
Subspace-based estimation of time
of arrival and Doppler shift for a signal
of known waveform

v.v. latyshev

The subspace-based technique is used for the estimation of the time of arrival and Doppler shift of a signal of known wave-
form. The tool to find required subspaces is a special orthogonal decomposition of received data. It allows one to concentrate
Fisher information on the desired parameter in just a few of the first terms of the decomposition. This approach offers a
low-dimensional vector of sufficient statistics. It leads to computationally efficient Bayesian estimation. Besides, it results
in expansion of the signal-to-noise ratio (SNR) range for effective maximum likelihood (ML) estimation. Finally, we can
obtain independent time arrival and Doppler shift estimations based on generalized eigenvectors.
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I . I N T R O D U C T I O N

Dimension reduction techniques are often applied as a data
pre-processing step or as a part of the data analysis to simplify
a data model. This typically involves identification of a suit-
able low-dimensional representation for the original high-
dimensional data set or a subspace of an observation space.
By working with this reduced representation, tasks such as
classification or estimation can often yield more accurate
and readily interpretable results, while computational costs
may be significantly reduced.

In mathematical terms, the problem we consider can be
stated as follows: given the N-dimensional random variable
x ¼ (x1, x2, . . . , xN)T, find a lower dimensional representation
of it, y ¼ (y1, y2, . . . , ym)T with m , N, that captures the
content in the original data, according to some criterion.

Among the linear dimension reduction techniques, principal
component analysis (PCA) is the best in the mean-square error
sense [1]. In various fields, it is also known as the singular value
decomposition (SVD) and the Karhunen–Loeve transform. In
essence, PCA seeks to reduce the dimension of the data by
finding a few orthogonal linear combinations (the PCs) of the
original variables. The first PC y1 is the linear combination
with the largest variance. The second PC y2 is the linear com-
bination with the second largest variance and orthogonal to
the first PC, and so on. There are as many PCs as the
number of original variables. For many data sets, the first
several PCs explain most of the variance, so that the rest can
be disregarded with minimal loss of information.

Here we would like to use dimension reduction techniques
in a signal parameter estimation problem. We hope to obtain a
similar PCA technique with a different criterion.

I I . D A T A D I M E N S I O N R E D U C T I O N

The estimation problem, which we consider here, can be
phrased as follows: given x(t) ¼ s(t, u)þ w(t), where s(t, u),
0 � t � T is a signal of the known waveform to be observed
in the presence of an additive Gaussian noise process w(t)
with zero mean. We have an a priori probability density
p(u) in the random parameter estimation problem. In all of
our discussions we assume that p(u) is known. We need an
estimation parameter u of a signal. In general, the variable u

appears in a signal in a nonlinear manner.
We assume that the observation space corresponds to

the set of N observations: x1, x2, . . . , xN. Thus, each set can
be thought of as a point in an N-dimensional space and can
be denoted by a column vector x ¼ s(u)þ w, where s(u) [
RN and w [ RN are the N-dimensional vectors of a signal
and a noise correspondingly. Vector w has a nonsingular
covariance matrix Rw. Then the probability density of x is

p(xju) ¼ ((2p)N
jRwj)

1=2 exp

� �
1
2

(x� s(u))T R�1
w (x� s(u))

h i
: (1)

To obtain the m-dimensional vector y with m , N, we use
linear transformation y ¼ Cx with the transformation matrix
C . We need such a matrix C that guarantees minimal loss of
estimation accuracy of a parameter u, using vector y. In
addition to the foregone requirement we try to represent x
in a new coordinate system in which the components are stat-
istically independent random variables: CRCT ¼ I, where I is
a diagonal identity matrix. It is convenient to write the trans-
formation matrix as C ¼ AR21/2

w . Here R21/2
w is a symmetric

square root from R21
w (R21/2

w R21/2
w ¼ R21

w ),
AT ¼ (a1, . . . , am), AAT ¼ I. So we have

y ¼ AR�1=2
w x, y [ Rm: (2)
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First of all, recall that the variance of any unbiased estimate of
an arbitrary parameter u is determined from the Cramer–Rao
inequality [2]:

s2
u �

@ ln p(xju)
@u

� �2� ��1

¼ �
@2 ln p(xju)

@u2

� �� ��1

: (3)

The inequalities are defined if the derivatives involved are
existent and absolutely integrable. Recall that the denominator
of the right-hand sides of CRI is usually referred to as the
Fisher information on parameter u:

I(u) ¼
@ ln p(xju)

@u

� �2

¼ �
@2 ln p(xju)

@u2 : (4)

Inserting (1) in (3) we have

IN (u) ¼ (s0(u))T R�1
w s0(u), (5)

where subscript N is used to distinguish the initial dimension
of the observation from a new reducing dimension m, and
s0(u) ¼ ((@s1(u)=@u), . . . , (@sN (u)=@u))T is the column
vector of derivatives.

The Fisher information in the vector y [3] is

Im(u) ¼
Xm

k¼1

aT
k R�1=2

w s0(u)
� �2

:

The loss of the Fisher information is

DI(u) ¼ IN (u)� Im(u)

¼ (s0(u))T R�1
w s0(u)�

Xm

k¼1

aT
k R�1=2

w s0(u)
� �2

:

The mean of the loss of the Fisher information is

DI ¼ Eu (s0(u))T R�1
w s0(u)�

Xm

k¼1

aT
k R�1=2

w s0(u)
� �2

( )
, (6)

where Eu denotes an expectation over the random variable u.
Thus, we need the transformation matrix (2) which provides
minimal value of DI.
Theorem: The linear transformation with the matrix ARw

21/2

provides minimal mean of the loss of Fisher information
DI, if the column vectors a1, . . . , am of AT are the orthonor-
mal eigenvectors of

B ¼ R�1=2
w Eu s0(u)(s0(u))T� 	

R�1=2
w , (7)

corresponding to m largest eigenvalues. At the same time

DImin ¼ lmþ1 þ � � � þ lN , (8)

where l1 � l2 � � � � � lN are the eigenvalues of B.
Proof: Rewrite (3) in the next form

DI ¼ Eu (s0(u))T R�1
w s0(u)

� 	
� Eu

Xm

k¼1

aT
k R�1=2

w s0(u)
� �2

( )
:

The first term does not depend on ak. Therefore, we find the
minimal value of DI if the subtrahend is maximal. Denote it
as H(a1, . . . , am). Inverting averaging with summation and
taking into account the equality

aT
k R�1=2

w s0(u)
� �2

¼ aT
k R�1=2

w s0(u)(s0(u))T R�1=2
w ak,

we have

H(a1, . . . , am) ¼
Xm

k¼1

aT
k R�1=2

w Eu s0(u)(s0(u))T� 	
R�1=2

w

� �
ak:

The expression in brackets is a symmetric matrix:

B ¼ R�1=2
w Eu s0(u)(s0(u))T� 	

R�1=2
w :

In compliance with the theorem about eigenvalues and eigen-
vectors [4], the maximal value of H (a1, . . . , am) takes place if
a1, . . . , am are the orthonormal eigenvectors of the matrix B,
corresponding to m largest eigenvalues l1 . l1 . � � � . lm

and

max H(a1, . . . , am) ¼
Xm

k¼1

lk:

The equality R�1=2
w R�1=2

w ¼ R�1
w implies

tr B ¼ Eu (s0(u))T R�1
w s0(u)

� 	
:

On the other hand, tr B ¼
PN

k¼1 lk. It implies
DImin ¼

PN
k¼mþ1 lk.

Note that we can assert that a subspace spanned by the
column vectors a1, . . . , am is the m-dimensional subspace of
an observation space with maximal Fisher information
content concerning the parameter u among any other
m-dimensional subspaces.

I I I . N U M E R I C A L E X A M P L E

To illustrate the advantages of the dimension reduction tech-
nique in signal parameter estimation, let us consider the
Doppler shift problem. We model the next signal

x(t) ¼ s(t, fD)þ w(t): (9)

Here s(t, fD) is a signal of known form to be observed in the
presence of an additive white Gaussian noise process w(t) with
zero mean and variance sw

2 . The time delay is known and we
wish to estimate the Doppler frequency shift fD only. Note that
for the radar case, the standard narrowband assumption is
employed here, i.e. the frequency offset fD is a narrowband
approximation to the stretching or shrinking of the frequency
axis due to the Doppler effect induced by the relative motion
of the reflecting target.

The quantity fD is a random parameter with a uniform
a priori density p0( fD), fD [[2F;F], so we may use the
Bayesian estimation procedure. However, it is very compli-
cated to put it into practice. In this example, our goal is to sim-
plify the Bayesian estimate for the cases when a cost function
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is the square of the error. For the problem at hand, we have to
capture Fisher information concerning Doppler shift after
data dimension reduction.

To illustrate our results we use the FM signal with T . Df ¼
32:

s(t, FD) ¼ E cos (v0 � 2pFD)t þ
pDf

T
t2

� �
,

�
T
2
� t �

T
2
:

(10)

A set of N observations, x1, x2, . . ., xN, consists of statistically
independent values xk with variance sw

2 . So we have a column
vector x ¼ s( fD)þ w [ RN with the nonsingular covariance
matrix Rw ¼ sw

2 I.
The Bayesian estimate uses the a posteriori density:

p(fDjx) ¼
p(xjfD)p0(fD)Ð F

�F p(xjfD)p0(fD) dfD

: (11)

The estimate is the mean of the a posteriori density (or the
conditional mean):

fD(x) ¼
ðF

�F
fDp(fDjx) dfD: (12)

The simplification of the Bayesian estimate may be
achieved using linear transformation with matrix A to
provide minimal mean loss of Fisher information about
Doppler shift. From the foregoing theorem the column
vectors a1, . . . , am of AT are the orthonormal eigenvectors
of the matrix

B ¼
1
s2

w

Eu s0(fD)(s0(fD))T� 	
,

corresponding to m largest eigenvalues. Here s0 ( fD) is the
column vector of derivatives with respect to fD.

If we use the vector y ¼ Ax, y [ Rm, the Bayesian estimate
is the same as in (11) and (12), where x is replaced by y.

For the simulations T ¼ 1, N ¼ 512, fD is a random par-
ameter with the uniform a priori density fD [ [20.4; 0.4].
The mean squared error (MSE) of the Doppler shift estimate
was calculated for each of the algorithms based on 10 000
Monte Carlo trials for various signal-to-noise ratio (SNR)
values. The results are plotted in Fig. 1 together with the
appropriate Cramer–Rao bound (CRB). The demonstrated
results correspond to the Bayesian estimate using initial
512-dimensional vector x and results based on five-
dimensional and 10-dimensional vectors y.

As can be seen from Fig. 1, the 512-dimensional and the
10-dimensional data sets are equivalent with respect to esti-
mation accuracy. At the same time the computational com-
plexity of the Bayesian algorithm is two orders of magnitude
less in this example. This is due to the fact that we capture
Fisher information concerning Doppler shift. Further, the
effect of dimension reduction from 10 to 5 degrades accuracy
noticeably.

I V . S U B S P A C E - B A S E D
M A X I M U M - L I K E L I H O O D ( M L )
E S T I M A T I O N

The theorem that is proved above allows us to reveal an
m-dimensional subspace of the observation space containing
Fisher information on the arbitrary parameter u. If the infor-
mational contents of m-dimensional vector y and
N-dimensional x are equal to one another, we may regard y
as a vector of sufficient statistics in a sense that an estimate
of u based on y is characterized by the same CRB as the esti-
mate based on the initial observation. Otherwise y may be
considered as an approximate vector of sufficient statistics.
The degree of approximation is determined by the sum (8).

Next, we consider an approach to the synthesis of
subspace-based ML estimation algorithms providing for a
higher accuracy of the results. Note that the estimate as
obtained according to the ML principle in nonlinear esti-
mation problems is asymptotically optimal for large SNR.

As an illustration, let us consider estimation of the time of
arrival. Instead of (9) now we have

x(t) ¼ s(t � t)þ w(t)

with

s(t) ¼ 1� cos
2p
T

t

 �

, 0 � t � T: (13)

The unknown parameter is a signal delay t with respect to
the point on the time axis that is chosen as an original. It is
necessary to estimate t from the observation x(t).

We are taking into account that an estimation problem is
usually solved either after a signal has been detected or simul-
taneously with signal detection. Therefore, below we assume
that an expected signal has been detected and that its approxi-
mate position on the time axis is known. It is necessary to
specify the signal’s position in the presence of distortions.
This assumption fits the real operation conditions of tracking
equipment containing a discriminator that in each measure-
ment cycle is tuned to a given reference value of a parameter
to be measured.

Fig. 1. MSE of the Bayesian estimate using initial (512-lower thin line) and
reduced dimensional vectors (5, 10).
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Let us compare the information content of the vector y
with different dimensions for this problem. We can take
into account the results of calculation of Fisher information
from [5, 6] for signal (10) to be observed in the presence of
an additive white Gaussian noise process w(t). Normalized
graphs are shown in Figs. 2–4 for different dimensions of
vector y and T ¼ 1.

It is noteworthy that the first eigenvector a1 coincides with
the pulse response of the ML-filter which follows from the ML
equation to within a constant [5]. Therefore, the solution of
the ML equation corresponds to the first coordinate of the
vector y. Its informational content is shown in Fig. 2. The
graph in Fig. 2 can be interpreted as an informational expla-
nation of the asymptotic optimal property of the ML estimate.
The informational content of the observation x and of the
one-dimensional subspace are close to each other for small t
only. In an estimation problem the estimate is close to the
true value t in case of high SNR and approximate position
on the time axis is known within narrow a priori range
(tmin; tmax). In general, if the SNR is not high, the 1D subspace
is associated with large losses of Fisher information concern-
ing the time delay. So the first coordinate of the vector y
cannot be considered as sufficient statistic for the time delay
estimation. Figure 2 shows the losses of Fisher information
using the gray shading.

The rest of the coordinates of vector y yield an additional
information channel that can be used to enhance the accuracy
of estimation. In Figs. 3 and 4 we see informational contents of
2D and 3D subspaces, respectively. The losses are noticeably

less. Therefore, we can consider 2D or 3D vectors y as an
approximate vector of sufficient statistics within larger
a priori range (tmin; tmax).

As long as we have an approximate vector of sufficient stat-
istics, each of its components can be used for an independent
estimation of the signal delay. In practice, this estimation pro-
cedure necessitates a multi-channel device providing for the
formation of the corresponding vector components in
its channels. Each of the channels contains a linear filter
with an impulse response ak as the corresponding eigenvector
of (7).

This approach actually deals with an m-channel device, so
that parameter t is estimated in each channel using the ML
estimator (MLE) (see Fig. 5).

Therefore, the results in channels can be integrated in a
weight adder (WA). Since an estimation procedure in each
channel is nonlinear, it is difficult to exactly calculate its stat-
istical characteristics. However, potential characteristics can
be employed. As shown above, all channels are characterized
by the mean of the Fisher information lk. Hence, the estimates
in the channels can be characterized by the different CRBs for
the error variance. The optimal integration in WA involves
calculation of the average of the estimates obtained in the
channels with the weights proportional to

ffiffiffiffiffi
lk
p

.
Simulation of this approach is illustrated in Fig. 6. For com-

parison, Fig. 6 shows the error variances obtained on the bases
of 1D, 2D and 3D approximate vectors of sufficient statistics.
Recall that the estimate for the case m ¼ 1 coincides with the
classic ML estimate. Each point of the plots has been obtained
as a result of 10 000 estimation cycles with various white noise
realizations. The initial dimension of the observation is equal
to N ¼ 1024. Here it is assumed that the approximate value of
the delay is known within an a priori range (2T/4;T/4), T ¼ 1.
Thus, the domain of uncertainty is the half-duration of the
signal.

Fig. 2. Fisher information in observation (1) and in the output signal of an ML
filter (2).

Fig. 3. Fisher information in observation (1) and in 2D vector (2).

Fig. 4. Fisher information in observation (1) and in 3D vector (2).

Fig. 5. A multi-channel estimator of the time of arrival.
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The simulation results show that the pulse’s time of arrival
may be estimated more accurately than that in the case when
the classical ML approach is applied (m ¼ 1). In the example
considered, this effect is the result of averaging independent
estimates of the time of arrivals in independent channels. As
is known from estimation theory, the averaging effectively
enhances the accuracy of the determination of various signal
parameters. The method proposed in this paper allows appli-
cation of the aforementioned effect of averaging.

V . I N D E P E N D E N T T I M E
A R R I V A L A N D D O P P L E R S H I F T
E S T I M A T I O N S

Consider the widespread Gaussian observation model. Let the
N-dimensional data column vector be an additive mixture of
the deterministic component and the distortion vector

x ¼ s(t, fD)þ w, (14)

where signal s(t, fD) depends on the two a priori unknown
parameters. Assume that both parameters are statistically
mutually independent. The parameter vector v ¼ (t, fD) has
a bounded domain of variation, where 2D probability
density p0(t, fD) is specified. The distortion vector w consists
of independent sample values, described by the Gaussian
probability distribution with the zero mean and a nonsingular
covariance matrix Rw ¼ sw

2 I.
Assume that it is necessary to estimate t from the observed

vector x. In such a case we can consider fD to be a nuisance
parameter. To find an independent estimate of t, it is desirable
to obtain the statistics in the form of linear functions of vector
x that are not affected by the nuisance parameter. We consider
these statistics as invariant to variations of the nuisance par-
ameter. It is also necessary to minimize a possible deterio-
ration of the estimation accuracy, if t is estimated using
these statistics.

The problem formulated above may be solved on the basis
of the following ideas. If the data or the statistics obtained
from these data do not contain Fisher information on a
certain parameter, it is impossible to estimate this parameter
by the use of this statistic. This situation may be interpreted
as an invariance to the changes of this parameter. On the

other hand, when the observations are used to form a statistic
or data set concentrating the complete Fisher information on a
desired parameter, this parameter will be estimated with the
same accuracy as that provided by all of the observations.
Hence, it is necessary to have a tool that ensures control of
the Fisher information content in the statistics obtained via
linear transformations of the observations. The theorem
proved above allows one to reveal the subspaces of an obser-
vation space containing Fisher information on specific scalar
parameters t or fD. We use the next two matrices, which are
similar to (7):

Bt ¼ Ev s0t(t, fD)(s0t(t, fD))T� 	
=s2

w, (15)

Bf ¼ Ev s0f (t, fD)(s0f (t, fD))T
n o

=s2
w: (16)

Here, differentiation is performed with respect to the par-
ameters indicated by the indexes t or fD. Ev denotes an expec-
tation over the vector random variable v ¼ (t, fD).

In order to eliminate Fisher information on the nuisance
parameter fD from an observation, it is possible to obtain a
decomposition of the observed signal using the eigenvectors
of Bf. Then we remove the terms with nonzero eigenvalues,
and sum the remaining terms.

A drawback of this approach is that the Fisher information
on desired parameter t is beyond transformations. We need
the eliminated statistics with minimum Fisher information
concerning t. Therefore, retaining the idea of the method
applied to find approximate invariant statistics by means of
elimination of some terms from the orthogonal decompo-
sition, we modify the approach. Note that the considered
transformation of the observed vector x to the vector of
decomposition coefficients actually converts Bt into a diag-
onal matrix. Denoting the matrix that consists of the eigenvec-
tors of (15) by A, we have ABtA

T ¼ D, where D is the
diagonal matrix with the eigenvalues of Bt . It is known that
two matrices Bt and Bf can be diagonalized simultaneously.
According to [4], this can be done using the single matrix A
so that

ABf AT ¼ I, ABtAT ¼ D, (17)

where D and AT are chosen to be the matrices of the eigen-
values and the eigenvectors of the matrix Bf

21Bt, respectively.
Simultaneously with performance of the above transform-
ation, it is necessary to separate Fisher information on par-
ameter t from that on parameter fD.

Following [4], let us introduce the auxiliary matrix

Q ¼ Bf þ Bt: (18)

Using matrix A, we can choose a linear transformation so that
Q and Bt are diagonalized simultaneously and the following
conditions are fulfilled:

AQAT ¼ I; ABtAT ¼ D(1), (19)

where D(1) is the diagonal matrix with ordered entries
l(1)

1 � l(1)
2 � � � �l

(1)
N , which are the eigenvalues of matrix Bt.

Fig. 6. MSE of the estimates based on approximate vectors of sufficient
statistics.
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The substitution (18) into (19) yields

I ¼ A(Bt þ Bf )AT ¼ D(1) þ ABf AT

or

ABf AT ¼ I�D(1): (20)

Hence, it follows that matrices Bt and Bf are diagonalized sim-
ultaneously under the above conditions. Besides, the eigen-
values of both matrices satisfy the relationship
l(2)

k ¼ 1� l(1)
k , k ¼ 1, . . . , N . Thus, when Bt and Bf are

diagonalized simultaneously, the greatest eigenvalues of the
first matrix correspond to the least eigenvalues of the second
matrix and vice versa. An advantage of this approach is that
the orthogonal decomposition based on matrix A yields an
orthogonal series, whose terms are ranked simultaneously
according to the degree of decrease of Fisher information.
However, these terms are arranged in reciprocal order: Fisher
information on the desired parameter is concentrated in the
first decomposition terms and Fisher information on the nui-
sance parameter is concentrated in the last terms. Naturally,
in this situation, elimination of terms with the greatest
content of information on the nuisance parameter guarantees
both minimal loss of Fisher information on the parameter to
be estimated and minimal loss in the accuracy of estimation.

In such a way, on the basis of the generalized eigenvectors
of the matrix pair (Bt, Bf) we can divide the observation space
into two mutually orthogonal subspaces containing Fisher
information about t and fD, respectively. For example, to
obtain an independent estimate of the time of arrival we
have to remove Fisher’s information about Doppler shift.
For this purpose, we use the subspace with Fisher’s infor-
mation about t only. Figures 7 and 8 illustrate this possibility
for 7 bits M-sequences. Both figures show relief of jl(t, fD)j,
where l(t, fD) is the logarithm of the likelihood function.
Figure 7 corresponds to observation data without noise. We
see here the local gap near the true values of t and fD.
Figure 8 corresponds to jl(t, fD)j using the orthogonal projec-
tion of observation data onto the subspace with Fisher infor-
mation concerning t only. Here we see that the narrow
canyon is definitely parallel to fD axes. It implies that the
true value of t may be obtained independently from fD. If t
is estimated, the next step is to estimate fD using the subspace
with Fisher information concerning fD.

V I . C O N C L U S I O N S

Based on the Fisher information approach, a linear dimension
reduction technique has been proposed. It is similar to PCA,
but it makes good use of the minimal loss of Fisher infor-
mation as a criterion. As a result, we obtain subspaces of an
observation space concentrating Fisher information concern-
ing interesting parameters of a signal. The projections of an
observation onto these subspaces are the vectors of the suffi-
cient statistics. Simulation performed with the use of the test
signals has shown that the accuracy of the estimation is
based on the ML method and can be improved if we use
these vectors. The generalized eigenvectors of the matrix
pair allow obtaining mutually orthogonal subspaces for inde-
pendent estimation of two different parameters.

R E F E R E N C E S

[1] Jolliffe, I.T.: Principal Component Analysis, Springer-Verlag, 1986.

[2] Van Trees, H.L.: Detection, Estimation, and Modulation Theory,
Part 1, Wiley, New York, 2001, ch. 2.

[3] Latyshev, V.: The optimum decrease of the dimensionality of data for
estimating signal parameters. Sov. J. Commun. Technol. Electron.,
33 (1988), 172–175.

[4] Fukunaga, K.: Introduction to Statistical Pattern Recognition, San
Diego, Academic Press, 1990, ch. 2.

[5] Latyshev, V.: Informational analysis of statistics in time delay esti-
mation problem, in Proc. IRS2007, Cologne, Germany, pp. 169–173.

[6] Latyshev, V.: Subspace-based estimation of time of arrival and
Doppler shift for a signal of known waveform, in Proc.ESAV’08,
Capri, Italy, pp. 94–99.

Viacheslav Latyshev received the diploma
in electrical engineering from the Moscow
Aviation Institute in 1971. In 1979, he
received the Ph.D. degree in electrical
engineering and D.Sc. degree in 1999.
From 1971 to 1979, he has held research
positions at the Department of Electrical
Engineering, Moscow Aviation Institute.

In 1985, he was appointed Professor of Signal Processing,
where he is working currently. His research interests include
stochastic signal processing, fast methods for signal parameter
estimation, higher order statistics.

Fig. 7. Logarithm of the likelihood function for 7 bits M-sequences.

Fig. 8. Logarithm of the likelihood function in invariant to fD subspace.
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