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Abstract

Campana introduced the class of special varieties as the varieties admitting no
Bogomolov sheaves, i.e. rank-one coherent subsheaves of maximal Kodaira dimension in
some exterior power of the cotangent bundle. Campana raised the question of whether
one can replace the Kodaira dimension by the numerical dimension in this characteri-
zation. We answer partially this question showing that a projective manifold admitting
a rank-one coherent subsheaf of the cotangent bundle with numerical dimension one
is not special. We also establish the analytic characterization with the non-existence
of Zariski dense entire curve and the arithmetic version with non-potential density in
the (split) function field setting. Finally, we conclude with a few comments for higher
codimensional foliations which may provide some evidence towards a generalization of
the aforementioned results.
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1. Introduction

In [Cam04], Campana introduced the class of special varieties as the compact Kähler varieties
admitting no maps onto an orbifold of general type. Campana also established that a Kähler
manifold X is special if and only if it has no Bogomolov sheaf, which are rank-one coherent
subsheaves of Ωp

X having Kodaira dimension p for some p > 0. Campana conjectured that spe-
cial varieties should have properties related to Lang’s conjectures on the distribution of entire
curves or rational points on projective manifolds. More precisely, he formulated the following
conjecture.

Received 24 June 2021, accepted in final form 21 March 2022, published online 22 August 2022.
2000 Mathematics Subject Classification 32J27 (primary), 53C12 (secondary).
Keywords: special varieties, Bogomolov sheaves, entire curves.

This work was supported by the ANR project ‘FOLIAGE’, ANR-16-CE40-0008 and CAPES-COFECUB Ma
932/19 project. The first author was supported by Cnpq and FAPERJ.

© 2022 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica
under an exclusive licence.

https://doi.org/10.1112/S0010437X22007564 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
https://doi.org/10.1112/S0010437X22007564


Numerically non-special varieties

Conjecture 1 (Campana [Cam04]). A compact Kähler manifold X is special if and only if it
contains a Zariski-dense entire curve f : C → X, i.e. the image of X is not contained in any
proper subvariety of X. Moreover, if X is projective and defined over a number field k, then X
is special if and only if X(k) is potentially dense, i.e. X(k′) is Zariski dense in X for some finite
extension k′ ⊃ k.

Recently, Wu [Wu20] introduced the notion of numerical Bogomolov sheaves as rank-one
coherent subsheaves L of Ωp

X having numerical dimension p for some p > 0, and a complex
projective (or, more generally, compact Kähler) manifold X is said to be numerically special if
it has no numerical Bogomolov sheaves. Campana [Cam20, Remark 7.3] raises the question of
whether specialness is equivalent to numerical specialness.

It is worth noting that the existence of L as given previously determines a distribution,
namely Ker L of codimension at least p, where equality holds if p = 1, and that this distribution
is actually integrable, according to a theorem of Demailly [Dem02]. This explains why foliations
enter into the picture (see, in particular, Theorem D and § 7).

In this note, we address this problem for subsheaves of Ω1
X , proving the following result.

Theorem A. Let X be a compact Kähler manifold admitting a rank-one coherent subsheaf
L ⊂ Ω1

X of numerical dimension one. Then X is not special, i.e. it admits a rank-one coherent
subsheaf of maximal Kodaira dimension p in Ωp

X for some p > 0.

We also study the conjectural characterization of special manifolds following Conjecture 1.
Concerning the analytic characterization using entire curves, we prove the following.

Theorem B. Let X be a compact Kähler manifold admitting a rank-one coherent subsheaf
L ⊂ Ω1

X of numerical dimension one. Then X has no Zariski-dense entire curves f : C → X.

On the arithmetic side, we are not able to deal with rational points but rather we study a
function field version of Campana’s conjecture recently introduced in [JR22]. In this setting, the
analogue of potential density is given by geometric specialness as follows.

Definition 1.1 (Geometrically special varieties). A complex projective variety X is geometri-
cally special if, for every dense open subset U ⊂ X, there exists a smooth projective connected
curve C, a point c in C, a point u in U , and a sequence of morphisms fi : C → X with fi(c) = u
for i = 1, 2, . . . such that C ×X is covered by the graphs Γfi ⊂ C ×X of these maps, i.e. the
closure of

⋃∞
i=1 Γfi equals C ×X.

Then the analogue of Campana’s conjecture on potential density is formulated as follows.

Conjecture 2 [JR22]. A complex projective varietyX is special if and only if it is geometrically
special.

In this setting, we prove the following.

Theorem C. Let X be a complex projective manifold admitting a rank-one coherent subsheaf
L ⊂ Ω1

X of numerical dimension one. Then X is not geometrically special.

One of the main ingredients in the proof of the previous results is the following statement
of independent interest which adapts to compact Kähler manifolds previous work of the third
author on projective manifolds [Tou16].

Theorem D. Let (X,F) be a foliated Kähler manifold such that F is a holomorphic
codimension-one transversely hyperbolic foliation with quotient singularities. Assume that F is
not algebraically integrable. Then, up to replacingX by a non-singular Kähler modification, there
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exists a morphism Ψ : X → DN/Γ whose image has dimension p ≥ 2 such that F = Ψ∗G where
G is one of the tautological foliation on DN/Γ. Moreover, the hyperbolic transverse structure of
F agrees with that obtained from pull-back.

Towards a generalization of the preceding results to foliations with higher codimensions, we
prove the following statement.

Theorem E. Let X be a compact Kähler manifold and F be a smooth foliation of codimension
p. If c1(N∗

F ) is represented by a semi-positive (1, 1)-form η of constant rank p, then X is not
special.

The paper is organized as follows. In § 2, we collect some preliminary definitions and prop-
erties of transversely hyperbolic foliations. In § 3, we state the main properties of the conormal
bundle of tautological foliations on irreducible polydisk quotients. In § 4, we prove Theorem D
and derive Theorem A from it. In § 5, we prove Theorem B on entire curves. In § 6, we prove
Theorem C on non-potential density in the (split) function field setting. Finally, in § 7, we prove
Theorem E.

2. Transversely hyperbolic foliations

In this section, we collect useful information about transversely hyperbolic foliations on complex
manifolds. We follow the terminology of [LPRT20, §§ 3 and 5].

2.1 Transversely hyperbolic foliations
Let F be a codimension-one foliation on a complex manifold X. The foliation F is transversely
hyperbolic if the sheaf of holomorphic first integrals OX/F admits a locally constant subsheaf of
sets I (called the sheaf of distinguished first integrals) such that:

(1) every f ∈ I is non-constant and has image contained in the unit disk D;
(2) for every non-empty, connected, and simply connected open subset U , I(U) is non-empty

and equal to Aut(D) · f for any f ∈ I(U);
(3) if f ∈ I(U), g ∈ I(V ), and U ∩ V is a connected open set then there exists ϕ ∈ Aut(D) such

that ϕ ◦ f = g.

The pull-back of the Poincaré metric on the unit disk by any local distinguished first integral
f ∈ I is a closed semi-positive smooth (1, 1)-form

η = f∗
(
i

π

du ∧ du
(1 − |u|2)2

)
= − i

π
∂∂̄(log(1 − |f |2))

that does not depend on the choice of f . If ω is a local generator of N∗
F then the (1, 1) form

η =
i

π
exp(2ψ)ω ∧ ω

defines by duality a (singular) metric on the conormal bundle N∗
F with a plurisubharmonic

continuous local weight ψ = − log(1 − |f |2) + log(|g|) where g is a holomorphic function such
that df = gω. Therefore, the curvature form of the induced metric on N∗

F is (in the sense of
currents)

T =
i

π
∂∂ψ =

∑
D∈P

mD[D] + η, (2.1)

the (locally finite) sum being taken over the set P of prime divisors. Here, mD ≥ 0 denotes the
ramification order of the local distinguished first integrals alongD. In other words, a distinguished
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first integral at a neighborhood of a general point of D is of the form z1+mD where {z = 0} is
a suitable local defining equation of D. In particular, T = η if, and only if, the developing map
ϕ̃ : X̃ → D is a submersion in codimension one. The divisor

∑
D∈P mDD is the ramification

divisor of the transversely hyperbolic foliation F . Note, in particular, that D is F-invariant
whenever mD > 0. Note also that T is a closed positive (1, 1)-current, whence the following
result.

Proposition 2.1. If X is a complex compact manifold and F is a transversely hyperbolic
foliation on X, then c1(N∗

F ) is pseudo-effective.

2.2 Pull-back of transversely hyperbolic structure
Let f : X → Y be a holomorphic map between complex manifolds and let F be a transversely
hyperbolic foliation on Y . One can define the pull-back foliation f∗F provided that the image of
the differential df is not tangent to F . In this case, if F carries a transverse hyperbolic structure
with a sheaf of distinguished first integrals I, then f∗F carries a transverse hyperbolic structure
defined by the sheaf of distinguished first integrals f∗I.

2.3 Transversely hyperbolic foliations with quotient singularities
We say that a codimension-one foliation F is a transversely hyperbolic foliation with poles if
there exists a hypersurface H such that F∣∣

X−H
is a transversely hyperbolic foliation as defined

in § 2.1.
According to [LPRT20, Corollary 5.3], any transversely hyperbolic foliation defined

on X −H, where H is an hypersurface, extends through H as a foliation. Moreover,
[LPRT20, Theorem 5.2] describes the degeneracies of the transverse hyperbolic structure
along H.

In this work, we are interested in the following subclass of the class of transversely hyperbolic
foliations with poles.

Definition 2.2. A transversely hyperbolic foliation with quotient singularities on a complex
compact manifoldX consists of a reduced divisorH =

∑
Hi (the divisor of poles of the transverse

structure) and a transversely hyperbolic foliation F on X −H such that for any x ∈ H, there
exists a neighborhood Ux ⊂ X of x, such that the local monodromy of the transverse hyperbolic
structure

π1(Ux −H) → Aut(D)

is non-trivial and has finite image.

Let Ux be as above. Every finite subgroup of Aut(D) is cyclic and generated by an ellip-
tic transformation. Therefore, there is no loss of generality in assuming that the image of the
local monodromy representation takes values in S1. Let f be the corresponding multivalued
distinguished first integral. Then fn : Ux −H → D is well defined and extends through H by
boundedness as a holomorphic function g : Ux → D. This implies that, on Ux, f takes the form

f = fxf
ν1
1 · · · fνr

r (2.2)

where the ν1, . . . , νr are positive non-integral rational numbers, f1 · · · fr = 0 is a local defining
equation of H and fx is a holomorphic function. One can moreover assume, up to adding a
non-negative integer exponent to the νi that fx is not identically zero on each branch Hi ∩ Ux.
Remark also that H is necessarily F-invariant.
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The local expression for f makes clear that the pull-back of the Poincaré metric on D by any
multivalued distinguished first integral for F∣∣

Ux−H
extends through H as the closed positive

current

ηx = − i

π
∂∂̄
(
log(1 − |f |2)

)
.

If one consider the (locally) well-defined logarithmic form

ξ =
df

f
=
∑

i

νi
dfi

fi
+
dfx

fx
,

one can rewrite

ηx =
i

π

(
|f |2

(1 − |f |2)2
)
ξ ∧ ξ̄.

Set g = fx
∏

i fi. The holomorphic form ω = gξ has no zeros in codimension one (see the
proof of Proposition 2.6), hence it is a local generator of N∗

F in a neighborhood of x. One can
then readily check that

ηx =
i

π
exp(2ψ)ω ∧ ω

with

ψ = − log(1 − |f |2) +
r∑

i=1

(νi − 1) log(|fi|) +
s∑

j=1

(mj − 1) log(|fx,j |),

where fx =
∏s

j=1 f
mj

x,j is the writing of fx as a product of irreducible factors. By construction,
these local (1, 1)-forms glue together with that defined on X −H by (2.1) and then give rise
by duality to a global singular metric on N∗

F with local weight ψ. Observe that η, considered
as a closed positive current, has a (1, 1) continuous plurisubharmonic potential of the form
ϕ = − log(1 − |f |2) so that its Lelong numbers ν(η, x) = 0 at any x ∈ X. When X is compact,
Demailly’s approximation Theorem [Dem92, Theorem 4.1] implies that η represents a nef class
in H1,1

∂∂̄
(X,R). Observe also that η is nothing but the unique positive current giving no mass

to H and extending the semi-positive form η|X−H . In particular, η coincides with its absolute
continuous part with respect to the Lebesgue measure.

Let us make explicit the curvature current T of the singular metric defined by η on N∗
F in

restriction to Ux. A straightforward calculation yields

T|Ux
=
i

π
∂∂ψ = η +

r∑
i=1

(νi − 1)[Hi]|Ux
+ [Dx],

where Dx is an integral effective divisor whose support lies in the polar locus of the logarithmic
derivative dfx/fx. More precisely, if D = D1 + · · · +Ds is the divisor of poles of dfx/fx with
corresponding residues m1, . . . ,ms, then Dx =

∑s
i=1(mi − 1)Di.

The previous discussion is summarized in the following result.

Proposition 2.3. Let X be a complex manifold and let F be a transversely hyperbolic foliation
with quotient singularities on X. Let H be the divisor of poles of the transverse structure.
Consider the (singular) metric on N∗

F defined by η, the trivial extension through H of the pull-
back of the Poincaré metric by local distinguished first integrals. Let T be its curvature current
(in particular T represents c1(N∗

F ) ∈ H1,1

∂∂̄
(X,R)), then

T =
∑
D∈P

rD[D] + η, (2.3)

1432

https://doi.org/10.1112/S0010437X22007564 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007564


Numerically non-special varieties

where D ranges over the set P of prime divisors, rD ∈ Q>−1 and the sum is locally finite.
Moreover:

(1) the current η is a smooth semi-positive (1, 1)-form in restriction to X −H and when X is
compact, represents a nef class in H1,1

∂∂̄
(X,R); and

(2) if rD 
= 0, F admits, at a general point of D, a distinguished (maybe multivalued) first
integral of the form zrD+1 where z = 0 is a local defining equation of D; and

(3) the set {D ∈ P|rD /∈ N} coincides with the set {Hi, i ∈ I}.
Definition 2.4. The divisor

∑
D∈P rDD will be called the divisorial part of F (with respect to

the given transversely hyperbolic structure).

Remark 2.5. The decomposition presented in (2.3) is compatible with restriction to open subsets
U (where the transverse hyperbolic structure of F∣∣

U
is given by restriction of the sheaf I). In

particular, the divisorial part of the restricted transverse structure is just
∑

D∈P rDD
∣∣
U
.

2.4 Divisorial part along invariant hypersurfaces
Let F be a transversely hyperbolic foliation with quotient singularities on a complex manifold
X. Let H =

∑
Hi be its divisor of poles. Let us denote by Id log the sheaf defined on X −H by

the collections of logarithmic differential df/f where f ∈ I, see also [Tou13, Définition 5.3].

Proposition 2.6. Let K be a hypersurface of X. Assume that there exists a neighborhood U
of K and a section of Id log on U −K which extends through K as a logarithmic one-form ω
such that K ⊂ (ω)∞. The following assertions hold true.

(1) The irreducible components of the hypersurface K are F-invariant.
(2) The germ of ω along K is unique.
(3) If D is a prime divisor of U , then the residue λD of ω along D belongs to Q≥0.
(4) Up to shrinking U , ω has no zeros in codimension one and the divisorial part of F∣∣

U
is∑

D∈P rDD where rD = 0 if λD = 0, and rD = λD − 1 otherwise.

Proof. Item (1) is obvious. Indeed, K is a component of the polar locus of a closed meromorphic
form defining the foliation on U .

Let x ∈ K. If x /∈ H, then there exists in the neighborhood Ux of x and a section f of I over
Ux −K such that ω = df/f . As noted previously, f extends through K as a section of I over U .
As K ⊂ (ω)∞, one necessarily has f(x) = 0. Hence, this section is unique modulo multiplication
by a complex number of modulus one. Consequently, ω is unique in restriction to U −H.

If x ∈ H ∩K, there exists a neighborhood Ux of x and a multivalued distinguished first
integral f on Ux −K with finite and non-trivial multiplicative monodromy taking values in S1.
The uniqueness of ω = df/f follows from the observations already made in § 2.3. This establishes
the uniqueness stated in item (2).

Let F = f1 · · · fr · fr+1 · · · fp = 0 be a local reduced equation for the polar locus of ω in a
small neighborhood Ux of x ∈ K, where f1 · · · fr = 0 is a local equation for H. By construction,
there exists ν1, . . . , νr ∈ Q>0, mr+1, . . . ,mp ∈ N>0, such that

ω|Ux
=

r∑
i=1

νi
dfi

fi
+

p∑
i=r+1

mi
dfi

fi
+ ω0

where ω0 is some holomorphic one form. In particular, the property mentioned in item (3) is
satisfied.
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Equivalently, F admits on Ux a multivalued distinguished first integral of the form e
∫

ω =
f = ufν1

1 · · · fνr
r f

mr+1

r+1 · · · fmp
p where u is a unit. As previously, this enables the computation of

the divisorial part of F∣∣
Ux

, namely
∑r

i=1(νi − 1)Di +
∑p

i=r+1(mi − 1)Di where Di = {fi = 0}.
This proves the second assertion of item (4).

By considering the well-defined real first integral g = |f |, one remark that there is no invariant
hypersurface passing through x except the poles Di. In particular, the germ of ω along K has
no zeros in codimension one. This establishes the first point of item (4). �

2.5 Behavior under pull-back by a surjective morphism
If ϕ : X → Y is a surjective morphism between complex compact manifolds and F is a trans-
versely hyperbolic foliation with quotient singularities on Y , the pull-back foliation ϕ∗F carries
also a transversely hyperbolic structure with quotient singularities directly inherited from that
of F , that is induced on X − ϕ−1(H) by the sheaf ϕ∗I. From Proposition 2.3, one obtains a
decomposition of N∗

F which reads (in Pic(Y ) ⊗ Q) as

N∗
F = L+D,

where D is the divisorial part of F (see Definition 2.4), L is a nef Q-line bundle whose Chern
class is represented by η. A similar decomposition holds for the conormal sheaf of ϕ∗F . Both
decompositions are indeed naturally related as shown by the next result.

Proposition 2.7. With assumptions and notation as previously,

N∗
ϕ∗F = ϕ∗(L) +D′

where D′ is the divisorial part of ϕ∗F .

Proof. Let G = ϕ∗F . On X, we have a G-invariant divisor I which, roughly speaking, is the locus
where ϕ ramifies over the direction transverse to F . More precisely, if ω is a generator of N∗

F on
an open subset U , the restriction of I to ϕ−1(U) is the zeros divisor of ϕ∗ω. The line bundles
ϕ∗N∗

F and N∗
G are related by the equality N∗

G = ϕ∗N∗
F + I.

Then, we have just to verify that D′ = ϕ∗D + I where D is the divisorial part of F . It suffices
to show that the equality

D′
|ϕ−1(U) = ϕ∗D|U + I|ϕ−1(U) (2.4)

holds for every member U of an open cover (U)U∈U of Y . First, let x ∈ Y − Supp(D). In some
neighborhood U of x, N∗

F is generated by df where f ∈ I(U) and (2.4) is obviously true.
If x ∈ Supp(D), let D1, . . . , Dq be the components of Supp(D) such that x ∈ Di, i = 1, . . . , q

are ordered such that rDi /∈ N for i = 1, . . . , p, rDi ∈ N>0 for i = p+ 1, . . . , q. According to § 2.3,
F is defined in some small neighborhood U of x by a closed logarithmic form ξ =

∑q
i=1(rDi +

1)dfi/fi +
∑s

i=q+1 dfi/fi where fi = 0, i ≤ q, is a local reduced equation of Di and fi = 0, i > q,
are additional poles with residues equal to one. Moreover, ξ

∣∣
U−⋃p

i=1 Di
is a section of Id log. Note

that ω = ϕ∗ξ is a closed logarithmic form on ϕ−1(U) fulfilling the hypothesis of Proposition 2.6,
with K = ϕ−1(

⋃
Di) (in restriction to ϕ−1(U)). Item (4) of Proposition 2.6 determines the

divisorial part of G∣∣
ϕ−1(U)

. An elementary calculation yields

D′
|ϕ−1(U) =

( q∑
i=1

rDiϕ
∗(Di) +

s∑
i=1

(ϕ∗(Di) − ϕ∗(Di)red)
)∣∣∣∣∣

ϕ−1(U)

.
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On the other hand, according to the first part of item (4) of Proposition 2.6, fω is a local
generator of F on U , where f =

∏
i fi. This implies that

I
∣∣
ϕ−1(U)

=
s∑

i=1

((ϕ∗(Di) − ϕ∗(Di)red))
∣∣
ϕ−1(U)

,

thus proving equality (2.4). �
We also state the following two lemmas for further use.

Lemma 2.8. Let ϕ : X → Y be a surjective morphism with connected fibers between compact
complex manifolds. Let G be a transversely hyperbolic foliation on X with quotient singularities.
Assume that there exists on Y a codimension-one holomorphic foliation F such that G = ϕ∗F .
Then F carries a transversely hyperbolic with quotient singularities structure. Moreover, the
pull-back of this structure via ϕ coincides with that of G wherever defined.

Proof. Let H be the divisor of poles of G. As H is necessarily G invariant, the restriction of ϕ
to H is not surjective. Therefore, there exists a non-empty open Zariski subset U of Y such that
G is transversely hyperbolic (without poles) in restriction to V := ϕ−1(U). In addition, one can
suppose that f

∣∣
V

is a smooth morphism onto U . Let (W ) be a covering of U by open subsets
(in the Euclidean topology) such that the sheaf I of distinguished first integrals of G is constant
on ϕ−1(W ). The fibers being compact submanifolds, every global section of Iϕ−1(W ) descends
to W . Consequently, F admits on U a transversely hyperbolic structure defined by the locally
constant sheaf J such that I = ϕ∗J . Consider the analytic subset of Y defined by Z = Y − U .
The transverse hyperbolic structure defined by J extends through Z −K whereK is the union of
codimension-one components of Z around which the local monodromy is non-trivial. Let Z0 be a
component of Z. Pick a general point p of Z0 and let γ be a loop around Z0 in some neighborhood
Vp of p. Let q ∈ ϕ−1(p). Let Dq be a small disk centered at q such that Dq − {q} is transverse to G
and ϕ(Dq) − {p} is transverse to F . Let ε : [0, 1] → Dq − {q} be a small loop of index one around
q. Obviously, ϕ(ε) is a loop freely homotopic to a non-zero multiple of γ in Vp − Z0. Because
G has quotients singularities, this implies that the local monodromy representation along γ has
finite image, whence the result. �
Lemma 2.9. Let ϕ : X → Y be a surjective morphism with connected fibers between compact
complex manifolds. Let G be a transversely hyperbolic foliation onX. Denote by ρ its monodromy
representation. Assume that there exists a representation ρ′ : π1(Y ) → Aut(D) such that ρ =
ϕ∗ρ′. Then there exists on Y a transversely hyperbolic foliation F such that G = ϕ∗F and whose
monodromy representation is ρ′.

Proof. Let U ⊂ Y be a non-empty open Zariski subset such that ϕ restricts to a smooth morphism
on ϕ−1(U). By assumption on the representation ρ, the sheaf I of distinguished first integrals of
G is globally constant over W , where W is any simply connected open subset of U . Like before,
this implies that any section s ∈ I(ϕ−1(U)) is constant on the fibers of ϕ. Consequently, there
exists on U a transversely hyperbolic foliation F∣∣

U
, which then extends as a foliation F on the

whole Y (as recalled in § 2.3) and whose monodromy representation is given by the composition
morphism:

π1(U) → π1(Y )
ρ′−→ Aut(D).

Since the first arrow is surjective, the result follows. �
Remark 2.10. Let F be a transversely hyperbolic foliation with quotient singularities on a com-
pact complex manifold X. Then there exists a smooth modification π : X̂ → X obtained by a
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sequence of successive blow-ups with smooth centers such that the divisorial part of π∗F is
supported on an invariant normal crossing divisor D = D1 + · · · +Dr. In particular there exists
a r-tuple of rational numbers (λ1, . . . , λr) ∈ Qr

<1 such that E := Nπ∗F +
∑

i λiDi is a pseudo-
effective Q-line bundle whose Chern class is represented by a non-trivial positive (1, 1)-form η
with L1

loc coefficient (and actually smooth on a Zariski dense open subset). When X is com-
pact Kähler, π∗F is a particular case of a KLT foliation in the terminology of [Tou16, § 8.1].
Note also that the existence of η guarantees that the positive part of L in its Zariski decomposition
is non-trivial.

2.6 Uniqueness of the transverse structure
The following result is established in [LPRT20, Corollary 5.6].

Proposition 2.11. Let F be a transversely hyperbolic foliation (with quotient singularities)
on a projective manifold. Assume that F is not algebraically integrable. Then, the hyperbolic
transverse structure is unique, i.e. any transverse hyperbolic structure for F on a dense Zariski
subset is defined by the same sheaf of distinguished first integrals.

2.7 Relationship with numerical properties of the conormal bundle
The following theorem is essentially proved in [Tou13] and describes the interplay between the
existence of a transverse hyperbolic structure and positivity properties of the conormal bundle
of a foliation. The following is essentially a reformulation of some results established in [Tou13]
(to which we will precisely refer in the proof, see also [Tou16, § 3.2]) where it is recalled that
the coefficients rD appearing in (2.3) coincide with the coefficients of the divisorial Zariski
decomposition of c1(N∗

F ) and must be, therefore, non-negative.

Theorem 2.12. Let F be a codimension-one foliation on a compact Kähler manifold X
equipped with a Kähler form Θ. Assume that N∗

F is pseudo-effective with numerical dimension
one. Let N =

∑r
i=1 λiNi be the negative part in the Zariski decomposition of c1(N∗

F ). Then:

(1) the coefficients λi are positive rational numbers;
(2) the intersection matrix mij = Ni ·Nj · Θn−2 is negative definite;
(3) F admits a transverse hyperbolic structure with quotient singularities on X such that

(a) the divisor of poles is H =
∑
βiNi, where βi = 0 if λi ∈ N, βi = 1 otherwise, and

(b) the divisorial part of F with respect to the given transversely hyperbolic structure is N .

Proof. The first item has already been established when X is projective in [Tou13,
Proposition 2.14(vi)].

Item (2) is a consequence of [Tou13, Corollaire 2.15], taking into account that the family
{N1, . . . , Nr} is exceptional in the sense recalled in [Tou13, Définition 2.6 and Théorème 2.7].

Assume first that (1) holds in general, as claimed in the statement. Then items (3a) and
(3b) can be derived directly from [Tou13, Théorème 1, with ε = 1] and [Tou13, Proposition 5.1].
Indeed, the hyperbolic transverse structure is there defined by the equality T = η of Théorème 1,
valid outside the support of N and which provides the collection of distinguished first integrals on
X − Supp(N) (see [Tou13, Lemme 5.1]). Moreover, according to Proposition 5.1, the degeneracy
of the hyperbolic structure along Supp(N) is explicitly described in terms of local multivaluate
first integrals of the form f

∏
i f

λi+1
i , where fi = 0 is a local reduced equation of Ni and f is

holomorphic with a divisor of zeroes either empty, either reduced and not contained in Supp(N).
It then remains to prove the rationality of the coefficients λi in full generality, including the

case where X is Kähler and possibly non-projective. Still according to [Tou13, Proposition 5.1],
there exists in a small neighborhood U of Supp(N) a closed logarithmic form ω defining the
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foliation on U (which restricts to a section of Id log on U − Supp(N)) with the following additional
properties.

(1) The divisor of poles of ω has the following form:

(ω)∞ =
∑

Ni +A

where A is a hypersurface of U intersecting Supp(N) along a codimension-two subset.
(2) We have ResNiω = λi + 1, ResAω = 1.
(3) The generator ω has no zeros in codimension one.

As an immediate consequence, the real Chern classes class of N∗
F and of N coincide in H2(U,R).

On the other hand, the class of N∗
F lies in H2(U,Q) ⊂ H2(U,R) as the class of any line

bundle.
Suppose by contradiction that at least one of the coefficients λi lies in R − Q. By rationality of

c1(Ni), one promptly deduces that there exists (ν1, . . . , νr) ∈ Rr − {0} such that
∑

i νic1(Ni) = 0
in H2(U,R). Now, by de Rham’s isomorphism, c1(Ni) can be represented on U by a real closed
two form θi and the linear dependance relation above is equivalent to the fact that θ :=

∑
νiθi

is exact on U . Let us evaluate the intersection product I =
(∑

νic1(Ni)
)2Θn−2. By item (2) of

the theorem, it is a negative real number but one can alternatively compute this intersection as
I =

∑
νi

∫
Ni
θ ∧ Θn−2 = 0 by exactness of θ, whence the contradiction. �

3. Pull-backs of tautological foliations on irreducible polydisk quotients

3.1 Irreducible polydisk quotients
Let N ≥ 2 be an integer. A discrete subgroup Γ ⊂ Aut(D)N is a lattice if the quotient DN/Γ has
finite volume. A lattice Γ ⊂ Aut(D)N is irreducible if it is not commensurable to a product of
Γ1 × Γ2 ⊂ Aut(D)N1 × Aut(D)N2 with N1, N2 ≥ 1, N1 +N2 = N .

If Γ ⊂ Aut(D)N is an irreducible lattice, then the quotient DN/Γ is a singular variety with
finitely many cyclic quotient singularities according to [Shi63, Theorem 2].

The quotient DN/Γ carries N distinct codimension-one tautological foliations G1, . . . ,GN ,
defined on DN by one of the natural projections to D. The foliations Gi are transversely hyperbolic
foliations on the complement of the singular points of DN/Γ.

3.2 Morphisms to irreducible polydisk quotients
Let Γ ⊂ Aut(D)N be an irreducible lattice and let X be a complex compact manifold.
Assume there exists a morphism ρ : X → DN/Γ with image of positive dimension p. Let
F1 = ρ∗G1, . . . ,Fp = ρ∗Gp be the pull-back to X of p among the N tautological foliations on
DN/Γ such that the foliations are in general position, i.e. if ωp is a local generator of N∗

Fi
,

i = 1, . . . , p, then ω1 ∧ · · · ∧ ωp does not vanish identically.
The foliations Fi are all transversely hyperbolic foliations with finite quotient singularities.

The transverse hyperbolic structure is not necessarily defined over codimension-one components
of the fibers of ρ over Sing(DN/Γ).

Let Dj be the divisorial part of the foliation Fj and let H1, . . . , Hk be some pairwise distinct
prime divisors such that Dj =

∑k
i=1 rijHi where rij ∈ Q>−1. Let Lj be the nef Q-line bundle

provided by Proposition 2.3 such that

N∗
Fj

= Lj +Dj = Lj +
k∑

i=1

rijHi.
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Lemma 3.1. The following assertions hold true:

(1) for any j ∈ {1, . . . , p}

N∗
Fj

= Lj +
k∑

i=1

rijHi,

where Lj is a nef Q-line bundle with ν(Lj) ≥ 1;
(2) the hypersurface Hi is Fj invariant whenever rij 
= 0;
(3) the monodromies of the transversely hyperbolic structures of F1, . . . ,Fp around Hi all have

the same order ni = Min{m ∈ N>0|mrij ∈ Z}; in particular, rij ∈ N for some j ∈ {1, . . . , p}
if, and only if rij ∈ N for all j ∈ {1, . . . , p}.

Proof. Each of the foliations Fj is transversely hyperbolic outside its polar locus Hj . Fix some j.
From [Shi63, Theorem 2], the local monodromies of the transversely hyperbolic structures of
F1, . . . ,Fp around Hj have all the same order, which is non-trivial. It follows that the p foliations
F1, . . . ,Fp share the same polar locus. Once we have made this observation, the lemma directly
follows from Proposition 2.3. �

3.3 A big divisor
In our next statement, we keep the notation used in Lemma 3.1.

Lemma 3.2. Assume that X is a projective manifold such that the morphism ρ is generically
finite (i.e. p = dim X). Then, the divisor L =

∑p
j=1 Lj is big.

Proof. The nef Q-divisors Lj have Chern–Hodge classes in H1(X,Ω1
X) represented by semi-

positive (1, 1)-form ηj obtained by pull-back of the Poincaré metric under distinguished first
integrals. Recall that the (1, 1)-forms ηi are smooth outside the (common) polar locus of the
transverse structures, and have L1

loc coefficients on X.
Consequently, the Chern class of Q-line bundle L =

∑n
j=1 Lj is represented by a semi-positive

(1, 1)-form

η =
p∑

i=1

ηi

with the same type of regularity and we can take its pth power ηp which is meant pointwise.
Recall that on a p-dimensional complex compact manifold, the volume of a line bundle E is

defined as

v(E) = lim sup
k→∞

p!
kn
h0(X, kE).

The line bundle is big, i.e. has maximal Kodaira–Itaka dimension κ(E) = p exactly when v(E) >
0 and, in that case, the lim sup is actually a genuine limit. More generally, one can define the
volume of a Q-line bundle E as v(L) := l−pv(lE) where l is a positive integer such that lE is a
line bundle. It is easily seen that this definition of volume does not depend on the choice of E.

According to [Bou02, Theorem 1.2], v(L) ≥ ∫X ηp. One concludes by noting that the right-
hand side is positive. Indeed, ηp restricts on X −H to the smooth and non-trivial semi-positive
form (p!)η1 ∧ · · · ∧ ηp. �

4. Numerical specialness for rank-one subsheaves of Ω1

Proposition 4.1. Let Γ ⊂ Aut(D)N be an irreducible lattice and let X be a compact complex
manifold. Assume that there exists a morphism Ψ : X → DN/Γ with image of positive dimension
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p such that the pull-back F = Ψ∗G of one of the tautological foliation G, equipped with the pull-
back transverse hyperbolic structure, has a Q-effective divisorial part. Then there exists an
invertible subsheaf L ⊂ Ωp

X whose Kodaira dimension satisfies κ(L) = p.

Remark 4.2. According to a classical result of Bogomolov, known as Bogomolov–Castelnuovo–de
Franchis inequality, the Kodaira dimension of rank-one subsheaves of Ωp

X , X compact Kähler,
is bounded from above by p. In this sense, the subsheaf L ⊂ Ωp

X exhibited in the previous
proposition has maximal Kodaira dimension.

Proof. Let V be a smooth projective model of the image of Ψ determined by some birational
morphism ρ : V → Im Ψ ⊂ DN/Γ. Retaining the notation of § 3.2, we have on V , p = dim V
foliations in general position: Hj = ρ∗Gj . One can moreover assume that G1 = G.

The conormal bundle of each of these foliations splits as

N∗
Hj

= L′
j +D′

j

such that D′
j is the divisorial part of Hj . We also have from Lemma 3.2 that

∑
L′

j is a big
Q-divisor.

Note also, using for instance Proposition 2.7, that the divisorial part of F under pull-back
by any birational morphism remains effective. Then, up to performing some blow-ups on X, one
can suppose that ρ factors through a dominant morphism ϕ : X → V .

Set Fj = ϕ∗Hj , j = 1, . . . , p = dim V , so that F = F1. Consider the decomposition

N∗
Fj

= Lj +Dj = Lj +
k∑

i=1

rijHi

as given in § 3.2. In particular, the coefficients rij are rational and greater than −1.
After renumbering the hypersurfaces Hi, one can assume by Lemma 3.1, the existence of

an integer k′ ≤ k such that rij ∈ Q − Z for any j ∈ {1, . . . , p} if and only if i ≤ k′. We can thus
write, for any j,

k∑
i=1

rijHi =
k′∑

i=1

rijHi +Rj , (4.1)

where Rj is an effective divisor. By assumption on the divisorial part of F = F1, we have that
ri1 > 0 for every i ∈ {1, . . . , k}. Therefore, we can write

k′∑
i=1

(
p− 1 +

p∑
j=1

rij

)
Hi =

k′∑
i=1

(
ri1 +

p∑
j=2

(1 + rij)
)
Hi ≥ 0 (4.2)

thanks to the lower bound rij > −1.
Consider the morphism

σ : N∗
F1

⊗ · · · ⊗N∗
Fp

−→ Ωp
X

ω1 ⊗ · · · ⊗ ωn 
→ ω1 ∧ · · · ∧ ωp.

The saturation of the image of σ is an invertible subsheaf OX(F ) ⊂ Ωp
X isomorphic to

N∗
F1

⊗ · · · ⊗N∗
Fp

⊗OX(tang(F1, . . . ,Fp)),
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where tang(F1, . . . ,Fp) is the tangency divisor of the foliations F1, . . . ,Fp. As the hypersurfaces
H1, . . . , Hk′ are invariant by all the foliations Fj , it follows that

tang(F1, . . . ,Fp) ≥ (p− 1)
k′∑

i=1

Hi. (4.3)

From (4.1) and (4.3), one can infer

F ≥
p∑

j=1

k′∑
i=1

rijHi + (p− 1)
k′∑

i=1

Hi +
p∑

j=1

Lj =
k′∑

i=1

(
p− 1 +

p∑
j=1

rij

)
Hi +

p∑
j=1

Lj ,

where the last equality is obtained by reversing the order of summation.
Another important point is that Lj = ϕ∗(L′

j) according to Proposition 2.7. From Lemma 3.2
and because ϕ is dominant, one deduces that the Kodaira dimension of L =

∑
Lj is at least p.

Therefore,

F ≥
k′∑

i=1

(
p− 1 +

p∑
j=1

rij

)
Hi

︸ ︷︷ ︸
Q-effective according to inequality (4.2)

+
p∑

j=1

Lj ,

︸ ︷︷ ︸
κ
(∑p

j=1 Lj

) ≥ p

and F can be written as the sum of a nef Q-line bundle L of Kodaira dimension at least p and
an effective Q-divisor. It follows that κ(F ) ≥ p. �

Let X be a n-dimensional compact Kähler manifold equipped with a codimension-one
foliation F whose conormal sheaf N∗

F is pseudo-effective. Denote by ν (respectively, κ) the
numerical (respectively, Kodaira) dimension of N∗

F . Theorem 2.12 guarantees that the Zariski
decomposition of c1(N∗

F ) reads as

c1(N∗
F ) = N + Z,

where N is a Q-effective divisor such the intersection matrix (Ni ·Nj · Θn−2) is negative definite,
where the Ni’s are the irreducible components of Supp(N), Z is a nef class and Θ any Kähler
class.

According to [Tou16, Theorem 4], there are three possible cases according to the value of ν
(defined by Zν 
= 0, Zν+1 = 0):

(1) ν = 0 = κ;
(2) ν = 1 = κ;
(3) ν = 1, κ = −∞ (the non-abundant case).

The two last cases also strongly differ from the dynamical viewpoint (see [Tou16, Theorem 4]):
in case (2), F is algebraically integrable; in case (3), the foliation is quasi-minimal (all leaves,
except finitely many, are dense for the Euclidean topology). We are interested in the last situation
where abundance does not hold.

4.1 Proof of Theorem D
Assume for a while that X is projective. By [Tou16, Theorem 6] and also taking into account
Remark 2.10, there exists a morphism Ψ : X → DN/Γ whose image has dimension at least two
such that F = Ψ∗G where G is one of the tautological foliations on DN/Γ. Moreover, the trans-
verse hyperbolic structure of F as described in Theorem 2.12 is obtained by pulling-back via Ψ the
natural transverse hyperbolic structure of G. This is implicitly proved in [Tou16, § 6] (especially
pp. 22–23) but one can also invoke the uniqueness property stated in Proposition 2.11.
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Let us now consider the general case of compact Kähler manifolds. Up to renumbering the
components Ni of the negative part N , one can assume that for some q ∈ N, λi ∈ Q − N for
i = 1, . . . , q, λi ∈ N>0 for i > q. Set N ′ =

∑q
i=1 λiNi. Let ρ : π1(X − Supp(N ′)) → Aut(D) be

the monodromy representation of the transverse hyperbolic structure. According to [Tou16,
Proposition 4.6], the image of ρ is Zariski dense (actually dense in the Euclidean topology).
By Selberg’s lemma, there exists a finite index torsion-free normal subgroup in the image of
ρ. This enables to construct a finite Galois cover R : X̂ → X with branch locus Supp(N ′) such
that the pull-back representation R∗ρ is actually well defined as a morphism π1(X̂) → Aut(D)
with torsion-free image. According to [Vâj96, Theorem 1], X̂ is a Kählerian analytic space
and then, by Hironaka [Hir77], admits a resolution of singularities which is a compact Kähler
manifold Y . We have thus constructed a surjective morphism with generically finite fibers
ψ : Y → X between compact Kähler manifolds such the pull-back foliation FY := ψ∗F is trans-
versely hyperbolic without poles. The associated monodromy representation is nothing but
ρY := ψ∗ρ : π1(Y ) → Aut(D) with dense and torsion-free image. Note that one can prove than
ρY (and, equivalently, ρ) has Zariski-dense image in Aut(D) without resorting to [Tou16,
Proposition 4.6]. Indeed, let Ỹ be the universal covering of Y . Denote by f : Ỹ → D be the
ρ-equivariant holomorphic obtained by developing the transverse hyperbolic structure of FY .
Because Y is Kähler, f is also harmonic and the Zariski density of the image of ρ follows from
[Cor88, Lab91] (regarding D as a symmetric space of the non-compact type).

By [Zuo96, CCE15] and up to taking a bimeromorphic smooth model of Y , ρY factors through
ρV : π1(V ) → Aut(D) via a surjective morphism e : Y → V with connected fibers, where V is a
projective manifold of the general type.

In particular, e factors through the algebraic reduction map redY : Y → Red(Y ) (here and,
henceforth, we assume, up to taking appropriate smooth models, that all algebraic reduction
spaces are projective manifolds and all reduction maps are morphisms). By Lemma 2.9, there
exists on Red(Y ) a transversely hyperbolic foliation F1 such that FY = red∗

Y F1, and such that
the monodromy representations factor accordingly.

Observe also that the group of deck transformations of the Galois cover X̂ → X induces on
Y a finite group of bimeromorphic transformations G preserving the foliation FY . Consider the
action G× C(Y ) → C(Y ) defined by g · f = f ◦ g−1 and denote by K the kernel of this action.
By the very definition of Red(Y ), G acts on Y by preserving the fibration of the reduction map
and it induces a faithful action of G1 := G/K on Red(Y ) by birational transformations also
preserving the foliation F1. By construction, observe also that the field of rational functions of
Red(X) is precisely C(X) = C(Y )G. This implies that there exists on Red(X) a foliation, F2 such
that F1 = r∗Y,XF2 where rY,X : Red(Y ) → Red(X) is the rational map induced by the inclusion
C(X) ⊂ C(Y ) and then makes the following diagram commutative, up to replacing Y , Red(Y ),
Red(X), and V by suitable non-singular models.

(Y,FY ) (Red(Y ),F1) V

(X,F) (Red(X),F2)

ψ

redY e′

e

redX

rY,X

In particular, we have that F = red∗
XF2. According to Lemma 2.8, F2 admits a transversely

hyperbolic structure with quotient singularities compatible with that of F . Applying Theorem D
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in the projective case, one deduces that F is obtained by pull-back of a tautological foliation on
a polydisk quotient also compatible with the transverse hyperbolic structure (Proposition 2.11).
The proof is thus complete. �

Theorem 4.3. Let (X,F) be a foliated compact Kähler manifold with codim(F) = 1. Assume
that N∗

F is pseudo-effective and not abundant in the sense defined above. Then there exists an
invertible subsheaf L ⊂ Ωp

X for some p ≥ 2 such that κ(L) = p.

Proof. The decomposition provided by Proposition 2.3 and Theorem 2.12 takes the form

N∗
F = P +N, (4.4)

where the negative part N is effective. This property is clearly invariant under pull-back by
bimeromorphic morphisms, so that one can apply Theorem D. From Proposition 4.1, one derives
the existence of an invertible subsheaf L ⊂ Ωp

X for some p ≥ 2 such that κ(L) ≥ p and hence
equal to p by Bogomolov’s upper bound. �
Remark 4.4. In general, one cannot deduce non-specialness of X just from the existence of a
proper morphism to an irreducible quotient of a polydisk. Indeed in [Gra02, Theorem 12.1]
Granath produces examples of rational and K3 surfaces obtained as minimal resolutions of
singular compact quotients D2/Γ.

Remark 4.5. Another way to interpret the preceding proof is the following. Considering as
before V a smooth projective model of the image of Ψ, V is equipped with a natural divisor
Δ =

∑
i(1 − 1/mi)Di with normal crossing support over Sing(DN/Γ). It follows from [CDG20]

that KV + Δ is big. As above, up to performing some blow-ups on X, we have a dominant
morphism ϕ : X → V . Then it follows from the proof of Theorem 4.3 that ϕ : X → (V,Δ) is an
orbifold morphism in the sense of Campana i.e. ϕ ramifies over Di with multiplicity at least mi

[Cam11, Definition 2.3]. This implies that ϕ∗(KV + Δ) ⊂ Ωp
X [Cam11, Proposition 2.11] is a

Bogomolov sheaf where p := dimV .

4.2 Proof of Theorem A
The result is obvious if κ(L) > 0 (hence, equal to one). Otherwise, this is Theorem 4.3. �

5. Entire curves

First, remark that in the case ν = 1 = κ, we have a Bogomolov sheaf L ⊂ ΩX which corresponds
(see [Cam04]) to a fibration of general type F : X → C onto a curve. This means that the orbifold
base of the fibration (C,Δ) is of general type. It is now a classical fact [Nev70] that in this setting,
for any entire curve f : C → X, F ◦ f : C → C has to be constant. Therefore, f : C → X cannot
be Zariski dense.

Thus, we now deal with the non-abundant case ν = 1, κ = −∞.

Theorem 5.1. Let (X,F) be a foliated compact Kähler manifold with codim(F) = 1. Assume
that N∗

F is pseudo-effective and not abundant. Then any entire curve f : C → X is algebraically
degenerate, i.e. f(C) is not Zariski dense.

We start with a lemma.

Lemma 5.2. Let (X,F) be a foliated compact Kähler manifold with codim(F) = 1. Assume
that N∗

F is pseudo-effective and not abundant. Then any entire curve f : C → X is tangent to F .
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Proof. From [Tou16, Theorem 3.1] (see also Theorem 2.12), we have a singular transverse metric
h with curvature current Θh = −(h+ [N ]). It is a smooth transverse metric of constant cur-
vature −1 on X \ (Sing(F) ∪ SuppN). Suppose f : C → X is not tangent to F . In particular,
f(C) 
⊂ Sing(F) ∪ SuppN . Therefore, f∗h induces a non-zero singular metric γ(t) = γ0(t)i dt ∧ dt
on C where −Ric γ ≥ γ in the sense of currents. However, the Ahlfors–Schwarz lemma (see
[Dem97, Theorem 3.2]) implies that γ ≡ 0, a contradiction. �

5.1 Proof of Theorems B and 5.1
The subsheaf L determines a foliation F whose conormal bundle N∗

F has numerical dimension
ν = 1. According to the previous discussion, it suffices to consider the case κ = κ(N∗

F ) = −∞.
From the preceding lemma, we can suppose that f : C → X is tangent to F . By Theorem D
(up to replacing X by a smooth model) there exists a morphism Ψ : X → H := DN/Γ such that
F = Ψ∗G where G is one of the tautological foliation on X. Therefore, Ψ(f) : C → H is tangent
to G and is constant thanks to the hyperbolicity of the leaves on H by [RT18, Proposition 3.1].
This concludes the proof. �

6. Geometric specialness

In this section, we prove Theorem C. We start by proving in our setting a particular case of
Lang–Vojta’s conjecture.

Conjecture 3 (Lang–Vojta). Let X be a projective variety of general type and L an ample
line bundle. Then there is a proper algebraic subset Z 
⊂ X and a constant α, such that for every
smooth projective connected curve C and every morphism f : C → X with f(C) 
⊂ Z, one has

deg f∗L ≤ α(2g(C) − 2).

Here, we prove the following particular case.

Proposition 6.1. Let Γ ⊂ Aut(D)N be an irreducible lattice and let X be a complex projective
manifold. If there exists a generically finite morphism Ψ : X → DN/Γ such that the pull-back of
one of the tautological foliations (equipped with the pull-back transverse hyperbolic structure)
has a Q-effective divisorial part, then there exists a big line bundle L on X, a proper algebraic
subset Z 
⊂ X and a constant α, such that for every smooth projective connected curve C and
every morphism f : C → X with f(C) 
⊂ Z, one has

deg f∗L ≤ α(2g(C) − 2).

Proof. Using the same notation as in § 3, we consider the decomposition

N∗
Fj

= Lj +Dj = Lj +
k∑

i=1

rijHi.

The morphism f : C → X induces a morphism f ′ : C → P(TX) which implies the algebraic
tautological inequality

deg(f ′∗(O(1))) ≤ 2g(C) − 2.

From [RT18], we know that if Ψ(f(C)) is not constant, then f(C) is not contained in a leaf of
any foliation Fj . We take Z to be the union of the positive dimensional fibers of Ψ and the Hi

and assume that f(C) is not contained in Z.
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Let π : P(TX) → X be the natural projection. To the foliation Fi is associated a divisor
Zi ⊂ P(TX), linearly equivalent to O(1) + π∗NFi . Then the algebraic tautological inequality gives

deg(f∗(N∗
Fi

)) ≤ deg(f ′∗(Zi)) + deg(f∗(N∗
Fi

)) ≤ 2g(C) − 2.

The first inequality comes from the non-tangency of the algebraic curve with the foliation which
implies 0 ≤ deg(f ′∗(Zi)). By assumption on the divisorial part of F1, we have that ri1 > 0 for
every i ∈ {1, . . . , k′}. Therefore,

deg f∗L1 +
k′∑

i=1

ri1 deg f∗Hi ≤ 2g(C) − 2.

As L1 is nef, we obtain deg f∗Hi ≤ 1/ri1(2g(C) − 2) for all i ∈ {1, . . . , k′}. Let L :=
∑

j Lj , then
L is big according to Lemma 3.2 and the previous inequalities give

deg f∗L ≤
∑

j

deg f∗N∗
Fj

−
∑

j

k′∑
i=1

rij deg f∗Hi ≤ (2g(C) − 2)
(
p+

∑
j

k′∑
i=1

|rij |
ri1

)
. �

Corollary 6.2. Under the same assumptions, X is not geometrically special.

Proof. Suppose X is geometrically special. Consider the Zariski open set U := X \ Z. Then there
exists a smooth projective connected curve C, a point c in C, a point u in U , and a sequence of
morphisms fi : C → X with fi(c) = u for i = 1, 2, . . . such that C ×X is covered by the graphs
Γfi ⊂ C ×X of these maps. From the previous Proposition 6.1, all these pointed maps have
bounded degree. Therefore by Bend-and-Break [Deb01, Chapter 3], we obtain a rational curve
passing through u. Such a curve has to be tangent to the foliation F1 by Lemma 5.2. This gives
a contradiction. �

6.1 Proof of Theorem C
As in the proof of Theorem B, consider the foliation F associated with L. In the case ν = 1 = κ,
we have a Bogomolov sheaf L ⊂ ΩX which corresponds (see [Cam04]) to a fibration of general
type F : X → D onto a curve. This means that the orbifold base of the fibration (D,Δ) is of
general type. This implies finiteness of orbifold morphisms f : C → (D,Δ) [Cam05, Theorem 3.8]
and therefore X cannot be geometrically special in this case.

In the non-abundant case ν = 1, κ = −∞, there exists a morphism Ψ : X → H := DN/Γ
such that F = Ψ∗G where G is one of the tautological foliation on X. Consider V a smooth
projective model of the image of Ψ given by a morphism birational onto its image V → DN/Γ. Let
φ : X → V be the induced dominant morphism (modulo some blow-ups on X). Let f : C → X be
a morphism. Following the same proof as in Proposition 6.1, we obtain deg(φ ◦ f)∗L′ = deg f∗L ≤
α(2g − 2). Since L′ is a big line bundle on V , the same proof as in Corollary 6.2 applied to the
sequence φ ◦ fi gives that X is not geometrically special. �
Remark 6.3. In [JR22], it is proved that if there exists a Zariski-dense representation ρ : π1(X) →
G(C) (G an almost simple algebraic group), then X is not geometrically special. We cannot apply
this result here because the monodromy representation ρ : π1(X0) → Aut(D) is a priori defined
only on X0 := X \ SuppN where N is the negative part of c1(N∗

F ).

7. Higher codimensions

As recalled in the introductory part, the existence of a rank-one coherent subsheaf L of Ωp
X

having numerical dimension p and such that codim(Ker L) = p on a compact Kähler manifold
X can be translated into the existence of a codimension p foliation F on X such that det N∗

F
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(which is somehow the canonical sheaf of the ‘space of leaves’ X/F) has numerical dimension p.
We do not know how to generalize Theorem A to codimension p > 1, in particular because we
do not have at our disposal sufficiently precise structure results for this category of foliations,
unlike in the case p = 1. However, it remains possible to reach the same conclusion under strong
assumptions on the subsheaf of Ωp

X . For instance, as stated in Theorem E in the introduction,
this is the case if we assume that the subsheaf of Ωp

X defines a smooth foliation with conormal
bundle having Chern class represented by a smooth (1, 1)-form with semi-positive curvature of
constant rank p.

Proof of Theorem E. We first assert that η is basic for F , i.e. descends on the local space of
leaves (see, for instance, [Mol88, § 2.3] for the precise definition). More generally, one has the more
general phenomenon, as proved by Demailly [Dem02]: if X is compact Kähler ω ∈ H0(X,Ωp ⊗ L)
such that L is a line bundle whose dual L∗ is pseudo-effective, then Θ ∧ ω = 0 where Θ is any
closed positive current representing c1(L∗).

In our situation this implies that η defines a holonomy transverse invariant Kähler metric
for F . Equivalently, the kernel of η is exactly the tangent bundle to F . One thus inherits another
real basic (1, 1)-form, namely the transverse Ricci form r = −Ricci(η). In some holomorphic
coordinates (z1, . . . , zp) parameterizing the local space of leaves, it reads as

η =
√−1

∑
i,j

gij dzi ∧ dz̄j

where gij depend only of the transverse variables (z1, . . . , zp) and

r = −
√−1
π

∂∂̄ log
(

ηp

|dz1 ∧ · · · ∧ dzp|2
)
.

Note that −r also represents c1(N∗
F ), so that there exists, by the ddc lemma, a smooth function

f : X → R such that −r = η + ddcf . Note that ddcf is basic as it is a sum of two basic forms.
This implies that f is pluriharmonic along the leaves of F . It turns out that f is basic: indeed, let
L be a leaf and L its topological closure. Let x ∈ L be such that f

∣∣
L reaches its maximum at x

and let Lx be the leaf passing through x. By the maximum principle for pluriharmonic functions
f is constant on Lx, hence on Lx. On the other hand, the leaves closure form a partition of X, a
common feature for Riemannian foliations [Mol88, Theorem 5.1]. In particular, L = Lx. As the
original leaf L has been chosen arbitrarily, this enables us to conclude that f is leafwise constant,
as wanted. Then, r and η are not only cohomologous in the ordinary ∂∂̄ cohomology, but also in
the basic ∂∂̄ cohomology. By the foliated version of Yau’s solution to Calabi conjecture, due to
El Kacimi [EKA90, § 3.5], there exists for F an invariant transverse Kähler metric whose Ricci
form is equal to −η.

If the leaves of F are closed, the leaf space X/F is naturally equipped with a structure of a
Kähler orbifold (in the usual sense). The (1, 1)-form η descends on X/F as a positive (1, 1)-form
representing the Chern class of the (orbifold) canonical bundle KX/F . The orbifold analogue of
Kodaira embedding theorem [Bai57, § 7] enables to exhibit a Bogomolov sheaf on X. To wit,
take p∗KX/F with p : X → X/F the natural quotient morphism. It follows that X is not special.

Otherwise, if the leaves of F are not closed, the strategy consists in producing a representation
π1(X) → G with dense image, where G is a real semi-simple algebraic group and apply Zuo’s
theorem [Zuo96] or [CCE15, Theorem 1] to conclude: if there exists such a representation, up to
replacing X by a finite étale cover X̃, there exists a meromorphic fibration f : X̃ → V where V
is a projective manifold of general type (through which the representation factorizes).

We now explain how to produce such a representation. Under our assumptions, F is a trans-
versely Kähler foliation F whose leaves are not closed and whose transverse Ricci curvature is
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negative, that is η is semi-negative with constant rank equal to p the complex codimension of F .
This corresponds to the monodromy of the so-called commuting sheaf C. This sheaf is a locally
constant sheaf of Lie algebras g of basic Killing vector fields which encodes the dynamic of F and
defined in the general setting of Riemannian foliations (see [Mol88, § 5.3]). Under our negativity
assumption, one can prove [Tou10, Théorème 1.1], that g is semi-simple. This implies that the
image of the representation α : π1(X) → Aut(g) (= real semi-simple algebraic group) intersects
Aut0(g) as a dense subgroup. Indeed, the closure of the image of α contains the image Ad g of the
exponential of the adjoint representation of g according to [Mol88, Appendix D, Proposition 3.7].
We can thus apply Zuo’s theorem to produce the sought fibration X̃ 
→ V , thus proving that X
is not special. �
Remark 7.1. In [Mok00], Mok considered compact Kähler manifolds X equipped with a d-closed
holomorphic one form twisted by a locally constant bundle of Hilbert spaces EΦ. This defines on
X a foliation which is transversely Riemannian on a dense open subset ofX and whose transverse
metric (semi-Kähler structure in the language of [Mok00]) is cooked up from an orthonormal
basis on the typical fiber of EΦ and whose ‘Ricci curvature’ carries some negativity properties.
Under some circumstances, Mok shows the existence of fibration of (an étale cover of) X onto
varieties of general type. It could be tempting to relate the existence of a numerical Bogomolov
sheaf to the existence of a semi-Kähler structure arising from twisted forms. For instance, in
codimension one, transversely hyperbolic foliations can be regarded as foliations defined by the
kernel of a EΦ valued closed holomorphic one form where EΦ → X is the locally constant bundle
of Hilbert spaces arising from a unitary representation π1(X) → U(H), where H is the space of
square integrable antiholomorphic forms on the disk [Mok97, § 4].
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EKA90 A. El Kacimi-Alaoui, Opérateurs transversalement elliptiques sur un feuilletage riemannien et
applications, Compos. Math. 73 (1990), 57–106.

Gra02 H. Granath, On quaternionic Shimura surfaces, PhD thesis, Chalmers Tekniska Hogskola
(Sweden) (ProQuest LLC, Ann Arbor, MI, 2002).

Hir77 H. Hironaka, Bimeromorphic smoothing of a complex-analytic space, Acta Math. Vietnam.
2 (1977), 103–168.

JR22 A. Javanpeykar and E. Rousseau, Albanese maps and fundamental groups of varieties with
many rational points over function fields, Int. Math. Res. Not. IMRN (2022), to appear

Lab91 F. Labourie, Existence d’applications harmoniques tordues à valeurs dans les variétés à
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Jorge Vitório Pereira jvp@impa.br

IMPA, Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, Brasil

Erwan Rousseau erwan.rousseau@univ-brest.fr

Univ Brest, CNRS UMR 6205, Laboratoire de Mathématiques de Bretagne Atlantique,
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