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In this paper, we generalize the Gaussian Variance Approximation (GVA), developed by
Massey and Pender [16], to Jackson networks with abandonment. We approximate the
queue length process with a multivariate Gaussian distribution and thus, we are able
to estimate the mean and covariance matrix of the entire network with more accuracy
than the associated fluid and diffusion limits of Mandelbaum, Massey, and Reiman [14].
We also show how the GVA method can be used to construct staffing schedules that
approximately stabilize salient performance measures such as the probability of delay and
the abandonment probabilities for the entire network. Unlike the work of Feldman et al. [5]
which uses Monte Carlo simulation to stabilize the delay probabilities, our method does not
require simulation and only requires the numerical integration of 1

2 (N2 + 3N) differential
equations for an N -dimensional network, which is more computationally efficient. Lastly,
to confirm our approximations are accurate, we perform several numerical experiments for
a wide range of parameter settings.

Keywords: queueing theory, applied probability, computational probability, simulation, proba-
bilistic networks, stochastic modeling

1. INTRODUCTION

Large-scale service systems such as healthcare centers, data centers, and call centers have
very similar dynamics of customer flow. The arrival of patients, customers, or data typi-
cally varies from day to day and even within the day itself. This behavior suggests that
any stochastic queueing model must incorporate time-varying arrival rates. Moreover, these
systems have a large number of customers and these customers have access to many par-
allel servers. In the healthcare setting, the servers can be the beds or nurses. In a data
center setting, the servers are the computers and machines performing the necessary work.
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Furthermore, if customers feel as if their wait for service is excessively long, they may
choose to abandon the system, or start another process in the meantime. Lastly, cus-
tomers may have to interact with several agents or types of services before they can leave
the system.

A fundamental Markovian time-varying queueing network model that exhibits many
of these features for service systems is a Jackson network with abandonment. This
model assumes that each node of the Jackson network is a multi-server queue with non-
homogeneous Poisson external arrivals, exponentially distributed service as well as customer
abandonment times, and random routing through the network. One way to analyze the Jack-
son network with abandonment is to use Monte Carlo simulation. However, Monte Carlo
simulation is computationally intensive, especially when a network has a large number of
nodes or stations. Thus, we are motivated by this computational problem to develop alter-
native methods and numerical algorithms that estimate the non-stationary dynamics of the
Jackson network without using Monte Carlo simulation.

One method that has been used to describe the dynamics of Jackson networks is to
analyze the transition probabilities of the network. However, even in the one server setting
with one node and constant coefficients, an analysis of the transition probabilities is non-
trivial as they involve infinite sums of modified Bessel functions. Moreover, with time-
varying arrivals, service, abandonment, and in the network setting, a full understanding
of the transition probabilities requires the numerical integration of an infinite number of
differential-difference equations. Thus, it is important to develop new ways of analyzing the
moment behavior of the Jackson network with abandonment that avoids using the transition
probabilities.

A more practical method to analyze the Jackson network is to use asymptotic tech-
niques. In the work of Mandelbaum, Massey, and Reiman [14], the authors prove both
a functional strong law of large numbers and a functional central limit theorem for the
Jackson network with abandonment. They show using strong approximations that the
functional strong law of large numbers limit converges to a deterministic dynamical sys-
tem or fluid model. Moreover, the functional central limit theorem converges to a Gaussian
diffusion under mild conditions. The mean and covariance of the Gaussian diffusion can
be combined with the fluid model that describes the mean and covariance behavior of
the original stochastic network model when the number of servers and the arrival rate
are large.

The theory provided by the limit theorems is appropriate for models where the arrival
rate and the number of servers are large. It is well known from examples given in Mandel-
baum et al. [15], Ko and Gautam [8], and Massey and Pender [16] that the theory may yield
less precise approximations when the arrival rate and number of servers is small or during
the times when the number of servers is equal to or close to the mean queue length. The
latter is known as the lingering condition. However, the work of Massey and Pender [16,17]
proposes a new technique called the Gaussian Variance Approximation (GVA) to correct
some of the inaccuracies of the fluid and diffusion limits in the one node case. This extends a
method first formulated by Ko and Gautam [8] for multi-server queues with retrials. In this
paper, we generalize the GVA to the Jackson network with abandonment model. We show
that the GVA improves the estimation of the mean and covariance matrix of the network.
Accurate values of these statistics for the network are not only necessary for managers to
understand the dynamics of their network. They are also needed to accurately staff the
networks properly to meet performance targets.

In addition to our improved estimates of the mean and covariance behavior of the
network, we also show that it is possible to construct staffing algorithms for stabilizing
various performance measures that are of importance to the queueing community. In fact,
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we demonstrate that we can stabilize the probability of delay and abandonment proba-
bilities of each node in the network using approximate values for the transition rates of
each node. These performance measures have been stabilized in one-dimensional queue-
ing processes, see for instance, Jennings et al. [6], Liu and Whitt [12]. In the context of
multi-dimensional networks the work of Defraeye and Van Nieuwenhuyse [2] and Yom-tov
and Mandelbaum [31] consider retrial queueing models and propose non-stationary staffing
schedules to stabilize delay probabilities. Moreover, recent work by Liu and Whitt [11,13]
considers a feed forward network a retrial queue and attempts to stabilize performance
using infinite server queue approximations. However, no such work covers all of these per-
formance measures in the full Jackson network setting, thus making this the first paper
to stabilize these performance measures in the network setting although in the Marko-
vian setting. Moreover, these methods not based on simulation or the infinite server queue
length process, but are based on using our Gaussian approximations and simple ratios of
the transition rates of the queue length processes, which is a new and novel idea in the
literature.

1.1. Contributions

Our contributions in this work are the following.

1. We obtain accurate estimates for the mean and covariance matrix of the (Mt/Mt/
ct +Mt)N queueing network in critical and non-critically loaded regions.

2. We give closed form approximations for the probability of delay and derive a staffing
schedule that stabilizes the delay probabilities at each node of the (Mt/Mt/ct +Mt)N

queueing network.
3. We develop a new approach to stabilizing performance measures of queueing net-

works using the transition rates of the queueing network. This new approach is
applied to stabilize the abandonment probabilities of each node of the Jackson
network.

4. We provide several numerical examples to demonstrate the effectiveness of our
approximations and the how we stabilize the performance of the network.

1.2. Organization of the Paper

The rest of the paper continues as follows. In Section 2, we review our queueing model and
the associated fluid and diffusions limits derived in [14]. We also provide explicit expressions
for the functional Kolmogorov forward equations for the mean and covariance matrix for the
Jackson network and we show how to simulate non-stationary Jackson networks as well as
integrate dynamical systems. In Section 3, we describe our new methods for estimating the
mean and covariance dynamics of the Jackson network with abandonment. In Section 4, we
also show how to use our new method of approximating the moment dynamics to construct
stabilizing algorithms for the probability of delay at positive target values. In Section 5,
we show how to use the transition rates of the Jackson network in order to stabilize the
abandonment probabilities of the network at each node. In Section 6, we conclude and iden-
tify opportunities for future work. In the Appendix, we provide several numerical examples
to demonstrate the effectiveness of our approximations and stabilizing methods. We also
extend the Deterministic Mean Approximation (DMA) and GVA approximations to the
case of loss networks that have state-dependent arrival rate functions.
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1.3. Notation

The paper will use the following notation:

• λi(t) is the external arrival rate to node i at time t.
• βi(t) is the abandonment rate for node i at time t.
• μi(t) is the service rate for node i at time t.
• τij(t) is the abandonment routing probability from node i to node j at time t.
• γij(t) is the service routing probability from node i to node j at time t.
• τi(t) is the abandonment departure probability from node i at time t.
• γi(t) is the service departure probability from node i at time t.
• ci(t) is the number of servers for node i at time t.
• x ∧ y = min(x, y).
• (x− y)+ = max(0, x− y).
• x ◦ y = Hadamard or componentwise product of x and y.
• x⊗ y = Kronecker product of two vectors x and y.
• vi = jump vectors as explained in Section 2 of [14].
• Δ(μ) = diagonalization of vector μ.
• {x < y} denotes an indicator function that equals. one if the statement is true that

is, if x < y, and zero if the statement is false.
• P s denotes the matrix of service departure routing probabilities.
• P a denotes the matrix of abandonment routing probabilities.
• ϕ(x) is the probability density function (pdf) of the standard normal distribution.
• Φ(x) = 1 = Φ(x) is the cumulative distribution function (cdf) of the standard

normal distribution.
• ei is a vector of length N where the ith entry is equal to one and all other entries

are zero.

We also require the following conditions:

τi(t) +
N∑

j=1

τij(t) = 1 and γi(t) +
N∑

j=1

γij(t) = 1. (1.1)

These conditions ensure that the outflow from each node matches the number of departures
from the system and the inflow to other nodes.

2. JACKSON NETWORK WITH ABANDONMENT

Markovian Jackson networks with abandonment are the standard models to analyze when
one wants to model large-scale service systems where each node or location has multiple
servers and impatient customers. In the context of telecommunication systems, call centers
with interactive voice response (IVR) can be modeled as Jackson networks with abandon-
ment, see for example Khudyakov, Feigin, and Mandelbaum [7]. In the context of healthcare
systems, hospital networks where a patient may have to interact with the hospital admin-
istration, nurses, doctors, medical machinery, and hospital staff can also be modeled as a
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Jackson network with abandonment, see for example Yom-Tov and Mandelbaum [31] or
Vericourt and Jennings [28].

The Jackson network with customer abandonment is also a special case of a Markovian
service network. Markovian service networks were first considered in the work of Man-
delbaum et al. [14], where fluid and diffusion limit theorems were proved using strong
approximations. In Mandelbaum et al. [14] it is shown that each queue length process
can be written in terms of time-changed Poisson processes and can be represented by the
following stochastic integral equation for all i such that 1 ≤ i ≤ n

Qi(t) = Qi(0) + Πa
i

(∫ t

0

λi(s)ds
)
−

N∑
j=1

Πr
ij

(∫ t

0

(Qi(s) − ci(s))+ · βi(s) · τij(s)ds
)

+
N∑

j=1

Πr
ji

(∫ t

0

(Qj(s) − cj(s))+ · βj(s) · τji(s)ds
)

−
N∑

j=1

Πd
ij

(∫ t

0

(Qi(s) ∧ ci(s)) · μi(s) · γij(s)ds
)

+
N∑

j=1

Πd
ji

(∫ t

0

(Qj(s) ∧ cj(s)) · μj(s) · γji(s)ds
)

(2.1)

− Πr
i

(∫ t

0

(Qi(s) − ci(s))+ · βi(s) · τi(s)ds
)

− Πd
i

(∫ t

0

(Qi(s) ∧ ci(s)) · μi(s) · γi(s)ds
)
,

where each of the Πi,Πij ’s are each independent unit rate Poisson processes. Time changes
of these Poisson processes give each process a probabilistic interpretation in terms of the
queue length processes. A deterministic time change for each Πa

i transforms it into a non-
homogeneous Poisson arrival process with rate λi(t). This arrival process counts the number
of exogenous customer arrivals to node i of the network that have arrived in the interval
(0, t]. If we subject Πd

i to a random time change, it counts the number of service departures
from node i in the interval (0, t]. Moreover, a random time change for Πd

ij represents the
number of customers that receive service from node i and move to node j. Similarly, we have
that Πr

i represents the number of customers that have abandoned from node i during the
interval (0, t]. Lastly, the process Πr

ij counts the number of customers that do not receive
service and abandon from node i and moves to node j.

It is important to also note that the parameters that define the time changed Poisson
processes (μ, β, τ, γ) are also themselves non-stationary and therefore have time dependence.
In terms of the service and abandonment processes, this means that the service rate of a
customer in service at time t is served at rate μ(t) and customers that are not in service
abandon the system at rate β(t). In the context of service completions, time dependent rates
can be used to model the fact that servers might slow down when they are tired during
a particular part of the day (after lunch for example). In the context of abandonments,
customers might be more likely to abandon during certain periods of the day. Lastly, in
terms of routing probabilities, patients might be routed to different parts of a hospital
depending on what time they might arrive and what condition they have. This is likely to
change over time as doctors and nurses do not sit in just one place during the entire day.
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Finally, one should also note that these time changes depend on the number of servers
ci(t), which is a time-varying parameter for each node of the network. Although there
is no problem with displacement of customers when the number of servers is increased,
when the number of servers is decreased, then we must be concerned removing customers
that might have been in service. There are several approaches to this issue. If one uses
uniformization or the simulation approach given in [16], then this is irrelevant since the
simulation only depends on rates. However, if the simulation is implemented in another
fashion, then this concern is quite negligible. Given that all of the servers are identical, one
method is to take the customer with the smallest remaining service time and have that
customer either wait for the next server to complete their service or to hold the server with
the minimum remaining service until the customer is finished. Since we are dealing with
exponential random variables, taking the minimum over the remaining service times (which
is also exponential) has a very small mean and variance and can be considered negligible in
entire simulation. However, this is irrelevant for us as we use the approach in [16].

Remark 2.1: From this point on, we will suppress time dependence for the queueing network
parameters and processes. This is just a notational convenience, however, all parameters in
subsequent sections have time dependence.

2.1. Fluid and Diffusion Limits

The traditional way to analyze the moment behavior of queueing networks is to use asymp-
totic methods. In Mandelbaum et al. [14], general limit theorems were developed for
Markovian service networks. Using these results for Jackson networks with abandonment,
one can construct an associated, uniformly accelerated queueing process à la Halfin-Whitt,
where the new arrival rate function is η · λ and the new number of servers is η · c for some
scale factor η > 0. Moreover, by taking the following pointwise limits yields the fluid models
of Mandelbaum et al. [14].

Theorem 2.2: If limη→∞ 1
ηQ

η(0) = q(0) almost surely, then we have that

lim
η→∞

1
η
Qη(t) = q(t) a.s., (2.2)

where the deterministic process q(t) ≡ {q1(t), q2(t), . . . , qN (t)|t ≥ 0}, the fluid mean, is
governed by the N -dimensional dynamical system

•
qi = λi − μi · (qi ∧ ci) − βi · (qi − ci)+ (2.3)

+
N∑

j=1

(qj − cj)+ · βj · τji +
N∑

j=1

(qj ∧ cj) · μj · γji

for all 1 ≤ i ≤ n.

In addition to the fluid limits, if we normalize the queue length by the fluid limit and
rescale by

√
η, then we get the following diffusion limits for the queue length process:
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Theorem 2.3: If limη→∞ 1√
ηQ

η(0) −√
ηq(0) d= Q̂(0), then we have that

lim
η→∞

√
η ·
(

1
η
Qη(t) − q(t)

)
d= Q̂(t), (2.4)

where Q̂ is the same N -dimensional diffusion process in derived in Mandelbaum et al. [14].
Moreover, the diffusion limit suggests that if the set

AN ≡
N⋃

i=1

{ t | qi(t) = ci(t) } (2.5)

has Lebesgue measure zero, then Q̂(t) ≡ {Q̂1(t), Q̂2(t), . . . , Q̂N (t)|t ≥ 0} is an N -
dimensional Gaussian diffusion process whose covariance Cov[Q̂, Q̂] ≡ Cov[Q̂] combines
with the fluid mean to form a (N2 +N)-dimensional dynamical system for the covariance
matrix given by Eq. (2.3),

•
vi = λi + μi · (qi ∧ ci) + βi · (qi − ci)+ − 2 · μi · vi · {qi ≤ ci} − 2 · βi · vi · {qi > ci} (2.6)

+
N∑

j=1

μj · γji · (qj ∧ cj) +
N∑

j=1

βj · τji · (qj − cj)+ +
N∑

j=1

2 · μj · γji · vij · {qj ≤ cj}

+
N∑

j=1

2 · βj · τji · vij · {qj > cj},

and

•
vij = −μi · vij · {qi ≤ ci} − βi · vij · {qi > ci} −

N∑
j=1

μi · γij · (qi ∧ ci) (2.7)

−
N∑

j=1

βi · τij · (qi − ci)+ −
N∑

j=1

μj · γji · (qj ∧ cj) −
N∑

j=1

βj · τji · (qj − cj)+

+
N∑

j=1

μi · γij · vi · {qi ≤ ci} +
N∑

j=1

βi · τij · vi · {qi > ci}

−
N∑

j=1

μj · γji · (vij − vj) · {qj ≤ cj} −
N∑

j=1

βj · τji · (vij − vj) · {qj > cj}

for all i 	= j.

2.2. Simulation of Jackson Network and Dynamical Systems

In this section, we give a description of how to simulate the Jackson network with aban-
donment using uniformization. In Figure 4, which is adapted from Massey and Pender [16],
we illustrate how to simulate a Markovian multi-server queue using Monte Carlo simulation
methods outlined in Ross [26]. The inner loop labeled update is given in Figure 5 and shows
how to uniform random variables to construct the sample path behavior of the multi-server
queue. For the Jackson network with abandonment we can use a similar transition rate

https://doi.org/10.1017/S0269964816000371 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000371


8 J. Pender and W.A. Massey

approach to generate the sample path dynamics of the entire network. In order to determine
what Poisson process will jump next, we use a uniform random variable to determine the
probability of each jump. Then we iterate this procedure until the final time is reached.
In order to gain some intuition and insights about the dynamics of the Jackson network
with abandonment, we use the simulation methodology outlined in Figures 4 and 5 and
we simulate a two-dimensional Jackson network with abandonment. In fact, the numerical
example that we present here will serve as the basis for comparing our new approximations
in this paper, however, we provide more numerical examples in the Appendix to give the
reader confidence that our approximations work in a variety of parameter settings. For our
main numerical example we simulate the mean and variance of a two node Jackson network
with abandonment with the parameters given in Table 1. In all of our simulations, the step
size or Δt is equal to 10−4, the number of averaged sample paths is equal to 10,000, and
final time that we use is T = 40. In terms of numerically integrating ordinary differential
equations like the ones obtained from the fluid and diffusion limits, we also consider a time
step Δt that is equal to 10−4 and final time that is equal to T = 40. In order to integrate
the differential equations, we also use the traditional Euler numerical scheme, which can be
found in any standard textbook on differential equations. See the Appendix of [16] for more
information on the Euler scheme.

Using the parameters of Table 1, in Figure 1 we compare the fluid mean with its
simulated counterpart. In Figure 1, we see that the fluid mean of the queue does moderately
well at approximating the non-stationary dynamics of the mean stochastic behavior of both
queues. We observe that the accuracy of the fluid mean is also at its best when the stochastic

Table 1. Two Node Jackson Network Model Parameters

Parameter Value Parameter Value

λ1 10 + 5 sin(t) λ2 10 + 2 sin(t)
μ1 1 μ2 1
c1 10 c2 20
β1 0.25 β2 0.5
τ1 0.25 τ2 0.25
γ1 0.25 γ2 0.25
τ11 0 τ22 0
γ11 0 γ22 0
τ12 0.75 τ21 0
γ12 0.75 γ21 0
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Figure 1. Simulated mean versus fluid limit mean of Q1 (left). Simulated mean versus
fluid limit mean of Q2 (right).
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mean queue lengths are not near a local maximum, minimum, or when the number of servers
crosses is equal to the fluid mean. Part of this phenomenon can be explained by the stochastic
nature of the simulation. Since the queue length processes are stochastic in nature, they will
experience larger queue lengths than those that are predicted by the fluid approximation.
This explains partly why the simulated mean dominates the fluid mean.

In Figure 2, it is observed that the variance of the diffusion limit is not approximating
the dynamics of the stochastic variance very well for each of the queue length processes. In
fact, we notice that the diffusion limit approximation is the least accurate when the fluid
limit mean is approximately equal to the number of servers. This is also precisely where the
Gaussian limit theorems of [14] break down since there is a discontinuity in the variance and
can be seen in the kink in the diffusion limit neat the times t = {5, 11, 17, 24, 30}. We should
mention that it may appear that the largest difference between the variance is at the local
maximum and minimum of the diffusion variance on the left of Figure 2, however, the
largest discrepancy occurs at the kinks in the diffusion variance. This is precisely where the
fluid mean and the number of servers are equal to each other. However, on the right side of
Figure 2 we see that the largest discrepancy of the simulated and diffusion variance occurs
at the local maximum of the each of the variances. This is precisely where the fluid mean of
the second queue is closest to the number of servers and the lingering condition can begin
go take effect.

On the left side of Figure 3, we plot the diffusion limit approximation of the covariance
between the two queue length processes with its simulated counterpart. We also see that

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Time

S
im

ul
at

ed
 a

nd
 D

iff
us

io
n 

V
ar

ia
nc

e 
of

 Q
1 Var−Sim Q

1
Var−Diff Q

1

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

Time

S
im

ul
at

ed
 a

nd
 D

iff
us

io
n 

V
ar

ia
nc

e 
of

 Q
2 Var−Sim Q

2
Var−Diff Q

2

Figure 2. Simulated variance versus diffusion variance of Q1 (left). Simulated variance
versus diffusion variance of Q2 (right).
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Figure 3. Simulated covariance versus diffusion covariance (left). Simulated probability
of delay (right).
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Figure 4. Algorithm for queueing network simulation.

Figure 5. Update algorithm for queueing network simulation.

the diffusion limit does not estimate the dynamics of the covariance of the two-dimensional
Jackson network well. Thus, we conclude from our simulations that we need significant
improvements in the fluid and diffusion limits in order to accurately approximate the
stochastic queueing processes in this example. On the right side of Figure 3, we also plot
the delay probabilities of the two queue lengths. Since the number of servers are constant
throughout time in this example, we see that the delay probability increases when the mean
queue length for each queue increases. Moreover, when the queue lengths achieve their local
maxima, then the probability of delay also achieves a local maxima since the number of
servers is a constant function of time.

In all of the above figures, we observe that the mean and variance approximations need
some improvement. In the sequel, we will generalize the GVA of [16] to provide refine-
ments for the mean and covariance differential equations. However, in order to construct
the GVA, we need to derive the functional version of the Kolmogorov forward equations for
the (Mt/Mt/ct +Mt)N queueing network.
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2.3. Functional Kolmogorov Forward Equations

The functional Kolmogorov forward equations are the first step in order to develop the
GVA method for our Jackson network with abandonment. Following the same procedure
given in Massey and Pender [16], we have the following representation for the marginal
distribution of the functional Kolmogorov forward equations for the Jackson network with
abandonment:

Theorem 2.4: Suppose that f is a polynomial function that maps from R → R, then we
have the following functional Kolmogorov forward equations for the Jackson network with
abandonment

•
E [f(Qi)] = λi · E [(f(Q+ 1) − f(Q))] + E [δi(Q) · (f(Q− 1) − f(Q))] (2.8)

+
N∑

j=1

E [Dij(Q) · (f(Q− 1) − f(Q))] +
N∑

j=1

E
[
D̃ij(Q) · (f(Q+ 1) − f(Q))

]
,

where we have the following expressions for the rate functions:

δi(Q) = μi · τi · (Qi ∧ ci) + βi · γi · (Qi − ci)+, (2.9)

Dij(Q) = μi · τij · (Qi ∧ ci) + βi · γij · (Qi − ci)+, (2.10)

D̃ij(Q) = μj · τji · (Qj ∧ cj) + βj · γji · (Qj − cj)+. (2.11)

Proof: See Engblom and Pender [4]. �

Moreover, if one specializes to functions such as {Qi, Qi ·Qj − E[Qi] · E[Qj ], (Qi −
E[Qi])2}, one gets the following expressions for the mean, covariance, and variance functions

Corollary 2.5: The functional Kolmogorov forward equations for the mean, variance, and
covariance of the Jackson network with abandonment have the following expressions:

•
E [Qi] = λi − E [δi(Q)] −

N∑
j=1

E [Dij(Q)] +
N∑

j=1

E
[
D̃ij(Q)

]
, (2.12)

•
Var[Qi] = λi + E [δi(Q)] +

N∑
j=1

E [Dij(Q)] +
N∑

j=1

E
[
D̃ij(Q)

]
(2.13)

− 2 · Cov[Qi, δi(Q)] − 2 ·
N∑

j=1

Cov[Qi, D̃ij(Q)] + 2 ·
N∑

j=1

Cov[Qi,Dij(Q)],

and

•
Cov[Qi, Ql] = −

N∑
j=1

E [Dij(Q)] −
N∑

j=1

E
[
D̃ij(Q)

]
(2.14)

− Cov[Qi, δl(Q)] − Cov[Ql, δi(Q)]

+
N∑

j=1

Cov[Qi,Dij(Q) − D̃ij(Q)] −
N∑

j=1

Cov[Ql,Dij(Q) − D̃ij(Q)].
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Remark 2.6: It is worth noting that the functional forward equations are not-autonomous.
This means that one needs to know a priori the distribution of the queue length process in
order to compute the unknown expectations and covariance terms. The only exception to
this is when P s = P a and μi = βi, when the queueing network has the same dynamics as
an infinite server queueing network. In this case the dynamics are much easier to analyze
via a Poisson random measure approach and the work of Massey and Whitt [18] provides
an in depth analysis for this case.

2.3.1. Matrix Version of Functional Forward Equations. The equations for the functional
forward equations are very quite complicated since they involve many sum of different sta-
tions. However, below we present a more compact version of the dynamical system equations
for the mean and covariance matrix of the Jackson network. For the mean we have that

•
E[Q] =

d

dt
E[Q]

= λ + μ ◦ E[(Q ∧ c)] · (P s − I) + β ◦ E[(Q− c)+] · (P a − I)

= λ − μ ◦ E[(Q ∧ c)] · (I − P s) − β ◦ E[(Q− c)+] · (I − P a) ,

and for the covariance we have that

•
Cov[Q,Q] =

d

dt
(E[Q⊗Q] − E[Q] ⊗ E[Q])

= −Cov[Q,Q ∧ c] · I ⊗ (Δ(μ) · (I − P s)) − Cov[Q ∧ c, Q] · (Δ(μ) · (I − P s)) ⊗ I

− Cov[Q, (Q− c)+] · I ⊗ (Δ(β) · (I − P a)) − Cov[(Q− c)+, Q] · (Δ(β) · (I − P a)) ⊗ I

+ Δ
(
λ + μ ◦ E[(Q ∧ c)] · (I − P s) + β ◦ E[(Q− c)+] · (I − P a)

)
− Δ (μ ◦ E[(Q ∧ c)] · (P s ⊕ P s)) − Δ

(
β ◦ E[(Q− c)+] · (P a ⊕ P a)

)
.

The matrix representation is extremely useful for numerically computing the mean
and covariance by using simple matrix operations. In the next section, we will show how
to combine the functional Kolmogorov forward equations with a multivariate Gaussian
distribution to construct better approximations for the mean and covariance matrix of the
queueing network.

3. DETERMINISTIC AND GAUSSIAN APPROXIMATIONS

In this section, we derive two approximations for the Jackson network with abandonment.
These approximations are combine the functional forward equations with polynomial chaos
expansions of stochastic processes. Polynomial chaos expansions have been used a variety
of fields to estimate the the statistical properties of complex stochastic processes. The main
idea is to expand a stochastic process in terms of simple random variables, that is,

Q(t, ξ) =
∞∑

i=0

ai(t) · ψi(ξ) (3.1)

where ai(t) are deterministic functions and ψi(ξ) are multi-dimensional polynomials that are
orthogonal with respect to a probability measure w(ξ). One should note that this expansion
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includes an infinite number of terms. However, as is common in many polynomial chaos
expansions, one must truncated the expansion and use only a finite number of terms i.e.,

Qn(t, ξ) =
n∑

i=0

ai(t) · ψi(ξ) ≈ Q(t, ξ). (3.2)

Hermite polynomial chaos expansions were first proposed by Wiener in [29] and they
exploit Gaussian random variables. When combined with the Cameron–Martin theorem [1],
the Hermite polynomial chaos can approximate any square integrable functional andQn(t, ξ)
converges to Q(t, ξ) as n→ ∞ in the L2 sense. Thus, using the polynomial chaos, one can
expand any square integrable stochastic process in terms of orthogonal polynomials and
more specifically the Hermite polynomials. We choose the Hermite polynomials for several
reasons. The first reason is that we are inspired by the Gaussian heavy traffic limits of
Mandelbaum et al. [14] for the Jackson network and therefore the probability measure that
we choose for the orthogonal polynomial expansion is the Gaussian measure. This implies
that the orthogonal polynomials that are relevant are the Hermite polynomials. The second
reason is that the Hermite polynomials have special derivative properties such as Stein’s
lemma [27] and they are useful for smoothing out functions that are not differentiable
or continuous, see for example Massey et al. [16] and Xiu et al. [30]. This is especially
important in queueing where many of the functions that arise are maximum, minimum,
or indicator functions. Lastly, since we want to improve the mean and variance dynamics
of the queueing process, we are confident that this method works since it converges in the
mean square sense. As a result, in the sequel, we will show that two terms of the expansion
is enough to estimate the mean, covariance matrix, and several performance measures of
our Jackson network quite well.

Remark 3.1: It is important to also mention that the polynomial chaos approach can be
extended to other type of orthogonal polynomials like the Laguerre, which are orthogonal to
the gamma distribution on the positive real line or the Poisson–Charlier polynomials which
are discrete and are orthogonal to the Poisson distribution on the non-negative integers; see
for example Engblom and Pender [4] or Pender [19–23] in the one-dimensional setting. For
more work on polynomial chaos expansions, the reader should see Xiu and Karniadakis [30].

3.1. Deterministic Mean Approximation

Our first approximation take advantage of the fact that the first term in the polynomials
chaos expansion is a deterministic function. Thus, we will use these deterministic functions
to approximate the distribution of the queueing process. We call this the DMA since we
assume {q(t)|t ≥ 0} is a deterministic process that approximates the queueing process. By
applying the DMA to our Jackson network with abandonment, we arrive at our first theorem.

Theorem 3.2: If we substitute the approximate distribution Q ≡ q for the queue length
process of the Jackson network with abandonment, we get the following differential equations
for the mean

•
qi = λi − μi · (qi ∧ ci) − βi · (qi − ci)+ (3.3)

+
N∑

j=1

(qj − cj)+ · βj · τji +
N∑

j=1

(qj ∧ cj) · μj · γji.
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Proof: Since the deterministic mean approximation is not stochastic, we have that

•
E [Qi] = λi − E [δi(Q)] −

N∑
j=1

E [Dij(Q)] +
N∑

j=1

E
[
D̃ij(Q)

]
(3.4)

•
E [qi] = λi − μi · E [(qi ∧ ci)] − βi · E

[
(qi − ci)+

]
(3.5)

−
N∑

j=1

E
[
(qj − cj)+

] · βj · τji +
N∑

j=1

E [(qj ∧ cj)] · μj · γji

•
qi = λi − μi · (qi ∧ ci) − βi · (qi − ci)+ (3.6)

+
N∑

j=1

(qj − cj)+ · βj · τji +
N∑

j=1

(qj ∧ cj) · μj · γji. �

This approximation, however, yields the same equation as the fluid limit results of [14].
This is not surprising in that the fluid limit can be interpreted as the best deterministic
function that approximates the queueing network. Moreover, DMA in the network setting
can be viewed as an one-dimensional projection onto the deterministic function q(t). For
the covariance, the DMA approximation yields a value of zero since the DMA implicitly
assumes that the covariance and other cumulant moments are equal to zero. If we want to
appropriately model other moments such as the covariance, then we must add an additional
term to the approximation in order to add some randomness into the approximation.

3.2. Gaussian Variance Approximation

Now that we have seen that the fluid and diffusion approximations need some improvement
we will show how we can generalize the work of [8] and [16] to improve the estimates of the
mean and covariance matrix for the Jackson network with abandonment. In the one node
case, [16] approximates the queue length process, by a Gaussian(q,v) random variable at
each time point t. However, we since our network isN -dimensional, we will use a multivariate
Gaussian distribution at each time point for the network case. To construct the GVA in
the network setting, we first let X1,X2, . . . , XN be N -independent Gaussian(0,1) random
variables. Now we define the quantity Z1 = X1 and define recursively

Zi = Zi−1 · cos θi−1 +Xi · sin θi−1. (3.7)

Using this recursive definition for the Zi terms, it is easily seen that the Zi random variables
are distributed as Gaussian(0,1) random variables themselves, however, it needs to empha-
sized that they are not independent. Now using the definition of the Zi random variables,
we have the following construction of the GVA for each individual node of the network as

Qi = qi +
√
vi · Zi. (3.8)

This construction implies that if i < j that

E[Qi] = qi, (3.9)

Var[Qi] = vi, (3.10)

Cov[Qi, Qj ] ≡ vij =
√
vivj · cos θi · · · cos θj−1. (3.11)
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Remark 3.3: The iterated cosine functions represent the correlation between two queue
length processes. Moreover, this representation implies when the θi terms are non-zero that
the queueing processes are not assumed to be independent of each other. Lastly, this method
is equivalent to assuming that the queue length process is a multivariate Gaussian and is one
of many such representations. However, we believe that our representation in terms of inde-
pendent Gaussian allows us to calculate the closed form expressions for the rate functions
in a systematic fashion without the use of Gaussian integrals. It should also be emphasized
that the trigonometric representation is no different from the standard correlation represen-
tation. For instance in the two-dimensional case, cos(θ) = ρ and sin(θ) =

√
1 − ρ2. There

is no difference in representation; however, we find the trigonometric representation to be
more useful although it is not standard.

Moreover, our independent Gaussian representation also allows us to derive closed form
expressions for the θi terms as well. Using the adjacent nodes for the network, we arrive
at the following formula for the θi terms, which are viewed as the inverse cosine of the
correlations between the queue length nodes, that is,

θi = cos−1

(
vii+1√
vi · vi+1

)
. (3.12)

This representation of the correlation terms is useful for numerically integrating the
differential equations for the mean and variance, but is not necessary to do so.

Theorem 3.4: If we substitute the above approximate distribution in Eq. (3.8) for each of
the queue length processes of the Jackson network with abandonment, we get the following
differential equations for the mean, covariance, and variance:

•
qi = λi − μi ·

(
qi −√

vi ·
(
ϕ(χi) − χi · Φ(χi)

))− βi ·
(√
vi ·

(
ϕ(χi) − χi · Φ(χi)

))
(3.13)

+
N∑

j=1

(√
vj ·

(
ϕ(χj) − χj · Φ(χj)

)) · βj · τji

+
N∑

j=1

(
qj −√

vj ·
(
ϕ(χj) − χj · Φ(χj)

)) · μj · ϕji,

•
vi = λi + μi ·

(
qi −√

vi ·
(
ϕ(χi) − χi · Φ(χi)

))
+ βi ·

(√
vi ·

(
ϕ(χi) − χi · Φ(χi)

))
(3.14)

− 2 · μi · vi · Φ(χi) − 2 · βi · vi · Φ(χi) +
N∑

j=1

μj · γji ·
(
qj −√

vj ·
(
ϕ(χj) − χj · Φ(χj)

))

+
N∑

j=1

βj · τji ·
(√
vj ·

(
ϕ(χj) − χj · Φ(χj)

))

+
N∑

j=1

2 · μj · γji · vij · Φ(χj) +
N∑

j=1

2 · βj · τji · vij · Φ(χj),
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and

•
vij = −μi · vij · Φ(χi) − βi · vij · Φ(χi) +

N∑
j=1

μi · γij · vi · Φ(χi) (3.15)

+
N∑

j=1

βi · τij · vi · Φ(χi) −
N∑

j=1

μi · γij ·
(
qi −√

vi ·
(
ϕ(χi) − χi · Φ(χi)

))

−
N∑

j=1

βi · τij ·
(√
vi ·

(
ϕ(χi) − χi · Φ(χi)

))

−
N∑

j=1

μj · γji ·
(
qj −√

vj ·
(
ϕ(χj) − χj · Φ(χj)

))

−
N∑

j=1

βj · τji ·
(√
vj ·

(
ϕ(χj) − χj · Φ(χj)

))

−
N∑

j=1

μj · γji · (vij − vj) · Φ(χj) −
N∑

j=1

βj · τji · (vij − vj) · Φ(χj),

where

χi =
ci − qi√

vi
. (3.16)

In order to prove the main theorem, we will show that it suffices to derive the following
closed form expressions for the expectation and covariance terms of present in the functional
forward equations of the queueing network

E[(Qi ∧ ci)] = qi −√
vi ·

(
ϕ(χi) − χi · Φ(χi)

)
,

E[(Qi − ci)+] =
√
vi ·

(
ϕ(χi) − χi · Φ(χi)

)
,

Cov [Qj , (Qi ∧ ci)] = vji · Φ(χi),

Cov[Qj , (Qi − ci)+] = vji · Φ(χi),

Cov[Qj , Qi] = vji.

However, before we prove the main result, we need to prove a simple lemma about the
Zi random variables that we use for constructing the GVA algorithm. This simple lemma
will be useful for the remainder of the calculations.

Lemma 3.5: For all 1 ≤ i ≤ n, Zi is a Gaussian(0,1) random variable.

Proof: We will use induction to proof this result. For Z1, this is true by our definition of the
Zi. Now if Zi−1 is distributed as a Gaussian(0,1) random variable, then by our construction
we have that

Zi = cos(θi) · Zi−1 + sin(θi) ·Xi. (3.17)

Then, by the property of Gausisan random variables, we have that Zi is a Gaussian(0,1)
random variable since cos2(θi) + sin2(θi) = 1 and both Zi−1 and Xi are mean zero. �
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Proof: See the Appendix. �

We should mention that the GVA equations may seem quite intimidating at first, but
a careful understanding of them makes it easier to digest the difference between them and
the fluid and diffusion differential equations. If one views the GVA equations as smoothed
or infinitely differentiable versions of the fluid and diffusion limits, they become much easier
to understand. One result of the GVA is to “smooth” out any of the discontinuities that
are present in the fluid and diffusion limits. In fact terms like Cov[Qi, (Qi − ci)+] are equal
to indicator functions such as {qi < ci} under the fluid and diffusion limit theorems since
the covariance operation can be viewed as a directional derivative. However, terms like
Cov[Qi, (Qi − ci)+] are equal to Gaussian cdfs such as Φ((ci − qi)/

√
vi)), which are infinitely

differentiable and no longer discontinuous. Thus, numerically integrating the GVA equations
is no harder than integrating the fluid and diffusion limits using Gaussian pdfs and cdfs
instead of indicator, maximum, and minimum functions.

To gather more insight on the differences between GVA and the fluid and diffusion limits,
in Figure 6, we compare the DMA and GVA means with their simulated counterparts. On
the left and right of Figure 6, we see that the GVA is better at approximating the dynamics
at all times for the first queue. On the right of Figure 6, we plot the log10 relative error of
the approximations. It is clear that the GVA method is doing much better than the DMA or
fluid limit. In Figure 7, we observe similar dynamics for the second queue length process. On
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Figure 6. Simulated mean versus DMA and GVA mean of Q1 (left). Relative error of
fluid limit versus GVA of Q1 (right).
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fluid limit versus GVA of Q2 (right).
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Figure 8. Simulated variance versus GVA variance of Q1 (left). Relative error of diffusion
limit versus GVA of Q1 (right).
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Figure 9. Simulated variance versus GVA variance of Q2 (left). Relative error of diffusion
limit versus GVA of Q2 (right).

the left side of Figures 8 and 9 we see that the GVA substantially improves the estimation of
the dynamics of the variances of both queue lengths. On the right side of Figures 8 and 9 we
see in the relative error plots that the GVA method is significantly improving the variance
dynamics when compared with the diffusion limit. Lastly, in Figure 10 we see that GVA
does a good job of estimating the covariance between the two queue length processes. It
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Figure 10. Simulated covariance versus diffusion and GVA Covariance (left). Relative
error of diffusion limit versus GVA of covariance (right).
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does a much better job than the diffusion limit as seen by the right side of Figure 10. Thus,
in all of the figures, we observe that the GVA method is better than the fluid and diffusion
limit theorems at estimating the mean and variance dynamics of the Jackson network with
abandonment.

4. STABILIZING THE PROBABILITY OF DELAY

In this section, we explore the additional usefulness of using the GVA method. In addition
to estimating the mean and covariance of the Jackson network with good accuracy, we can
also use the GVA method to approximate the probability of delay for each station in the
network. The fact that the GVA method can accurately estimate the probability of delay,
which is an important performance measure is very useful. One reason is that it can allow
managers to assess the impact of parameter changes on the customer performance at each
node of the network making it unnecessary to simulate the network to assess the impact of
perturbing one or many parameters.

4.1. Probability of Delay GVA

Similar to the one-dimensional case of the GVA algorithm we can approximate the proba-
bility of delay using GVA for each node of the Jackson network. The probability of delay is
for each node of the network is the probability that the queue length exceeds or is equal to
the number of servers, that is,

P(Qi ≥ ci) = P(Zi ≥ χi) (4.1)

= E[{Zi ≥ χi}] (4.2)

= Φ(χi). (4.3)

Thus, by using the Gaussian tail cdf function, we can approximate the probability of delay
for each node of the network. In fact in Figure 11, we see that we can provide good estimates
for the probability of delay for our Jackson network example. Thus, our GVA method is
generalizable to higher-dimensional examples of queueing networks is not just useful in the
one-dimensional setting. Moreover, we can show that by inverting our probability of delay
approximations, we can construct delay stabilizing staffing schedules for the entire network.
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Figure 11. Simulated and GVA probability of delay of Q1 (left). Simulated and GVA
probability of delay of Q2 (right).
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4.2. GVA Stable Staffing Algorithm

The closed form expression for the probability of delay for each node of the network is
an important object for constructing a staffing algorithm that stabilizes the probability of
delay. Recall that the probability of delay approximation uses the tail cdf of the Gaussian
distribution. Thus, using the properties of the cdf, one can invert the tail cdf to get

Φ(χi) = εi, (4.4)

Φ
−1 (

Φ(χi)
)

= Φ
−1

(εi) , (4.5)

χi = Φ
−1

(εi) , (4.6)

ci = qi +
√
vi · Φ−1

(εi) . (4.7)

Thus, by inverting the probability of delay approximation using the GVA method we
see that we should use the following staffing function:

ci =
⌈
qi +

√
vi · Φ−1

(εi)
⌉

(4.8)

in order to stabilize station i of the queueing process with approximately εi probability of
delay. Although the staffing procedure is no different than the one used by the fluid and
diffusion approximation, the actual staffing functions are different because the dynamics
for the mean and variance of the GVA method are better estimates of the true mean and
variance obtained via simulation. Since GVA does a better job of estimating the mean and
variance dynamics than the fluid and diffusion limits, the GVA should also produce a better
staffing schedule for stabilizing the delay probabilities at their true target values.

This method of stabilization is deterministic and, thus is very powerful since it does not
require the use of simulation, which is computationally expensive. Unlike Feldman et al. [5]
there is no need to actually simulate the queueing system in order to update the staffing
schedule. Our method simply requires the numerical solution of 1

2 (N2 + 3N) differential
equations, which is computationally fast and does not require much computational effort
especially in the large-scale setting or when there are a large number of nodes in the network.

4.3. Stabilization of the Feldman Example

Now using the fluid and diffusion limits and the GVA method, we will illustrate that the
GVA method can not only stabilize the delay probabilities, but we also show that it stabilizes
the delay probabilities better than the fluid and diffusion limits. In our numerical example,
we use simulate a tandem Jackson network where the first queue has the same parameters as
Figure 4 of Feldman et al. [5]. As for the second queue, the arrivals are identical to the service
and abandonment departures of the first queue and the service rate and abandonment rate
parameters are identical to that of the first queue. In Figure 12, we see that fluid and
diffusion limits do a decent but not great job of stabilizing the delay probabilities at target
delay values.

One can also observe that when the target is nearest to ε = 0.5, the inaccuracy of the
stabilizing method is the largest. One reason for the largest inaccuracy occurring near the
target of ε = 0.5 is that the queueing process is critically loaded at this point i.e q(t) ≈ c(t).
It is at this precise point that the fluid and diffusion limits break down. However, we see in
Figure 14 that the GVA method does a good job of stabilizing at the target delay values. We
expect that the GVA should do better since it actually approximates the mean and variance
quite well unlike the fluid and diffusion limits. In Figure 17, we also show using the log
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Figure 12. Stable delay probabilities of Q1 using fluid and diffusion staffing algorithm
(left). Stable delay probabilities of Q2 using fluid and diffusion staffing algorithm (right).

relative error that the GVA method outperforms the fluid and diffusion limits at stabilizing
the delay probabilities. Thus, we see that the GVA method is better at stabilizing the
queueing process at target values. To convince the reader further that this is not a special
example, we demonstrate the outperformance of the GVA method in several additional
numerical examples in the Appendix.

Remark 4.1: Moreover, this inaccuracy highlights the difference between the mean and the
median. The probability of delay is more of a measure of the median, while when we staff
at the level ε = 0.5, we are staffing at the mean. One way to correct for this is to use the
skewness of the queueing process, however, we do not consider skewness in this paper.

In Figures 13 and 15, we compute the staffing schedules for each queue using the fluid
and diffusion algorithms. For each figure, we plot the staffing schedule that corresponds to
the target delay probability of each queue length. The first observation that the staffing
schedule is monotonically decreasing as we increase the probability of delay. This is natural
because as we add more servers, the probability of delay should decrease to zero since the
queue becomes more like an infinite server, which has no delay. The second observation
that we make is that both the fluid and diffusion limits and the GVA have similar values
and do not differ by much. This is further investigated in Figure 16, where we compare the
staffing schedule for the fluid and diffusion limit theorems and the GVA method. We see
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Figure 13. Stable staffing schedules of Q1 using fluid and diffusion (left). Stable staffing
schedules of of Q2 using fluid and diffusion (right).
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Figure 14. Stable delay probabilities of Q1 using GVA (left). Stable delay probabilities
of Q2 using GVA (right).
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Figure 15. Stable staffing schedules of Q1 using (GVA) (left). Stable staffing schedules of
of Q2 using (GVA) (right).
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Figure 16. Staffing schedule for Q1 FD versus GVA (left). Staffing schedule for Q2 FD
versus GVA (right).

that the difference is about one server. This is consistent with the fact that the fluctuations
due to adding or removing a server that are seen in Figures 12 and 14 is about 0.03 and the
difference between the delay probabilities in Figures 12 and 14 is roughly 0.03 as well. Thus,
the GVA is adding some value in producing a better staffing schedule than the fluid and
diffusion limits even though it differs by one server. However, we will show in the Appendix
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Figure 17. Log relative error comparison when ε = 0.5 of Q1 (left). log relative error
comparison when ε = 0.5 of Q2 (right).

where the difference between GVA and fluid and diffusion staffing schedules is much larger
and GVA is once again better at producing more stable staffing functions.

5. STABILIZING THE ABANDONMENT PROBABILITIES

In addition to stabilizing the delay probabilities at positive target values, we also can also
stabilize the abandonment probabilities using a new technique. Before we describe the new
technique for stabilizing the abandonment probabilities, we provide a brief overview of how
to simulate the non-stationary Erlang-A queue since it motivates our idea to construct
approximate staffing functions for stabilizing the time dependent abandonment probabil-
ities. The dynamics of the multi-server queue with abandonment can be split into three
different type of events. The first event is for arrivals to the queueing process where the
queue length is increased by one. The the second is for service departures where the queue
length is decreased by one unless the queue is empty. Lastly, the third event is for customer
abandonment from the queue where the queue length is also decreased by one unless no
customers are waiting for service. Thus, the transition probabilities of the Erlang-A queue
have the following representation

P(ΔQ(t+ Δt) = 1) = λ · Δt+ o(Δt),

P(ΔQ(t+ Δt) = −1) = μ · (Q ∧ c) · Δt+ o(Δt),

P(ΔQ(t+ Δt) = −1) = β · (Q− c)+ · Δt+ o(Δt),

P(ΔQ(t+ Δt) = 0) = 1 − λ · Δt− μ · (Q ∧ c) · Δt− β · (Q− c)+ · Δt+ o(Δt).

It is assumed that the time interval Δt is sufficiently small so that the possibility of multiple
events occurring in the time interval can be ignored. Moreover, in the above and following
section we suppress time dependence to ease notation, however, it should be assumed that
all parameters can depend on time.

5.1. A Fundamental Observation

From simulating the queueing process, we are able make the fundamental observation that
we can approximate the probability that a customer will abandon at any time t. We define
the probability of abandonment to be the probability of abandonment for an arrive that

https://doi.org/10.1017/S0269964816000371 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000371


24 J. Pender and W.A. Massey

enters at time t. This is the same as the virtual abandonment probability that is defined in
Section 6.2 of [5]. In order to approximate this probability, we notice that we must calculate
the following ratio, which is given by the transition probabilities of the queueing process

P(Abandon) ≈ β · (Q− c)+ · Δt
μ · (Q ∧ c) · Δt+ β · (Q− c)+ · Δt . (5.1)

This ratio is the rate at which customers abandon from the queue divided by the total rate
of departures from the queue regardless of whether they are service departures or customer
abandonments. It is important to realize that this ratio is consistent with the uniformization
approach of simulating the queueing process. In the uniformization approach, one samples
a standard uniform random variable and chooses an abandonment departure or a service
departure based on whether the uniform random variable is less than or greater than the
above ratio. Thus, it is natural to consider the above ratio as a good approximation for the
probability of abandonment. This interpretation should not be thought of as a pathwise
approximation, but should be thought of as an approximation for the mean behavior of
a large number of simulation runs. We will use this observation in conjunction with the
moment estimates of the queue length process of [16] in order to derive our staffing functions
that stabilize the abandonment probabilities. In fact, we can write the approximation in a
simpler form that is more useful numerically since the staffing level c only appears once.

P(Ab) ≈ β · E[(Q− c)+]
μ · E[Q ∧ c] + β · E[(Q− c)+]

(5.2)

=
β · E[(Q− c)+]

μ · (E[Q] − E[(Q− c)+]) + β · E[(Q− c)+]
(5.3)

=
β · E[(Q− c)+]

μ · E[Q] + (β − μ) · E[(Q− c)+]
(5.4)

=
β

μ · E[Q]
E[(Q−c)+] − μ+ β

. (5.5)

5.2. Probability of Abandonment (DMA)

Our fundamental observation is that when simulating a Markovian queueing system one
can approximate the probability of abandonment as the following ratio of event times:

P(Ab) ≈ β

μ · E[Q]
E[(Q−c)+] − μ+ β

. (5.6)

Using the approximation given by DMA, we can approximate the probability of
abandonment by the following expression

P(Ab) ≈ β

μ · E[Q]
E[(Q−c)+] − μ+ β

≈ β
μ·q

(q−c)+ − μ+ β
. (5.7)

By splitting the probability into understaffed and overstaffed cases the probability of
abandonment becomes

P(Ab) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β
μ · q

(q − c)
− μ+ β

if q > c,

0 if q ≤ c.

(5.8)
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Moreover, since the probability of abandonment depends on the level of staffing c and is
a non-increasing function of c, we can invert it to construct a staffing schedule that stabilizes
the probability of abandonment. By inverting the approximation, it suggests solving the fol-
lowing equation to find the staffing schedule that stabilizes the probability of abandonment
with a target level of ε

c∗ = inf

⎧⎪⎨
⎪⎩c ≥ 0, c ∈ N | β

μ · q
(q − c)+

− μ+ β
≤ ε

⎫⎪⎬
⎪⎭ . (5.9)

Solving for the optimal solution, we get that

c∗ =
⌈
q − μ · q

β/ε+ μ− β

⌉
. (5.10)

Thus, it is apparently clear from the stabilizing solution that if ε is close to zero, then
we will staff with the mean number of servers. Moreover, if ε is near one, then we staff the
system with no servers. We will show later that when ε is near zero, we will need a further
refinement to get proper stabilization.

We see that on the left of Figure 18 that the DMA does well at stabilizing the aban-
donment probabilities for target values greater than 0.1. However, we see that the DMA
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Figure 18. Stable abandonment probabilities using DMA (left). Stable abandonment
probabilities using GVA (right). λ(t) = 100 + 20 · sin(t), μ = 1, β = 0.5
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Figure 19. Stable abandonment staffing schedule DMA (left). Stable abandonment
staffing schedule GVA (right). λ(t) = 100 + 20 · sin(t), μ = 1, β = 0.5
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Figure 20. Probability of abandonment (DMA) (left). Probability of abandonment
(GVA) (right) λ(t) = 100 + 20 · sin(t), μ = 1, β = 0.5 ε = {0.1, 0.05, 0.01}

does not stabilize the probability of abandonment very well for target values less than 0.1.
On the left of Figure 20, we highlight the levels of {ε = 0.1, 0.05, 0.1} and we see that DMA
is not stabilizing the abandonment probabilities well. This can be explained by Eq. (5.8)
because, when we get to the target levels of {ε = 0.1, 0.05, 0.1}, we must staff the queueing
system with more servers than the mean of the queueing process, which has an abandonment
probability of zero.

Consequently, when we are trying to stabilize at the target levels of {ε = 0.1, 0.05, 0.1}
we are operating in a quality driven regime. Thus, the DMA fails because when c ≥ q,
our approximation of the probability of abandonment is equal to 0. Thus, the failure of
the DMA in important quality drive regimes suggests that we might need a more refined
approximation for the probability of abandonment that uses more information than just
a the mean of the queue length process. We should also mention that the failure of DMA
is similar to the failure of the mean offered load to stabilize abandonment probability as
noted by Liu and Whitt [12] in their DIS–OL approximation. This inaccuracy motivated
their DIS–MOL approximation and will motivate us refining our deterministic estimates of
the queue length function in order to provide better functions for stabilizing the probability
of abandonment.

5.3. Probability of Abandonment (GVA)

Similar to the DMA method, we take advantage of our fundamental observation is that when
simulating a Markovian queueing system one can calculate the probability of abandonment
as the following ratio of event times

P(Ab) =
β · E[(Q− c)+]

μ · E[Q ∧ c] + β · E[(Q− c)+]
. (5.11)

Now we exploit the GVA approximation and substitute it into the ratio of event times
as an approximation of the queue length distribution. This yields the following expression
for the probability of abandonment:

P(Ab) ≈ β · E[(Q− c)+]
μ · E[Q ∧ c] + β · E[(Q− c)+]

(5.12)

=
β

μ·q√
v·(ϕ(χ)−χ·Φ(χ)) − μ+ β

.
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Moreover, since the probability of abandonment depends on the level of staffing c, we can
invert it to construct a stabilizing staffing schedule for the probability of abandonment. This
suggests the following procedure to find a staffing schedule that stabilizes the probability
of abandonment with a target level of ε

c∗ = inf

⎧⎨
⎩c ≥ 0, c ∈ N | β

μ·q√
v·(ϕ(χ)−χ·Φ(χ)) − μ+ β

≤ ε

⎫⎬
⎭ . (5.13)

This staffing can be seen in the right of Figure 19 using GVA. The subsequent staffing for
DMA is given on the left of Figure 19.

Before we move to the network case, we give a summary of the method in the one-
dimensional setting to make sure the reader has a good understanding of the method using
the transition rates of the queueing process.

• First approximate the probability of abandonment with the ratio of the rate of
abandonments and the total number of departures from the queue. This ratio
approximates the fraction of customers that will abandon at time t.

• Use DMA or GVA to estimate the expectation terms that appear in the ratio.
• Set the ratio of the rate of abandonments and the total number of departures from

the queue be equal to the target value of ε.
• Given the mean for DMA, the mean and variance for GVA and the service and

abandonment rates, we then solve for the staffing level c that achieves this ratio of
ε, which is the solution to a fixed point equation.

• We then make the solution to the fixed point equation equal the staffing level for
the next time increment and repeat this procedure until the final time point.

5.4. Extension to the Network Case

In addition to the one-dimensional Erlang-A model, we can also extend our stabilization
method to Jackson networks as well. To do this, we observe that

τ i
t +

N∑
j=1

τ ij
t = 1 and γi

t +
N∑

j=1

γij
t = 1 (5.14)

and therefore, we have that the probability of abandonment at the ith station can be
approximated as

P(Ab) ≈ βi · E[(Qi − ci)+]
μi · E[Qi ∧ ci] + βi · E[(Qi − ci)+]

. (5.15)

Now using this representation and using the DMA, we arrive at the following procedure
that approximately stabilizes the probability of abandonment with a target level of εi

c∗i = inf

{
ci ≥ 0, ci ∈ N| βi

μi·qi

(qi−ci)+
− μi + βi

≤ εi

}
. (5.16)
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Moreover, by repeating the same procedure and using GVA, we arrive at the following
procedure that approximately stabilizes the probability of abandonment with a target level
of εi

c∗i = inf

⎧⎨
⎩ci ≥ 0, ci ∈ N | βi

μi·qi√
vi·(ϕ(χi)−χi·Φ(χi)) − μi + βi

≤ εi

⎫⎬
⎭ . (5.17)

Now we have two different methods to stabilize the abandonment probabilities in Jack-
son networks. Although not presented here in the main paper, we give several numerical
examples in the Appendix to illustrate that the DMA and GVA are both effective at
stabilizing the abandonment probabilities at positive target levels, however, as in the one-
dimensional setting, the GVA is better when the target levels of {ε = 0.1, 0.05, 0.1} are to
be stabilized.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we generalize the GVA to compute the mean and covariance matrix of dynamic
rate Jackson networks with abandonment. We show through our simulation experiments
that the GVA method is better at approximating the moment dynamics of the queue length
processes. Perhaps more important, we also show that the GVA method can be used as a
staffing tool for managers of service systems. We show that by inverting our approximation
for the probability of delay, we can stabilize the delay probabilities of the entire network
at positive target values. Moreover, we show that the GVA method a better stabilizing
algorithm than naively using the fluid and diffusion approximations.

To address the abandonment probabilities, we develop a new and novel method by
using the transition rates of the queueing network to approximate the abandonment prob-
abilities. We also invert this approximation to construct a staffing schedule to stabilize the
abandonment probabilities at positive targets. We also show numerically that this procedure
stabilizes the abandonment probabilities with good performance. We should also mention
that this method of stabilization is applies to any Markov process as long as can com-
pute closed form expressions for the rate functions. Therefore, it is also possible to apply
our methodology to queues with state dependent abandonment like in the work of Dong,
Feldman, P., and Yom-Tov [3].

There are several directions for future research. The first direction is to extend the
Gaussian skewness approximation (GSA) method [17] to Jackson networks with abandon-
ment. This requires a better understanding of the quadratic formula for multi-dimensional
polynomials as well as a greater understanding of multi-dimensional Hermite polynomials
and multi-dimensional Wiener chaos theory. In addition, it requires that one analyze the
third cumulant moment tensor, which has not be explored in the queueing theory literature.
Lastly, it is of interest to extend the GVA and GSA methods to non-Markovian Jackson
networks, where the arrival, service, and abandonment distributions can be of phase-type
like in the work of Pender and Ko [9,10,24] or Pender and Phung-Duc [25]. This extension
would allow us to model more realistic service and abandonment distributions, which may
not be exponentially distributed. We hope to explore these extensions in later papers.
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APPENDIX

This Appendix has two main purposes. The first is to extend the DMA and GVA methods to the
case when the queueing network is a loss network and customers are rejected from the queue is
there is not enough space for them to join. The second purpose of the Appendix is to provide
readers with ample numerical examples of networks to illustrate that the GVA has not only the
ability to estimate the mean and covariance matrix of the Jackson network, but also to illustrate
that the GVA is also useful for stabilizing the probability of delay and abandonment probabilities
in various parameter settings. We begin first with the extension to non-stationary loss networks
with customer abandonment.

A.1. Proof of Main Approximation

Proof: Now we begin to prove the result. We first begin with the expectation of the max function.
In order to compute the max function we simply use Lemma 3.5 along with the properties of
expectations.

E[(Qi − ci)
+] = E

[
(qi +

√
vi · Zi − ci)

+
]

= E

⎡
⎣
(
qi +

√
vi

i∑
k=1

ak ·Xk − ci

)+
⎤
⎦

=
√
vi · E

⎡
⎣
(

i∑
k=1

ak ·Xk − χi

)+
⎤
⎦

=
√
vi · E

[
(X − χi)

+
]

=
√
vi ·

(
φ(χi) − χi · Φ(χi)

)
,

where the ak variables represent the value of the iterated cosines from the Zk random variable and
the squared sum of the ak variables always sums to one. In order to compute the expectation of
the min function, we use the following identity.

(Qi ∧ ci) = Qi − (Qi − ci)
+. (A.1)

Thus, the expectation of the min function has the following closed form expression under the GVA

E[(Qi ∧ ci)] = E
[
Qi − (Qi − ci)

+
]

= E [Qi] − E
[
(Qi − ci)

+
]

= qi −√
vi ·

(
φ(χi) − χi · Φ(χi)

)
.

Now that we have computed all of the expectation terms, it is necessary to compute the
covariance terms. We compute the covariance terms in a similar manner, but leverage a multi-
dimensional version of the Stein’s lemma that is seen in [27]. For the covariance of the max function
and the queue length process we have that

Cov[Qj , (Qi − ci)
+] = Cov

[
qj +

√
vj · Zj , (Qi − ci)

+
]

= Cov
[
qj +

√
vj · Zj , (qi +

√
vi · Zi − ci)

+
]

= Cov

⎡
⎣qj +

√
vj

j∑
k=1

ak ·Xk,

(
qi +

√
vi

i∑
k=1

ãk ·Xk − ci

)+
⎤
⎦
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= Cov

⎡
⎣√vj

j∑
k=1

ak ·Xk,

(
qi +

√
vi

i∑
k=1

ãk ·Xk − ci

)+
⎤
⎦

=
√
vj · vi ·

i∑
k=1

ak · Cov

⎡
⎣Xk,

(
i∑

m=1

ãm ·Xm − χi

)+
⎤
⎦

=
√
vj · vi ·

i∑
k=1

ak · ãk · E
[{

i∑
m=1

am ·Xm > χi

}]

=
√
vj · vi ·

i∑
k=1

ak · ãk · Φ(χi)

=
√
vj · vi · Φ(χi) ·

i∑
k=1

ak · ãk

=
√
vj · vi · Φ(χi) · cos θj . . . cos θi−1

= vji · Φ(χi).

A similar result also holds for the covariance of the min function and the queue length process
using the same identity of Eq. (A.1).

Cov
[
Qj , (Qi ∧ ci)

]
= Cov

[
Qj , Qi − (Qi − ci)

+
]

= Cov
[
Qj , Qi

]− Cov
[
Qj , (Qi − ci)

+
]

= vji − vji · Φ(χi)

= vij · Φ(χi). �

A.2. Non-stationary Loss Networks

This extension is slightly non-trivial since the rejection of customers is involves additional indicator
functions. We show that by using a simple independence assumption for the indicator functions,
we are able to use the same theory to approximate these loss networks.

A.2.1. Functional Forward Equations for Loss Jackson Networks.

•
E [f(Qi)] = E [αi(Q) · (f(Q+ ei) − f(Q))] + E [δi(Q) · (f(Q− ei) − f(Q)] (A.2)

+

N∑
j=1

E
[
Dij(Q) · (f(Q− ei + ej) − f(Q)

)]

+
N∑

j=1

E
[
D̃ij(Q)

(
f(Q+ ei − ej) − f(Q)

)]

for all appropriate real-valued functions f : R
n → R and where we have the following expressions

for the rate functions

αi(Q) = λi · {Qi < ci + ki}, (A.3)

δi(Q) = μi · (Qi ∧ ci) + βi · (Qi − ci)
+, (A.4)

D̃ij(Q) = μi · τij · (Qi ∧ ci) · {Qj < cj + kj} + βi · γij · (Qi − ci)
+ · {Qj < cj + kj}, (A.5)
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and

Dij(Q) = μj · τji · (Qj ∧ cj) · {Qi < ci + ki} + βj · γji · (Qj − cj)
+ · {Qi < ci + ki}. (A.6)

This implies that we have the following expressions for the mean, variance, and covariance
matrix of the loss network

•
E [Qi] = E [αi(Q)] − E [δi(Q)] −

N∑
j=1

E
[
Dij(Q)

]
+

N∑
j=1

E
[
D̃ij(Q)

]
, (A.7)

•
Var[Qi] = E [αi(Q)] + E [δi(Q)] +

N∑
j=1

E
[
Dij(Q)

]
+

N∑
j=1

E
[
D̃ij(Q)

]
(A.8)

+ 2 · Cov[Qi, αi(Q)] − 2 · Cov[Qi, δi(Q)]

− 2 ·
N∑

j=1

Cov[Qi, D̃ij(Q)] + 2 ·
N∑

j=1

Cov[Qi, Dij(Q)],

and

•
Cov[Qi, Ql] = −

N∑
j=1

E
[
Dij(Q)

] − N∑
j=1

E
[
D̃ij(Q)

]
(A.9)

+ Cov[Ql, αi(Q)] + Cov[Qi, αl(Q)] − Cov[Qi, δl(Q)] − Cov[Ql, δi(Q)]

+
N∑

j=1

Cov[Qi, Dij(Q) − D̃ij(Q)] −
N∑

j=1

Cov[Ql, Dij(Q) − D̃ij(Q)].

A.2.2. DMA for Loss Networks. Now that we have an understanding of the mean and vari-
ance of the functional forward equations for the loss network, we can now use DMA to approximate
the mean. This approximation leads us to the following theorem.

Theorem A.1: If we substitute the approximate distribution Q ≡ q for the queue length process of
the non-stationary loss network with abandonment, we get the following differential equations for
the mean:

•
qi = λi · {qi < ci + ki} − μi · γi · (qi ∧ ci) − βi · τi · (qi − ci)

+ (A.10)

−
N∑

j=1

(qi − ci)
+ · βi · τij −

N∑
j=1

(qi ∧ ci) · μi · γij

+

N∑
j=1

(qj − cj)
+ · βj · τji +

N∑
j=1

(qj ∧ cj) · μj · γji.

Proof: This follows directly from the proof of the Jackson network case. �

A.2.3. GVA for Loss Networks. In addition, to the DMA, we can also use the GVA to
approximate the mean and covariance matrix of the loss network. This approximation leads us to
the following theorem.
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Theorem A.2: If we substitute the above approximate distribution in Eq. (3.8) for each of the queue
length processes of the non-stationary loss network with abandonment, then we have the following
closed form expressions for the rate functions of the functional forward equations

E[αi(Q)] = λi · Φ(ψi), (A.11)

E[δi(Q)] = μi · τi ·
(
qi −√

vi ·
(
ϕ(χi) − χi · Φ(χi)

))
+ βi · γi · √vi ·

(
ϕ(χi) − χi · Φ(χi)

)
, (A.12)

E[Dij(Q)] ≈ μi · τij · (qi −√
vi ·

(
ϕ(χi) − χi · Φ(χi)

)) · Φ(ψj)

+ βi · γij · √vi ·
(
ϕ(χi) − χi · Φ(χi)

) · Φ(ψj),
(A.13)

E[D̃ij(Q)] ≈ μj · τji ·
(
qj −√

vj · (ϕ(χj) − χj · Φ(χj)
)) · Φ(ψi)

+ βj · γji · √vj · (ϕ(χj) − χj · Φ(χj)
) · Φ(ψi),

(A.14)

Cov[Ql, αi(Q)] = − vil√
vi

· ϕ(ψi), (A.15)

Cov[Ql, δi(Q)] = μi · τi · vli · Φ(χi) + βi · γi · vli · Φ(χi), (A.16)

Cov[Ql, Dij(Q)] ≈ μi · τij · vli · Φ(χi) · Φ(ψj) + βi · γij · vli · Φ(χi) · Φ(ψj), (A.17)

Cov[Ql, D̃ij(Q)] ≈ μj · τji · vlj · Φ(χj) · Φ(ψi) + βj · γji · vlj · Φ(χj) · Φ(ψi), (A.18)

and where we now define

χi =
ci − qi√

vi
and ψi =

ci + ki − qi√
vi

. (A.19)

Proof: This also follows directly from the proof of the Jackson network case and the independence
assumption of the indicator functions. �

Remark A.3: The reason why we have the symbol ≈ instead of = for Eqs. (A.13), (A.14), (A.17),
and (A.18) is because this is exactly where we take use the independence assumption on pairwise
stations. If we did not use this assumption, our approximations would involve infinite Hermite
polynomial series expansions for N -dimensional Gaussian densities, which is very complicated, see
for example [22].

A.3. Additional Numerics for Approximating Moments

In this section, we also provide more numerical support for using the GVA method. Our goal here
is not to give more examples of stabilizing the network, but to provide more examples of the mean,
variance, and probability of delay in different network settings. It is our hope that these examples
will show that our method is good at estimating various performance measures are of importance
to the service systems community.

A.3.1. High Arrival Rate Example. In our first example, we consider a two node Jackson
network with the following parameters given in Table A.1. We choose to simulated a queueing
system that is closer to the limiting Halfin–Whitt regime with a large number servers and a large
arrival rate. In Figure A.1, we see the GVA method is better approximating the mean queue
length for Q1 and Q2. We also see that the GVA method does a better job of approximating the
variance of the queueing processes when compared to the fluid and diffusion limits. On the bottom
of Figure A.1, we compare the delay probabilities with their simulated counterparts. We observe
that the GVA method is also approximating the probability of delay dynamics quite well.

A.3.2. Discontinuous Arrival Rate Example. In our second example, we consider a two node
Jackson network with the following parameters given in Table A.2. Instead of using sinusoidal arrival
dynamics, we consider a piecewise constant arrival process. In all aspects of the approximations,
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Table A.1. Two Node Jackson Network Model Parameters High Arrival Rate

Parameter Value Parameter Value

λ1 50 + 25 sin(t) λ2 50 + 10 sin(t)
μ1 1 μ2 1
β1 0.25 β2 0.5
c1 50 c2 100
τ11 0.25 τ22 0
γ11 0.25 γ22 0
τ12 0.75 τ21 0
γ12 0.75 γ21 0
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Figure A.1. Mean of Q1 (top left). Mean of Q2 (top right). Variance of Q1 (middle left).
Variance of Q2 (middle right). Probability of delay of Q1 (bottom left). Probability of delay
of Q2 (right).
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Table A.2. Two Node Jackson Network Model Parameters Discontinuous Arrival
Rate

Parameter Value Parameter Value

λ1 20 + 10 sin(t) λ2 30 + 15 sin(t)
μ1 1 μ2 1
β1 0.5 β2 0.5
μ12 1 μ21 1
β12 0.5 β21 0.5
τ11 0.25 τ22 0.5
γ11 0.25 γ22 0.5
τ12 0.75 τ21 0.5
γ12 0.75 γ21 0.5

GVA seems to do quite well. The good performance of the GVA is best seen for the variance of the
two queueing processes seen in the middle two graphs of Figure A.2.

A.3.3. Dynamic Staffing Example. In our third additional numerical example for the
moment approximations, we consider a two node Jackson network with the following parameters
given in Table A.3. Instead of using a constant number of servers, we consider deterministically
changing the number servers according to the arrival process. In all aspects of the approximations,
GVA seems to do quite well. The good performance of the GVA is best seen for the variance of the
two queueing processes seen in the middle two graphs of Figure A.3.

A.3.4. All Parameters Non-stationary Example In our last numerical example for the
moment approximations, we consider a two node Jackson network with the following parame-
ters given in Table A.4. We present this numerical example since we want to present an example
of when all of the parameters are time varying and can impact the queue length process. Once
again, we see that in all aspects of the approximations that GVA seems to do quite well. The good
performance of the GVA is best seen for the variance of the two queueing processes seen in the
middle two graphs of Figure A.4.

A.4. Additional Numerics for Stabilizing Delay Probabilities

A.4.1. Impatient Customers Delay Example. In this section, we provide additional numerical
examples for stabilizing the delay probabilities in the network setting. This time instead of the
service rate and the abandonment rate being identical as in Figure 4 of Feldman et al. [5], we
have that μ1 = μ2 = 1 and β1 = β2 = 2. This implies that customers in each queue are relatively
impatient relative to the service time as they are not willing to wait longer than the mean service
time. Moreover, in this example we see in Figure A.4 that the GVA method does a good job of
stabilizing at the target delay values. In fact, this performance is much better than the fluid and
diffusion limits. This can be explained since the GVA is better at approximating the variance
behavior in all of the cases. We also compare the two methods when the probability of delay is
equal to 0.5, which is the most important case since the queueing process is critically loaded. We
also see at the bottom of Figure A.4 that the GVA method is outperforming the fluid and diffusion
algorithm. Thus, we see that the GVA method is better at stabilizing the queueing process at target
values in the impatient customer case.

A.4.2. Patient Customers Delay Example. The last numerical example that we present
for the stabilizing the delay probabilities is similar to the previous example except that we set
μ1 = μ2 = 1 and β1 = β2 = 0.5. This implies that customers in each queue are relatively patient
relative to the service time as they are willing to wait longer than the mean service time. Lastly,
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Figure A.2. Mean of Q1 (top left). Mean of Q2 (top right). Variance of Q1 (middle left).
Variance of Q2 (middle right). Probability of Delay of Q1 (bottom left). Probability of delay
of Q2 (right).

in this example where the service rate is greater than the abandonment rate, we see in Figure A.6
that the GVA method does a good job of stabilizing at the target delay values. Once again the
performance of the GVA is much better than the fluid and diffusion limits. This can be explained
since the GVA is better at approximating the variance behavior in all of the cases. Again, we also
compare the two methods when the probability of delay is equal to 0.5. At the bottom of Figure A.6
we see that the GVA method is out performing the fluid and diffusion algorithm at this point. Thus,
we see that the GVA method is better at stabilizing the queueing process at target values in the
patient customer case and thus in all possible cases of performance.

A.5. Stabilizing Abandonment Probabilities

A.5.1. Impatient Customers Example. In this section, we provide additional numerical
examples for stabilizing the abandonment probabilities in the network setting. This time instead of
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Table A.3. Two Node Jackson Network Model Parameters Dynamic Staffing

Parameter Value Parameter Value

λ1 50 + 25 sin(t) λ2 50 + 10 sin(t)
μ1 1 μ2 1
β1 0.25 β2 0.5
c1 
1.5 · λ� c2 
1.5 · λ�
τ11 0.25 τ22 0
γ11 0.25 γ22 0
τ12 0.75 τ21 0
γ12 0.75 γ21 0
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Figure A.3. Mean of Q1 (top left). Mean of Q2 (top right). Variance of Q1 (middle left).
Variance of Q2 (middle right). Probability of delay of Q1 (bottom left). Probability of delay
of Q2 (right).
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Table A.4. Two Node Jackson Network Model Parameters
All Dynamic Parameters

Parameter Value Parameter Value

λ1 20 + 5 sin(t) λ2 10 + 2 sin(t)
μ1 1 + 0.2 sin(t) μ2 1 + 0.2 sin(t)
β1 0.25 + 0.1 sin(t) β2 0.5 + 0.1 sin(t)
c1 50 + 25 sin(t) c2 50 + 25 sin(t)
τ11 0.25 − 0.1 sin(t) τ22 0
γ11 0.25 − 0.1 sin(t) γ22 0
τ12 0.75+ 0.1 sin(t) τ21 0
γ12 0.75+ 0.1 sin(t) γ21 0
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Figure A.4. Mean of Q1 (top left). Mean of Q2 (top right). Variance of Q1 (middle left).
Variance of Q2 (middle right). Probability of delay of Q1 (bottom left). Probability of delay
of Q2 (right).
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Figure A.5. Delay probabilities Q1 FD (top left). Delay probabilities Q2 FD (top right).
Delay probabilities Q1 GVA (middle left). Delay probabilities Q2 GVA (middle right).
Relative error Q1 (bottom left). Relative error Q2 (bottom right).

the service rate and the abandonment rate being identical as in Figure 4 of Feldman et al. [5], we
have that μ1 = μ2 = 1 and β1 = β2 = 2. This implies that customers in each queue are relatively
impatient relative to the service time as they are not willing to wait longer than the mean service
time. In Figure A.7, we observe that GVA is better able to stabilize the abandonment probabilities.
This is especially true for abandonment probabilities that are less than or equal to 0.1. Thus, we
conclude that the GVA method is better at stabilizing the queueing process at target values in the
impatient customer case in this example.

A.5.2. Patient Customers Example. In this section, we provide additional numerical exam-
ples for stabilizing the abandonment probabilities in the network setting. This time instead of the
service rate and the abandonment rate being identical as in Figure 4 of Feldman et al. [5], we
have that μ1 = μ2 = 1 and β1 = β2 = 0.5. This implies that customers in each queue are relatively
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Figure A.6. Delay probabilities Q1 FD (top left). DElay probabilities Q2 FD (top right).
Delay probabilities Q1 GVA (middle left). Delay probabilities Q2 GVA (middle right).
Relative error Q1 (bottom left). Relative error Q2 (bottom right).

patient relative to the service time as they are willing to wait longer than the mean service time.
In Figure A.8, we observe that the GVA is better able to stabilize the abandonment probabilities.
This is especially true for abandonment probabilities that are less than or equal to 0.1. Thus, we
conclude that the GVA method is better at stabilizing the queueing process at target values in the
patient customer case in this example.

A.5.3. Non-stationary Abandonment Rate Example. In Figure A.9, we also stabilize the
abandonment probabilities even when the abandonment rate is a function of time. In the example
for Figure A.9, instead of having β(t) = 1 for all time, we set β(t) = 1 + 0.5 · sin(t). In Figure A.9,
it is apparent that our method also works well when the abandonment rate is also a function of
time. Thus, we have confidence that our method works well when any of the model parameters are
functions of time, which has not be explored in the current literature.
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Figure A.7. Stable abandonment probabilities using DMA (left). Stable abandonment
probabilities using GVA (right). λ(t) = 100 + 20 · sin(t), μ = 1, β = 0.5
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Figure A.8. Stable abandonment probabilities using DMA (left). Stable abandonment
probabilities using GVA (right). λ(t) = 100 + 20 · sin(t), μ = 1, β = 0.5.
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Table A.5. Two Node Jackson Feldman Extension

Parameter Value Parameter Value

λ1 100 + 20 sin(t) λ2 0
μ1 1 μ2 1
β1 1 β2 1
c1 50 c2 100
τ11 0 τ22 0
γ11 0 γ22 0
τ12 1 τ21 0
γ12 1 γ21 0
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Figure A.9. Probability of abandonment (DMA) ε = 0.05 (left), ε = 0.01 (right)
λ(t) = 100 + 20 · sin(t), μ = 1, β = 1 + 0.5 · sin(t)
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