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This work is concerned with the laminar–turbulent transition in the boundary layer on
an aircraft wing covered by a water film. We consider the initial stage of the transition
process known as the receptivity of the boundary layer, namely, we study the generation
of the interfacial instability waves by the unsteady free-stream acoustic noise interacting
with a small roughness on the wing surface. For effective receptivity, the ‘forcing’ should
obey the so-called ‘double-resonance’ principle. According to this principle, both the
frequency and the wavenumber of the external perturbations should be in tune with the
natural instability modes of the flow. Correspondingly, we choose the frequency of the
acoustic wave to coincide with that of the interfacial instability wave. However, this makes
the wavelength of the acoustic wave significantly larger than wavelength of the instability
wave. Thus, the second resonance condition is not satisfied, which means that the acoustic
wave alone cannot produce the instability waves in the boundary layer. Instead, the Stokes
layer is created in the boundary layer just above the liquid film. As far as the film is
concerned, it also experiences wave-like motion caused by the varying shear stress on the
interface. The generation of the interfacial instability waves takes place when the Stokes
layer encounters a wall roughness that is short enough for an appropriate scale conversion
to take place. To describe the flow in the vicinity of the roughness, a suitably modified
triple-deck theory is used.

Key words: boundary layer receptivity

1. Introduction

In this paper we extend the asymptotic receptivity theory to the boundary-layer flow in
presence of a thin liquid film covering the body surface. The receptivity theory describes
the early stage of laminar–turbulent transition of flows where the instability modes in
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the boundary layer are formed due to external perturbations. For the laminar–turbulent
transition, the most ‘dangerous’ are the instability modes (like Tollmien–Schlichting
waves) that are generated near the lower branch of the instability curve. In this case they
have enough space to grow downstream to cause the nonlinear effects characteristic of
the turbulent flow. In flight conditions aircraft travel with high speed, which allows us to
assume the Reynolds number is large in our analyses. Neiland (1969) and Stewartson &
Williams (1969) were the first to theoretically describe separation of flows with sufficiently
large value of the Reynolds number. They formulated the boundary-layer instability near
the lower branch by so-called triple-deck theory. Almost at the same time, Stewartson
(1969) and Messiter (1970) suggested that to describe the behaviour of incompressible
fluid flows near the trailing edge of a flat plat one can use the triple-deck theory.
Thenceforth, it became evident that this theory is effective in describing the boundary layer
and its interaction with free-stream flow. Therefore triple-deck theory has been receiving
a great deal of attention ever since and it has been extended to wide range of problems in
fluid dynamics such as the monograph by Sychev et al. (1998) and, in a more recent study,
Ruban (2018) focuses on the boundary-layer separation.

Further progress was made by Schneider (1974) where he used the same
viscous–inviscid structure to describe unsteady flows. He found that the layer of flow
located near the wall is the most sensitive to unsteady perturbations where the fluid
velocity is relatively small. He demonstrated that the flow in this layer becomes unsteady
when the characteristic time, t, of the variation of the perturbations is of order t ∼ Re−1/4

quantity; here, Re denotes the Reynolds number. Other important theoretical works
using this theory were conducted by Lin (1946) and Smith (1979a,b). Lin analysed the
asymptotic behaviour of the lower and upper branches of the neural stability curve in
incompressible boundary layers. While assuming Reynolds number is larger, Re → ∞,
he first solved the Orr–Sommerfeld equation. Then, working on the lower branch, he
found that the description of the flow requires a three-layered structure. As a result of
this analysis Lin found the frequency of the oscillations and the wavenumber appear to
be ω = O(Re1/4) and k = O(Re3/8), respectively. Then Smith (1979a,b) strengthened the
application of triple-deck theory to subsonic flows to describe the Tollmien–Schlichting
waves at and near the lower branch of the neutral stability curve. We develop a modified
triple-deck theory to conduct receptivity analysis for a multi-fluid flow over a flat plate
with a small roughness on the surface. Note that it was Terent’ev (1981) who initially
used this theory to study boundary-layer receptivity and produced a simplified theoretical
model for an earlier experimental work by Schubauer & Skramsted (1948) where the
instability waves in the boundary layer were generated by a vibrating ribbon installed a
small distance above the plate surface. For an effective generation of the instability waves,
Terent’ev (1981) considered an unsteady flow over a flat plate where a short section of
plate is oscillating with respect to time. He let the length of the vibrating section coincide
with the length scale in the classical triple-deck theory and found that the frequency of the
vibrating wall must be ω ∼ O(Re1/4) for the triple-deck to hold. Terent’ev (1981) derived
the amplitude of the instability waves (Tollmien–Schlichting waves) and showed that the
perturbations produced by the vibrating wall become rapidly damped upstream. However,
downstream, the damping weakens as the frequency approaches the critical value of
frequency predicted by the classical instability theory. We know that there are no vibrating
ribbons on the wing surface, in real flights, however, there are various disturbances in
the oncoming flow around the aircraft which lead to formation of Tollmien–Schlichting
waves. Experimental observations show (see, for e.g. Kachanov, Kozlov & Levchenko
1982; Saric, Hoos & Radeztsky 1991) that the boundary layers are susceptible to some but
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On boundary-layer receptivity

not to all external perturbations. Acoustic waves are one class of disturbance that boundary
layers are susceptible to and they are always found in the flow field around an aircraft and
easily penetrate the boundary layer. For theoretical analysis of such disturbance we need to
satisfy two resonance conditions, the so-called double-resonance principle, compared with
simple mechanical systems. Where resonance forces are simply formed as the frequency
ω of the external forcing coincides with the natural frequency of the system. For fluid
systems we need to consider an additional condition with respect to the wavenumber of
the external perturbations. These perturbations must be in tune with the natural internal
oscillations of the boundary layer. To satisfy the resonance conditions in the ‘vibrating
ribbon’ problem, Terent’ev (1981) suggested that the frequency and the length of the
vibrating part of the wall should be chosen according to the double-resonance principle.
Extending the earlier work of Kachanov et al. (1982), which is based on the resonance
conditions in fluids, Ruban (1984) and Goldstein (1985) showed that the acoustic wave has
to come into interaction with wall roughness. To satisfy the resonance conditions, with
respect to the wavenumber, that lead to the generation of Tollmien–Schlichting waves in
the boundary layer they assumed (i) the frequency of the external acoustic wave and (ii)
the length of the roughness must be O(Re1/4) and O(Re−3/8), respectively. With these
scalings the triple-deck theory is valid and describes the flow around the roughness which
ultimately enables us to determine the initial amplitude of the Tollmien–Schlichting waves
in the boundary layer. They also demonstrated that satisfying only the first condition is
insufficient to generate the Tollmien–Schlichting waves because the speed of propagation
of acoustic waves is finite and the wavelength appears to be � ∼ Re−1/4, which is much
longer than the wavelength of the Tollmien–Schlichting wave.

Later, the triple-deck theory was extended to other receptivity mechanisms. These
include the generation of Görtler vortices by wall roughness (see Denier, Hall &
Seddougui 1991) and the generation of the Tollmien–Schlichting waves by the interaction
between free-stream turbulence and a small wall roughness in the boundary layer (see
Duck, Ruban & Zhikharev 1996). A possibility of efficient receptivity without a wall
roughness was demonstrated by Wu (1999), who showed how the double-resonance
conditions may be satisfied when an acoustic wave interacts with the free-stream
turbulence. He also extended the theory of Ruban (1984) and Goldstein (1985) to the case
of distributed wall roughness; see Wu (2001). The asymptotic receptivity theory is easily
adjusted to different flow speed regimes. In particular, Ruban, Bernots & Kravtsova (2016)
studied the receptivity of the boundary layer to acoustic waves in transonic flows and Dong,
Liu & Wu (2020) performed the corresponding analysis for supersonic flows. Recently,
using the triple-deck theory, Brennan, Gajjar & Hewitt (2021) studied a possibility of
controlling the receptivity of the boundary layer. There are also number of stability
analyses of flows past a thin liquid film such as Coward & Hall (1996), Timoshin (1997)
and Tsao, Rothmayer & Ruban (1997). A more recent study using the triple-deck model
was performed by Cimpeanu et al. (2015) with the purpose of investigating the influence
of the film on the separation of the boundary layer.

In this paper we conduct the receptivity analysis of high-speed flows over a thin liquid
film. Given that there is a lot of roughness on a wing’s surface, we assume there is a small
roughness in the boundary layer. The analysis of the generation of the interfacial waves is
performed under the assumption that the ratio of the viscosity coefficients in the air and in
the film, σμ, is small. Guided by the double-resonance principle, we choose the frequency
of the acoustic wave to be an order O(Re1/4σμ) quantity. Corresponding to this, the
thickness of the Stokes layer, forming in the airflow just above the film, is O(σ

−1/2
μ Re−5/8).
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Meanwhile, the thickness of the film is taken to be an O(Re−5/8) quantity. To satisfy the
resonance conditions, we further assume that length of the roughness is an O(Re−3/8)
quantity. Ultimately the Tollmien–Schlichting waves are formed as the result of interaction
between the Stokes layer and the perturbations produced by the wall roughness. Amplitude
of these waves are found in an explicit analytic form.

2. Problem formulation

Let us consider a perfect gas flow past a flat plate coated by a liquid film. For simplicity
we shall assume that the plate is aligned with the velocity vector in the oncoming flow;
see figure 1. We shall further assume that the flow is exposed to weak acoustic waves.
Our task will be to study the interaction of these waves with a small roughness on the
plate surface at distance L from the leading edge. In what follows we shall assume that the
flow is two-dimensional. To study the flow we use the Cartesian coordinates (x̂, ŷ), with x̂
measured along the flat plate surface from its leading edge O, and ŷ in the perpendicular
direction. The velocity components in these coordinates are denoted by (û, v̂). As usual,
we denote the time by t̂, the gas density by ρ̂, pressure by p̂, enthalpy by ĥ and dynamic
viscosity coefficient by μ̂. The ‘hat’ is used here for dimensional variables and ‘prime’
for the fluid-dynamic functions in the liquid film. The non-dimensional variables in the
airflow are introduced as follows:

t̂ = L
V∞

t, x̂ = Lx, ŷ = Ly,

û = V∞u, v̂ = V∞v, ρ̂ = ρ∞ρ,

p̂ = p∞ + ρ∞V2
∞p, ĥ = V2

∞h, μ̂ = μ∞μ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

with V∞, p∞, ρ∞ and μ∞ being the dimensional free-stream velocity, pressure, density
and viscosity, respectively. In non-dimensional variables, the Navier–Stokes equations are
written as

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ 1

Re

{
∂

∂x

[
μ

(
4
3

∂u
∂x

− 2
3

∂v

∂y

)]

+ ∂

∂y

[
μ

(
∂u
∂y

+ ∂v

∂x

)]}
, (2.2a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ 1

Re

{
∂

∂y

[
μ

(
4
3

∂v

∂y
− 2

3
∂u
∂x

)]

+ ∂

∂x

[
μ

(
∂u
∂y

+ ∂v

∂x

)]}
, (2.2b)

ρ

(
∂h
∂t

+ u
∂h
∂x

+ v
∂h
∂y

)

= ∂p
∂t

+ u
∂p
∂x

+ v
∂p
∂y

+ 1
Re

{
1

Pr

[
∂

∂x

(
μ

∂h
∂x

)
+ ∂

∂y

(
μ

∂h
∂y

)]

+μ

(
4
3

∂u
∂x

− 2
3

∂v

∂y

)
∂u
∂x

+ μ

(
4
3

∂v

∂y
− 2

3
∂u
∂x

)
∂v

∂y
+ μ

(
∂u
∂y

+ ∂v

∂x

)2
}

, (2.2c)

∂ρ

∂t
+ ∂ρu

∂x
+ ∂ρv

∂y
= 0, (2.2d)
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3

ŷ

Film
x̂

O

V∞

L

1

2

Figure 1. Flow layout, the blue layer represents the liquid film.

h = 1
(γ − 1)M2∞

1
ρ

+ γ

γ − 1
p
ρ

. (2.2e)

Here, Pr is the Prandtl number and γ is the specific heat ratio; for air Pr ≈ 0.713, γ = 7/5.
The Reynolds number Re is calculated as

Re = ρ∞V∞L
μ∞

. (2.3)

In this study, we shall assume that Re is large, while the free-stream Mach number,

M∞ = V∞
a∞

, (2.4)

remains finite. In fact, we shall restrict our attention to subsonic flows where M∞ < 1.
Remember that the speed of sound a∞ in (2.4) is calculated as

a∞ =
√

γ
p∞
ρ∞

. (2.5)

When performing the flow analysis we shall assume (Coward & Hall 1996) that the
viscosity and density ratios

σμ = μ∞
μ̂′ , σρ = ρ∞

ρ̂′ (2.6a,b)

are small.

3. The flow before the roughness

We start with region 1 that lies outside the boundary layer, see figure 1.

3.1. Inviscid airflow (region 1)
In this region we have a uniform flow which is perturbed by an acoustic wave. For
simplicity, we shall assume that the acoustic wave propagates along the main flow with
the front of the wave being perpendicular to the plate surface. Consequently, we represent
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the fluid-dynamic functions in region 1 in the form of the asymptotic expansions

u = 1 + σ−1/2
μ Re−1/8χu1(t∗, x1) + · · · ,

p = σ−1/2
μ Re−1/8χp1(t∗, x1) + · · · ,

h = 1
(γ − 1)M2∞

+ σ−1/2
μ Re−1/8χh1(t∗, x1) + · · · ,

ρ = 1 + σ−1/2
μ Re−1/8χρ1(t∗, x1) + · · · ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

with the independent variables t∗, x1 defined by

t = σ−1
μ Re−1/4t∗, x = 1 + σ−1

μ Re−1/4x1. (3.2a,b)

Note that the viscosity coefficient is zero in the inviscid region. In (3.1), the amplitude
of acoustic wave σ

−1/2
μ Re−1/8χ is chosen such that for χ = O(1) the perturbations appear

to be nonlinear in the Stokes layer (region 3 in figure 1). We shall see that the frequency
of the interfacial instability waves is an order O(σμRe1/4) quantity, which explains the
choice of the scaling factor in the equation for t in (3.2a,b). Since the speed of propagation
of acoustic waves is finite, the wavelength appears to be O(σ−1

μ Re−1/4) which is used to
scale x in (3.2a,b).

Substituting (3.1) and (3.2a,b) into the Navier–Stokes equations (2.2) and assuming that
σ

−1/2
μ Re−1/8χ is small, results in the following set of linearised Euler equations:

∂u1

∂t∗
+ ∂u1

∂x1
= −∂p1

∂x1
,

∂h1

∂t∗
+ ∂h1

∂x1
= ∂p1

∂t∗
+ ∂p1

∂x1
,

∂ρ1

∂t∗
+ ∂u1

∂x1
+ ∂ρ1

∂x1
= 0,

h1 = γ

γ − 1
p1 − 1

(γ − 1)M2∞
ρ1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

These may be reduced to a single equation for the pressure

M2
∞

∂2p1

∂t2∗
+ (M2

∞ − 1)M2
∞

∂2p1

∂x2
1

+ 2M2
∞

∂2p1

∂t∗∂x1
= 0. (3.4)

By definition (3.3), the enthalpy h1 depends on M∞, hence the factor of M∞ appears in
the pressure governing equation (3.4).

The solution to (3.4) representing a monochromatic acoustic wave is written as

p1 = pa(t∗, x1) = α sin(ωt∗ + kax1), (3.5)

with the other fluid-dynamic functions being

u1 = M∞pa, ρ1 = M2
∞pa, h1 = pa. (3.6a–c)

Here, ka in the wavenumber of the acoustic wave given by

ka = − M∞
M∞ + 1

ω. (3.7)

We shall show how this slow acoustic wave leads to the formation of a slow motion air
layer, the so-called Stoke layer, in the boundary layer.
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On boundary-layer receptivity

3.2. Main part of the boundary layer (region 2)
Now we shall see how the acoustic wave penetrates the boundary layer. When there is no
acoustic wave, the flow inside the boundary layer is given by the compressible version of
the Blasius solution

u = U0(x, y2) + · · · , v = Re−1/2V0(x, y2) + · · · ,

p = Re−1/2P0(x, y2) + · · · , ρ = ρ0(x, y2) + · · · ,

h = h0(x, y2) + · · · , μ = μ0(x, y2) + · · · ,

⎫⎪⎪⎬
⎪⎪⎭ (3.8)

where
y2 = Re1/2y. (3.9)

The behaviour of the leading-order terms in (3.8) were studied by various authors (see,
for e.g. Ruban 2018). It is known that by substituting (3.8) into the Navier–Stokes
equations (2.2) a boundary-value problem is derived which admits a self-similar solution
for certain conditions. In the presence of the acoustic wave, asymptotic expansions (3.8)
become

u = U0(x, y2) + σ−1/2
μ Re−1/8χu2(t∗, x1, y2) + · · · ,

v = σ 1/2Re−3/8χv2(t∗, x1, y2) + · · · ,

p = σ−1/2
μ Re−1/8χp2(t∗, x1, y2) + · · · ,

ρ = ρ0(x, y2) + σ−1/2
μ Re−1/8χρ2(t∗, x1, y2) + · · · ,

h = h0(x, y2) + σ−1/2
μ Re−1/8h2χ(t∗, x1, y2) + · · · ,

μ = μ0(x, y2) + σ−1/2
μ Re−1/8χμ2(t∗, x1, y2) + · · · .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.10)

Substituting (3.10) into the Navier–Stokes equations (2.2) and assuming that

Re−1/4

σμ

� 1, (3.11)

we obtain the following set of equations for region 2:

∂u2

∂t∗
+ U0

∂u2

∂x1
+ v2

∂U0

∂y2
= − 1

ρ0

∂p2

∂x1
,

∂p2

∂y2
= 0,

∂h2

∂t∗
+ U0

∂h2

∂x1
+ v2

∂h0

∂y2
= 1

ρ0

(
∂p2

∂t∗
+ U0

∂p2

∂x1

)
,

∂ρ2

∂t∗
+ U0

∂ρ2

∂x1
+ ρ0

∂u2

∂x1
+ ∂ρ0v2

∂y2
= 0,

ρ0h2 + h0ρ2 = γ

γ − 1
p2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.12)

These equations show that the flow in region 2 is inviscid. Therefore, instead of the
no-slip conditions we have to pose the impermeability condition

v2 = 0 at y2 = 0. (3.13)
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Notice that the pressure does not change across the boundary layer. This allows us to
conclude that it coincides with the pressure in region 1

p2 = α sin(ωt∗ + kax1) = α

2i
exp(i(ωt∗ + kax1)) + (c.c.). (3.14)

Since the perturbations in region 2 appear in response to the acoustic wave in region 1, we
shall seek the solution to (3.12) in the form

(u2, v2, h2, ρ2) = (ŭ2, v̆2, h̆2, ρ̆2) exp(i(ωt∗ + kax1)) + (c.c.), (3.15)

where (c.c.) denotes the complex conjugate of the expression in front of it.
With (3.15), (3.12) turn into

(iω + ikaU0)ŭ2 + v̆2
∂U0

∂y2
= − 1

ρ0

α

2
ka, (3.16a)

(iω + ikaU0)h̆2 + v̆2
∂h0

∂y2
= 1

ρ0

α

2
(ω + kaU0), (3.16b)

(iω + ikaU0)ρ̆2 + ikaρ0ŭ2 + ∂ρ0v̆2

∂y2
= 0, (3.16c)

ρ0h̆2 + h0ρ̆2 = γ

γ − 1
α

2i
. (3.16d)

To see what happens at the bottom of region 2, we set y2 = 0 in (3.16a). Using the
impermeability condition (3.13) and the fact that in the Blasius boundary layer, U0 = 0
at y2 = 0, we find that

ŭ2 = iαka

2ρwω
at y2 = 0, (3.17)

where ρw is the gas density at the plate surface in the Blasius boundary layer. Substitution
of (3.17) back into (3.15) allows us to conclude that the longitudinal velocity oscillations
at the bottom of region 2

u2|y2=0 = − αka

ρwω
sin(ωt∗ + kax1). (3.18)

Since (3.18) does not satisfy the no-slip condition, we need to introduce a viscous sublayer
closer to the plate surface.

3.3. Stokes layer (region 3)
The flow in region 3 is viscous, which means that the following terms should be in balance
in the longitudinal momentum equation (2.2a):

∂u
∂t

∼ ∂p
∂x

∼ 1
Re

∂2u
∂y2 . (3.19)

We know that

t ∼ σ−1
μ Re−1/4, 
x ∼ σ−1

μ Re−1/4, 
p ∼ σ−1/2
μ Re−1/8χ. (3.20a–c)

Combining (3.20a–c) with (3.19), one can easily find that in region 3

u ∼ σ−1/2
μ Re−1/8χ, y ∼ σ−1/2

μ Re−5/8. (3.21a,b)
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On boundary-layer receptivity

The lateral velocity component can be now estimated based on the usual balance in the
continuity equation (2.2d)

∂u
∂x

∼ ∂v

∂y
. (3.22)

We find that

v ∼ Re−1/2χ. (3.23)

Guided by (3.20a–c)–(3.23) we represent the solutions in region 3 in the form

u = σ−1/2
μ Re−1/8λy3 + σ−1/2

μ Re−1/8χu3(t∗, x1, y3) + · · · ,

v = Re−1/2χv3(t∗, x1, y3) + · · · ,

p = σ−1/2
μ Re−1/8χp3(t∗, x1, y3) + · · · ,

ρ = ρw + · · · , μ = μw + · · · ,

y3 = σ 1/2
μ Re5/8y,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.24)

where λ is the dimensionless skin friction coefficient. Its value is found numerically with
the self-similar solution of the Blasius boundary-layer equations. If we substitute (3.24)
into the longitudinal momentum equation (2.2a) and use assumption (3.11) again, then we
will see that u3 satisfies the following equation:

ρw
∂u3

∂t∗
= −∂p3

∂x1
+ μw

∂2u3

∂y2
3

. (3.25)

It further follows from the lateral momentum equation (2.2b) that

∂p3

∂y3
= 0, (3.26)

which proves that the pressure in the Stokes layer coincides with the pressure (3.14) in
region 2

p3 = α sin(ωt∗ + kax1). (3.27)

The boundary conditions for (3.25) are the condition of matching with the solution (3.18)
in region 2

u3|y3=∞ = − αka

ρwω
sin(ωt∗ + kax1), (3.28)

and the no-slip condition

u3 = 0 at y3 = 0. (3.29)

The solution of the boundary-value problem (3.25)–(3.29) is written as

u3 = − αka

ρwω

[
sin(ωt∗ + kax1) − exp

(
−
√

ρwω

2μw
y3

)
sin

(
ωt∗ + kax1 −

√
ρwω

2μw
y3

)]
.

(3.30)
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3.4. Film flow
In order to find the form of the solution in the film, one needs to use the tangential stress
condition on the interface. As mentioned before, we assume the film thickness to be an
order O(LRe−5/8) quantity, in which case the interface may be defined by the equation

ŷ = LRe−5/8H(t∗, x1). (3.31)

The tangential stress produced by the airflow in region 3 is calculated, in dimensional
variables, as

τ̂ = μ∞μw
∂ û
∂ ŷ

. (3.32)

Using the asymptotic expansion of u in (3.24) we can express (3.32) as

τ̂ = μ∞μw

(
V∞σ

−1/2
μ Re−1/8

Lσ
−1/2
μ Re−5/8

λ+ V∞σ
−1/2
μ Re−1/8

Lσ
−1/2
μ Re−5/8

χ
∂u3

∂y3
+ · · ·

)
. (3.33)

It is easily found from (3.30) that, on the interface,

∂u3

∂y3

∣∣∣∣
y3=0

= − αka√
μwρwω

sin (ωt∗ + kax1 + π/4) . (3.34)

Let us now consider the shear stress in the film

τ̂ = μ∞
σμ

∂ û
∂ ŷ

∣∣∣∣
ŷ=Ĥ

. (3.35)

If we define the lateral coordinate as

ŷ = LRe−5/8y′, (3.36)

then (3.35) assumes the form

τ̂ = μ∞
σμLRe−5/8

∂ û
∂y′

∣∣∣∣
y′=H

. (3.37)

Comparing (3.37) with (3.33) we can conclude that the asymptotic expansion of û in the
film should be written as

u = û
V∞

= σμRe−1/8μwλy′ + σμRe−1/8χu′
f (t∗, x1, y′) + · · · . (3.38)

Now, using the continuity equation (2.2d) one can easily predict the form of the
asymptotic expansion for the lateral velocity component

v = σ 2
μRe−1/2χv′

f (t∗, x1, y′) + · · · . (3.39)

As far as the pressure is concerned, of course, it has the same form as in region 3

p = σ−1/2
μ Re−1/8χp′

f (t∗, x1, y′) + · · · . (3.40)

Substitution of (3.38)–(3.40) and (3.36) into the longitudinal momentum equation (2.2a)
reduces it to

∂2u′
f

∂y′2 = 0. (3.41)
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On boundary-layer receptivity

Equation (3.41) should be solved with the no-slip condition on the plate surface

u′
f = 0 at y′ = 0, (3.42)

and the shear-stress balance condition at the interface

∂u′
f

∂y′

∣∣∣∣∣
y′=H

= μw
∂u3

∂y3

∣∣∣∣
y3=0

, (3.43)

which should be considered together with (3.34). It is easily found that the solution
of (3.41)–(3.43) is written as

u′
f = −αka

√
μw

ρwω
y′ sin (ωt∗ + kax1 + π/4) . (3.44)

The lateral velocity component v′
f may be now found from the continuity equation

∂u′
f

∂x1
+

∂v′
f

∂y′ = 0. (3.45)

Substituting (3.44) into (3.45), and integrating the resulting equation for v′
f with the

impermeability condition of the plate surface

v′
f = 0 at y′ = 0, (3.46)

we have

v′
f = αk2

a

2

√
μw

ρwω
y′2 cos (ωt∗ + kax1 + π/4) . (3.47)

3.5. Interface dynamics
In order to determine the perturbations in the shape of the interface caused by the acoustic
wave, we need to consider the kinematic condition on the interface surface

∂Φ

∂t
+ u

∂Φ

∂x
+ v

∂Φ

∂y
= 0. (3.48)

Here,

Φ(t, x, y) = y − Re−5/8H(t∗, x1), (3.49)

with

t = σ−1
μ Re−1/4t∗, x = 1 + σ−1

μ Re−1/4x1, (3.50a,b)

where the derivatives ∂Φ/∂t and ∂Φ/∂x are same order quantities. Keeping this in mind
and taking into account that u is small, we can disregard the second term in (3.48).
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Hence, combining (3.49) and (3.48), we have

− σμRe−3/8 ∂H
∂t∗

+ v = 0. (3.51)

Here, v is given by (3.39) and (3.47), which suggests that the asymptotic expansion of
H(t∗, x1) should be sought in the form

H = H0 + σμRe−1/8χH1(t∗, x1) + · · · . (3.52)

Substitution of (3.52) and (3.39) into (3.51) yields
∂H1

∂t∗
= v′

f

∣∣∣
y′=H0

. (3.53)

It remains to substitute (3.47) into (3.53) and integrate the resulting equation for H1. We
find that

H1 = αk2
a

2

√
μw

ρwω3 H2
0 sin (ωt∗ + kax1 + π/4) . (3.54)

4. Interaction region

Let us now turn to the flow analysis in the vicinity of the roughness. We shall assume here
that the roughness is motionless, and its surface is given by the equation

y = Re−5/8f (x2), (4.1)

where the function f (x2) is assumed finite at finite values of the argument

x2 = x − 1
Re−3/8 . (4.2)

In this case, the flow near the roughness is described by the triple-deck theory. According
to this theory, we have to consider three regions in the airflow: the upper tier (region 4), the
main part of the boundary layer (region 5) and the viscous sublayer (region 6). In addition
to these, the flow in the film should also be analysed. We shall start with region 4; see
figure 2.

4.1. Upper tier of airflow
The form of the asymptotic expansions of the fluid-dynamic functions in region 4 may
be predicted by analysing the behaviour of the solution in region 1 in the vicinity of the
roughness. Comparing (4.2) with the second equation in (3.2a,b), we can see that the
longitudinal coordinates in regions 1 and 6 are related as

x1 = σμRe−1/8x2. (4.3)

Using (4.3), we can express the solution (3.1), (3.5), (3.6a–c) in region 1 in terms of the
variable x2 of region 6. For example, for the longitudinal velocity component, we have

u = 1 + σ−1/2
μ Re−1/8χM∞α sin(ωt∗ + σμRe−1/8kx2) + · · · . (4.4)

The fact that σμRe−1/8 is small allows us to apply the Taylor expansion to (4.4), which
leads to

u = 1 + σ−1/2
μ Re−1/8χM∞α sin(ωt∗) + σ 1/2

μ Re−1/4χM∞αkx2 cos(ωt∗) + · · · . (4.5)

The last term in (4.5), which is small compared with the O(Re−1/4) perturbations produced
by the roughness (4.1), will be disregarded, and we can conclude that in region 4 the
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1

2

3

4

5

6

Re−3/8

Re−3/8

Re−1/2

Re−5/8
Film

Figure 2. Interaction region.

solution for u should be sought in the form

u = 1 + σ−1/2
μ Re−1/8χM∞α sin(ωt∗) + Re−1/4u4(t∗, x2, y4) + · · · . (4.6a)

Similar arguments may be applied to the pressure p, enthalpy h and density ρ, while the
form of the solution for the lateral velocity component is predicted using the continuity
equation (2.2d). We have

v = Re−1/4v4(t∗, x2, y4) + · · · , (4.6b)

p = σ−1/2
μ Re−1/8χα sin(ωt∗) + Re−1/4p4(t∗, x2, y4) + · · · , (4.6c)

h = 1
(γ − 1)M2∞

+ σ−1/2
μ Re−1/8χα sin(ωt∗) + Re−1/4h4(t∗, x2, y4) + · · · , (4.6d)

ρ = 1 + σ−1/2
μ Re−1/8χM2

∞α sin(ωt∗) + Re−1/4ρ4(t∗, x2, y4) + · · · . (4.6e)

Here,

t = σ−1
μ Re−1/4t∗, x = 1 + Re−3/8x2, y = Re−3/8y4. (4.7a–c)

Substitution of (4.6), (4.7a–c) into the Navier–Stokes equations (2.2) yields the set of
quasi-steady linearised Euler equations

∂u4

∂x2
= −∂p4

∂x2
, (4.8a)

∂v4

∂x2
= −∂p4

∂y4
, (4.8b)

∂h4

∂x2
= ∂p4

∂x2
, (4.8c)

∂u4

∂x2
+ ∂ρ4

∂x2
+ ∂v4

∂y4
= 0, (4.8d)

h4 = γ

γ − 1
p4 − 1

(γ − 1)M2∞
ρ4. (4.8e)
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Standard elimination procedure allows us to reduce (4.8) to a single equation for the
pressure

(1 − M2
∞)

∂2p4

∂x2
2

+ ∂2p4

∂y2
4

= 0. (4.9)

We shall formulate the boundary conditions for (4.9) after completing the flow analysis in
regions 5 and 6.

4.2. Lower tier of the airflow
Asymptotic expansions of the fluid-dynamic functions in the lower tier (region 6) have the
form

u = Re−1/8u6(t∗, x2, y6) + · · · , v = Re−3/8v6(t∗, x2, y6) + · · · ,

p = σ−1/2
μ Re−1/8χα sin(ωt∗) + Re−1/4p6(t∗, x2, y6) + · · · ,

ρ = ρw + · · · , μ = μw + · · · ,

⎫⎪⎪⎬
⎪⎪⎭ (4.10)

with the independent variables defined by

t = σ−1
μ Re−1/4t∗, x = 1 + Re−3/8x2, y = Re−5/8y6. (4.11a–c)

Substitution of (4.10), (3.47) into the Navier–Stokes equations (2.2) results in

ρw

(
u6

∂u6

∂x2
+ v6

∂u6

∂y6

)
= −∂p6

∂x2
+ μw

∂2u6

∂y2
6

,

∂u6

∂x2
+ ∂v6

∂y6
= 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.12)

Now we need to formulate the boundary conditions for (4.12). On the interface, given
by

y = Re−5/8H(t∗, x2), (4.13)

the no-slip conditions should be satisfied

u6 = v6 = 0 at y6 = H(t∗, x2). (4.14)

We also need to formulate the condition of matching with the solution in region 3.
According to (3.24), the longitudinal velocity component u is represented in region 3 by
the asymptotic expansion

u = σ−1/2
μ Re−1/8λy3 + σ−1/2

μ Re−1/8χu3(t∗, x1, y3) + · · · . (4.15)

For small values of y3, we have

u = σ−1/2
μ Re−1/8

(
λ+ χ

∂u3

∂y3

∣∣∣∣
y3=0

)
y3 + · · · . (4.16)

Since y3 = σ
1/2
μ y6, we can further write

u = Re−1/8

(
λ+ χ

∂u3

∂y3

∣∣∣∣
y3=0

)
y6 + · · · . (4.17)
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On boundary-layer receptivity

It remains to substitute (3.34) into (4.17), and we can conclude that the sought boundary
condition is written as

u6 = Λ(t∗)( y6 − H0) at x2 = −∞, (4.18)

where

Λ(t∗) = λ− αkaχ√
μwρwω

sin
(
ωt∗ + kax0

1 + π/4
)

, (4.19)

with x0
1 denoting the value of the variable x1 at the location point of the roughness, and H0

is the film thickness before the interaction region.

4.3. Main part of the boundary layer
It is known that the main part of the boundary layer (region 5) plays a passive role in
the viscous–inviscid interaction process. It preserves the pressure unchanged across the
boundary layer, and it does not contribute into the displacement effect of the boundary
layer. The latter means that the streamline slope produced by the viscous sublayer remains
unchanged across region 5. It was shown (see e.g. Ruban 2018) that the solution of (4.12)
satisfying the upstream boundary condition (4.18) exhibits the following behaviour at the
outer edge of the viscous sublayer:

u6 = Λ(t∗)y6 + A(t∗, x2) + · · · , v6 = − ∂A
∂x2

y6 + · · · as y4 → ∞. (4.20a,b)

Substituting (4.20a,b) into the asymptotic expansions of the velocity components in (4.10),
we have

u = Re−1/8Λ(t∗)y6 + · · · , v = Re−3/8
(

− ∂A
∂x2

)
y6 + · · · . (4.21a,b)

Hence, the streamline slope angle

ϑ = arctan
v

u
= Re−1/4

[
− 1

Λ(t∗)
∂A
∂x2

]
+ · · · . (4.22)

This should coincide with the streamline slope angle at the bottom of region 4. The
latter is calculated using asymptotic expansion of the velocity components (4.6a), (4.6b).
Restricting our attention to the leading-order terms, we have

ϑ = arctan
v

u
= Re−1/4v4(t∗, x2, 0) + · · · . (4.23)

Equations (4.23) and (4.22) allow us to conclude that

v4(t∗, x2, 0) = − 1
Λ(t∗)

∂A
∂x2

. (4.24)

If we now set y4 = 0 in (4.8b) and use (4.24) on the left-hand side of (4.8b), then we
will have the following boundary condition for equation (4.9):

∂p4

∂y4

∣∣∣∣
y4=0

= 1
Λ(t∗)

∂2A

∂x2
2
. (4.25)

It should be supplemented by the condition of attenuation of the perturbations far from the
roughness

p4 → 0 as x2
2 + y2

4 → ∞. (4.26)
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4.4. Film flow
As before, using the shear-stress continuity condition on the interface, we can confirm
again that inside the film the solution should be sought in the form

u = σμRe−1/8u′(t∗, x2, y′) + · · · , v = σμRe−3/8v′(t∗, x2, y′) + · · · ,

p = Re−1/4p′(t∗, x2, y′) + · · · , ρ̂ = 1
σρ

ρ∞ + · · · , μ̂ = 1
σμ

μ∞ + · · · ,

⎫⎪⎬
⎪⎭ (4.27)

with the independent variables defined by

t = σ−1
μ Re−1/4t∗, x = 1 + Re−3/8x2, y = Re−5/8y′. (4.28a–c)

By substituting (4.27), (4.28a–c) into the Navier–Stokes equations (2.2), while assuming
σμ/σρ � 1, we arrive at a conclusion that the film flow is described by the following
equations:

∂2u′

∂y′2 − ∂p′

∂x2
= 0, (4.29a)

∂p′

∂y′ = 0, (4.29b)

∂u′

∂x2
+ ∂v′

∂y′ = 0. (4.29c)

These should be solved with the no-slip conditions on the surface of the roughness (4.1)

u′ = v′ = 0 at y′ = f (x2), (4.30)

and the following conditions on the interface. Firstly, the continuity of the tangential stress
requires that

∂u′

∂y′

∣∣∣∣
y′=H−0

= μw
∂u6

∂y6

∣∣∣∣
y6=H+0

. (4.31a)

Secondly, the normal stress condition is written as

p6 = p′ + γ∗
∂2H

∂x2
2

. (4.31b)

Finally, the kinematic condition has the form

v′ = ∂H
∂t∗

+ u′ ∂H
∂x2

at y′ = H(t∗, x2). (4.31c)

5. Viscous–inviscid interaction problem

We see that, in order to describe the flow in the interaction region, we need to solve (4.12)
for the viscous sublayer, subject to the boundary conditions (4.14), (4.18) and (4.20a,b),
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that is

ρw

(
u6

∂u6

∂x2
+ v6

∂u6

∂y6

)
= −∂p6

∂x2
+ μw

∂2u6

∂y2
6

,

∂u6

∂x2
+ ∂v6

∂y6
= 0,

u6 = v6 = 0 at y6 = H(t∗, x2),

u6 = Λ(t∗)( y6 − H0) at x2 = −∞,

u6 = Λ(t∗)y6 + A(t∗, x2) + · · · as y6 → ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

In the upper tier, (4.9) should be solved subject to the boundary conditions (4.25)
and (4.26)

(1 − M2
∞)

∂2p4

∂x2
2

+ ∂2p4

∂y2
4

= 0,

∂p4

∂y4
= 1

Λ(t∗)
∂2A

∂x2
2

at y4 = 0,

p4 → 0 as x2
2 + y2

4 → ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.2)

For the film, we have (4.29). They should be solved with conditions (4.30), (4.31). We
shall write these as

∂2u′

∂y′2 − ∂p′

∂x2
= 0,

∂u′

∂x2
+ ∂v′

∂y′ = 0,

p6 = p′ + γ∗
∂2H

∂x2
2

,

u′ = v′ = 0 at y′ = f (x2),

∂u′

∂y′

∣∣∣∣
y′=H−0

= μw
∂u6

∂y6

∣∣∣∣
y6=H+0

,

v′ = ∂H
∂t∗

+ u′ ∂H
∂x2

at y′ = H(t∗, x2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.3)

6. Linearisation of interaction problem

To solve the interaction problem (5.1)–(5.3) analytically, we consider the case of shallow
roughness, namely, we shall assume that function f (x2) representing the roughness shape
through (4.1), may be written as

f (x2) = εF(x2), (6.1)

where ε is a small parameter. For now we can leave the acoustic wave amplitude parameter
χ as an order one quantity. In this case, the solution of the viscous sublayer problem (5.1)
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may be sought in the form

u6 = Λ(t∗)( y6 − H0) + εũ6(t∗, x2, y6) + · · · , v6 = εṽ6(t∗, x2, y6) + · · · ,

p6 = εp̃6(t∗, x2) + · · · , A = −Λ(t∗)H0 + εÃ(t∗, x2) + · · · .

}
(6.2)

The solution of the upper tier problem (5.2) is represented as

p4 = εp̃4(t∗, x2, y4) + · · · , (6.3)

and the solution for the film problem (5.3) can be expressed in the form

u′ = Λ(t∗)y′ + εũ′(t∗, x2, y′) + · · · , v′ = εṽ′(t∗, x2, y′) + · · · ,

p′ = εp̃′(t∗, x2) + · · · , H = H0 + εH̃(t∗, x2) + · · · .

}
(6.4)

We find that the linearised problem for the viscous sublayer has the form

ρwΛ(t∗)
[
( y6 − H0)

∂ ũ6

∂x2
+ ṽ6

]
= −∂ p̃6

∂x2
+ μw

∂2ũ6

∂y2
6

,

∂ ũ6

∂x2
+ ∂ṽ6

∂y6
= 0,

ũ6 = −Λ(t∗)H̃(t∗, x2), ṽ6 = 0 at y6 = H0,

ũ6 = 0 at x2 = −∞,

ũ6 = Ã(t∗, x2) at y6 = ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.5)

The upper tier problem assumes the form

(1 − M2
∞)

∂2p̃4

∂x2
2

+ ∂2p̃4

∂y2
4

= 0,

∂ p̃4

∂y4
= 1

Λ(t∗)
∂2Ã

∂x2
2

at y4 = 0,

p̃4 → 0 as x2
2 + y2

4 → ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(6.6)

The film problem turns into

∂2ũ′

∂y′2 − ∂ p̃′

∂x2
= 0,

∂ ũ′

∂x2
+ ∂ṽ′

∂y′ = 0,

p̃6 = p̃′ + γ∗
∂2H̃

∂x2
2

,

ũ′ = −Λ(t∗)F(x2), ṽ′ = 0 at y′ = 0,

∂ ũ′

∂y′ = μw
∂ ũ6

∂y6

∣∣∣∣
y6=H0

at y′ = H0,

ṽ′ = ∂H̃
∂t∗

+ Λ(t∗)H0
∂H̃
∂x2

at y′ = H0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.7)
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On boundary-layer receptivity

The interaction problem (6.5)–(6.7) allows for Fourier transform to be applied with
respect to longitudinal coordinate x2. The derivation of solutions for the interaction
problem using Fourier transform is presented in Appendix A, where ū6, v̄6, p̄6, Ā and
H̄ are the Fourier transforms of ũ6, ṽ6, p̃6, Ã and H̃, respectively.

By solving the governing equations of the lower tier in the airflow, we find the solution
of vertical component of velocity to be

ū6 = −ΛH̄ + C

z∫
0

Ai(ζ ) dζ. (6.8)

The displacement function yields

Ā = −ΛH̄ +
(

ik
μwρ2

wΛ2

)1/3 p̄6

3Ai′(0)
. (6.9)

Note that our task is to find an expression between p̄6 and p̄6. Hence, we eliminate Ā in the
final solutions using (6.9). The solution of the upper tier leads to a relationship between
the pressure perturbations p̄6 and the interface deformation function H̄[

1
3Ai′(0)

(
ik

μwρ2
wΛ2

)1/3

− βΛ

|k|

]
p̄6 = Λ(t∗)H̄. (6.10)

By solving the boundary-value problem (6.7), in terms of the Fourier transform that
governs the film flow, we find

ū′ = 1
2 ikp̄′y′2 + L(t∗, k)y′ − Λ(t∗)F̄(k), (6.11)

v̄′ = 1
6 k2p̄′y′3 − 1

2 ikL(t∗, k)y′2 + ikΛ(t∗)F̄(k)y′, (6.12)

where

L(t∗, k) =
[

νw

Λ(t∗)

]1/3 Ai(0)

Ai′(0)
(ik)2/3p̄6 − ikH0p̄′. (6.13)

Finally, by considering the kinematic condition on the interface and the film
solution (6.12) we have the following equation relating p̄6 with H̄:

dH̄
dt∗

+
[

ikH0Λ(t∗) − 1
6

k4γ∗H3
0

]
H̄ − 1

6
k2H3

0 p̄6 = ikH0Λ(t∗)F̄(k) − 1
2

ikH2
0L(t∗, k),

(6.14)

where

L(t∗, k) =
{[

νw

Λ(t∗)

]1/3 Ai(0)

Ai′(0)
(ik)2/3 − ikH0

}
p̄6 − ik3γ∗H0H̄. (6.15)
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7. Weak acoustic wave

We shall now consider the case of weak acoustic wave, namely, we shall assume that the
acoustic wave amplitude parameter χ is small. To find the corresponding solution of (6.10)
and (6.15) we write (4.19) as

Λ(t∗) = λ+ χ
[
λ�eiωt∗ + (c.c.)

]
, (7.1)

where

λ� = − αka√
μwρwω

exp(i(kax0
1 + π/4))

2i
, (7.2)

and seek functions p̄6 and H̄ in the form of asymptotic expansions

p̄6 = p̄� + χ
[
p̄��eiωt∗ + (c.c.)

]
+ · · · , H̄ = H̄� + χ

[
H̄��eiωt∗ + (c.c.)

]
+ · · · .

(7.3a,b)

Here, p̄� and H̄� represent the steady flow past the wall roughness, while p̄��eiωt∗ and
H̄��eiωt∗ stand for unsteady perturbations produced by the acoustic wave.

Substituting (7.3a,b) and (7.1) into (6.10) and working with the leading-order terms we
have

a1p̄� = H̄�, (7.4)

where

a1 = 1
3Ai′(0)

(
ik

μwρ2
wλ

5

)1/3

− β

|k| . (7.5)

The corresponding equation for the O(χ) terms has the form

a1p̄�� − H̄�� = a2p̄�, (7.6)

where

a2 = 5λ�

9Ai′(0)

(
ik

μwρ2
wλ

8

)1/3

. (7.7)

Combining (7.1) and (7.3a,b) with (6.14) and (6.15) yields the following equation for the
steady terms:(

ikH0λ+ k4γ∗H3
0

3

)
H̄� +

[(νw

λ

)1/3 Ai(0)

Ai′(0)

H2
0

2
(ik)5/3 + k2H3

0
3

]
p̄� = ikH0F̄(k)λ.

(7.8)
The corresponding equation for the O(χ) unsteady terms has the form

a3p̄�� + a4H̄�� = a5p̄� + a6H̄� + ikH0F̄(k)λ�, (7.9)

where

a3 =
[(νw

λ

)1/3 Ai(0)

Ai′(0)

H2
0

2
(ik)5/3 + k2H3

0
3

]
, a4 = iω + ikH0λ+ k4γ∗H3

0
3

,

a5 =
[(νw

λ4

)1/3 Ai(0)

Ai′(0)

H2
0

6
(ik)5/3λ�

]
, a6 = −ikH0λ

�.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7.10)
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On boundary-layer receptivity

Eliminating H̄� from (7.4) and (7.8) we find that the Fourier transform of the steady
pressure perturbations produced by the wall roughness is given by

p̄� = ikH0F̄(k)λ
D�(k)

, (7.11)

with the denominator
D�(k) = a1 (a4 − iω) + a3. (7.12)

Similarly, it follows from (7.6) and (7.9) that the Fourier transform of the unsteady
pressure perturbations

p̄�� = ikH0F̄(k)
D��(k)

, (7.13)

where

D��(k) = (a3 + a1a4)D�(k)
(a2a4 + a5 + a1a6) λ+ λ�D�(k)

. (7.14)

7.1. Interfacial instability modes
By setting the denominator of the expression in (7.13) to zero we can obtain the dispersion
equation describing the instability modes of the flow. Since the airflow in the viscous
sublayer has a relatively slow speed we shall assume the flow in this layer is incompressible
and let β ≈ 1. Considering that the Mach number is small we are able to set the following
values: μw = ρw = 1 and λ = 0.3321. The corresponding dispersion equation for an
incompressible flow is

a3 + a1a4 = 0, (7.15)

which yields to the following expression:

ω = −kH0λ+ i
γ∗H3

0k4

3
− i

k2H3
0

3
− Ai(0)(ik)5/3H2

0
2|Ai′(0)|

β

|k| + (ik)1/3

3|Ai′(0)|λ
−5/3

. (7.16)

By conducting a linear stability analysis for an incompressible flow while focusing on
temporal instability we found that, without the surface tension, γ = 0, the amplitude of
the dispersion equation grows, however, for the case where γ /= 0 the amplitude decays

− Im {ω(k)} = −1
3
γ̃ H3

0k4 + NrDr + NiDi

D2
r + D2

i
, (7.17)

where

Nr = k2H3
0 |k||Ai′(0)| + 3

√
3

4
k5/3H2

0 |k|Ai(0), Ni = −3
4

k5/3H2
0 |k|Ai(0),

Dr = 3|Ai′(0)| +
√

3
2

|k|k1/3λ−5/3, Di = 1
2
|k|k1/3λ−5/3.

⎫⎪⎪⎬
⎪⎪⎭ (7.18)

Figure 3 shows that the flow is unstable within the interval [0, k∗] but becomes stable
for k > k∗ and we see that the neutral wavenumber is k∗ ≈ 1.05.
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k

–
Im

{ω
}

Figure 3. Representation of the dispersion equation with the following values: β = μ = ρ = 1 and
λ = 0.3321.

7.2. Receptivity coefficient
To find the solutions of (7.11) and (7.13) we need to apply the inverse Fourier transform

p̃ = 1
2π

∞∫
−∞

(
p̄� + χ

[
p̄��eiωt∗ + (c.c.)

])
eikx2 dk. (7.19)

Our task is to find the amplitude of the Tollmien–Schlichting wave which is described
by the receptivity coefficient. This coefficient is obtained by finding the solution of the
unsteady term in (7.19). First, we choose the contour of integration as a semi-circle in the
upper half of the k-plane shown in figure 4. Then, turning our attention to the second term
of the integral in (7.19)

Ĩ�� = eiωt∗

2π

∞∫
−∞

p̄��eikx2 dk = 1
2π

∞∫
−∞

kH0ȳw(k)
D��(k)

eikx2 dk. (7.20)

We can write the integral in (7.20) as

Ĩ�� = 1
2π

(
Ĩ��
1 + Ĩ��

2

)
, (7.21)

where the integration interval is divided into two parts

Ĩ��
1 =

0∫
−∞

kH0ȳw(k)
D��(k)

eikx2 dk, (7.22a)

Ĩ��
2 =

∞∫
0

kH0ȳw(k)
D��(k)

eikx2 dk. (7.22b)
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On boundary-layer receptivity

• k0(ω)

C+
′C−

′

C+C−

C+
R

k

C−
R

Figure 4. Deformation of the contour of integration.

Considering the integration contour shown in figure 4, we find that the first
integral, (7.22a), to be divided into three parts

Ĩ��
1 =

⎛
⎜⎜⎝

∫
C−

+
∫

C′−

+
∫

C−
R

⎞
⎟⎟⎠

(
kH0ȳw(k)
D��(k)

)
eikx2 dk. (7.23a)

According to the Jordan lemma, the integral along the contour C−
R tends to zero and the

integral along the contour C− retrieves the original integral Ĩ�
1. The integral along C′− is of

Laplace type and it can be evaluated at large values of x2. Thus, with help of the Watson
lemma, we find that the main contribution to the behaviour of the integral is represented
by the following term:

k → 0, ω = O(1), (7.24a,b)

the dominant term of unsteady pressure perturbation is written as

p̄�� ≈ 5(
√

3 + i)
18β2

λ�

Ai′(0)

k7/3ȳw(k)
(μwρ2

wλ
8)1/3 . (7.25)

With the help of Watson’s lemma we find∫
C′−

p̄��eiωt∗eikx2 dk ≈ B ei(5π/3)

x10/3
2

Γ

(
10
3

)
as x2 → ∞, (7.26)

where

B = 5(
√

3 + i)
18β2

λ�

Ai′(0)

(
μwρ2

wλ
8
)−1/3

. (7.27)

By residue theorem we find the solution of (7.23a) to be

Ĩ��
1 = 2πi

(
k0H0ȳw(k0)

dD��(k0)/dk
exp(ik0x2)

)
− B

exp
(

i
5π

3

)
x10/3

2

Γ

(
10
3

)
, (7.28)

where k0 is the solution to D��(k) = 0 and it is displayed in figure 5(a). We find the
solution of integral (7.22b) with the same procedure, except that there is no singularity
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M∞ = 0.05
M∞ = 0.001

–3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0
0

0.5

1.0
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2.0
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3.5

4.0

–
Im

{k
0}

Re{k0} Re{k0}

M∞ = 0.7
M∞ = 0.5
M∞ = 0.2

(b)(a)

Figure 5. Value of k0 in the complex k-plane which is the solution to D��(k0) = 0 for various values of the
Mach number as frequency increases. (a) Incompressible flow. (b) Subsonic flow.

inside the closed contour composed of C+
R , C+ and C′+. With the help of Jordan’s lemma

we found the value of integral along arc C+
R to be zero as the radius R tends to infinity.

The integral along C+ recovers the original integral. The integral C′+ along the positive
imaginary semi-axis k is found with help of Watson’s lemma for large values of x2.
Consequently, we find

Ĩ��
2 = −B

exp
(

i
5π

3

)
x10/3

2

Γ

(
10
3

)
. (7.29)

By combining (7.28) and (7.29) we can write solution of (7.21) as

Ĩ�� = i
(

k0H0ȳw(k0)

dD��(k0)/dk
exp(ik0x2)

)
− B

π

exp
(

i
5π

3

)
x10/3

2

Γ

(
10
3

)
. (7.30)

The solution for the unsteady term of the pressure may be expressed in terms of the
receptivity coefficient

Ĩ�� = K(ω)ȳw(k0) exp(ik0x2) − B
π

exp
(

i
5π

3

)
x10/3

2

Γ

(
10
3

)
, (7.31)

where the receptivity coefficient is written as

K(ω) = ik0H0

dD��(k0)/dk
, (7.32)

and D��(k) is defined by (7.14), where k0 is solution to D(k0) = 0. The modulus of the
receptivity coefficient in terms of the frequency ω is displayed in figures 6 and 7. It is
shown that in general the amplitude of the instability wave decreases and tends to a small
value with increasing frequency.
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Figure 6. Modulus of the receptivity coefficient for various values of initial film thickness H0, surface tension
γ∗ and roughness location x0

1 and Mach number M∞; (a) γ∗ = x0
1 = 0.5, M∞ = 0.1, (b) H0 = γ∗ = x0

1 = 0.5,
(c) H0 = x0

1 = 0.5, M∞ = 0.1, (d) H0 = γ∗ = 0.5, M∞ = 0.1.

8. Discussion

We have analysed the effects of the film thickness, surface tension and location of the
surface roughness for incompressible and subsonic flows. We calculated viscosity and
density at the interface and solutions to the compressible Blasius equations for different
values of M∞ and used these numerical results to produce the plots in figure 7. The
corresponding figures for incompressible flows are presented in figure 6. The value for
α is fixed in these numerical analyses and it is set to 0.5 for both incompressible and
subsonic flows.

The receptivity coefficient K = |K|eiφ is expressed as a function of the frequency ω.
The initial thickness of the film H0 has the most impact on the modulus of the receptivity
coefficient |K| for the incompressible flow, as seen in figure 6(a). As H0 increases, the
maximum value of |K| drops to a small value while all the other parameters are fixed. This
suggests that the film flow stabilises the incompressible flow by reducing its receptivity.
For a different range of small Mach number, maxω{|K|} decreases linearly. The highest
value of maxω{|K|} corresponds to the upper limit of M∞ and, as the value of M∞
decreases, the maximum value of |K| drops in the incompressible flow, as shown in
figure 6(b). Another important parameter in our model is surface tension γ∗ and its effect
is presented in figure 6(c). As γ∗ varies, maxω{|K|} is relatively stable, however, it can be
seen that, as the surface tension gets stronger, |K| reaches its peak for smaller frequencies
and |K| becomes smaller much quicker, which suggests that a stronger surface tension
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Figure 7. Modulus of receptivity coefficient for subsonic flow with Prandtl number of 0.72, ratio of specific
heat of 1.4 and Sutherland law coefficient of 110.4 Kelvin for all cases; (a) H0 = γ∗ = x0

1 = 0.5, (b) H0 = x0
1 =

0.5, (c) M∞ = H0 = x0
1 = 0.5, (d) H0 = x0

1 = 0.5, (e) M∞ = γ∗ = H0 = 0.5, ( f ) H0 = 0.5.

also reduces the receptivity. Our numerical analyses showed that the incompressible flow
over a thin film with γ∗ < 0.001 produced similar results as the model without the surface
tension and the initial amplitude of the instability waves in the incompressible boundary
layer grow, see figure 6(c). The initial location of the roughness X0

1 is the only parameter
that has no effect on |K| in the incompressible flow, as shown in figure 6(d).
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Unlike incompressible flows, density and viscosity are not constant in compressible
flows. We obtained the numerical results presented in figure 7 by employing fourth-order
Runge–Kutta and Newton iterations to calculate self-similarity solutions to the
compressible Blasius equations for different values of Mach number. Since the viscosity
of the liquid film is much stronger than the airflow viscosity, we assumed that the film
acts as a solid to the airflow, thus the no-slip condition is valid at the bottom of the
viscous sublayer. Further, we assumed that the film flow acts as an adiabatic wall and
using Sutherland’s law we obtained the dynamic viscosity for different values of M∞ and
the corresponding density at the interface.

As the Mach number increases, the peak of |K| decreases for the subsonic flow, as
presented in figure 7(a). These plots illustrate that, over a thin layer of film, the amplitude
of the instability wave is smaller than those with higher Mach number in subsonic flows.
Further, plotting maxω{|K|} against the corresponding Mach number while the frequency
is increasing shows that maxω{|K|} drops exponentially as M∞ increases; see figure 7(b).
The surface tension has a similar effect on the value of |K|; as γ∗ gets stronger the value
of |K| decreases; see figures 7(c) and 7(d). The value of maxω{|K|} is decreasing in
both cases; as we either increase γ∗ or increase M∞ while other parameters are fixed.
In contrast to incompressible flow, we observed that the roughness location influences the
instability waves for the subsonic flow. The relationship between X0

1 and |K| is presented in
figures 7(e) and 7( f ), which show that, when the roughness location is closer to the leading
edge, it produces larger initial amplitude instability waves in the subsonic boundary layer.
As the surface roughness is located further from the leading edge, the maximum value
of |K| becomes smaller. There have been extensive studies on the receptivity of flows
to external disturbances, such as the theoretical work by Ruban (1984) and Goldstein
(1985). They have shown that the generation of instability waves in a laminar boundary
layer arises because of a double-resonance mechanism involving conversion of long
wavelength free-stream acoustic disturbances into Tollmien–Schlichting waves. In this
paper we considered the same problem with an extra layer of fluid, a thin layer of water
over the surface. We demonstrated the generation of instability waves in a multi-fluid
structure produced by interface instabilities, while the double-resonance condition holds.
In addition, we presented the surface tension effects by allowing a pressure jump across
the interface.

Another example of such studies is the numerical work by De Tullio & Ruban (2015),
where they extensively compared the theoretical results with numerical simulations of the
compressible Navier–Stokes. Their results show that the observed enhanced receptivity in
their results for increasing Mach number is due to the fact that the amplitude of the near
wall u-velocity disturbances induced by the acoustic wave increases with Mach number.
Similarly, we found that the receptivity enhances for increasing Mach number for the
incompressible flow presented in figure 6. However, our results in figure 7 show that
the receptivity decreases with increasing Mach number. Since |K| decreases for higher
surface tension or increased initial film thickness within our scaling assumptions, we
can conclude that the surface tension reduces the initial amplitude of instability waves
in the boundary layer. They showed that in absent of a thin film there is an excellent
agreement between the theoretical model and direct numerical simulations of receptivity
analysis of subsonic boundary layers to acoustic–roughness interaction for M∞ = 0.2.
Additionally, they showed that, as the Mach number increased, the error between theory
and Navier–Stokes simulations remains approximately constant and roughly equal to 7 %
of the theoretical result. However, as the Mach number is increased, the relative error
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increases slightly with Mach number to reach a maximum of approximately 13.5 % at
M∞ = 0.8 and this relatively low error is considered to be a good agreement between the
theory and numerical simulations. Interestingly, our numerical results of the receptivity
coefficient for values M∞ > 0.75 display a strange behaviour which suggests that our
theoretical model is valid for certain values of Mach number in the range 0 < M∞ < 0.75.
Possible future work would be to determine the accuracy of our theoretical model by
obtaining Navier–Stokes simulations for a multi-fluid configuration similar to the studies
done by De Tullio (2013) and De Tullio & Ruban (2015).

9. Conclusion

For the purpose of grasping a better understanding of how the airflow transitions from
laminar to turbulent due to external factors, we studied the generation of interfacial
instability waves. While the boundary layer is subjected to a weak unsteady acoustic wave
in the oncoming free-stream flow it encounters a small roughness on the wing aircraft. To
ensure that the instability waves, that are called Tollmien–Schlichting waves, are generated
in the boundary layer, we assumed that the frequency of the acoustic wave coincides with
the interfacial instability wave in the boundary layer while interacting with the roughness
on the surface. Further, to satisfy the resonance condition we found the time scale has to
be O(σ

−1/2
μ Re−1/8), where σμ is the viscosity ratio of the air to the film. Given that the

viscosity ratio is small, we were able to obtain the lubrication equations to describe the
motion of the film flow in both areas above x1 (before the interaction region) and x2 (in the
interaction region).

Starting from the pre-interaction region; once the unsteady acoustic wave penetrates
the upper layer of the airflow, the leading-order term of the pressure perturbation is
governed by a single unsteady equation that shows the acoustic wave only propagates in
one dimension in this region. Then this disturbance transmits through the passive main
deck and causes the formation of the Stokes layer with thickness O(σ

1/2
μ Re5/8). Note that

the Stokes layer interacts with the roughness that has the longitudinal scaling O(Re−3/8).
The solutions to the film governing equations are found and it is shown that these

solutions depend on the characteristic amplitude and frequency of the acoustic disturbance.
We also found that the interfacial instabilities are unsteady and only vary along the
horizontal axis. The analysis of the interaction region starts from the upper tier (region
4) which is predicted by considering the flow in region 1 near the roughness. By analysing
the region close the roughness we found that the pressure perturbations are governed by
a single linear equation. Similarly, we found the solution in the viscous sublayer (region
6) by analysing the Stokes layer near the roughness while the flow in region 5 merely
acts as a transmitter between the upper and viscous sublayers. Finally, the solutions to the
film governing equations are presented. Since the boundary conditions for the film in the
interaction region are different to the film flow before the roughness, the film solutions in
this region are different and it is shown that they depend on the roughness shape as well
as the acoustic wave.

The triple-deck theory is used to describe the flow in the interaction region. The
solutions of the triple-deck problem are obtained in an analytical form and these analytical
solutions enable us to evaluate the amplitude of the Tollmien–Schlichting waves in terms
of the receptivity coefficient. We found that the receptivity coefficient of the subsonic flow
depends on frequency ω.

There are number of differences between incompressible and subsonic flows, first, the
scale of maxω{|K|} in subsonic flow is higher than the results for incompressible flow.
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Further, we found that, unlike subsonic flows, the location of the roughness has no
noticeable effects on |K| for the incompressible flow. The main common feature of
the flows is that the surface tension has the same effect on the initial amplitude of
the Tollmien–Schlichting waves. While this is the first paper on the receptivity of a
multi-fluid flow to acoustic–roughness interaction, one could compare our results with the
similar work, such as Raposo et al. (2021). Their numerical studies of acoustic–roughness
receptivity in subsonic boundary-layer flow over aerofoils show that the receptivity
amplitude varies with the position of a Gaussian-shaped roughness in the absence of a
thin film. We also found that the flow in a subsonic regime is susceptive to the roughness
location; the maximal Tollmien–Schlichting amplitude decreases if a roughness element
is placed slightly further from the upstream flow.

We examined the sensitivity of the receptivity coefficient to (i) the free-stream Mach
number at a fixed value of surface tension and (ii) surface tension at a fixed value of
free-stream Mach number and observed that, in both cases, as their values increase, the
maximal receptivity amplitude decreases rapidly. Generally, the modulus of the receptivity
coefficient experiences a relatively large growth over a small range of frequency, however,
it decreases for increasing frequency and tends to a very small value. This implies that the
instability waves in the boundary layer, as a results of acoustic–roughness interaction, are
very small and negligible for flow with M∞ < 0.7 in the presence of a thin liquid film.

In this paper we presented receptivity analyses of the airflow over a flat surface with
a roughness in the presence of a thin liquid film. We concluded that this process leads
to the formation of Tollmien–Schlichting waves in the boundary layer. Further, we found
that film surface tension forces the initial amplitude of the instability waves in the viscous
sublayer of the airflow to decay for increasing frequency in incompressible and subsonic
flows.

Declaration of interests. The authors report no conflict of interest.
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Appendix A. Fourier transform

The Fourier transform is defined as

ū6(t∗, y6; k) =
∞∫

−∞
ũ6(t∗, x2, y6) exp(−ikx2) dx2. (A1)

We start with the lower tier in the airflow. Applying the Fourier transform to (6.5) we
have

ρwΛ(t∗)
[
( y6 − H0)ikū6 + v̄6

] = −ikp̄6 + μw
d2ū6

dy2
6

, (A2a)

ikū6 + dv̄6

dy6
= 0, (A2b)

ū6 = −Λ(t∗)H̄(t∗), v̄6 = 0 at y6 = H0, (A2c)

ū6 = Ā(t∗) at y6 = ∞. (A2d)
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Here, ū6, v̄6, p̄6, Ā and H̄ are the Fourier transforms of ũ6, ṽ6, p̃6, Ã and H̃, respectively,
defined in a usual way.

To solve boundary-value problem (A2) we start by setting y6 = H0 in the momentum
equation (A2a). Using conditions (A2c), we find that

d2ū6

dy2
6

∣∣∣∣∣
y6=H0

= ik
μw

p̄6. (A3)

We now differentiate (A2a) with respect to y6 and use the continuity equation (A2b) to
eliminate v̄6. This results in

ρwΛ(t∗)( y6 − H0)ik
dū6

dy6
= μw

d3ū6

dy3
6

. (A4)

Equation (A4) should be solved with the boundary conditions (A2c), (A2d) and (A3). It is
easily seen that, if one introduces a new independent variable

z =
[
Λ(t∗)
νw

ik
]1/3

( y6 − H0), (A5)

where νw = μw/ρw, then (A4) turns into the Airy equation for dū6/dz

d3ū6

dz3 − z
dū6

dz
= 0. (A6a)

In the new variables, the boundary conditions (A2c), (A2d) and (A3) are written as

ū6 = −Λ(t∗)H̄(t∗) at z = 0, (A6b)

ū6 = Ā(t∗) at z = ∞, (A6c)

d2ū6

dz2 =
(

ik
μwρ2

wΛ2

)1/3

p̄6 at z = 0. (A6d)

In what follows we shall assume that Λ(t∗) is positive for all values of t∗, and we define
an analytic branch of (ik)1/3 by introducing a branch cut along the positive imaginary
semi-axis in the complex k-plane. In this case, the solution to (A6a), that does not grow
exponentially as z → ∞, is written as

dū6

dz
= C Ai(z). (A7)

Here, Ai(z) is the Airy function, and C is a complex constant. Condition (A6d) allows us
to relate C to the Fourier transform of the pressure, p̄6

C =
(

ik
μwρ2

wΛ2

)1/3 p̄6

Ai′(0)
. (A8)

Integrating (A7) with initial condition (A6b), we have

ū6 = −ΛH̄ + C

z∫
0

Ai(ζ ) dζ. (A9)
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To use boundary condition (A6c) we set z = ∞. We see that

Ā = −ΛH̄ + 1
3 C. (A10)

Substitution of (A8) into (A10) yields

Ā = −ΛH̄ +
(

ik
μwρ2

wΛ2

)1/3 p̄6

3Ai′(0)
. (A11)

This is the first equation relating Ā and p̄6. The second is deduced by analysing the flow in
the upper tier (region 4).

The boundary-value problem (6.6) is written in terms of the Fourier transforms as

−β2k2p̄4 + d2p̄4

dy2
4

= 0,

dp̄4

dy4
= − k2

Λ(t∗)
Ā at y4 = 0,

p̄4 → 0 as y4 → ∞,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A12)

where β = √
1 − M2∞. The solution of the boundary-value problem (A12) is easily found

to be

p̄4 = |k|
βΛ(t∗)

Ā exp(−β|k|y4). (A13)

To find the Fourier transform of the pressure in the viscous sublayer (region 6) we have to
set y4 = 0 in (A13). We have

p̄6 = |k|
βΛ(t∗)

Ā. (A14)

Now we can find a relationship between the pressure perturbations p̄6 and the interface
deformation function H̄. For this purpose we eliminate Ā from (A11) and (A14), which
leads to [

1
3Ai′(0)

(
ik

μwρ2
wΛ2

)1/3

− βΛ

|k|

]
p̄6 = Λ(t∗)H̄. (A15)

It remains to solve the boundary-value problem (6.7) that governs the film flow. We start
with the momentum equation which is written in terms of the Fourier transform as

d2ū′

dy′2 = ikp̄′. (A16)

It should be solved with the boundary conditions

ū′ = −Λ(t∗)F̄(k) at y′ = 0, (A17)

dū′

dy′ = μw
dū6

dy6

∣∣∣∣
y6=H0

at y′ = H0. (A18)
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The right-hand side of (A18) is given by the solution in region 6

μw
dū6

dy6

∣∣∣∣
y6=H0

=
[

νw

Λ(t∗)

]1/3 Ai(0)

Ai′(0)
(ik)2/3p̄6. (A19)

The solution of the boundary-value problem (A16)–(A18) is written as

ū′ = 1
2 ikp̄′y′2 + L(t∗, k)y′ − Λ(t∗)F̄(k), (A20)

where

L(t∗, k) =
[

νw

Λ(t∗)

]1/3 Ai(0)

Ai′(0)
(ik)2/3p̄6 − ikH0p̄′. (A21)

It should be noted that the Fourier transforms of the pressure in the film and in region 6
are related to one another as

p̄′ = p̄6 + γ∗k2H̄. (A22)

Let us now consider the continuity equation in (6.7). It is written in terms of the Fourier
transforms as

dv̄′

dy′ = −ikū′. (A23)

Substituting (A20) into (A23) and integrating the resulting equation with the initial
condition

v̄′ = 0 at y′ = 0, (A24)

we have

v̄′ = 1
6 k2p̄′y′3 − 1

2 ikL(t∗, k)y′2 + ikΛ(t∗)F̄(k)y′. (A25)

Finally, we need to consider the kinematic condition on the interface. It is expressed by
the last equation in (6.7), which is written in terms of the Fourier transforms as

v̄′ = dH̄
dt∗

+ ikΛ(t∗)H0H̄ at y′ = H0. (A26)

Substitution of (A25) into (A26) yields

1
6

k2p̄′H3
0 − 1

2
ikL(t∗, k)H2

0 + ikΛ(t∗)F̄(k)H0 = dH̄
dt∗

+ ikΛ(t∗)H0H̄. (A27)

It remains to substitute (A22) into (A27) and (A21), and we will have the following
equation relating p̄6 with H̄:

dH̄
dt∗

+
[

ikH0Λ(t∗) − 1
6

k4γ∗H3
0

]
H̄ − 1

6
k2H3

0 p̄6 = ikH0Λ(t∗)F̄(k) − 1
2

ikH2
0L(t∗, k),

(A28)
where

L(t∗, k) =
{[

νw

Λ(t∗)

]1/3 Ai(0)

Ai′(0)
(ik)2/3 − ikH0

}
p̄6 − ik3γ∗H0H̄. (A29)
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