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QUOTIENTS OF STRONGLY PROPER FORCINGS AND GUESSING
MODELS

SEAN COXAND JOHN KRUEGER

Abstract. We prove that a wide class of strongly proper forcing posets have quotients with strong
properties. Specifically, we prove that quotients of forcing posets which have universal strongly generic
conditions on a stationary set of models by certain nice regular suborders satisfy the �1-approximation
property. We prove that the existence of stationarily many�1-guessing models inP�2 (H (�)), for sufficiently
large cardinals �, is consistent with the continuum being arbitrarily large, solving a problem of Viale and
Weiss [13].

Many consistency results in set theory involve factoring a forcing poset Q over
a regular suborder P in a forcing extension by P, and applying properties of the
quotient forcing Q/ĠP. We will be interested in the situation where Q has strongly
generic conditions for elementary substructures, and we wish the quotientQ/ĠP to
have similar properties. For example, the quotient Q/ĠP having the approximation
property is useful for constructing models in which there is a failure of square
principles or related properties.
We introduce some variations of strongly generic conditions, including simple and
universal conditions. Our main theorem regarding quotients is that if Q is a forcing
poset with greatest lower bounds for which there are stationarily many countable
elementary substructures which have universal strongly generic conditions, and P is
a regular suborder of Q which relates in a nice way to Q, then P forces that Q/ĠP

has the �1-approximation property. Several variations of this theorem are given, as
well as an example which shows that not all quotients of strongly proper forcings
are well behaved.
Previously Weiss introduced combinatorial principles which characterize super-
compactness yet also make sense for successor cardinals ([13], [14]). Of particular
interest to us is the principle ISP(�2),which asserts the existence of stationarilymany
�1-guessing models in P�1 (H (�)), for sufficiently large regular cardinals �. This
principle follows from PFA and has some of same consequences, such as the failure
of the approachability property on�1. It follows that ISP(�2) implies that 2� ≥ �2.
Viale and Weiss [13] asked whether this principle settles the value of the contin-
uum. We solve this problem by showing that ISP(�2) is consistent with 2� being
arbitrarily large. The solution is an application of the quotient theorem described
above and the second author’s method of adequate set forcing ([5]).
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Section 1 provides background on regular suborders and quotients, as well as
guessing models and ISP. Section 2 introduces simple universal strongly generic
conditions and proves the main result on quotients. Section 3 discusses products
of strongly proper forcings. Section 4 provides two variations of the main quotient
theorem. Section 5 gives an example showing that not all quotients of strongly
proper forcings are well behaved. Section 6 describes a strongly proper collapse
using the method of adequate set forcing. Section 7 constructs a model in which
ISP(�2) holds and 2� is arbitrarily large.

§1. Background. In this section we provide the backgroundnecessary for reading
the paper. We assume that the reader is already familiar with the basics of proper
forcing and generalized stationarity. First, we will review some well-known results
about regular suborders and quotients; since these ideas are central to the paper we
provide a thorough treatment. Secondly, we review the idea of a guessing model,
the approximation property, and the principle ISP(�2).
For the remainder of the section fix a forcing poset Q which has greatest lower
bounds. In other words, for all compatible conditions p and q inQ, a greatest lower
bound p ∧ q exists. A suborder of Q is a set P ⊆ Q ordered by ≤P:=≤Q ∩(P × P).
A suborder P ofQ is said to be a regular suborder if (a) for all p and q in P, if p and
q are compatible in Q then p and q are compatible in P, and (b) if A is a maximal
antichain of P, then A is a maximal antichain of Q.

Lemma 1.1. Let P be a regular suborder of Q. Then for all q ∈ Q, there is s ∈ P

such that for all t ≤ s in P, q and t are compatible in Q.
Proof. Suppose for a contradiction that there is q in Q such that for all s ∈ P,
there is t ≤ s in P such that t is incompatible with q in Q. Let D be the set of
t ∈ P such that t is incompatible with q in Q. Then D is dense in P. Let A be a
maximal antichain of P contained inD. Since P is a regular suborder,A is maximal
in Q. Therefore q is compatible with some member of A, which contradicts the
definition of D. �
Definition 1.2. Let P be a regular suborder of Q. Then Q/ĠP is a P-name for
the poset consisting of conditions q ∈ Q such that for all s ∈ ĠP, q and s are
compatible in Q, with the same ordering as Q.

Note that if p ∗ q̌ is in P ∗ (Q/ĠP), then p and q are compatible, so p ∧ q exists.
Lemma 1.3. Let P be a regular suborder of Q. Let q ∈ Q and s ∈ P. Then the
following are equivalent:

(1) s �P q ∈ Q/ĠP;
(2) for all t ≤ s in P, q and t are compatible in Q.
The proof is straightforward.

Lemma 1.4. Let P be a regular suborder of Q. Then P forces that whenever q ∈
Q/ĠP and q ≤ p, then p ∈ Q/ĠP.

The proof is easy.

Lemma 1.5. Let P be a regular suborder of Q. If D is a dense subset of Q, then P
forces thatD ∩ (Q/ĠP) is a dense subset of Q/ĠP.
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Proof. Suppose for a contradiction that p ∈ P and p forces that q is in Q/ĠP

but q has no extension in D ∩ (Q/ĠP). Then p is compatible with q. Fix r ≤ q ∧ p
in D. Apply Lemma 1.1 to find v in P such that every extension of v in P is
compatible with r. In particular, v is compatible with r and hence with p. Since v
and p are in P and P is a regular suborder, v and p are compatible in P. So without
loss of generality assume that v ≤ p. By Lemma 1.3, v forces that r is in Q/ĠP.
Since r ∈ D, v forces that r is an extension of q in D ∩ (Q/ĠP), contradicting
that v ≤ p. �
Lemma 1.6. Let P be a regular suborder of Q.

(1) Suppose thatH is a V -generic filter on Q. ThenH ∩ P is a V -generic filter on
P andH is a V [H ∩ P]-generic filter on Q/(H ∩ P).

(2) Suppose that G is a V -generic filter on P and H is a V [G ]-generic filter on
Q/G . ThenH is a V -generic filter on Q, G = H ∩ P, and V [G ][H ] = V [H ].

Proof. (1)Suppose thatH is aV -genericfilter onQ. Sinceanymaximal antichain
of P is a maximal antichain of Q, H ∩ P meets every maximal antichain of P.
A straightforward density argument shows that H ∩ P is a filter. So H ∩ P is a
V -generic filter on P.
Since H is a filter, every member of H is compatible in Q with every member of
H ∩ P. So H ⊆ Q/(H ∩ P) and H is a filter on Q/(H ∩ P). We will show that H
meets every dense subset of Q/(H ∩ P) in V [H ∩ P].
Let Ḋ be a P-name for a dense subset ofQ/ĠP and letD := ḊH∩P. We will show
thatD ∩H 
= ∅. LetD′ be the set of conditions inQ of the form p∧q, where p is in
P and p forces that q is in Ḋ. Then D′ is dense in Q by a straightforward argument
using Lemmas 1.1 and 1.3. Fix p ∧ q inD′ ∩H . Then q ∈ H , and since p ∈ H ∩P,
q ∈ D.
(2) By Lemma 1.4, H is closed upwards in Q, so H is a filter on Q. Let D be
a dense subset of Q in V , and we will show that H ∩ D 
= ∅. By Lemma 1.5,
D ∩ (Q/G) is a dense subset of Q/G . Since H is a V [G ]-generic filter on Q/G , it
meets D ∩ (Q/G) and hence D.
To show thatV [G ][H ] = V [H ], it suffices to show thatG = H ∩P. SinceG and
H ∩P are bothV -generic filters on P by (1), it suffices to show that every condition
in G is compatible with every condition inH ∩P. But if q ∈ H ∩ P, then q ∈ Q/G ,
which implies that q is compatible in Q with every condition in G . Since P is a
regular suborder of Q, q is compatible in P with every condition in G . �
It follows that Q is forcing equivalent to P ∗ (Q/ĠP). In fact, the function which
sends a condition in P ∗ (Q/ĠP) of the form p ∗ q̌ to p ∧ q is a dense embedding
defined on a dense subset of P ∗ (Q/ĠP).
The next technical lemma will be used later in the paper.

Lemma 1.7. Let P be a regular suborder of Q. Suppose that q ∈ Q, p ∈ P, and p
forces in P that q is not in Q/ĠP. Then p and q are incompatible.

Proof. Suppose for a contradiction that p forces that q is not inQ/ĠP, but there
is r ≤ p, q in Q. Let H be a V -generic filter on Q such that r ∈ H . Then p and q
are in H . Since P is a regular suborder of Q, H ∩ P is a V -generic filter on P by
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Lemma 1.6. As p ∈ H ∩ P, q is not in Q/(H ∩ P). Therefore q is incompatible in Q
with some member ofH ∩ P. But this is impossible since q ∈ H andH is a filter. �
Wenowprovide the necessary backgroundon guessingmodels, the approximation
property, and ISP.

Definition 1.8. A setN is said to be�1-guessing if for any set of ordinals d ⊆ N
such that sup(d ) < sup(N ∩ On), if d satisfies that for any countable set b ∈ N ,
d ∩ b ∈ N , then there exists d ′ ∈ N such that d = d ′ ∩N .
Definition 1.9. Let W1 and W2 be transitive with W1 ⊆ W2. We say that the
pair (W1,W2) has the �1-approximation property if whenever d ∈W2 is a bounded
subset of W1 ∩ On and satisfies that b ∩ d ∈ W1 for any set b ∈ W1 which is
countable inW1, then d ∈W1.
Lemma 1.10. Let N be an elementary substructure ofH (�) for some uncountable
cardinal �. Then the following are equivalent:

(1) N is an �1-guessing model;
(2) the pair (N,V ) has the �1-approximation property, where N is the transitive
collapse ofN .

Proof. Let � : N → N be the transitive collapsing map.
(1 ⇒ 2) Assume that N is an �1-guessing model. To show that (N,V ) has the
�1-approximation property, let d be a bounded subset of N ∩On and assume that
whenever N models that b is a countable set of ordinals, b ∩ d ∈ N . We will prove
that d ∈ N .
Let e := �−1[d ]. Then e is a subset ofN ∩On and sup(e) < sup(N ∩On). Let b ∈
N be a countable set of ordinals, and we show that e ∩ b ∈ N . Since N ≺ H (�), N
models that b is countable. ThereforeN models that�(b) is countable. It follows that
d ∩ �(b) ∈ N . Hence �−1(d ∩ �(b)) ∈ N . Since b and d ∩ �(b) are countable,
�−1(d ∩ �(b)) = �−1[d ∩ �[b]] = �−1[d ] ∩ �−1[�[b]] = e ∩ b. Therefore e ∩ b
is in N .
SinceN is an�1-guessingmodel, fix e′ ∈ N such that e = e′∩N . Then �(e′) ∈ N
and �(e′) = �[e′ ∩N ] = �[e] = d . It follows that d is in N , as desired.
(2⇒ 1) Suppose that (N,V ) has the�1-approximation property. Let d ⊆ N∩On
be given with sup(d ) < sup(N ∩On), and assume that for any countable set b ∈ N ,
d ∩ b ∈ N . Let e := �[d ], which is a bounded subset of N ∩ On. Suppose that
N models that b is a countable set of ordinals. Then �−1(b) is a countable set in
N , so d ∩ �−1(b) ∈ N . Since b and d ∩ �−1(b) are countable, �(d ∩ �−1(b)) =
�[d ∩ �−1[b]] = �[d ] ∩ b = e ∩ b. Hence e ∩ b is in N . By the �1-approximation
property, e is in N . Hence d ′ := �−1(e) is in N . But d = d ′ ∩ N , as can be easily
checked. �
Definition 1.11. We say that the principle ISP(�2) holds if for all sufficiently
large regular uncountable cardinals �, there are stationarily many N in P�2 (H (�))
such that N ∩ �2 ∈ �2, N ≺ H (�), and N is an �1-guessing model.
The principle ISP(�2) was introduced by Weiss ([13], [14]), in a different form
which asserts the existence of an ineffable branch for any slender P�2 (�)-list, for
all cardinals � ≥ �2. Roughly speaking, ISP(�2, �) is a P�2 (�) version of the
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tree property, where usual the tree property on �2 states that every �2-tree has
a cofinal branch. The equivalence of this principle with Definition 1.11 is proven
in [13, Section 3]. See [13, Section 2] for the alternative definition of ISP and a
discussion of the principle.

§2. Quotients of Strongly Proper Forcings. In this section we prove our main
theorem on quotients of strongly proper forcings. We introduce the idea of a simple
universal strongly N -generic condition, and show that under some circumstances
quotients of forcing posets which have such conditions for stationarily many N are
well behaved.
The following definition was introduced by Mitchell in a slightly different form
([9]).

Definition 2.1. Let Q be a forcing poset, q ∈ Q, and N a set. We say that q is a
strongly (N,Q)-generic condition if for any set D which is dense in the forcing poset
N ∩Q, D is predense in Q below q.

If Q is understood from context, we just say that q is a strongly N -generic
condition.
For a forcing posetQ, let �Q denote the smallest uncountable cardinal � such that

Q ⊆ H (�). Note that for any set N , a condition q ∈ Q is strongly N -generic iff q is
strongly (N ∩H (�Q))-generic.
The next lemma was basically proven in [9, Proposition 2.15]. We include a proof
for completeness.

Lemma 2.2. Let Q be a forcing poset, q ∈ Q, and N a set. Then the following are
equivalent:

(1) q is stronglyN -generic;
(2) there is a function r �→ r � N defined on conditions r ≤ q satisfying that
r � N ∈ N ∩Q and for all v ≤ r � N in N ∩Q, r and v are compatible.

Proof. For the forwarddirection, suppose that there is r ≤ q forwhich there does
not exist a condition r � N all of whose extensions in N ∩Q are compatible with r.
Let D be the set of w ∈ N ∩ Q which are incompatible with r. The assumption
on r implies that D is dense in N ∩ Q. But D is not predense below q since every
condition in D is incompatible with r. So q is not strongly N -generic.
Conversely, assume that there is a function r �→ r � N as described. Let D be
dense in N ∩Q and let r ≤ q. Fix v ≤ r � N in D. Then r and v are compatible. So
D is predense below q. �
We introduce two strengthenings of strong genericity, namely simple and
universal.

Definition 2.3. Let Q be a forcing poset, q ∈ Q, and N a set. We say that q is a
universal strongly (N,Q)-generic condition if q is a strongly (N,Q)-generic condition
and for all p ∈ N ∩Q, p and q are compatible.

Definition 2.4. Let Q be a forcing poset, q ∈ Q, and N a set. We say that q
is a simple strongly (N,Q)-generic condition if there exists a set E ⊆ Q which is
dense below q and a function r �→ r � N defined on E such that for all r ∈ E,
r � N ∈ N ∩Q, r ≤ r � N , and for all v ≤ r � N in N ∩Q, r and v are compatible.
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The difference between simple and ordinary strongly generic conditions as
described in Lemma 2.2(2) is the additional assumption in simple that r ≤ r � N .
But if the forcing poset has greatest lower bounds, then the two ideas are equivalent;
see Lemma 2.5 below.
Note that if q is a simple strongly N -generic condition, then q is strongly
N -generic. Namely, given r ≤ q not in E, first extend r to s in E and then define
r � N to be s � N .
While these definitions are new, most strongly generic conditions in the literature
satisfy them. For example, all of the adequate set type forcings described in [5] have
simple universal strongly generic conditions for countable elementary substructures.
It turns out that for forcing posets with greatest lower bounds, every strongly
generic condition is simple.

Lemma 2.5. Let Q be a forcing poset with greatest lower bounds. Let N be a set
and q ∈ Q. If q is a stronglyN -generic condition, then q is a simple stronglyN -generic
condition.

Proof. Let r0 ≤ q, and we will find r ≤ r0 and r � N ∈ N ∩ Q such that
r ≤ r � N , and for all v ≤ r � N in N ∩ Q, r and v are compatible. Since q is
stronglyN -generic, there is a condition u ∈ N ∩Q such that for all v ≤ u inN ∩Q,
r0 and v are compatible. In particular, r0 and u are compatible. Let r := r0 ∧ u and
r � N := u. Then r ≤ r0, r � N ∈ N ∩Q, and r ≤ r � N .
Let v ≤ r � N be in N ∩Q, and we will show that r and v are compatible. Then
v ≤ u, so by the choice of u, r0 and v are compatible. Therefore r0 ∧ v exists. But
r0 ∧ v ≤ v, and since v ≤ u, r0 ∧ v ≤ r0 ∧ u = r. So r and v are compatible. �
Definition 2.6. A forcing poset Q is strongly proper if for all large enough
regular cardinals �, there are club many countable elementary substructures N of
H (�) satisfying thatwheneverp ∈ N∩Q, there exists a stronglyN -generic condition
below p.

This definition, introduced by Mitchell, is defined in a way similar to the usual
definition of proper forcing. But by standard arguments and the comments after
Definition 2.1, this definition is equivalent to the existence of club many countable
setsN inP�1 (H (�Q)) such that everyp ∈ N∩Q has a stronglyN -generic extension.
Definition 2.7. Let Q be a forcing poset. We say that Q is strongly proper on a
stationary set if there are stationarily many N in P�1 (H (�Q)) such that whenever
p ∈ N ∩Q, there is q ≤ p which is a strongly N -generic condition.
By standard arguments we get an equivalent property by replacing �Q with any
regular cardinal � ≥ �Q; similar comments apply to the following definition.
Definition 2.8. A forcing poset Q is said to have universal strongly generic con-
ditions on a stationary set if there are stationarily many N in P�1 (H (�Q)) such that
there exists a universal strongly N -generic condition.

For a forcing poset Q with greatest lower bounds, we will consider suborders
P ofQ satisfying the following compatibility property. This property will be crucial
for the rest of the paper.
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∗(P,Q): for all x in P and y, z in Q, if x, y, and z are pairwise compatible, then x
is compatible with y ∧ z.
Note that ∗(Q,Q) implies that ∗(P,Q) for all suborders P of Q. A large number

of forcing posets Q satisfy the property ∗(Q,Q). These include Cohen forcings,
collapsing forcings, adding a club by initial segments, and many side condition
forcings. In general, forcing posets where greatest lower bounds are given by unions
tend to satisfy it. In contrast, most Boolean algebras do not satisfy the property.
For example, consider a field of sets, and let A and B be sets with nonempty inter-
section and relative complements. Then A, B, and A�B have pairwise nonempty
intersections, but A has empty intersection with B ∩ (A�B) = B \ A.
Our main theorem on quotients Theorem 2.11 states that if Q has universal
strongly generic conditions on a stationary set, and P is a regular suborder satis-
fying ∗(P,Q), then P forces that the quotient Q/GṖ has universal strongly generic
conditions on a stationary set.
Lemma 2.9. Let Q be a forcing poset which has greatest lower bounds, and let P be
a regular suborder of Q which satisfies ∗(P,Q). Then P forces that for all r and s in
Q/ĠP, if r and s are compatible in Q then r ∧ s is in Q/ĠP.
Proof. LetG be aV -generic filter on P, and suppose that r and s are inQ/G and
are compatible in Q. To show that r ∧ s is in Q/G , let p be in G and we will show
that p is compatible with r ∧ s . Since r and s are in Q/G , they are each compatible
with p. By property ∗(P,Q), p is compatible with r ∧ s . �
The next lemma will be used in the proof of Theorem 2.11, which is our main
theorem on quotients. We will use it again in Section 4 when we prove a variation
of the main theorem.
Lemma 2.10. Let Q be a forcing poset which has greatest lower bounds, and let P
be a regular suborder of Q satisfying property ∗(P,Q). Let � be a regular cardinal,
N ≺ H (�), P,Q ∈ N , and suppose that q is a strongly (N,Q)-generic condition.
Assume that z is inP and z forces that q̌ is inQ/ĠP. Then z forces thatN [ĠP]∩V ⊆ N
and q̌ is a strongly (N [ĠP],Q/ĠP)-generic condition.
Proof. To show that z forces that N [ĠP] ∩ V ⊆ N , assume for a contradiction
that z′ ≤ z in P, ȧ is a P-name in N , and z′ forces that ȧ is in V \ N . Since
ȧG = ȧG∩P whenever G is a V -generic filter on Q, it follows that z′ forces in Q that
ȧ is in V \N . Let D be the dense set of conditions v ∈ Q such that v decides in Q
whether ȧ is in V , and if it decides that it is, it decides the value of ȧ. Since ȧ ∈ N ,
it follows by elementarity thatD ∈ N , and hence D ∩N is dense in N ∩Q.
Since z forces that q̌ is in Q/ĠP, z′ is compatible with q in Q. As q is strongly
(N,Q)-generic and q ∧ z′ ≤ q, fix v ∈ D ∩N which is compatible with q ∧ z′. As z′
forces that ȧ is in V \N , so does v ∧ q ∧ z′. Since v ∈ D ∩ N , by the elementarity
of N there is b ∈ N such that v forces that ȧ = b̌. But then v ∧ q ∧ z′ forces that
ȧ ∈ N , which is a contradiction.
Now letGP be aV -generic filter onPwhich contains z.Wewill show that inV [GP],
q is a strongly (N [GP],Q/GP)-generic condition. Since q is a strongly (N,Q)-generic
condition in V , by Lemma 2.5 fix a set E ⊆ Q in V which is dense below q and a
function r �→ r � N defined on E satisfying that for all r ∈ E, r � N ∈ N ∩ Q,
r ≤ r � N , and for all v ≤ r � N in N ∩Q, r and v are compatible. By Lemma 1.5,
E ∩ (Q/GP) is dense below q in Q/GP.
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In V [GP] define a map r �→ r � N [GP] on the set E ∩ (Q/GP) by letting r �
N [GP] := r � N . For all r ∈ E ∩ (Q/GP), r � N [GP] is in N and hence in N [GP],
and r ≤ r � N = r � N [GP]. By Lemma 1.4, r � N [GP] is in Q/GP. Consider
v ∈ N [GP] ∩ (Q/GP) below r � N [GP]. Since N [GP] ∩ V ⊆ N as shown above,
v ∈ N ∩Q and v ≤ r � N in Q. So v is compatible with r in Q. As r and v are both
inQ/GP, r ∧ v is inQ/GP by Lemma 2.9. Hence r and v are compatible inQ/GP. �
Theorem 2.11. Let Q be a forcing poset which has greatest lower bounds, and let

P be a regular suborder ofQ satisfying property ∗(P,Q). Assume thatQ has universal
strongly generic conditions on a stationary set. Then P forces thatQ/ĠP has universal
strongly generic conditions on a stationary set. In particular, P forces that Q/ĠP is
strongly proper on a stationary set.
Proof. Let � be a regular cardinal such that Q ∈ H (�). Then Q forces that �
is regular and �Q/ĠP

≤ �. Let Ḟ be a P-name for a function Ḟ : (H (�)V [ĠP])<� →
H (�)V [ĠP], and let s ∈ P. We will find an extension of s in P which forces that there
exists a countable setM ⊆ H (�)V [ĠP] which is closed under Ḟ such that there exists
a universal strongly (M,Q/ĠP)-generic condition.
DefineH : H (�)<� → H (�) by lettingH (ȧ0, . . . , ȧn) be aP-name inH (�) which

P forces is equal to Ḟ (ȧ0, . . . , ȧn), for any P-names ȧ0, . . . , ȧn in H (�). Since Q has
universal strongly generic conditions on a stationary set, we can fix a countable set
N ≺ H (�) such that P, Q, and s are in N , N is closed under H , and there is a
universal strongly (N,Q)-generic condition qN .
Since s ∈ N ∩ Q and qN is universal, qN is compatible with s . As P is a regular
suborder ofQ, fix z in P such that every extension of z in P is compatible with qN ∧s
in Q. By Lemma 1.3, z forces that qN ∧ s is in Q/ĠP. By Lemma 1.4, z forces that
qN is in Q/ĠP. Since z is compatible with qN ∧ s in Q, z is compatible with s in Q.
As P is a regular suborder of Q and s and z are in P, z is compatible with s in P.
Extending z if necessary in P, we may assume without loss of generality that z ≤ s .
SinceN is closed underH , P forces thatN [ĠP] is closed under Ḟ . So it suffices to
show that z forces that qN is a universal strongly (N [ĠP],Q/ĠP)-generic condition.
Let G be a V -generic filter on P with z ∈ G . By Lemma 2.10 applied to z and qN ,
we get thatN [G ] ∩ V ⊆ N and qN is a strongly (N [ĠP],Q/ĠP)-generic condition.
Finally, if p ∈ N [G ] ∩ (Q/G), then p ∈ N ∩ Q, so p and qN are compatible in Q
by the universality of qN . As p and qN are in Q/G , they are compatible in Q/G by
Lemma 2.9. �
Recall the following definition of Mitchell, which plays a prominent role in [9].

Definition 2.12. A forcing posetQ is said to have the�1-approximationproperty
if Q forces that whenever X is a subset of V such that for every set N which is
countable in V , N ∩ X is in V , then X is in V .
In other words, Q has the �1-approximation property iff Q forces that the pair
(V,V [ĠQ]) has the �1-approximation property.
Proposition 2.13. Let Q be a forcing poset and assume that Q is strongly proper
on a stationary set. Then Q satisfies the �1-approximation property.
Proposition 2.13 is a special case of [8, Lemma 6]. The proof goes roughly as
follows. Suppose for a contradiction that a condition p forces that Ẋ is a coun-
terexample to the approximation property. Fix N an elementary substructure with
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p, Ẋ ∈ N and q ≤ p which is a strongly N -generic condition. Extend q to r which
decides the value ofN ∩ Ẋ . Then r � N has extensions v andw inN which disagree
on whether a certain set in N is in Ẋ . Since r decides the value of N ∩ Ẋ , it cannot
be compatible with both v and w, giving a contradiction.
As an immediate consequence of Theorem 2.11 and Proposition 2.13, we get the
following corollary.

Corollary 2.14. Let Q be a forcing poset which has greatest lower bounds, and
assume that Q has universal strongly generic conditions on a stationary set. Let P
be a regular suborder of Q satisfying ∗(P,Q). Then P forces that Q/ĠP satisfies the
�1-approximation property.

§3. Products. We will show that some of the properties studied in the previous
section are preserved under products.1 This information will be used in our
consistency result on ISP(�2).
Note that if P and Q have greatest lower bounds, then so does P × Q. Namely,
(p0, q0) ∧ (p1, q1) = (p0 ∧ p1, q0 ∧ q1).
Lemma 3.1. Suppose that P and Q are forcing posets with greatest lower bounds
which both satisfy the property that whenever x, y, and z are pairwise compatible
conditions, then x is compatible with y ∧ z. Then P×Q satisfies this property as well.

The proof is straightforward.

Lemma 3.2. Let P and Q be forcing posets with greatest lower bounds. Let � be
a cardinal such that �P, �Q ≤ � and let S be a subset of P�1 (H (�)). Suppose that P
and Q both have universal strongly generic conditions on S. Then P×Q has universal
strongly generic conditions on S.

Proof. Let N be in S. Fix a universal strongly (N,P)-generic condition p and
a universal strongly (N,Q)-generic condition q. We claim that (p, q) is a universal
strongly (N,P×Q)-generic condition.
So let (u, v) be in N ∩ (P× Q). Then by universality, p and u are compatible in

P, and q and v are compatible in Q. Hence (p ∧ u, q ∧ v) ≤ (p, q), (u, v). So (p, q)
and (u, v) are compatible in P×Q.
Let r �→ r � N be a map from conditions r ≤ p in P to N ∩ P witnessing that
p is a strongly (N,P)-generic condition. Similarly, let s �→ s � N be a map from
conditions s ≤ q in Q to N ∩ Q witnessing that q is a strongly (N,Q)-generic
condition.
For (r, s) ≤ (p, q) in P × Q, define (r, s) � N = (r � N, s � N), which is clearly
in N ∩ (P× Q). Assume that (y, z) ≤ (r � N, s � N) is in N ∩ (P × Q). Then y is
compatible with r in P and z is compatible with s in Q. So (r ∧ y, s ∧ z) is in P×Q

and is below (r, s) and (y, z). So every extension of (r, s) � N in N ∩ (P × Q) is
compatible with (r, s). �
A similar argument shows that if P and Q are strongly proper, then so is P× Q.
In other words, strong properness is productive. This is in contrast to properness,
which is not productive; see [12, Chapter XVII, 2.12].

1Similar results were obtained previously by Friedman [2, Lemma 3] and Neeman [11, Claim 3.8].
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§4. Variations. We consider two variations of Theorem 2.11 on quotients of
strongly proper forcings. First, we discuss factoring a forcing poset over an ele-
mentary substructure below a condition. Secondly, we introduce a weakening of
strongly proper which is called nondiagonally strongly proper, and show that this
property is sometimes preserved under taking quotients.

Definition 4.1. Let P and Q be forcing posets. A function f : P → Q is a
regular embedding if:

(1) for all p and q in P, q ≤ p implies f(q) ≤ f(p);
(2) for all p and q in P, if f(p) and f(q) are compatible in Q, then p and q are
compatible in P;

(3) if A is a maximal antichain of P, then f[A] is a maximal antichain of Q.

It is straightforward to show that if f : P → Q is a regular embedding, then f[P]
is a regular suborder of Q.
Previously we have focused on strongly generic conditions for countable models.
The next lemma and theorem are useful when the model under consideration is
uncountable.
Recall that P/q = {r ∈ P : r ≤ q}, where P is a forcing poset and q ∈ P.

Lemma 4.2. Let P be a forcing poset with greatest lower bounds, � ≥ �P a regular
cardinal, and N ≺ (H (�),∈,P). Suppose that q is a universal strongly N -generic
condition. Applying the universality of q, define a function f : (N ∩ P) → (P/q) by
f(p) = q ∧ p.
Then f is a regular embedding. Moreover, for any V -generic filter G onN ∩ P, for
all r ∈ P/q, r ∈ (P/q)/f[G ] iff r is compatible with every condition in G .
Proof. We prove first thatf is a regular embedding. If t ≤ s inN ∩P, then easily
q ∧ t ≤ q ∧ s . Now let s and t be in N ∩ P and assume that w ≤ q ∧ s, q ∧ t. Then
w ≤ s, t. By the elementarity of N , there is a condition w ′ in N ∩ P such that
w ′ ≤ s, t.
Now let A be a maximal antichain of N ∩ P, and we will show that f[A] is pre-
dense below q. Since f preserves incompatibility, it follows that f[A] is a maximal
antichain of P/q. Let D be the set of p ∈ N ∩ P for which there is s ∈ A such
that p ≤ s . Then D is dense in N ∩ P. Since q is strongly N -generic, D is predense
below q. Consider r ∈ P/q. Then there is u ∈ D and t such that t ≤ r, u. By the
definition of D, there is s ∈ A such that u ≤ s . Then t ≤ r, s . As t ≤ q, we have
that t = q ∧ t ≤ q ∧ s = f(s). Hence r is compatible with f(s), and f(s) ∈ f[A].
Let G be a V -generic filter on N ∩ P. Let r ≤ q be given. Assume that
r ∈ (P/q)/f[G ], which means that r is compatible with every condition in f[G ].
Consider s ∈ G . Fix t ≤ r, f(s). Since f(s) = q ∧ s ≤ s , it follows that t ≤ r, s .
So r and s are compatible. Conversely, assume that r ≤ q and r is compatible with
every condition in G . Let f(s) in f[G ] be given, where s ∈ G . Since s ∈ G , r and s
are compatible, so fix t ≤ r, s . Then t ≤ q, so t ≤ q ∧ s = f(s). Hence r and f(s)
are compatible. �
For aV -generic filterG onN ∩P, let (P/q)/G denote the forcing poset consisting
of conditions in P/q which are compatible with every condition inG . By the lemma,

(P/q)/G = (P/q)/f[G ].

https://doi.org/10.1017/jsl.2015.46 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.46


274 SEAN COX AND JOHN KRUEGER

SinceN∩P is forcing equivalent tof[N∩P], it follows thatP/q is forcing equivalent
to the two-step iteration

(N ∩ P) ∗ ((P/q)/ĠN∩P).

IfH is aV -generic filter onPwhich contains q, then by Lemma 1.6(1),H ∩f[N∩P]
is aV -generic filter onf[N ∩P]. Since f is a dense embedding, f−1[H ∩f[N ∩P]]
is a V -generic filter on N ∩ P. But this latter set is just equal to H ∩ N . For if
f(p) = q ∧ p is in H , then since q ∧ p ≤ p, p is in H . And if p ∈ H ∩ N , then
since q ∈ H , f(p) = q ∧ p ∈ H . By Lemma 1.6(1), it follows that H ∩ N is a
V -generic filter on N ∩ P, Hq := {r ∈ H : r ≤ q} is a V [H ∩ N ]-generic filter on
(P/q)/(H ∩N), and V [H ] = V [H ∩N ][Hq ].
Theorem 4.3. LetP be a forcing poset with greatest lower bounds satisfying ∗(P,P),
� ≥ �P a regular cardinal, and N ≺ (H (�),∈,P). Suppose that P has universal
strongly generic conditions on a stationary set, and q is a universal stronglyN -generic
condition.
Then the forcing poset N ∩ P forces that the quotient (P/q)/ĠN∩P has universal
strongly generic conditions on a stationary set. Moreover, whenever H is a V -generic
filter on P which contains q, we have that V [H ] = V [H ∩N ][K ], whereH ∩N is a
V -generic filter on N ∩ P, K is a V [H ∩ N ]-generic filter on (P/q)/(H ∩ N), and
the pair (V [H ∩N ], V [H ]) satisfies the �1-approximation property.
Proof. Weclaim that the forcing posetN∩P forces that the quotient (P/q)/ĠN∩P

has universal strongly generic conditions on a stationary set. In particular, N ∩ P

forces that (P/q)/ĠN∩P is strongly proper on a stationary set, and hence has the
�1-approximation property.
Letf : N∩P → P/q be the functionf(p) = q∧p. By Theorem 2.11, it suffices to
show that the regular suborderf[N ∩P] of P/q satisfies property ∗(f[N ∩P],P/q).
But this follows immediately from the fact that P satisfies ∗(P,P).
The second conclusion of the theorem follows from this claim together with the
analysis given prior to the statement of the theorem. �
Anexample of factoring a forcing poset over anuncountable elementary substruc-
ture appears in the final argument ofMitchell’s theoremon the approachability ideal
in [9, Section 3]. Mitchell uses the existence of what he calls tidy strongly generic
conditions to show that the quotient has the �1-approximation property. Theo-
rem 4.3 provides a different justification for Mitchell’s argument which avoids tidy
conditions.
For our second variation of Theorem 2.11, we introduce a weakening of strong
properness which is useful in situations where we desire quotients to have the
�1-approximation property but universal conditions do not exist.

Definition 4.4. A forcing poset Q is nondiagonally strongly proper if for every
condition p in Q, there are stationarily many N in P�1 (H (�Q)) such that p ∈ N
and there exists q ≤ p such that q is a strongly N -generic condition.
As usual, if we replace �Q with any cardinal � ≥ �Q in the definition we get an
equivalent statement.

Proposition 4.5. Let Q be a nondiagonally strongly proper forcing poset. Then Q
satisfies the �1-approximation property.
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The proof is the same as the one sketched after Proposition 2.13.

Theorem 4.6. Suppose thatQ is a forcing poset with greatest lower bounds satisfy-
ing that for every condition p inQ, there are stationarily manyN in P�1 (H (�Q)) such
that p ∈ N and there exists a strongly N -generic condition extending p. Let P be a
regular suborder of Q satisfying property ∗(P,Q). Then P forces thatQ/ĠP is nondi-
agonally strongly proper. In particular, P forces thatQ/ĠP has the �1-approximation
property.

Proof. Let � be a regular cardinal such that Q ∈ H (�). Then Q forces that �
is regular and �Q/ĠP

≤ �. Let Ḟ be a P-name for a function Ḟ : (H (�)V [ĠP])<� →
H (�)V [ĠP], let s ∈ P, and suppose that s forces that ṗ is a condition in Q/ĠP.
We will find an extension of s in P which forces that there exists a countable
set M ⊆ H (�)V [ĠP] which is closed under Ḟ , contains ṗ, and there is a strongly
(M,Q/ĠP)-generic condition below ṗ.
Extending s if necessary, assume that for some p ∈ Q, s forces that ṗ = p̌. Since
s forces that ṗ is in Q/ĠP, s forces that ṗ is compatible with every condition in ĠP.
In particular, s forces that ṗ is compatible with s . So p and s are compatible.
Let H : H (�)<� → H (�) be a function such that P forces thatH (ȧ0, . . . , ȧn) =
Ḟ (ȧ0, . . . , ȧn) for all P-names ȧ0, . . . , ȧn inH (�). SinceQ is nondiagonally strongly
proper, fix a countable set N ≺ H (�) closed under H such that P, Q, s , and p are
in N and there is q ≤ p ∧ s which is a strongly (N,Q)-generic condition.
As P is a regular suborder of Q, fix z in P such that every extension of z in P is
compatible with q. Then z forces that q is in Q/ĠP. Since z is compatible with q in
Q and q ≤ s , z is compatible with s in Q. Since P is a regular suborder and z and
s are in P, z and s are compatible in P. So without loss of generality assume that
z ≤ s .
Since N is closed under H , P forces that N [ĠP] is closed under Ḟ . By Lemma
2.10, z forces that q is a strongly (N [ĠP],Q/ĠP)-generic condition. Also z ≤ s , and
since p ∈ N , z forces that ṗ = p̌ is in N [ĠP]. �
We give an example of a nondiagonally strongly proper forcing poset which is not
strongly proper on a stationary set.
Consider a stationary set S ⊆ �1. Recall the forcing poset PS for adding a club
subset of S with finite conditions ([1, Theorem 3]). A condition in PS is a finite set
p of ordered pairs 〈α, �〉 such that α ∈ S and α ≤ � < �1, and whenever 〈α, �〉
and 〈α′, � ′〉 are in p then it is not the case that α < α′ ≤ � . Let q ≤ p in PS if
p ⊆ q.
Proposition 4.7. Let N be a countable elementary substructure of (H (�1),∈, S)
such thatN ∩�1 ∈ S, and let p ∈ N ∩PS . Then p∪{〈N ∩�1, N ∩�1〉} is a strongly
(N,PS)-generic condition.

The proof is straightforward. The forcing poset PS preserves all cardinals and
adds a club subset of S; see [1] for the details.
Now consider S0 and S1 which are disjoint stationary subsets of �1. Define Q as
the forcing poset consisting of conditions of the form (i, p), where i ∈ {0, 1} and
p ∈ PSi . Let (j, q) ≤ (i, p) if i = j and q ≤ p in PSi .
Proposition 4.8. The forcing poset Q is nondiagonally strongly proper.
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Proof. Let (i, p) be a condition in Q and let F : H (�1)<� → H (�1) be a
function. Since Si is stationary, we can fix a countable elementary substructure N
of (H (�1),∈, F, S0, S1) such that N ∩ �1 ∈ Si and (i, p) ∈ N . Then Proposition
4.7 implies that (i, p ∪ {〈N ∩ �1, N ∩ �1〉}) is a strongly (N,Q)-generic condition
extending (i, p). �
Proposition 4.9. The forcing poset Q is not strongly proper on a stationary set.

Proof. Let Ċ be a Q-name for the club subset of �1 added by Q. Suppose that
N is an elementary substructure ofH (�) for some regular � > �1 such that S0, S1,
Q, and Ċ are in N . Since S0 and S1 are disjoint, N ∩ �1 cannot be in both S0 and
S1. Fix j ∈ {0, 1} such that N ∩�1 is not in Sj . We claim that the condition (j, ∅),
which is inN ∩Q, does not have a stronglyN -generic extension. In fact, it does not
have an N -generic extension.
Suppose for a contradiction that (j, q) ≤ (j, ∅) is N -generic. Then (j, q) forces
thatN [Ġ ]∩V = N , and in particular,N [Ġ ]∩�1 = N ∩�1. Since Ċ ∈ N ,Q forces
thatN [Ġ ]∩�1 ∈ Ċ . So (j, q) forces thatN ∩�1 ∈ Ċ . Since (j, q) forces that Ċ is a
subset of Sj , (j, q) forces that N ∩ �1 ∈ Sj . But N ∩ �1 is not in Sj , so we have a
contradiction. �

§5. A Counterexample. We give an example of a strongly proper forcing posetQ
and a regular suborder P of Q such that P forces that Q/ĠP is not strongly proper
on a stationary set. We will make use of the following well-known fact.

Lemma 5.1. If Q is strongly proper on a stationary set, then any generic extension
of V by Q contains a V -generic Cohen real.

Proof. (Sketch) Let G be a V -generic filter on Q. By a density argument, there
exists a countable elementary substructureN withQ ∈ N and a stronglyN -generic
condition q ∈ G . Then N ∩ G is a V -generic filter on N ∩ Q. But N ∩ Q is a
countable nontrivial forcing poset, and hence is forcing equivalent to Cohen forcing
Add(�). �
So it suffices to define a strongly proper forcing posetQ and a regular suborder P
of Q such that P forces thatQ/ĠP is nontrivial and does not add reals over V [ĠP].
Assume that 2� = �1 and 2�1 = �2. Let X denote the set of all countable
elementary substructures of H (�3). The forcing poset Q consists of finite coherent
adequate subsets of X , ordered by inclusion. The definition of coherent adequate
is beyond the scope of the paper, although we give additional information about
adequacy in the next section. Roughly speaking, a coherent adequate set of models
satisfies that any two models in it are membership comparable up to some initial
segment of the models, and if the models are equal up to some initial segment, then
they are isomorphic. For the complete definition, see [6, Section 1].
The following lists the properties of the forcing poset Q which we will use. For a
proof of (1) and (2) see [6]. For a proof of (3) see [10].

Proposition 5.2. The following statements hold :

(1) Q is strongly proper and �2-c.c.
(2) Q forces CH.
(3) Q forces that there exists an �1-Kurepa tree with �3 many distinct branches.
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Since Q does not have greatest lower bounds, we will consider the Boolean
completion ofQ, which we denote by B. Then easily B has the �2-c.c., preserves all
cardinals, and forces CH. Also a straightforward argument shows that since Q is
strongly proper, so is B.
Let us find a regular suborder P of B which forces that B/ĠP is nontrivial and
does not add reals overV [ĠP]. SinceB forces CH, we can fix a sequence 〈ṙi : i < �1〉
of B-names for subsets of � such that B forces that every subset of � is equal to ṙi
for some i < �1. Moreover, we assume that each name ṙi is a nice B-name given by
a sequence of antichains 〈Ain : n < �〉. So (p, ň) is in the name ṙi iff p ∈ Ain. Since
B is �2-c.c., each antichain Ain has size at most �1.
Fix a regular cardinal � > �3 such that Q, B, 〈ṙi : i < �1〉, and 〈Ain : n < �〉
for all i < �1 are members ofH (�). Let N be an elementary substructure ofH (�)
containing these parameters such thatN has size �2 andN�1 ⊆ N . This is possible
since we are assuming that 2�1 = �2. Now let P := N ∩ B.
Proposition 5.3. The forcing poset P is a regular suborder of B which forces that

B/ĠP is a nontrivial forcing which does not add reals.

Proof. Suppose that p and q are in P and are compatible in B. Then p and q are
in N , so by elementarity, p ∧ q is in N ∩ B = P. So they are compatible in P. Now
let A be a maximal antichain of P. Then A is an antichain of B and is a subset of
B ∩N . Since B is �2-c.c., A has size at most �1. But N�1 ⊆ N , so A ∈ N . Suppose
for a contradiction thatA is not a maximal antichain of B. Then there is a condition
in B which is incompatible with every member of A. Since A ∈ N , by elementarity
there is a condition in N ∩ B = P which is incompatible with every member of A.
But then A is not maximal in P, which is a contradiction.
The forcing poset P has size �2 and is �2-c.c. Since 2�1 = �2 in the ground
model, P forces that 2�1 = �2 by a standard nice name argument. But B forces that
there is an �1-tree with �3 many distinct branches, and hence 2�1 ≥ �3. It follows
that P forces that B/ĠP is a nontrivial forcing.
To show that P forces that B/ĠP does not add reals, let G be a V -generic filter
on B. Let GP := G ∩ N , which is a V -generic filter on P. Let r be a subset of � in
V [G ], and we will show that r is in V [GP]. By assumption, there is i < �1 such that
r = ri , where ri := ṙGi . For each n < �, n ∈ ri iff Ain ∩ G 
= ∅. But Ain is in N and
hence is a subset ofN since Ain has size at most �1. So n ∈ ri iff Ain ∩G ∩N 
= ∅ iff
Ain ∩ GP 
= ∅. It follows that ri , and hence r, is in V [GP]. �
We note that in fact P forces that B/ĠP does not have the �1-approximation
property. Recall that Q forces that there exists an �1-tree with �3 many distinct
branches. By looking at the details of the definition of this tree as presented
in [10], one can argue that this tree already exists in a generic extension by P.
Since 2�1 = �2 in the generic extension by P, P forces that Q/ĠP adds new
branches to the tree. But any initial segment of such a branch lies in the extension
by P, and this easily implies that the quotient does not have the �1-approximation
property.

§6. A strongly proper collapse. We now turn towards proving our consistency
result. We will construct a model in which ISP(�2) holds and the continuum is
greater than �2. The forcing poset used to obtain this model will be of the form
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P×Add(�, �), where P is a strongly proper forcing which collapses a supercompact
cardinal κ to become �2, and Add(�, �) is the forcing which adds � many Cohen
reals.
In this section we will describe the forcing poset P. Essentially this forcing is the
pure side condition forcing consisting of finite adequate subsets of κ ordered by
inclusion, where the notion of adequate set is the same as that defined by Krueger
in [5], except that �2 is replaced by a strongly inaccessible cardinal κ.2

Assume for the rest of the section that κ is a strongly inaccessible cardinal. In
particular, H (κ) has size κ. Fix a bijection 
 : κ → H (κ). Then the structure
(H (κ),∈, 
) has definable Skolem functions. For any set a ⊆ κ, let Sk(a) denote
the closure of a under some (or equivalently any) set of definable Skolem functions.
Let C be the club set of α < κ such that Sk(α) ∩ κ = α. Let Λ be the set of
cardinals � < κ such that � is a limit point of C with uncountable cofinality, and
for all � < � , �� < � . Note that Λ is stationary in κ. Let X be the set of countable
subsets a of κ such that Sk(a) ∩ κ = a and for all � ∈ a, sup(C ∩ �) ∈ a.
Using κ in place of �2 and the sets C , Λ, and X just described, it is possible to
develop the basic ideas of adequate sets word for word as in [5]. We will give an
overview some of the main points. The interested reader is invited to read Sections
1–4 of [5] for the complete details.
For a setM ∈ X , define ΛM as the set of � ∈ Λ such that

� = min(Λ \ sup(M ∩ �)).
By Lemma 2.4 of [5], for allM and N in X , ΛM ∩ ΛN has a largest element. This
largest element is defined as �M,N , the comparison point ofM andN .
One of the most important properties of the comparison point of M and N is
expressed in the following inclusion:

(M ∪ lim(M )) ∩ (N ∪ lim(N)) ⊆ �M,N .
This is proved in [5, Proposition 2.6].

Definition 6.1. A finite set A ⊆ X is adequate if for all M and N in A, either
M ∩ �M,N ∈ Sk(N), N ∩ �M,N ∈ Sk(M ), orM ∩ �M,N = N ∩ �M,N .
Note that A is adequate if for all M and N in A, {M,N} is adequate. Since
�1 ≤ �M,N , if {M,N} is adequate thenM ∩ �M,N ∈ Sk(N) iff M ∩ �1 ∈ N , and
M ∩ �M,N = N ∩ �M,N iffM ∩ �1 = N ∩ �1.
Proposition 6.2. If A is adequate,M ∈ X , and A ∈ Sk(M ), then A ∪ {M} is
adequate.
See [5, Proposition 3.5].
If N ∈ X and � ∈ Λ, then N ∩ � is in X ([5, Lemma 1.10]). Let us say that an
adequate set A is N -closed if for allM ∈ A,M ∩ �M,N ∈ A.
Proposition 6.3. Let A be adequate and N ∈ A. Then there exists an adequate
set B such that A ⊆ B and B is N -closed.
This follows from [5, Proposition 3.4]. The next result appears as [5, Proposi-
tion 3.9].

2Mitchell [9] was the first to define a strongly proper collapse of an inaccessible to become�2. Neeman
[11] gives another example using his method of sequences of models of two types.
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Proposition 6.4. Let A be adequate,N ∈ A, and suppose thatA is N -closed. Let
B be adequate such that A ∩ Sk(N) ⊆ B ⊆ Sk(N). Then A ∪ B is adequate.
Now we are ready to define the forcing poset P. Let P consist of conditions A
such that A is a finite adequate subset of X . Let B ≤ A in P if A ⊆ B.
Lemma 6.5. The forcing poset P has greatest lower bounds. Namely, for compati-
ble conditions A and B in P, A ∧ B equals A ∪ B.
Proof. Suppose that A and B are compatible, and let C ≤ A,B. Since the
ordering of P is inclusion, A ∪ B ⊆ C . For all M and N in A ∪ B, {M,N}
is adequate since they are in C . So A ∪ B is adequate. Hence A ∪ B ∈ P and
C ≤ A ∪ B. �
Lemma 6.6. For allA,B, andC in Pwhich are pairwise compatible,A is compatible
with B ∪ C .
Proof. LetM andN be inA∪ (B ∪C ). ThenM andN are either both inA∪B,
A ∪ C , or B ∪ C . Since each of these three sets is adequate, {M,N} is adequate. �
Proposition 6.7. The forcing poset P has universal strongly generic conditions on
a club.

Proof. Note that X is a club subset of P�1 (κ). Clearly �P = κ. Consider any set
N in P�1 (H (κ)) such thatN ∩κ ∈ X . We claim that {N ∩κ} is a universal strongly
N -generic condition.
IfA is a finite adequate set inN = Sk(N∩κ), then by Proposition 6.2,A∪{N∩κ}
is adequate and hence is in P. Therefore A and {N ∩ κ} are compatible.
To show that {N ∩ κ} is a strongly N -generic condition, let E be the set of B in

P such that {N ∩ κ} ⊆ B and B is N -closed. By Proposition 6.3, E is dense below
{N ∩κ}. Define C �→ C � N for C ∈ E by letting C � N := C ∩N . Clearly C ∩N
is adequate and hence is in P, C ∩N ∈ N , andC ≤ C ∩N . If B is a condition inN
extending C � N , then Proposition 6.4 implies that B ∪C is a condition in P below
B and C , showing that C and B are compatible. �
Proposition 6.8. The forcing poset P is κ-c.c.

The proof of this proposition is identical to the proof of [5, Proposition 4.4], so
we omit it.

Lemma 6.9. The forcing poset P forces that κ equals �2.

Proof. Since P preserves �1 and κ by the preceding propositions, it suffices to
show that for any regular cardinal � such that �1 < � < κ, P collapses � to have
size �1. So let such a � be given and let G be a V -generic filter on P.
Given any condition A and any ordinal � < κ, we can fix M in X such that A,
�, and � are in Sk(M ). Then A ∪ {M} is a condition in P by Proposition 6.2. It
follows by a density argument that the set

F = {M : ∃A ∈ G (M ∈ A ∧ � ∈M )}
has union equal to κ. In particular,

⋃{M ∩ � :M ∈ F } = �.
Now for anyM andN in F , � ∈M ∩N implies that � < �M,N . Fix A in G such
thatM and N are in A. Since A is adequate and � < �M,N ,M ∩ � and N ∩ � are
either equal or one is a proper subset of the other. Moreover, sinceM ∩ �M,N ⊆ N
iffM ∩�1 ≤ N ∩�1, it follows that the set {M ∩� :M ∈ F } is a chain well-ordered
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by inclusion. As each set in this chain is countable, it must have length at most �1.
So � is the union of �1 many countable sets, which implies that � is collapsed to
have size �1 in V [G ]. �
This completes our treatment of a strongly proper collapse. We note that some
variations are possible. By [4], it is possible to eliminate N -closure which is used in
Propositions 6.4 and 6.7, so that the family of models X can be chosen not to be
closed under intersections. An alternative development of these ideas can be made
in the context of coherent adequate set forcing as described in [3] and [6], to produce
a strongly proper collapse which preserves CH.
We also point out that if κ is a Mahlo cardinal, then the forcing poset P above
forces that there are no special Aronszajn trees on �2, and if κ is weakly compact
then P forces that there are no Aronszajn trees on �2. These facts follow by argu-
ments similar to Mitchell’s original proof in [7] using Corollary 2.14. Neeman
obtained similar results in [11, Section 5].

§7. The consistency result. We start with a model in which GCH holds, κ is a
supercompact cardinal, and � is a cardinal of uncountable cofinality with κ ≤ �.
We will define a forcing poset P×Qwhich collapses κ to become �2, forces 2� = �,
and forces that ISP(�2) holds.
Let P be the forcing poset described in the preceding section consisting of finite
adequate collections of countable subsets of κ, ordered by inclusion. Let Q be
Add(�, �). Conditions in Q are finite partial functions from � × � into 2, ordered
by inclusion.
The forcing poset Q is κ-Knaster. In other words, if {qi : i < κ} is a subset of

Q, then there is a cofinal set X ⊆ κ such that for all i < j in X , qi and qj are
compatible. This follows from the Δ-system lemma by a standard argument. Since
P is κ-c.c., it follows easily that P× Q is κ-c.c. Also P× Q has size �. It follows by
a standard argument using nice names that P×Q forces that 2� = �.
Lemma 7.1. If p and q are in Q, then p ∪ q is the greatest lower bound of p and q.
If p, q, and r are pairwise compatible conditions inQ, then p is compatible with q ∧ r.
The proof is easy.
Lemma 7.2. The forcing posetQ has universal strongly generic conditions on a club.
Proof. LetN be a countable elementary substructure ofH (�). We claim that the
empty condition is a universal stronglyN -generic condition. Clearly it is compatible
with every condition in N ∩Q.
For each r ∈ Q, let r � N := r ∩ N . Then r � N ∈ N ∩ Q and r ≤ r � N .
Suppose that v ≤ r � N is in N ∩ Q. We claim that r and v are compatible.
If (i, n) ∈ dom(r) ∩ dom(v), then (i, n) ∈ dom(r) ∩ N . Also r(i, n) ∈ N , so
(i, n, r(i, n)) ∈ r ∩ N . Since v extends r ∩ N , r(i, n) = v(i, n). It follows that r ∪ v
is a condition below r and v. �
Proposition 7.3. The forcing poset P×Q satisfies:
(1) P×Q has greatest lower bounds;
(2) for all pairwise compatible conditions x, y, and z in P × Q, x is compatible
with y ∧ z;

(3) P×Q has universal strongly generic conditions on a club;
(4) P×Q is strongly proper.
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Proof. (1) and (2) follow from Lemmas 3.1, 6.5, 6.6, and 7.1. (3) follows from
Lemma 3.2, Proposition 6.7, and Lemma 7.2. �
Since P × Q is strongly proper it preserves �1, and since it is κ-c.c., it preserves
all cardinals greater than or equal to κ. By Lemma 6.9, every cardinal � with
�1 < � < κ is collapsed to have size �1. It follows that P×Q forces that κ is equal
to �2. As noted above, P×Q forces that 2� = �.
It remains to show that P × Q forces that ISP(�2) holds. So fix a regular
cardinal � such that P × Q ∈ H (�). Let Ḟ be a (P × Q)-name for a function
Ḟ : (H (�)V [ĠP×Q])<� → H (�)V [ĠP×Q]. We will prove that P × Q forces that there
exists a set N satisfying:

(1) N is in Pκ(H (�));
(2) N ∩ κ ∈ κ;
(3) N ≺ H (�);
(4) N is closed under Ḟ ;
(5) N is an �1-guessing model.

Since κ is supercompact, we can fix an elementary embedding j : V → M with
critical point κ such that j(κ) > |H (�)| andM |H (�)| ⊆M .
Lemma 7.4. In V , the function j � P × Q is a regular embedding of P × Q into
j(P×Q). In particular, the forcing poset j[P×Q] is a regular suborder of j(P×Q).

Proof. Properties (1) and (2) of Definition 4.1 follow immediately from the fact
that j is an elementary embedding. For (3), let A be a maximal antichain of P×Q.
Since P×Q is κ-c.c., |A| < κ. Therefore j(A) = j[A]. By elementarity, inM the set
j(A) is a maximal antichain of j(P×Q). But being a maximal antichain is upwards
absolute, so j(A) = j[A] is a maximal antichain of j(P×Q). �
Since being a regular suborder is downwards absolute, j[P × Q] is a regular
suborder of j(P×Q) in the modelM .
Let G ×H be a V -generic filter on P×Q. Let F := Ḟ G×H . We will prove that in
V [G ×H ], there exists a set N satisfying properties (1)–(5) above.
Since j � P × Q is an isomorphism of P × Q onto j[P × Q], j[G × H ] is a

V -generic filter on j[P×Q] andV [G ×H ] = V [j[G ×H ]]. LetK be a V [G ×H ]-
generic filter on the quotient forcing j(P × Q)/j[G × H ]. By Lemma 1.6(2), K
is a V -generic filter on j(P × Q) and V [G × H ][K ] = V [K ]. Also by Lemma
1.6(2), j[G × H ] = K ∩ j[P × Q]. In particular, j[G × H ] ⊆ K . Hence we can
extend the elementary embedding j in V [K ] to j : V [G ×H ] → M [K ] by letting
j(ȧG×H ) = j(ȧ)K .
By the elementarity of j, it suffices to prove thatM [K ] models that there exists a
set N satisfying:

(1) N is in Pj(κ)(H (j(�)));
(2) N ∩ j(κ) ∈ j(κ);
(3) N ≺ H (j(�));
(4) N is closed under j(F );
(5) N is an �1-guessing model.

Let N := j[H (�)V [G×H ]].
First, we prove that N is in M [K ]. Since P × Q ∈ H (�)V , H (�)V [G×H ] =
H (�)V [G × H ]. As M |H (�)V | ⊆ M , H (�)V and j � H (�)V are in M . By the
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definition of the extended embedding j,N = {j(ȧG×H ) : ȧ ∈ H (�)V } = {j(ȧ)K :
ȧ ∈ H (�)V }. Since H (�)V , j � H (�)V , and K are inM [K ], so is N .
Now let us check thatN satisfies properties (1)–(5).
(1) Obviously N ⊆ H (j(�)) inM [K ]. Let f : |H (�)V | → H (�)V be a bijection
in V . The surjection g : |H (�)V | → N given by g(α) = j(f(α))K is in M [K ].
Since j(κ) > |H (�)V |, inM [K ] we have thatN ∈ Pj(κ)(H (j(�))).
(2) As κ is the critical point of j, N ∩ j(κ) equals κ, which is in j(κ).
(3) Let L : (H (�)V [G×H ])<� → H (�)V [G×H ] be a Skolem function for the
structure (H (�),∈). By elementarity, j(L) is a Skolem function in M [K ] for the
structure (H (j(�)),∈). Easily N is closed under j(L). So N ≺ H (j(�)) inM [K ].
(4) SinceH (�)V [G×H ] is obviously closed under F , easilyN is closed under j(F ).
(5) To show that N is an �1-guessing model in M [K ], by Lemma 1.10 it suf-
fices to show that the pair (N,M [K ]) satisfies the �1-approximation property,
where N is the transitive collapse of N . Since N = j[H (�)V [G×H ]] is isomor-
phic to H (�)V [G×H ], which is transitive, it follows that N = H (�)V [G×H ]. As
H (�)V = H (�)M ,H (�)V [G×H ] = H (�)M [G×H ]. So it suffices to show that the pair
(H (�)M [G×H ],M [K ]) satisfies the �1-approximation property.
By Proposition 7.3, the forcing poset P × Q has greatest lower bounds and
has universal strongly generic conditions on a stationary set. And for all pairwise
compatible conditions x, y, and z in P×Q, x is compatible with y ∧ z. By elemen-
tarity, the same properties are satisfied by j(P×Q) in the modelM . In particular,
by Lemma 7.4 j[P × Q] is a regular suborder of j(P × Q) satisfying property
∗(j[P × Q], j(P × Q)). By Corollary 2.14, the forcing poset j(P × Q)/j[G × H ]
satisfies the �1-approximation property in the model M [G × H ]. Hence the pair
(M [G ×H ],M [K ]) satisfies the �1-approximation property.
In M [K ] let d be a bounded subset of H (�)M [G×H ] ∩ On such that for any
countable set b ∈ H (�)M [G×H ], b ∩ d ∈ H (�)M [G×H ]. SinceH (�)M [G×H ] contains
all of its countable subsets inM [G×H ] by the regularity of �, the�1-approximation
property of (M [G ×H ],M [K ]) implies that d ∈ M [G ×H ]. But H (�)M [G×H ] is
closed under bounded sets of ordinals, so d ∈ H (�)M [G×H ].
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