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Abstract
Crop wild relatives are an increasingly important source of plant genetic resources for plant bree-

ders. Several studies have estimated the effects of climate change on the distribution of crop wild

relatives, using species distribution models. In this approach, two important aspects, i.e. species’

dispersal capacity and founder effects, are currently not taken into account. Neglecting these

aspects can lead to an underestimation of the climate change-induced threat to the size of the

species range and the conservation of range-wide levels of genetic diversity. This paper presents

two recommendations for the interpretation of the results obtained with these models. The inte-

gration of process-based simulation models and statistical species distribution models will facili-

tate the inclusion of dispersal processes and founder effects in future assessments of the resilience

of plant genetic resources under climate change.
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Experimental

Crop wild relatives are an increasingly important source of

plant genetic resources for plant breeders. This is the result

of an increasing demand for traits that are not present in the

cultivated gene pool, combined with the availability of

facilitating techniques, such as marker-assisted breeding.

Additionally, adaptation to climate change requires new

traits, which will further increase the demand for promising

crop wild relatives (Guarino and Lobell, 2011). In situ,

these crop wild relatives are threatened by changes in

their habitat, such as those resulting from climate change

(Jarvis et al., 2010). Several studies have estimated the

effects of climate change on the distribution of wild rela-

tives of specific crops (e.g. Jarvis et al., 2008; Lira et al.,

2009; Davis et al., 2012; Ureta et al., 2012). Using species

distribution models, they have estimated whether the cur-

rent habitat area of species will decrease under climate

change, andwhether climate changewill make newhabitat

areas available. Species for which the total suitable habitat

area was expected to decrease with time were labelled as

vulnerable. In this approach, several important aspects

are not taken into account, for example reproductive

system, micro-evolutionary effects and the spatial aspects

which will be discussed in this paper:

(1) Dispersal capacity, i.e. whether the species under

study is capable of actually reaching the estimated

new habitat areas,* Corresponding author. E-mail: marleen.cobben@wur.nl
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(2) Founder effects, i.e. whether this species loses genetic

diversity while tracking its suitable climate conditions.

In the following sections, we discuss the potential con-

sequences of these spatial aspects, their impact on the

interpretation of the results of studies using species distri-

bution models to assess the effects of climate change on

crop wild relatives and how both aspects could be incor-

porated in future studies.

Dispersal

Seed, and subsequently pollen, can disperse to a habitat

area different from the location of their natal population.

As such, a plant species can colonise new areas. Dispersal

is therefore a key aspect in the assessment of the effects of

climate change on the distribution of crop wild relatives.

The study by Jarvis et al. (2008), assessing the effects of cli-

mate change on crop wild relatives, did include a dispersal

parameter featuring either unlimited, limited or no disper-

sal. Although this provides an estimation of the likelihood

that species can reach their new habitat areas, the

reliability of the prediction can be questioned. First, this

is because the assumed limited dispersal speed was

6 km/year, while many mobile species have not been

able to reach such speeds in the past decades. For

example, Chen et al. (2011) reported an average of

1.76 km/year in a meta-analysis across different taxonomic

groups. Second, the maximum annual dispersal distance of

a species depends on the means of dispersal and the land-

scape, but also on population growth, species’ interactions

and other ecological processes. An overestimation of the

dispersal capacity can lead to the false assumption that

the species range will not show a substantial decrease

under climate change (compare Fig. 1(b) with Fig. 1(a)).

The potential consequences are a lack of necessary conser-

vation measures, and the loss of valuable plant genetic

resources.

Founder effects

Founder populations result from the establishment of a

limited number of individual plants, from the expanding

range margin of the original distribution area, in an area

previously unoccupied by the species. Such populations

show limited levels of genetic variation compared with

the original source populations, a phenomenon com-

monly known as ‘founder effect’ (Mayr, 1942). This nar-

rowing of the genetic composition causes the loss of

specific, potentially unique traits in the founder popu-

lations (Hewitt and Nichols, 2005; Cobben et al., 2012),

and has been shown to have important evolutionary con-

sequences (Pujol and Pannell, 2008; Pujol et al., 2009).

For example, in Capsicum chacoense, the proportion

of pungent plants increases with elevation (Tewksbury

et al., 2006). Theoretically, it is therefore possible that

new populations, established at even higher altitudes

under increasing temperatures, lose their polymorphism

for the production of capsaicin due to founder effects

(in sensu Hewitt and Nichols, 2005). Computer simu-

lations indicated that most genetic diversity in a range-

shifting species is (initially) lingering in the original

populations (Cobben et al., 2011), a phenomenon that

has been confirmed by several empirical studies of

range shifts after the last glacial maximum (Hewitt,

1996) and under current climate change (Garroway
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Fig. 1. Effect of dispersal capacity and founder effects on species range size and genetic diversity. The area with climate
conditions suitable to the species (dotted border) moves away from the original species distribution area (solid border). (a) The
situation as currently assumed in most studies using species distribution models, (b) the effect of zero dispersal capacity on the
size of the species range and (c) the situation under sufficient dispersal capacity, taking into account founder effects.
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et al., 2011). Under climate change, these original

populations, hosting most of the species’ genetic vari-

ation, increasingly suffer from deteriorating climatic con-

ditions, with the potential loss of genetic variation as a

consequence (Cobben et al., 2011).

Neglecting founder effects when determining new

potential habitats for range-shifting plant species implies

the false assumption that founder populations harbour

the same genetic variation as the source populations

(compare Fig. 1(c) with Fig. 1(a)). As a result, the extinc-

tion of the source populations can lead to the loss of

potentially unique and useful genetic diversity.

Discussion

The introduction of dispersal processes and founder

effects in assessments of the resilience of plant genetic

resources under climate change requires the integration

(Keith et al., 2008) of process-based simulation models

(such as used by Schippers et al. (2011) and Cobben

et al. (2012)) and statistical species distribution models

(Thuiller et al., 2005; Phillips et al., 2006). Through this

integrative approach, the future habitat availability of

species under changing climatic conditions can be

assessed, with additionally a more accurate estimate of

dispersal probability to new regions (Graf et al., 2007;

Vos et al., 2008; Anderson et al., 2009) and genetic

changes resulting from the dispersal process. However,

such models are still under development, and require a

large amount of data, e.g. species-specific ecological par-

ameters and population-specific genetic data. Pending

the availability of these models and the required data,

we have two important recommendations for the

interpretation of the results of the currently used species

distribution models, in studies assessing the effects of

climate change on crop wild relatives:

(1) Species, which for their survival largely depend on

new suitable habitat areas, should be marked as

vulnerable.

(2) Collection priority should be given to threatened

populations within the borders of the original

species’ range.
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