrete pmp groupoid and K ≤ H ≤ G are
subgroupods such that H is ergodic. Let θ be an action of G on a standard probability
space Y such that θ|H is ergodic. Then K ≤ H ≤ G has property (T) if and only if
K nθ Y ≤ H nθ Y ≤ G nθ Y has property (T).

3. Rigid inclusions of von Neumann algebras

Suppose that G is a discrete pmp groupoid. One can then consider the Hilbert bundle
H =

⊔
x∈G0 `2(xG). Observe that one can canonically identify L2(G0,H) with L2(G).

The left regular representation of G is the representation λ of G on H defined as
follows. For γ ∈ G, let δγ ∈ `2(r(γ)G) be the indicator function of {γ} ⊂ r(γ)G. Then
λρδγ = δργ for (ρ, γ) ∈ G2. This gives rise to the representation [[λ]] of [[G]] on L(G).
The groupoid von Neumann algebra of G is defined to be the von Neumann algebra
L(G) ⊂ B(L2(G)) generated by the elements uσ := [[λ]]σ for σ ∈ [[G]]. The main goal
of this section is to provide a characterization of property (T) for (triples of) groupoids
in terms of the associated groupoid von Neumann algebra.

3.1. Hilbert bimodules and unital completely positive maps. Suppose that (M, τ)
is a tracial von Neumann algebra. We let L2(M) be the Hilbert space obtained from
(M, τ) via the GNS construction and let M → L2(M), x 7→ |x〉 be the canonical
inclusion. Thus |1〉 is the canonical cyclic vector of L2(M) for M.

A (Hilbert) M-M-bimodule is a Hilbert space H endowed with commuting normal
*-representations π of M and ρ of Mop on H. In this case, given x, y ∈ M and
ξ ∈ H, one writes xξy for π(x)ρ(yop)ξ. A vector ξ of H is called tracial if it satisfies
〈ξ, aξ〉 = 〈ξ, ξa〉 = τ(a) for every a ∈ M. Given a subset F of M and ε > 0, a vector ξ
in H is F-central if it satisfies aξ = ξa for a ∈ F, and it is (F, ε)-central if it satisfies
‖aξ − ξa‖ ≤ ε for a ∈ F. The adjoint M-M-bimodule H is equal to the conjugate Hilbert
space of H endowed with the bimodule structure given by xξy = y∗ξx∗ for x, y ∈ M and
ξ ∈ H.
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A linear map φ : M → M is completely positive (cp) if, for every n ∈ N,
idMn(C) ⊗ φ : Mn(C) ⊗ M → Mn(C) ⊗ N maps positive elements to positive elements.
If, furthermore, φ(1) = 1, then φ is unital completely positive (ucp). A map φ : M→ M
is trace preserving if τ ◦ φ = τ. If A is a subalgebra of M, then a map φ : M→ M is an
A-bimodule map if it satisfies φ(ax) = aφ(x) and φ(xa) = φ(x)a for x ∈ M and a ∈ A.
Suppose that φ : M → M is a cp A-bimodule map satisfying τ ◦ φ ≤ τ and φ(1) ≤ 1.
Setting Tφ|x〉 = |φ(x)〉 for x ∈ M defines a bounded operator Tφ on L2(M). The adjoint
T ∗φ of Tφ is of the form Tφ∗ , where φ∗ : M → M is a cp A-bimodule map satisfying
τ ◦ φ∗ ≤ τ and φ∗(1) ≤ 1 (see [18, Lemma 1.2.1]).

Given a nonzero normal cp A-bimodule map φ : M → M satisfying φ(1) ≤ 1 and
τ ◦ φ ≤ τ, one can define a Hilbert M-M-bimodule associated with φ as follows.
Consider the completion Hφ of M � M with respect to the inner product defined by

〈a ⊗ b, c ⊗ d〉 = τ(b∗φ(a∗c) d).

The M-M-bimodule structure is induced by the maps

x(a ⊗ b)y = xa ⊗ by

for x, a ∈ M and b, y ∈ N. Denoting by ξφ the vector of Hφ obtained from 1 ⊗ 1,

〈bξφx, aξφy〉 = 〈b ⊗ x, a ⊗ y〉 = τ(x∗φ(b∗a)y).

In particular, 〈ξφ, ξφ·〉 = τ(φ(1)·) ≤ τ and 〈ξφ, ·ξφ〉 = τ ◦ φ ≤ τ. Since φ is an A-bimodule
map, ξφ is A-central. The vector ξφ is cyclic for Hφ, in the sense that {aξφb : a, b ∈ M}
has dense linear span in Hφ. If φ is ucp and trace preserving, then ξφ is a tracial unit
vector.

Conversely, suppose that H is an M-M-bimodule with an A-central cyclic vector
ξ satisfying 〈ξ, ·ξ〉 ≤ τ and 〈ξ, ξ·〉 ≤ τ. One can define a normal cp A-bimodule
map φ : M → M by setting φ(x) = L∗ξxLξ. Here Lξ : L2(M) → H is the operator
defined by Lξ |y〉 = ξy for y ∈ M. If ξ is a tracial unit vector, then φ is a ucp trace-
preserving map. These constructions are the inverse of each other. More information
on the correspondence between cp maps and Hilbert bimodules can be found in [18,
Section 1].

3.2. Completely positive maps and functions of positive type. Let G be a discrete
pmp groupoid with unit space X. For a function of positive type ϕ on a discrete pmp
groupoid G and σ ∈ [[G]], denote by ϕ(σ) ∈ L∞(X) the function

x 7→
{
ϕ(xσ) if x ∈ ran(σ),
0 otherwise.

The proof of the following proposition is similar to the proofs of [8, Lemma 1.1] and
[1, Proposition 3.5.4]. Recall that, if σ ∈ [[G]], then we let uσ be the element [[λ]]σ of
L(G) ⊂ B(L2(G)), where λ is the left regular representation of G.
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Proposition 3.1. Suppose that G is a discrete pmp group, K ≤ G is a subgroupoid and
ϕ is a normalized K-invariant function of positive type on G. Then there exists a unique
trace-preserving, L(K)-bimodule normal ucp map φ : L(G)→ L(G) such that

φ(uσ) = ϕ(σ)uσ

for σ ∈ [G].

Proof. Consider the GNS representation (πϕ,Hϕ, ξϕ) of G associated with ϕ. Choose
an orthonormal basic sequence (e(i))i∈N forHϕ. Define a(i) ∈ L∞(G) by setting

a(i)
γ :=

〈
ξ
ϕ
r(γ), π

ϕ
γe(i)

s(γ)

〉
=

〈
π
ϕ∗
γ ξ

ϕ
r(γ), e

(i)
s(γ)

〉
.

For γ, ρ ∈ G, ∑
i∈N

a(i)
ρ a(i)

γ =
∑
i∈N

〈
e(i)

s(ρ), π
ϕ∗
ρ ξ

ϕ
r(ρ)

〉〈
π
ϕ∗
γ ξ

ϕ
r(γ), e

(i)
s(γ)

〉
=

∑
i, j∈N

〈
e(i)

s(ρ), π
ϕ∗
ρ ξ

ϕ
r(ρ)

〉〈
π
ϕ∗
γ ξ

ϕ
r(γ), e

( j)
s(γ)

〉〈
e(i)

s(γ), e
( j)
s(γ)

〉
=

∑
i, j∈N

〈〈
π
ϕ∗
ρ ξ

ϕ
r(ρ), e

(i)
s(ρ)

〉
e(i)

s(γ),
〈
π
ϕ∗
γ ξ

ϕ
r(γ), e

( j)
s(γ)

〉
e( j)

s(γ)

〉
=

〈
π
ϕ∗
ρ ξ

ϕ
r(ρ), π

ϕ∗
γ ξ

ϕ
r(γ)

〉
=

〈
ξ
ϕ
r(γ), π

ϕ

ργ−1ξ
ϕ
r(γ)

〉
= ϕ(ργ−1).

For T ∈ L(G) ⊂ B(L2(G)), set φ(T ) =
∑

i∈N a(i)∗Ta(i). The convergence is in strong
operator topology since

∑n
i=1 a∗i ai ≤ 1 for every n ∈ N.

Now, for ξ ∈ L2(G) and i ∈ N,

(a(i)∗buσa(i)ξ)γ = a(i)
γ (buσa(i)ξ)γ

= a(i)
γ br(γ)(uσa(i)ξ)γ

= a(i)
γ br(γ)(a(i)ξ)σ−1γ

= a(i)
γ br(γ)a

(i)
σ−1γ

ξσ−1γ

if r(γ) ∈ σσ−1, and (a(i)∗buσa(i)ξ)γ = 0 otherwise. Therefore,

(φ(buσ)ξ)γ =
∑
i∈N

((a(i))buσa(i)ξ)γ

=
∑
i∈N

(a(i)
γ a(i)

σ−1γ
)br(γ)ξσ−1γ

= ϕ(r(γ)σ)br(γ)ξσ−1γ

= (ϕ(σ)buσξ)γ
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if r(γ) ∈ σσ−1, and
(φ(buσ)ξ)γ = 0 = (ϕ(σ)buσξ)γ

otherwise. This shows that φ(buσ) = ϕ(σ)buσ. Since
∑

i∈N a∗i ai = 1, we have that
φ is unital. Clearly, φ is normal and completely positive, and hence is completely
contractive. If σ′ ∈ [K], then, since ϕ is K-invariant,

φ(buσuσ′) = φ(buσσ′) = ϕ(σσ′)buσσ′ = ϕ(σ)buσuσ′ = φ(buσ)uσ′

and
φ(uσ′buσ) = φ(θσ′(b)uσ′σ) = ϕ(σ′σ)θσ′(b)uσ′uσ = uσ′φ(buσ).

Similarly, if a ∈ L∞(X) ⊂ L(G),

φ(abuσ) = aφ(buσ)

and
φ(buσa) = φ(buσ)a.

These equations, together with that fact that φ is a normal ucp map, imply that φ is an
L(K)-bimodule map. This concludes the proof. �

3.3. Rigidity for von Neumann algebras. In order to characterize property (T) for
triples of groupoids, we introduce a notion of rigidity for a nested quadruple of von
Neumann algebras.

Definition 3.2. Let (M, τ) be a tracial von Neumann algebra and let Z ⊂ A ⊂ B ⊂ M
be von Neumann subalgebras. Then the quadruple Z ⊂ A ⊂ B ⊂ M is rigid if, for every
ε > 0 and nonzero projection p0 ∈ Z, there is a finite subset F of M and δ > 0 such that,
for any Hilbert M-M-bimoduleHwith an (F, δ)-central and A-central tracial unit vector
ξ ∈ H, there is a nonzero projection p ∈ Z such that p ≤ p0 and, for every projection
q ∈ Z such that q ≤ p, one has that ‖xξ − ξx‖ ≤ τ(q)1/2‖x‖ε for x ∈ qBq.

As in the case of rigidity for pairs of von Neumann algebras, as defined in [18], one
can provide several equivalent characterizations of rigidity for quadruples Z ⊂ A ⊂ B ⊂
M. The proof of this fact is standard, and it follows arguments from [10, 15, 16, 18].
We present a full proof, for the reader’s convenience.

Proposition 3.3. Let (M, τ) be a tracial von Neumann algebra and let Z ⊂ A ⊂ B ⊂ M
be von Neumann subalgebras. The following assertions are equivalent.

(1) Z ⊂ A ⊂ B ⊂ M is rigid.
(2) For every ε > 0 and nonzero projection p0 ∈ Z, there exist a finite subset F of M

and δ > 0 such that if φ : M → M is a normal trace-preserving ucp A-bimodule
map such that maxx∈F ‖φ(x) − x‖2 ≤ δ, then there exists a nonzero projection
p ∈ Z such that p ≤ p0 and, for every projection q ∈ Z such that q ≤ p, one has
that ‖φ(b) − b‖2 ≤ ετ(q)1/2‖b‖ for every b ∈ qBq.

(3) This is the same as (2) where φ is not necessarily unital and trace preserving,
but it satisfies τ ◦ φ ≤ τ, φ(1) ≤ 1 and φ = φ∗.
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(4) This is the same as (2) where φ is not necessarily unital and trace preserving,
but it satisfies τ ◦ φ ≤ τ and φ(1) ≤ 1.

(5) For every ε > 0 and nonzero projection p0 ∈ Z, there is a finite subset F of M and
δ > 0 such that if H is an M-M-bimodule and ξ ∈ H is an (F, δ)-central and A-
central unit vector satisfying 〈ξ, ·ξ〉 ≤ τ and 〈ξ, ξ·〉 ≤ τ, then there exists a nonzero
projection p ∈ Z such that p ≤ p0 and, for every projection q ∈ Z such that q ≤ p,
one has that ‖xξ − ξx‖ ≤ τ(q)1/2‖x‖ε for every x ∈ qBq.

Proof. (1)⇒(2) Let F be a finite subset of M and let δ > 0. Suppose that φ : M → M
is a normal trace-preserving ucp A-bimodule map such that maxx∈F ‖x‖2‖φ(x) − x‖2 ≤
δ/2. Let (H, ξ) be the corresponding Hilbert M-M-bimodule with distinguished A-
central tracial unit vector ξ. For x ∈ M,

‖xξ − ξx‖2 = ‖xξ‖2 + ‖ξx‖2 − 2Re〈xξ, ξx〉
= 2‖x‖22 − 2Re〈φ(x), x〉L2(M)

= 2Re〈x − φ(x), x〉L2(M)

≤ 2‖x − φ(x)‖2‖x‖2 ≤ δ.

By assumption, one can choose F and δ ≤ ε in such a way that this guarantees the
existence of a nonzero projection p ∈ Z such that p ≤ p0 and ‖xξ − ξx‖2 ≤ τ(q)1/2‖x‖ε
for every projection q ∈ Z such that q ≤ p, and for x ∈ qBq. For such a q ∈ Z and
x ∈ qBq,

‖φ(x) − x‖22 = ‖φ(x)‖22 + ‖x‖22 − 2Reτ(φ(x)∗x)
≤ (τ ◦ φ)(x∗x) + τ(x∗x) − 2Reτ(φ(x)∗x)
= ‖xξ − ξx‖2 ≤ τ(q)‖x‖2ε2.

(2)⇒(3) Suppose that φ : M → M is a ucp map such that τ ◦ φ ≤ τ, φ(1) ≤ 1,
φ = φ∗ and ‖φ(1) − 1‖2 ≤ δ. By assumption and by the definition of φ∗, we have that
T ∗φ = Tφ∗ = Tφ. Thus τ(xφ(y)) = τ(φ(x)y) for x, y ∈ M. Then consider the ucp map
ψ : M → M defined by

ψ(x) = φ(x) + (1 − (τ ◦ φ)(1))EZ(x),

where EZ : M → Z ⊂ M is the unique trace-preserving conditional expectation.
Observe that TEZ = eZ : L2(M) → L2(Z) ⊂ L2(M) is the orthogonal projection.
Therefore τ(xEZ(y)) = τ(EZ(x)y) for every x, y ∈ M. Thus τ(xψ(y)) = τ(ψ(x)y).
Furthermore, (τ ◦ ψ)(1) = 1. From this, we deduce that

‖ψ(1) − 1‖22 = ‖ψ(1)‖22 + 1 − 2Reτ(ψ(1))
= τ(ψ(1)2) − 1 ≤ τ(ψ(1)) − 1 = 0.

Thus ψ is unital, which implies that ψ is trace preserving.
Now observe that since ‖φ(1) − 1‖2 ≤ δ, we have |1 − (τ ◦ φ)(1)| ≤ δ. Therefore, for

a projection q ∈ Z and b ∈ qMq,

‖ψ(b) − φ(b)‖2 ≤ τ(q)1/2δ‖b‖.

This easily gives the desired implication.
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(3)⇒(4) Suppose that φ : M → M is a normal ucp A-bimodule map such that
τ ◦ φ ≤ τ, φ(1) ≤ 1. Then observe that ψ := 1

2 (φ + φ∗) : M → M is a normal cp A-
bimodule map satisfying ψ(1) ≤ 1, τ ◦ ψ ≤ τ, ψ = ψ∗. Furthermore, for a projection
q ∈ Z and a unitary u ∈ qMq,

‖ψ(u) − u‖2 ≤ 1
2‖φ(u) − u‖2 + 1

2‖φ
∗(u) − u‖2 ≤ 2‖φ(u) − u‖1/22

by [18, Lemma 1.1.5]. Since every element x of qMq with ‖x‖ < 1 is a convex
combination of unitaries, this suffices (see also [16, Lemma 3]).

(4)⇒(5) Let F be a finite subset of the unitary group of M containing one and
let δ > 0. Suppose that H is an M-M-bimodule and ξ ∈ M is an A-central and (F, δ)-
central unit vector satisfying 〈ξ, ·ξ〉 ≤ τ and 〈ξ, ξ·〉 ≤ τ. We can assume that ξ is cyclic.
Consider the normal cp map φ : M → M associated with (H, ξ). This is defined by
φ(x) = L∗ξxLξ, where Lξ |x〉 = ξx. Then we have that φ is a normal A-module cp map
satisfying

(τ ◦ φ)(x) = 〈1|L∗ξxLξ |1〉 = 〈ξ|xξ〉 ≤ τ(x).

Furthermore,

〈x|φ(1)|x〉 = 〈x|L∗ξLξ |x〉 = 〈ξx|ξx〉 = 〈ξ|ξxx∗〉 ≤ τ(xx∗) = ‖x‖22 = 〈x|x〉

and thus φ(1) ≤ 1. We have that (τ ◦ φ)(1) = 〈ξ|ξ〉 = 1 since ξ is a unit vector. For u ∈ F,

‖φ(u) − u‖22 = ‖φ(u)‖22 + 1 − 2Reτ(φ(u)∗u)
≤ 2 − 2Reτ(φ(u)∗u)
= ‖uξ − ξu‖2 ≤ δ.

By assumption, choosing F large enough and δ small enough guarantees that there
exists a nonzero projection p ∈ Z such that p ≤ p0 and, for every projection q ∈ Z
such that q ≤ p and x ∈ qBq, ‖φ(x) − x‖2 ≤ τ(q)1/2‖x‖ε. This implies that, for a unitary
u ∈ U(qBq),

‖uξ − ξu‖2 = (τ ◦ φ)(q) + τ(q) − 2Reτ(φ(u)∗u)
≤ 2τ(q) − 2Reτ(φ(u)∗u)
= 2Reτ(q(q − quφ(u)∗))
≤ 2τ(q)1/2‖q − quφ(u)∗‖2
≤ 2τ(q)ε.

Therefore ‖uξ − ξu‖ ≤ τ(p)1/22ε1/2 for a unitary u in qBq. Since every element b ∈ qBq
with ‖b‖ < 1 is a convex combination of unitaries, this concludes the proof.

(5)⇒(1) This is obvious. �

Remark 3.4. Proposition 3.3 shows that if M is a von Neumann algebra and B ⊂ M is
a subalgebra, then B ⊂ M is rigid in the sense of [18, Definition 4.2.1] if and only if
C1 ⊂ C1 ⊂ B ⊂ M is rigid in the sense of Definition 3.2 (see also [16, Theorem 1] and
[10, Theorem 3.1]). Furthermore, B is co-rigid in the sense of [18, Remark 5.6.1] if
and only if C ⊂ B ⊂ M ⊂ M is rigid in the sense of Definition 3.2.
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3.4. von Neumann algebra characterization of property (T) for groupoids. Now
we use the characterization of property (T) for groupoids from Theorem 2.13 together
with the characterization of rigidity for inclusions of von Neumann algebras from
Proposition 3.3 to give a characterization of property (T) for groupoids in terms of
the corresponding groupoid von Neumann algebra.

Theorem 3.5. Suppose that G is a discrete pmp groupoid and that K ≤ H ≤ G are
subgroupoid. Assume that H is ergodic. Let X be the common unit space of K,H,G.
The following assertions are equivalent.

(1) K ≤ H ≤ G has property (T).
(2) For every ε > 0 and nonzero projection p0 ∈ L∞(X), there exist a finite subset F

of L(G) and δ > 0 such that, for every Hilbert M-M-bimodule H with an (F, δ)-
central and L(K)-central tracial unit vector ξ ∈ H, there is a nonzero projection
p ∈ Z and an H-central vector η ∈ H such that p ≤ p0 and ‖qη − qξ‖ ≤ τ(q)1/2ε
for every projection q ∈ L∞(X) such that q ≤ p.

(3) The inclusion L∞(X) ⊂ L(K) ⊂ L(H) ⊂ L(G) is rigid.
(4) For every ε > 0, there is a finite subset F of L(G) and δ > 0 such that, for any

Hilbert M-M-bimodule H with an (F, δ)-central and L(K)-central tracial unit
vector ξ ∈ H, there is a nonzero projection p ∈ L∞(X) such that ‖xξ − ξx‖ ≤
τ(p)1/2‖x‖ε for x ∈ pL(H)p.

Proof. (1)⇒(2) Suppose that K ≤ H ≤ G has property (T). Fix ε > 0 and a nonzero
projection p0 ∈ L∞(X). Then p0 can be seen as the characteristic function of some
Borel subset B of X. Let F be a finite subset of [G] and let δ > 0 be obtained from
ε and B via item (7) of the characterization of property (T) for triples of groupoids
provided by Theorem 2.13. Now let H be an L(G)-bimodule with an L(K)-central and
(F, δ)-central tracial unit vector ξ0 ∈ L. We can assume that ξ0 is a cyclic vector for H.
The assignment a 7→ (ξ 7→ aξ) defines a normal *-representation of L∞(X) on H. Thus
there is a Hilbert bundle H = (Hx)x∈X such that H = L2(X,H) and, for ξ = (ξx)x∈X ∈

L2(X,H) and a = (ax)x∈X ∈ L∞(X), aξ = (axξx)x∈X (see [12, Theorem 14.2.1] or [22,
Proposition F.26]). Now suppose that t ∈ [G] and a ∈ L∞(X). Observe that uta = θt(a)ut,
where θt(a) = (as(xt))x∈X ∈ L∞(X). Therefore utaξu∗t = θt(a)utξu∗t . This shows that the
operator ξ 7→ utξu∗t on L2(X,H) intertwines the normal *-representations a 7→ (ξ 7→ aξ)
and a 7→ (ξ 7→ θt(a)ξ) of L∞(X) on H. Therefore ξ 7→ utξu∗t is a decomposable operator
(see [21, Theorem 7.10], [22, Theorem F.21] or [6, Section 2.5]). This means that
there exists a section x 7→ πxt ∈ B(Hs(xt), Hx) such that utξu∗t = (πxtξs(xt))x∈X for ξ ∈
L2(X, (Hx)x∈X) (see [21, Definition 7.9]). By considering such a decomposition when
t varies within a countable dense subgroup of [G], and by the essential uniqueness of
such a decomposition [22, Proposition F.33], one obtains a representation γ 7→ πγ of G
onH such that utξu∗t = [π]tξ for every t ∈ [G] and ξ ∈ L2(X,H). Since, by assumption,
ξ0 is L(K)-central, we have that ξ0 is K-invariant. Furthermore, since ξ0 is (F, δ)-
central, we have that ξ0 is (F, δ)-invariant for π. Therefore by the choice of F and δ,
there exists a nonnull Borel subset A of X and an element η of L2(X,H) such that
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η is H-invariant and ‖ηx − ξ
0
x‖ ≤ ε for every x ∈ A. The vector η together with the

characteristic function p of A witness that the desired conclusion holds.
(2)⇒(3) Suppose that M is a tracial von Neumann algebra, Z ⊂ M is a subalgebra,

q ∈ Z is a projection and H is an M-M-bimodule. Consider a Z-central unit vector ξ ∈ H
and an M-central vector η ∈ H such that ‖qξ − qη‖ ≤ τ(q)1/2ε. Then, for every unitary
u in qMq,

‖uξ − ξu‖ ≤ ‖uξ − uη‖ + ‖ξu − ηu‖ ≤ 2‖qξ − qη‖.

One can easily prove the implication (2)⇒(3) using this observation.
(3)⇒(4) This is obvious.
(4)⇒(1) Suppose that (4) holds. We verify that item (8) of Theorem 2.13 holds.

To this purpose, fix ε > 0. We want to find a finite subset Q of [G] and δ > 0
such that, for every normalized K-invariant function of positive type ϕ on G such
that maxt∈Q

∫
x∈X |ϕ(xt) − 1|2 dµ(x) ≤ δ, there is a nonnull Borel subset A of X such

that Re(1 − ϕ(γ)) ≤ ε for a.e. γ ∈ AHA. Consider a finite subset F of L(G) and
δ > 0 with the property that, for every trace-preserving ucp L(K)-bimodule map
φ : L(G)→ L(G) satisfying maxx∈F ‖φ(x) − x‖2 ≤ δ, there exists a nonzero projection
p ∈ L∞(X) such that ‖φ(x) − x‖2 ≤ τ(p)1/2ε‖x‖ for x ∈ pL(H)p. By Kaplanski’s density
theorem [4, I.9.1.3], we can assume, without loss of generality, that there exists a finite
subset Q of [G] such that F = {ut : t ∈ Q} ⊂ L(G). Consider a K-invariant normalized
function of positive type ϕ on G. Suppose that maxt∈Q

∫
x∈X |ϕ(xt) − 1| dµ(x) ≤ δ. Let

φ : L(G)→ L(G) be the trace-preserving ucp L(K)-bimodule map associated with ϕ,
as in Proposition 3.1. Observe that, for every t ∈ Q, φ(ut) = ϕ(t)ut, where ϕ(t) ∈ L∞(X)
is the function x 7→ ϕ(xt). Therefore, for t ∈ Q,

‖φ(ut) − ut‖2 = ‖ϕ(t)ut − ut‖2 ≤ ‖ϕ(t) − 1‖2 ≤ δ.

Therefore, by assumption, there exists a nonzero projection p ∈ L∞(X) such that, for
every projection q ∈ L∞(X) such that q ≤ p, one has that ‖φ(x) − x‖2 ≤ τ(q)1/2ε‖x‖ for
x ∈ qL(H)q. Now let A ⊂ X be a Borel subset such that p is the characteristic function
of A. Then we have that, for σ ∈ [AHA], uσ ∈ pL(H)p, τ(p) = µ(A), and hence

µ(A)ε2 ≥ ‖φ(uσ) − uσ‖22 = ‖ϕ(σ) − 1‖22 =

∫
x∈A
|ϕ(xσ) − 1|2 dµ.

Since this holds for every σ ∈ [AHA], we conclude that |ϕ(γ) − 1| ≤ ε for a.e. γ ∈ AHA.
This shows that item (8) of the characterization of property (T) for triples of groupoids
(Theorem 2.13) holds. This concludes the proof. �
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