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The paper is concerned with a non-local time-delayed reaction—diffusion equation. We
prove the (time) asymptotic stability of a travelling wavefront without a smallness
assumption on its wavelength, i.e. the so-called strong wavefront, by means of the
(technical) weighted energy method, when the initial perturbation around the wave is
small. The exponential convergent rate is also given. Selection of a suitable weight
plays a key role in the proof.

1. Introduction

For population dynamics with age structure and diffusion, Metz and Diekmann [16]
studied the governing model
Ou  Ou 0%u

TR D(z)@ +d(z)u =0, (1.1)

where u(t, z, ) denotes the population density of the species under consideration

at time ¢ > 0, age z > 0 and location x € £2, and D(z) and d(z) are the diffusion

rate and death rate of population at age z, respectively. We denote by r > 0 the

maturation time for the species. 2 is the spatial domain where the species live and

it can be bounded or unbounded. We take 2 to be R = (—00, 00) in this paper.
Let v(t,x) be the total mature population at time ¢ and location x

v(t,x) = /OO u(t, z,x) dz, (1.2)

and let Dy, (z) = D(z) for z € [r,00) and D;(z) = D(z) for z € [0,7) be the diffusion
rates for the mature population and the immature population, respectively. In the
event that the mature population is more effective in spatial diffusion than the
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immature population, it is then reasonable to assume that

min Dy, (z) > max_D;(z). (1.3)
z€[r,00) z€[0,r]
We also denote by dm(z) = d(z) for z € [r,00) and di(z) = d(z) for z € [0,7) the
death rates for the mature population and the immature population, respectively.
At age zero, u(t, 0, z) is the population density of the newborns. Since only matures
can reproduce, we have
u(t,0,2) = b(v(t,x)), (1.4)

where b( -) is the birth function.
When the diffusion and death rates for the mature population are independent
of age, namely,
Dn(2) =Dy and dy(z) = dn (1.5)

are constants for z € [r,00), So et al. [26], following the approach of Smith and
Thieme [22] (see also [9,27]), reduced equation (1.1) into a non-local time-delayed
reaction—diffusion equation for v(t, z) by the Fourier transform method,

Ov 0%v e
a —Dm@+dIIIU:€/;oo b(v(t—r,x—y))fa(y) dy? (16)
where

Ezexp<—/0Tdi(z)dz> and a:/OTDi(z)dz (1.7)

represent the impact of the death rate of the immature and the effect of the dis-
persal rate of the immature on the mature population, respectively. By (1.3), (1.5)
and (1.7), we have

a < rDy,. (1.8)
In (1.6), fa(y) is the heat kernel function
1 (o)
fol) = o= ad [yt (19)
4o P

In particular, when the birth function b(v) is that used for Nicolson’s blowflies [5,
15,24-26], that is
b(v) = pve™ ", (1.10)

where p > 0 and a > 0 are constants, the constant equilibria for equation (1.1) can
be found by solving

oo

dmv = sp/ ve” % fo(y) dy.
—0o0

By (1.9), this equation admits only two roots:

1
——mE

: 111
P (1.11)

v_ =0, vy

If ep/dy > 1, then v_ < vy. In [26], So et al. showed the existence of travelling
waves ¢(x + ct) connecting the two equilibria v4 with speed c. For other models
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with non-local terms, the existence of travelling waves has been shown in [4,9,27,33]
(see also the references therein).

Here, we are interested in the asymptotic stability for such waves. For the Cauchy
problem for equation (1.6) with the birth function (1.10) and the initial data

v(t, x)|t=s = vo(s,z) for s € [-r,0], z € R, (1.12)

where
vo(s,z) = vy for all s € [-r,0] as © — +oo,

we prove that the global solution v(t,z) of (1.6), (1.10), (1.12) converges to the
travelling wave ¢(x + ct) asymptotically (in time), when the initial perturbation
around the wave, that is, |vo(s,z) — ¢(x + ¢s)|, s € [—r,0], is suitably small. The
exponential convergence rate will also be obtained.

The study of the stability of travelling waves is interesting and usually (tech-
nically) difficult. For partial differential equations without time delays, includ-
ing reaction—diffusion equations, travelling waves have been extensively studied;
see, for example, the pioneering works [6,20] and other more recent contribu-
tions [1-3, 7-14, 18-20, 30, 31], and the references therein (see also [28] and the
survey papers for viscous equations of conservation laws by Matsumura [10] and
the reaction—diffusion equations by Xin [32]). However, results for the time-delayed
partial differential equations are very limited and incomplete. The first work related
to this topic was done by Schaaf [21] on the linearized stability of the time-delayed
Fisher—-Kolmogorov—Petrovski—Piskunov equation by means of the spectral method.
Later, Ogiwara and Matano [17] and Smith and Zhao [23] studied the nonlinear sta-
bility by the method of upper and lower solutions. See also [29]. More recently, Mei
et al. [15] proved the nonlinear wave stability for the local equation with birth
function (1.10), where, for the two steady states connected by the travelling wave,
one of the equilibria is an unstable node. Such a case is different from the ‘bistable’
nodes studied in [23]. For the non-local case, Liang and Wu [9] studied theoretically
the existence of the travelling waves for (1.6) with a different birth function, b(v),
and, furthermore, showed the wave approximations numerically.

Following [9, 15], we treat the non-local case here with nonlinearity (1.10), and
prove theoretically the stability for the strong travelling waves. A wave is said to
be weak if its wavelength is small, that is, |[v; — v_| < 1; otherwise, the wave
is said to be strong. As is well known, one may prove the stability for the weak
waves in certain cases, but one cannot usually prove it for the strong wave cases.
As in [15], the approach adopted in this paper is still the weighted energy method.
In the proof, a key role is played by the selection of a suitable weight function; see
the key lemma (lemma 3.6), below.

The rest of the paper is organized as follows. In §2, we state the result on the
existence of travelling waves as given in [26]. After defining a suitable weight func-
tion, we state the theorem on wave stability. Section 3 is devoted to the proof of
the stability theorem using the weighted energy method. The key step in the proof
is to establish a priori estimates.

Before ending this section, we give some notation. Throughout the paper, C > 0
denotes a generic constant, while C; > 0,4 = 0,1,2,..., represents a specific con-
stant. Let I be an interval; typically I = R. L?(I) is the space of square integrable
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functions on an interval I, and H*(I), k > 0, is the Sobolev space of L?-functions
f(x) defined on the interval I whose derivatives d*f/dx?, i = 1,..., k, also belong
to L2(I). L2 (I) represents the weighted L2-space with weight w(x) > 0. Its norm

1 fllz2, = </Iw(as)f(x)2 dx>1/2.

is defined by
HE(I) is the weighted Sobolev space with the norm

Wl = (i [ ww de)m.

Let T > 0 and let B be a Banach space. We denote by C°([0,T]; B) the space of
B-valued continuous functions on [0, 7], and by L?([0,T]; B) the space of B-valued
L2-functions on [0, T]. The corresponding spaces of B-valued functions on [0, co)
are defined similarly.

dz’
(@)

2. Stability of strong travelling waves

A travelling wave of the type in equation (1.6) with the birth function (1.10) con-
necting with two constant steady states vy is a special solution of equation (1.6)
of the form ¢(z + ct) (¢ > 0 is the wave speed) satisfying the non-local delayed
ordinary differential equation

¢/ (€) — D¢ (&) + dmd(€) = ep /_ B(€ — er —y)e ETrT £ (y) dy,

(b(ioo) alCE )

(2.1)
where £ = x + ¢t and the prime denotes differentiation with respect to £. Using the
upper and lower solution method, So et al. [26] proved the following result on the
existence of monotone wavefronts ¢(£) with ¢'(£) > 0.

PROPOSITION 2.1 (So et al. [26]). If 1 < ep/dm < e, then there exists a critical

number c*,
0 < c* <2v/Dn(ep —dm), (2.2)

such that, for every ¢ > c*, equation (1.6) has a travelling wavefront solution ¢(§)
connecting vy, with ¢'(§) > 0 and v— < ¢(&) < vy for all £ € (—00, ).

As is well known, in order to prove wave stability it is often necessary to restrict
the wavelength to be sufficiently small (that is, v — v_| < 1). Such a wave is
called a weak wave. Here, we are interested in establishing the stability of a strong
wave. For this, throughout the present paper, let us take ep/dy, in proposition 2.1
(1 <ep/dm <€) to be e, that is,

ep
—e, 2.3
L= (23)
so that
In Ep 1
v = — _— = =
+ a m a
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is maximum, namely, the wave ¢(§) connecting the two equilibria, v_ = 0 and
vy = 1/a, is the strongest.
Let
_ (3—e)dn
= 2(adym + aDy, + %edm)'

(2.4)

We first have the following estimates.

LEMMA 2.2. For a given strongest travelling wave ¢(§), & = x + ct, there exists a
number ., such that, for € > x., the following inequalities hold:

M®>é—a
9" ()] < &, (2:5)
0 < e (1 —ap(€)) < &

Proof. For the given strongest travelling wave ¢(§), it is easy to see that 0 = v_ <
#(§) < vy = 1/a because ¢(§) is increasing. Since lime, o ¢(§) = vy = 1/a,
lime 400 ¢”(§) = 0 and lime, oo (1 — agp(§)) = 0, by the definition of limits, for
the given € there exists a number z, such that when £ > x, the following hold:

16(6) — vy | = 'em !

6" <,
0 < e®®©(1 —ap(€)) <&

These inequalities immediately imply (2.5). O

Now we define a weight function w(§) as

e BlE—m) — oBle—al ¢ < g
_ ’ 2 2.6
w(©) {1, o (26
where c
5= 50 (27)

Our main result for the paper is the following.

THEOREM 2.3 (stability). Consider the given strongest travelling wavefront ¢(x +
ct), where the speed ¢ > ¢, satisfies

¢ > 2v/D(32p — 2dy). (2.8)

If
vo(s, &) — ¢(z + cs) € C°([=r, 0); H,,(R)), (2.9)

where w = w(x + ¢s), s € [—r,0], is the weight function given in (2.6), then there
exist positive constants 6o and p, which are dependent only on the coefficients Dy,
dm, €, p, a, v and the wave speed c, such that when |lvo(s,-) —¢(-+cs)|| g < b for
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s € [-r,0] the unique solution v(t,x) of the Cauchy problem (1.6), (1.10), (1.12)
exists globally, and it satisfies

v(t, ) — ¢(x + ct) € C°([0,00); HL) N L*([0,00); H2)

and

sup |v(t, ) — d(z + ct)| < Ce ™™, 0<t < oo, (2.10)
z€R

where C > 0 is a constant dependent only on the initial perturbation vo(x,s) —

o(x — cs).
REMARK 2.4. (i) Note that (2.2), (2.8) and 3ep — 2dy, > €p — dy, imply that

¢ > 2v/Dm(3ep — 2dm) > 27/ Din(ep — di) > ¢*.

Thus, theorem 2.3 ensures that when the wave speed is not too close to ¢* the
strongest wave is asymptotically stable (in time). For speed ¢ close to the critical
point ¢*, and in particular the case when ¢ = c¢*, the stability problem is still open.

(ii) By the definition of weight function (2.6) and the definition of the weighted
Sobolev space H! (R), we have from (2.9) that

w(x + cs)(vo(s, ) — p(x + cs)) € HY(R), s & [-r0].
Thus, applying Sobolev’s inequality, we obtain
w(w +cs)(vo(s,z) — ¢(x +cs)) < Cllvo — ¢llgr, s € [-r,0]
which in turn implies that
[vo(s, @) — ¢z + cs)| ~ w2 (x +cs) ~ e P2 as 1 - —c.

(iii) Since c is large, by a straightforward but tedious computation we find that the
convergence of the initial perturbation |vg(s, z) —@(z+ct)| ~ O(1) exp{—c|z|/4 D}
for x — —oo is faster than the decay of the wavefront to v_ = 0 in the form
|p(z + cs) —v_| = |p(x + cs)| ~ O(1)e P17l as & — —o00, where B_ is a positive
constant satisfying S_ < ¢/4Dy,. So, as we show in theorem 2.3, it is not surprising
that, when |vo (s, z) — ¢(z + ¢s)| < 1, the solution v(¢, z) converges to ¢(x + ct) and
not to some shifted wave ¢(x + ct + o) with a shift z¢. In fact, by another tedious
computation, as shown in [11], we can formally show that xq = 0.

3. Proof of stability

This section is devoted to the proof of the stability result, theorem 2.3. Our proof
relies on the weighted energy method.

Let v(t,z) be the solution of the Cauchy problem (1.6), (1.10), (1.12), and let
¢(x + ct) be the wavefront. Set

V(t, &) =v(t,z) — o), &=xz+ct
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The original problem (1.6), (1.10) and (1.12) can be reformulated as
‘/t(tv g) + C‘/ﬁ(tv f) - Dva&“(t,f) + di(ta 5)
—e [ Vole—y— eV =g —y—en)falw)dy

e [QUl-re-y— a9 R xR
R

V(57£) = ’1}0(875 - CS) - ¢(£) = ‘/0(575)7 (5,6) € [77”7 0] x R.
(3.1)
The nonlinear term Q(V(t — r,§ —y — ¢r)) is given by

Q(V) =b(¢+V) —b(¢) =V (8)V, (3.2)

where ¢ = ¢(§—y—cr) and V = V(t—r,§ —y—cr). It suffices to prove the following
stability result for equation (3.1).

THEOREM 3.1. For the given strongest travelling wave ¢(§), &€ = x + ct, with speed
c satisfying (2.8), if Vo(s,€) € CO([—r,0]; HL (R)), where w(€) is the weight func-
tion defined in (2.6), then there exist positive constants oo and p such that when
SuPge(—r,0] [IVo(8) ||y, < o, the solution V(t,€) of the Cauchy problem (5.1) exists
uniquely and globally, and satisfies

V(t.€) € C°([0,00); Hy, (R)) N L*([0, 00); Hi, (R))

and

sup [V (£,€)] < Ce™, 0 <t < oo (3.3)
£eR

Note that p > 0 and dy > 0 are the same as those in theorem 2.3. We will prove
theorem 3.1 based on the following two propositions: one local estimate and an a
priori estimate by the continuity argument (see also [7,11,12,14]).

For given constants 7 > 0 and T > 0, we define the solution space by

X(r=r,T+7) ={V | V(t,€§) € CO[r—r,T+7]; Hy,(R))NL*([7—r, T+7]; Hy,(R))}

and

M (T)= sup [[V(})|my,
te[r—r,T+7]

in particular, M(T) := My(T) for 7 = 0. For simplicity, we henceforth define
V(t) = V(t,-). First we state the local estimate.

PRrROPOSITION 3.2 (local existence). Consider the Cauchy problem with the initial
time T > 0

Vi(t,€) + eVe(t, €) — DuaVee (1.€) + dunV(1,€)
. / V(O(E —y— er)V(t— 1€ —y— er) fuly) dy

. / QW (t—rE—y—cr)faly)dy, (46) € (r,00) xR,

V(S7£) = 7)0(875 - CS) - ¢(£) = VT(S7§)7 (8,5) € [T - T] x R.
(3.4)
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If Vo(s,€) € HL and M,(0) < &, for a given positive constant &1, then there
exists a small tog = to(d1) > 0 such that V(t,€) € X(7 —r,7 + to) and M, (tp) <
2(1 +r)M,(0).
The proof of proposition 3.2 can be given by the elementary energy method. We
omit the details. Next, we state the a priori estimate.

PROPOSITION 3.3 (a priori estimate). Let V(t,€) € X(—r,T) be a local solution
of (3.1) for a given constant T > 0. Then there exist positive constants u, 02 and
C1 > 1 independent of T such that, when M(T') < 02,

t
VI + | IVl ds

0
<O <||V0(0)||i,i +/ 1V (513 ds>, 0<t<T (3.5)

T

and
0
||v<t>zi<ol(||vo<o>||%m / %<s>||%1,3,ds)e-2ﬂf, 0<t<T. (36)

REMARK 3.4. Positive constants u, 02 and C7, which depend only on the coefficients
Dy, du, €, p, a,  and the wave speed ¢, will be specified in (3.17), (3.40), and (3.43),
below.

We postpone the proof of proposition 3.3 to the last part of this section. Now,
based on propositions 3.2 and 3.3, we will prove theorem 3.1 using the continuation
argument.

Proof of theorem 3.1. Recall that the constants d2, p and C; from proposition 3.3
are independent of T'. Let

81 = max{/Cy (1 + r)M(0), 82}, (3.7)

. 0o o
%= “““{ 0 VLT } 38)
and

By proposition 3.2, there exists to = to(d1) > 0 such that V(¢,£) € X (—r,ty) and

M(to) < V2(1+7r)M(0) < /2(1 +1)dp < do.

Thus, applying proposition 3.3 on the interval [0, to], we obtain (3.6) for ¢ € [0, ¢¢],

and
0 1/2
swp VOl < s {e (1% + [ 1l )} e
tE[O,to] tE[O,to] -
< /O + MM(0) < /Or(1+ )0
L (3.10)
21+7)
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Now consider the Cauchy problem (3.4) at the initial time 7 = ¢y. Using (3.9),
(3.10) and (3.7), we have

M, (0) = sup  [[V(s)llay,

SE[to*T,to]

)

P
<maX{M(O),2(1+T)} < 0. (3.11)

gmax{ sup [[V(s)llzy, sup [[V(s)]
s€[—r,0] s€[0,t0]

Applying proposition 3.2 again yields V(¢,&) € X (—r, 2tg) and
My, (to) < v/2(1+7) My, (0).
On the other hand,
M, (0) = sup [[V(s)llmy

te(to—r,to]
<max{ sup [V(s)lmy, sup [V(s)m |
se[—r,0] s€[0,to]
02 } 02
< max < o, < . 3.12
{ ’ 2(1+7) V2(147r) (3.12)

Furthermore, we have

Mtg(to) < £/ 2(1 + T)Mto (O) < (52.
Consequently,

M(2to) = sup |[[V(s)llmy,
SE[—7,2t0]

<max{ sw |[V()lm, sw [VElm, sw V() |
s€[—r,0] s€[0,to—r] s€[to—r,2t0]
P

r),(sg} < . (3.13)

< maux{éo7
2(1+

We can apply proposition 3.3 to obtain (3.6) for 0 < ¢ < 2ty and

0 1/2
up WOy < sw e (IO + [ Iy as) b e
tE[O,QtO] te[0,2t0] -7

1)
< VO +1)M(0) < /Cr(1+1)d < 2

o (3.14)

Repeating the previous procedure, one can prove that V(t,z) € X(—r,00) and
(3.6) for all 0 < ¢t < oco. Also (3.3) follows immediately from (3.6). The proof is
complete. O

REMARK 3.5. The proof of theorem 3.1 above corrected the mistake in the proof
of theorem 3.1 in [15, pp. 586-587], where dg and §; were defined incorrectly.
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Next, we will prove proposition 3.3. For this, we need the following important
lemma.

LEMMA 3.6 (key inequality). Let w(§) be the weight function given in (2.6) and

define
w'(§) (w’(@ )2
B = —c — Dp, + 2d,y,
w0 = =g Pl
~ 2= [ W0~y = ol dy
V' (9())
— ge?Hr /w +y+cr)fa(y)dy. 3.15
w©) e € +y+er)faly)dy (3.15)
If (2.8) holds, then
B.(&) = Co(p) >0 forall € € R, (3.16)
where
0 < p < min{pq, pa} (3.17)
and 1 > 0 and py > 0 are, respectively, the unique solutions to the following
equations:
2
c _ _ _ _ 2T _
1D, (3ep — 2d,) — 21 — 2edyy, (e 1) =0, (3.18)
1(3 —e)dm — 21 — Zed(e*2" — 1) =0, (3.19)
and
Co(p) == min{C1(u), Ca(p)}, (3.20)
2
Cilp) == 42 — (3ep — 2dum) — 24 — 2edp (€2 — 1) > 0, (3.21)
Co(p) := 2(3 — e)dm — 2 — Sedm (e — 1) > 0. (3.22)

Proof. We divide this into two cases.

CASE 1 (£ < z,). Since ¢(€) is increasing from v_ = 0 to vy = 1/a, we thus
have ¢'(¢§) > 0 and 2 — a¢(¢) > 2 — avy = 2 —Ine = 1. According to (1.10),
i.e. b(¢) = ppe~*?, we obtain

d%b’w(f)) = —pa(2 — ag(£))e ¢/ (¢) < 0.

Thus, b'(¢(§)) is decreasing for £ € (—oo,00). This implies that
0="b(vy) <V ($(E) <V'(v-) =p. (3.23)
Using (3.23), (1.9), and the facts that ep = dye from (2.3),

w(f) _ e*ﬁ(ﬁ*m)’ ’L’Z}I((g)) =8, eﬁ(éfm) <1 for €& < x,,
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and that er — aff = ¢(r — (a/2Dy,)) > 0 from (2.7) and (1.8), which implies that
e~ Pler—ab) 1 we obtain

Bu(€) = B — Dyl + 2 — 2 — ¢ /R V(0 — y— ) faly) dy

gezurm4w(§+y+cr)fa(y) dy

> B — D3 + 2du — 2 — Ep/ fa(y)dy
R

Eegurp r.—&—cr _ - 0o
_M[/ e letyt *)fa(y)dy+/ fa(y>dy:|

— o0 r.—E—cr

= ¢ — D 3?4 2dy — 24 — €p
T.—&—cr [}
—ee?p [/ e W) fo(y) dy + /

—00 r.—&—cr

eﬁ(g_”*)fa(y) dy}

= cﬁ_Dmﬁg +2dm _2M_edm

T.—E—cr 0o
- edmeQ‘” [/ e—B(y+cr)fa(y) dy + / fa(y) dy}

— 00 T—E—cr

=cf — D 3% + 2dm — 21 — edp,
T.—E—cr 1 y2
~ e [/_oo Vira P ( Cda Bly+ Cr)) v

+ / fa(y) dy]
T.—E—cr
> ¢ — Dpnf3? + 2dy — 2u — edp,

o—Bler—ap) oo + 2a3)? °°
— edmem” [m exp ( - m) dy + / Ja(y) dy]

=B — D%+ (2 =€) d — 2p — edy e [e7Bler=aB) 1]

> cff — D32 + (2 —€)dm — 2u — 2edy, "
2

- ¢ _ _ _ _ 2pr

= 1D, (3e — 2) dy — 21 — 2edy (e 1)

_ (3ep — 2dum) — 241 — 2edn (2" — 1)

= Do ep m u— 2edpy (e

=: C1(p) > 0 for suitably small p > 0, (3.24)

where the last inequality follows from our sufficient condition (2.8), and 0 < pu < py,
where (7 > 0 is the unique solution of

2
c
- _2m_2 —2 m 2‘“'17"—1: )
1D (3ep — 2dy) — 2p1 — 2edy (e )=0
so then we have
2
C1 () = 4163 — (3ep — 2dum) — 2p — 2edm (€2 — 1) > 0
for 0 < p < 1.
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CASE 2 (£ > x,). In this case, w(§) = 1. Thus,

Bu(€) = 2dm — 24— ¢ /R V(D€ —y— er) fuly) dy
— T ((6)) / Wl +y+ o) fuly)dy. (3.25)
Note that
V(p) = p(l — ap)e™ ™ = pe™* — page™* = pe™*® — ab(¢),

6(6) > 0, /(€) > 0 and
/R faly)dy = 1.

Applying equation (2.1) and the first and the second inequalities of (2.5), we can
reduce the second term of the right-hand side of (3.25) as follows:

e / V(B(E —y — cr)) faly) dy
— e /R e &V £ () dy + ae /R b — y — cr)faly) dy
— /R e~ HE=r) £ (1) dy + aled! (€) — Dund”(€) + dnd(€)]
> —ep / fol) dy + adum(€) — aDmd"(€)

— —cdnm / Fal) dy + adu(€) — aDmd" ()

_edm + admdj(g) - aDm(bN(f)
> —edy, + dy — admé — aDyé
—(e — 1)dm — (adm + aDyy)E. (3.26)

On the other hand, applying the third inequality of (2.5) and noting that w(§) =1
and e #€—7+) < 1, we may furthermore estimate the third term of the right-hand
side of (3.25) as follows:

e (4(6)) / w(€ +y + er) faly) dy

= _epeP O (1 ag(€)) / w(é +y+ er) fuly) dy

= edm O (1 — ag(¢)) / Wl +y+er)faly) dy
R

T—E—cr +o0
> —edy,ge2HT (/ + / )w(f +y+er)faly)dy

—00 «—&—cr

oo

T.—E—cr
> —ed,, 521" [/ e—ﬁ(£+y+cr—m*)fa(y) dy _|_/

—o00 T.—E—cr

X0 dy}
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—B(er—ap)o—B(E—zx)
(§ (§
= —edpge®r
[ 4o
z.—E—cr 9 [e%)
X/ ef(y*i’QOéﬁ) /4o dy+/ fa(y) dy:|
—00 z.—E—cr
o—Bler—aB) [0

oo
> —edméeQW [ e—(y+2aﬁ)2/40¢ dy + / fa(y) dy:|
— 00

Varo 5o
= —edméez”r[%e_ﬁ(”_aﬁ) +1]
> —edpée® [ +1]
= —3ed,ze*". (3.27)

Substituting (3.26) and (3.27) into (3.25), and noting (2.4), we obtain
Bu(€) > 2dwm — 2 — (e — 1) dm — (adim + aDiy)E — Sedye®”
= (3 —e)dy — (adm + aDy, + %edm)é —2u — %edm(ez’” —-1)

=13 —e)dm — 21 — 3edy (e — 1)

=: Co(pu) > 0 for some suitably small x> 0, (3.28)

where we select p such that 0 < g < po. Here o > 0 is the unique solution to the
following equation

1(3—e)dm — 2u2 — Sedy(e**" — 1) =0,
and we always have
Co(p) = 2(3 — €)dm — 21 — Sedyy (e —1) > 0

for p < po.
Now, we take

0 < p < min{uy,pst

then we have that both (3.24) and (3.28) hold, which leads to (3.16). The proof is
complete. O

Finally, we prove proposition 3.3.

Proof of proposition 3.3. Let w(&) be a weight function which will be specified later.
Multiplying equation (3.1) by e?*w(&)V (¢, &) for 0 < pu < pg, we have

{3ewV?} + {(5ewV? — DpwVVe)e? '} + Dipe* wV
/
+ D" w' VeV + { - g% +dy — u}e2“th2
— etV [ V(o —y— )Vt =g —y—en)fal)dy

— etV /R QU (t— 1€ —y— cr)) fa(y) dy,
(3.29)
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where w = w(§), V = V(t,£). Using the Cauchy—-Schwarz inequality ab < 3a?+ b,
we obtain

\2
D (€Ve(L )V (1,6)] < o2t Vz*%@)em“’w'

Substituting this into (3.29) and integrating the resulting inequality over [0,¢] x R,
we have

eV ()25 + D / &2%||Ve(s) |25 ds

AR
,25/// H (6( —y — er))w(€)

EWV(s—r&—y—cr)faly)dydéds

< oo 02 +2¢ / / /

x V(s,0)Q(V (s —r & —y—cr))faly) dydsds. (3.30)

Now, using the change of variables y — y, £ —y —cr— &, s —r — s, we get

m(%)z}e2“3w<f>V(s,£>2dg ds

/Ot /]R/ReQ“Sw(g)b’(qs(g —y—er))\V3i(s—r€—y—cr)faly)dydéds
N /_t_ /R /R A w (€ 4y + er)b (6(€)) V2 (5,€) faly) dy dE ds
" / /R o2 [b/f((f)))

Once again, using the Cauchy—Schwarz inequality, and noting (3.31) and (3.23),
then we can estimate the delay term on the left-hand side of (3.30) as follows:

/R W€ +y+ o) fuly) dy | w(E)V2(s, ) dE ds.
(3.31)

t 2psyt — v —erNw s S rf—u—ocr .
2ol [ [ [ @66~y = @V 5.0V (s -6~y = en)fulo) dydea

<ef t [ [ e uenoe—y-en)

x [V3(5,6) + V(s —r,§ —y — o) faly) dy dé ds

_s// 21ou(e)| [ V0l -y = o)) du V2 (s, d s

T et / e [bw@” [ty +ensw dy}w@)w(s@ aé ds
<ef t o] [ ot~ enatw) dnw©vs. s
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et [ t [ e [b(j((;” [t v+ s dy]w(&)V’Z(s,s) e ds

0 b/
+ ee?HT /T/RQZ#S{ S’(g)) /Rw(§+y+cr)fa(y) dy}w({)Voz(s,f) d¢ ds.
(3.32)
Substituting (3.32) into (3.30) yields

t t e}
e2ut||V(t)||%ﬁ) —I—Dm/ 62“S||V§(5)”2L3, ds+/ / Bﬂ(g)e%sw({)vﬁ(s,g)dfds
0 0 J—oo
< Vo ()12,

T et / e [b (f) / w<£+y+cr)fa@)dy}w(am%s,f)dsds

+25/ / / eV )Q(V(s—r,é—y—cr))fa(wdydgds,(ggg)

where B,,(€) is defined in (3.15). We need to select a suitable weight function, w(§),
so that B, (&) > 0 for all £ € R. The choice of w(§) is, of course, not unique. One

possibility is
e*ﬁ(gfz*)v E < x*’
w(§) =
1, § 2 .,

as in (2.6) with 8 = ¢/2Dy,. According to lemma 3.6, B,(§) > Co(u) > 0 for
0 < p < min{pg, po}, where the positive constants uq, ps and Co(p) are defined
n (3.18), (3.19) and (3.20), respectively. Then, by using (3.23) and

62;”/ Wfa(y) dy < C for all £ eR, (334)
R

which can be proved analogously to lemma 3.6, we can reduce (3.33) to

t t
AV ()17, +Dm/ Ve ()1 Zs, ds+00(#)/ MV (s)|Z, ds
0 0

0
< |[IVo(0)[72 +eC ||Vo( )7z ds

T2 / / / >@<v<s—r,s—y—cr))fa@)dydéd;.)

Next, we will estimate the nonlinear term on the right-hand side of (3.35). From
(3.2), by Taylor’s formula, we first have Q(V) = O(V?) as V — 0, i.e.

QV(t—r&—y—cr))| ~Cs|V(t =16~y —cr)f (3.36)

for some positive constant C'5. Then, by the standard Sobolev embedding inequality
HY(R) — C°(R) and the modified embedding inequality H}(R) < H!(R) for
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w(€) > 0 defined as in (2.6) (see [13]), we obtain

V(I < Supr(t Ol < CllV(E)lar < Col|V(E)lay < CeM(t),  (3.37)

where Cg > 0 is the embedding constant. Applying (3.34), (3.36) and (3.37) and
making the change of variables y — vy, £ —y —cr — £, s — cr — s, we then obtain

/O /R/ReMsw(ﬁ)V(s,i)Q(V(s € —y—cr))faly) dydéds
< C7M(t)/0 /R/Re2usw(£)|‘/(s € —y — o) faly) dy de ds
M t)/ _T/ / 62’“‘(5”)111(5-5-y+cr)|V(s,§)\2fa(y) dy dé ds

/_/ HEw(©)]Va (s, )Z(AWMy)dy)déds}

< 08M<t>{ / 25V (5)]125 ds + / S V()2 ds} (3.38)

T

for some positive constants C7 and Cg. Substituting (3.38) into (3.35), we finally
obtain

t t
AV (D)7, + Dm/o || Ve(s)l1Zz ds + [Co(u) — CsM (1)) /0 ||V (s)lI7, ds

< Vo (0)1Zs, +09[1+M(t)]/_ IVo(s)lIZ, ds  (3.39)

for some constant Cy > 0.
One can find a positive constant do such that

C
Co(p) — Cgd2 > 0 or, equivalently, do < #. (3.40)

Clearly, d2 depends only on the coefficients Dy, dy,, €, p, a, v and the wave speed ¢,
because p depends on these parameters (see (3.17)—(3.19)). When M (T') < 42, i.e.

Co(p) = CsM(T) = Co(p) — Csd2 > 0,

we have
t 0
VDI +Dn [ IV ds < IO, + Cro [ 1%6(6)1E ds
’ ' (3.41)
for some positive constant Cig.

Similarly, by differentiating (3.1) with respect to &, multiplying the resultant
equation by e?*w(&)Ve(t, ), and then integrating it over [0,¢] x R for ¢ < T', using
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the basic energy estimate (3.41), we finally have

" 0
|V (1)]13, +Dm/0 || Vee(5)|72, ds < C11<||Vo(0)||?15] +/ Vo (), ds)

B (3.42)
for some positive constant C11, provided that M(T) < d2. We omit the detail.
Combining (3.41) and (3.42), we obtain

' 0
Ve + Do [ Vi) a5 < O (VO + [ (o)l )

- (3.43)
for some absolute constant C; = max{1 + C11,Ci9 + C11} > 0 that is independent
of T and V (¢, ). Finally, from (3.43), we automatically reach

0
V@I, < cl(nvo(mn%% + [ It d) 0<t<T
The proof is complete. O

Acknowledgments

The authors thank Professors Martin Gander and Georg Schmidt for valuable dis-
cussion, and the referee for helpful comments.

References

1 J. Bricmont and A. Kupiainen. Stability of moving fronts in the Ginzburg-Landau equa-
tions. Commun. Math. Phys. 159 (1994), 287-318.

2 J.-P. Eckmann and C. E. Wayne. The nonlinear stability of front solutions for parabolic
partial differential equations. Commun. Math. Phys. 161 (1994), 323-334.

3 T. Gallay. Local stability of critical fronts in nonlinear parabolic partial differential equa-
tions. Nonlinearity 7 (1994), 741-764.

4 S. A. Gourley. Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol. 41
(2000), 272-284.

5 S. A. Gourley and S. Ruan. Dynamics of the diffusive Nicholson’s blowflies equation with
distributed delay. Proc. R. Soc. Edinb. A130 (2000), 1275-1291.

6 A. M. Il'in and O. A. Oleinik. Asymptotic behavior of solutions of the Cauchy problem for
certain quasilinear equations for large time. Mat. Sb. 51 (1960), 191-216. (In Russian.)

7 S. Kawashima and A. Matsumura. Stability of shock profiles in viscoelasticity with non-
convex constitutive relations. Commun. Pure Appl. Math. 47 (1994), 1547-1569.

8 K. Kirchgéssner. On the nonlinear dynamics of travelling fronts. J. Diff. Eqns 96 (1992),
256-278.

9 D. Liang and J. Wu. Travelling waves and numerical approximations in a reaction—advec-
tion—diffusion equation with nonlocal delayed effects. J. Nonlin. Sci. 13 (2003), 289-310.

10 A. Matsumura. Asymptotic stability of traveling wave solutions for the one-dimensional
viscous conservation laws. Sugaku Ezpos. 11 (1998), 215-234.

11 A. Matsumura and M. Mei. Convergence to travelling fronts of solutions of the p-system
with viscosity in the presence of a boundary. Arch. Ration. Mech. Analysis 146 (1999),
1-22.

12 A. Matsumura and K. Nishihara. Asymptotic stability of traveling waves for scalar viscous
conservation laws with non-convex nonlinearity. Commun. Math. Phys. 165 (1994), 83-96.

13 M. Mei and K. Nishihara. Nonlinear stability of travelling waves for one-dimensional visco-

elastic materials with non-convex nonlinearity. Tokyo J. Math. 20 (1997), 241-264.

https://doi.org/10.1017/50308210506000333 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210506000333

568

14

15
16
17
18
19
20
21
22
23
24
25

26

27

28

29
30
31

32
33

M. Mei and J.W.-H. So

M. Mei and B. Rubino. Convergence to traveling waves with decay rates for solutions of
the initial boundary problem to a nonconvex relaxation model. J. Diff. Eqns 158 (1999),
138-185.

M. Mei, J. W.-H. So, M. Y. Li and S. S. P. Shen. Asymptotic stability of traveling waves for
Nicholson’s blowflies equation with diffusion. Proc. R. Soc. Edinb. A 134 (2004), 579-594.
J. A. J. Metz and O. Diekmann (eds). The dynamics of physiologically structured popula-
tions (Springer, 1986).

T. Ogiwara and H. Matano. Monotonicity and convergence results in order-preserving sys-
tems in the presence of symmetry. Discrete Contin. Dynam. Syst. 5 (1999), 1-34.

J.-M. Roquejoftre. Stability of travelling fronts in a model for flame propagation. II. Non-
linear stability. Arch. Ration. Mech. Analysis 117 (1992), 119-153.

J.-M. Roquejofire. Convergence to travelling waves for solutions of a class of semilinear
parabolic equations. J. Diff. Eqns 108 (1994), 262-295.

D. H. Sattinger. On the stability of waves of nonlinear parabolic systems. Adv. Math. 22
(1976), 312-355.

K. W. Schaaf. Asymptotic behavior and traveling wave solutions for parabolic functional
differential equations. Trans. Am. Math. Soc. 302 (1987), 587-615.

H. L. Smith and H. R. Thieme. Strongly order preserving semiflows generated by functional
differential equations. J. Diff. Eqns 93 (1991), 332-363.

H. L. Smith and X.-Q. Zhao. Global asymptotic stability of traveling waves in delayed
reaction—diffusion equations. STAM J. Math. Analysis 31 (2000), 514-534.

J. W.-H. So and Y. Yang. Dirichlet problem for the diffusive Nicholson’s blowflies equation.
J. Diff. Eqns 150 (1998), 317-348.

J. W.-H. So, J. Wu and Y. Yang. Numerical steady state and Hopf bifurcation analysis on
the diffusive Nicholson’s blowflies equation. Appl. Math. Computat. 111 (2000), 53-69.

J. W.-H. So, J. Wu and X. Zou. A reaction—diffusion model for a single species with age
structure. I. Travelling wavefronts on unbounded domains. Proc. R. Soc. Lond. A 457
(2001), 1841-1853.

H. Thieme and X.-Q. Zhao. Asymptotic speeds of spread and traveling waves for integral
equations and delayed reaction—diffusion models. J. Diff. Eqns 195 (2003), 430-470.

A. 1. Volpert, Vi. A. Volpert and V1. A. Volpert. Traveling wave solutions of parabolic
systems. Translations of Mathematical Monographs, vol. 140 (Providence, RI: American
Mathematical Society, 1994).

J-H. Wu. Theory and applications of partial functional differential equations, Applied
Mathematical Sciences, vol. 119 (Springer, 1996).

J. Xin. Existence and stability of traveling waves in periodic media governed by a bistable
nonlinearity. J. Dynam. Diff. Eqns 3 (1991), 541-573.

J. Xin. Stability of traveling waves in a solute transport equation. J. Diff. Egns 135 (1997),
269-298.

J. Xin. Front propagation in heterogeneous media. STAM Rev. 42 (2000), 161-230.

X.-Q. Zhao. Dynamical systems in population biology. Communications in Mathematical
Physics, vol. 16 (Springer, 2003).

(Issued 13 June 2008)

https://doi.org/10.1017/50308210506000333 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210506000333

