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This work is a parametric study of the fluxes of heat and salt across unsheared
and sheared double-diffusive interfaces using one-dimensional-turbulence (ODT)
simulations. It is motivated by the need to understand how these fluxes scale
with parameters related to the fluid molecular properties and background shear.
Comparisons are made throughout with previous models and available measurements.
In unsheared interfaces, ODT simulations show that the dimensionless heat flux Nu
scales with the stability parameter Rρ , Rayleigh number Ra and Prandtl number Pr as
Nu ∼ (Ra/Rρ)

0.37±0.03 when Pr varies from 3 to 100 and as Nu ∼ (Ra/Rρ)
0.31Pr0.22±0.04

when Pr varies from 0.01 to 1. Here Ra/Rρ can be seen as the ratio of destabilizing
and stabilizing effects. The simulation results also indicate that the ratio of salt
and heat fluxes Rf is independent of Pr , scales with the Lewis number Le as
Rf ∼ Le0.41±0.04 when Rρ is large enough and deviates from this expression for low
values of Rρ , when the interface becomes heavily eroded. In sheared interfaces, the
simulations show three flow regimes. When the Richardson number Ri � 1, shear-
induced mixing dominates, the heat flux scales with the horizontal velocity difference
across the interface and Rf = Rρ . Near Ri ∼ 1 the heat and salt fluxes are seen to
increase abruptly as the shear increases. The flow structure and scaling of the fluxes
are similar to those of unsheared interfaces when Ri � 1.

Key words: double-diffusive convection, turbulent convection, turbulence modelling

1. Introduction
1.1. Background

Double-diffusive convection occurs in a fluid when two of the fluid components that
have opposing effects on the vertical density field, which remains stable on average,
have very different molecular diffusivities. The component that is unstably stratified
drives the convection, while the stably stratified component hinders it. In the fingering
regime of double-diffusive convection the slower diffusing component (salt) is unstably
stratified, while in the diffusive regime the component that diffuses faster (temperature)
is unstably stratified. The present work is a study of the diffusive regime. This regime
is also called the oscillatory regime, thermosolutal or thermohaline convection, or
semi-convection. This form of convection is characterized by a staircase structure
formed by well-mixed convecting layers separated by density interfaces (Turner 1979).

† Email address for correspondence: arkerst@sandia.gov
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Fluxes across double-diffusive interfaces 219

Such interfaces are called double-diffusive interfaces. Double-diffusive convection
in the diffusive regime occurs, for example, in the Arctic and Southern Oceans,
in regions where the melting ice releases cold fresh water over denser warm salty
water; in geothermally heated salty lakes, where the bottom heating acts against salt
stratification; and in solar ponds, where solar energy is stored in an underlying hot
brine (cf. Turner 1974). This regime of double diffusion is believed to be important
in massive stars (Merryfield 1995; Paparella, Spiegel & Talon 2002) and giant planets
(Chabrier & Baraffe 2007). Therefore, knowing the parametric dependence of the
fluxes of heat and salt across double-diffusive interfaces could be of importance, for
example, to estimate the flux of heat to the surface of the Arctic and Southern Oceans;
in the design of solar ponds and to calculate the speed at which massive stars and
giant planets evolve. The present work is a study of this parametric dependence.

1.2. Previous work and present objectives

Within the framework of the Boussinesq approximation (§ 2), the parametric
dependence of the fluxes of heat FT and salt FS across double-diffusive interfaces
between well-mixed convecting layers of total depth h can be expressed as

Nu = F (t∗, Rρ, Ra, Ri, P r, Le), Rf = G(t∗, Rρ, Ra, Ri, P r, Le), (1.1)

where F and G are functions. Throughout this work FT is termed a heat flux though
it is defined by FT = H/(ρ0cp), where H is the heat flux, ρ0 is a reference density and
cp is the specific heat. The dimensionless dependent variables are the Nusselt number
Nu and the ratio of buoyancy fluxes Rf , which are defined by

Nu =
FT

κT �T/h
, Rf =

βSFS

βT FT

, (1.2)

where κT is the thermal diffusivity, �T is the difference in temperature across the
interface, and βT and βS are, respectively, the coefficients of thermal expansion and
salinity contraction. The dimensionless independent variables are a dimensionless time
t∗, the stability parameter Rρ , the Rayleigh number Ra , the Richardson number Ri,
the Prandtl number Pr and the Lewis number Le. These are defined by

Rρ =
βS�S

βT �T
, Ra =

gβT �T h3

νκT

, Ri =
g(�ρ/ρ0)h

�U 2
, P r =

ν

κT

, Le =
κS

κT

, (1.3)

where �S, �ρ and �U are, respectively, the salinity, density and velocity steps across
the interface; g is the gravitational acceleration; ν is the fluid kinematic viscosity; and
κS is the salt diffusivity. In addition, Nu and Rf may depend on boundary conditions.

The above parametric dependence has been studied in double-diffusive interfaces
with no background shear in various experimental and theoretical investigations, e.g.
Turner (1965), Crapper (1975), Marmorino & Caldwell (1976), Linden & Shirtcliffe
(1978), Fernando (1989) and Worster (2004). The prototypical experiment is that
in which a layer of saline water with overlying fresh water is heated from below
in an insulated tank. By assuming quasi-steady-state conditions and a heat flux
FT independent of the layer thickness h, dimensional arguments suggest that (1.1)
becomes Nu/Ra1/3 =F (Rρ) and Rf = G(Rρ) for fixed values of Pr and Le (Turner
1965). Experiments show that F (Rρ) decreases with increasing Rρ , as the stratification
becomes stronger and slows down the convection. They also show that G(Rρ) remains

approximately constant when Rρ lies between 2 and Le−1/2, in a regime where
molecular effects are important, while it increases with decreasing Rρ as Rρ → 1,
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as turbulent transport dominates (e.g. Turner 1965; Crapper 1975; Marmorino &
Caldwell 1976).

Even though the scaling Nu ∼ Ra1/3 is widely assumed, the only support for it is the
experimental work by Marmorino & Caldwell (1976), which reports Nu ∼ Ra0.37±0.1

(cf. Kelley et al. 2003). Our first objective is to determine how the fluxes of heat and
salt scale with Ra in the range Ra = 106–1010 (§§ 3.3 and 3.4). We will see that our
results are close to those obtained via dimensional reasoning.

Apart from the heat/salt system at ambient conditions (Pr ≈ 7, Le ≈ 0.01), other
systems of interest are, for example, the heat/salt system at Arctic conditions
(Le ≈ 0.005, cf. Kelley et al. 2003), and the heat/H–He system in giant planets
(Pr ≈ 0.01–1 and Le ≈ 0.001–0.1, cf. Chabrier & Baraffe 2007) and stars (Pr ∼ 10−5

and Le ∼ 10−8, cf. Merryfield 1995). It is unclear, however, how the fluxes in the
well-studied heat/salt system at ambient conditions compare with those in other
systems. This is because the dependence of the fluxes on Pr has not been studied and
there are contradictory experimental results on how Rf depends on Le (cf. Turner
1965; Shirtcliffe 1973; Takao & Narusawa 1980). Our second objective is, therefore,
to explore in more depth than previous studies the dependence of the fluxes on
molecular fluid properties, represented by Pr and Le, in the ranges Pr = 0.01–100
and Le = 0.001–0.1 (§§ 3.5 and 3.6).

In oceanic double-diffusive interfaces the turbulence is usually generated by
both the unstably stratified temperature and shear (Crapper 1976). Micro-structure
measurements have shown this mixture of double-diffusive convection and shear
turbulence (Larson & Gregg 1983; Padman & Dillon 1991; Inoue et al. 2007).
There are, however, no studies of sheared double-diffusive interfaces under controlled
conditions. Only recently has a model been proposed for the study of these interfaces
(Canuto, Cheng & Howard 2008a). Predictions from this model for the fingering
regime agree well with ocean observations, but predictions for the diffusive regime
have not yet been compared to other results. Such comparison is important since
models like that of Canuto et al. (2008a) are ultimately used in ocean circulation
models. Thus, our third and final objective is to study the effect of background
shear on the heat and salt fluxes across double-diffusive interfaces (§ 4). Our results
will show a transition near Ri ∼ 1 between a shear-dominated regime and a double-
diffusion-dominated regime. We will also show how the heat and salt fluxes scale in
these regimes.

1.3. Current approach

To address the above objectives, we conduct one-dimensional-turbulence (ODT)
simulations (Kerstein 1999a). These objectives are very challenging to address with
laboratory experiments and direct numerical simulations (DNS). ODT simulations are
fully resolved, unsteady, stochastic simulations that emulate Navier–Stokes turbulence
(§ 2). These simulations have two key features. First, the velocity vector and other
properties of the flow reside on a one-dimensional (1D) domain, which can be
thought of as a line of sight through the three-dimensional (3D) flow field. This
1D formulation allows full resolution of the interaction between the large scales
and the molecular transport scales with computationally affordable simulations but
restricts its application, in the present context, to horizontally homogeneous flows.
Second, because vortical overturns cannot occur on a 1D domain, turbulent advection
is represented using a stochastic mapping process. In comparison, while Reynolds-
averaged Navier–Stokes simulations and large-eddy simulations model the small-scale
phenomena and retain the 3D representation of the flow, ODT resolves all the scales
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of motion but models 3D turbulence. Many features of various types of turbulent
flows have been captured using ODT (e.g. Kerstein 1999a ,b; Dreeben & Kerstein
2000; Echekki et al. 2001; Kerstein et al. 2001; Wunsch & Kerstein 2001, 2005;
Ashurst & Kerstein 2005; Kerstein & Wunsch 2006). Of relevance to the present
work are previous findings showing the ability of ODT to reproduce known scalings
in flows where buoyancy is important (Kerstein 1999a; Dreeben & Kerstein 2000;
Wunsch & Kerstein 2001, 2005).

In the present context, ODT is well suited to study double-diffusive convection
in the diffusive regime, which is characterized by a strong coupling between
turbulent advection and molecular transport and can be assumed to be horizontally
homogeneous. This motivated a previous study of this type of convection with ODT,
which demonstrated that ODT simulations capture the formation and evolution of
a diffusive staircase as observed in bottom-heated experiments, and predict fluxes of
heat and salt consistent with those observed in various experiments (Kerstein 1999b).

In summary, the present work is a parametric study of the fluxes of heat and salt
across double-diffusive interfaces. We use results from ODT simulations to determine
the approximate scaling of these fluxes with the dominant parameters and identify
transition regions in the parameter space. While previous studies, including the work
by Kerstein (1999b), focused on unsheared interfaces within a limited parameter
space, we consider a broader parameter space, including the effect of background
shear, whose investigation is enabled by the more recent version of ODT described
in Kerstein (2009). Next, this version of ODT is discussed in § 2, and results for
unsheared and sheared interfaces are presented respectively in §§ 3 and 4.

2. One-dimensional-turbulence model
2.1. Overview

The Boussinesq approximation is invoked by assuming the relative density difference
ρ/ρ0 to be negligibly small except in terms multiplied by gravity g. The density ρ is
represented with ρ/ρ0 =βSS − βT T , where ρ, T and S are deviations from reference
values. The velocity vector (u1, u2, u3) = (u, v, w), as well as ρ, T and S, is defined in
a 1D domain along the vertical coordinate z, where 0 � z � h. These flow properties
are advanced in time by integrating the following equations representing molecular
transport:

∂ui

∂t
= ν

∂2ui

∂z2
,

∂T

∂t
= κT

∂2T

∂z2
,

∂S

∂t
= κS

∂2S

∂z2
, (2.1)

for i = 1, 2, 3, and through a stochastic process representing turbulent advection. This
stochastic process consists of a random sequence of vortical overturns or eddy events.
The process is specified by defining the operations performed during an eddy event
and the sampling of such events, i.e. the rules governing the time scale τ , length scale l

and location z0 of the eddy events. These operations and sampling rules are discussed
next.

2.2. Operations during an eddy event

An eddy event consists of two operations. One is a triplet mapping of ui , T and
S representing the vertical displacement of fluid elements by a notional eddy. The
second is a modification of ui representing the energy redistribution between velocity
components induced by pressure and the effect of buoyancy forces. These operations
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are represented symbolically as

ui(z) → ui(f (z)) + ciK(z), T (z) → T (f (z)), S(z) → S(f (z)), (2.2)

where the (continuous) triplet mapping operation f (z) is defined by

f (z) = z0 +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3(z − z0) if z0 � z � z0 + l/3,

2l − 3(z − z0) if z0 + l/3 � z � z0 + 2l/3,

3(z − z0) − 2l if z0 + 2l/3 � z � z0 + l,

z − z0 otherwise,

(2.3)

and the addition of ciK(z) represents velocity changes due to pressure gradients and
buoyancy forces. According to this prescription, the fluid at a location f (z) is moved
to a location z by the mapping operation, thus defining the map in terms of its inverse
f (z).

The effect of the triplet map on a flow property profile defined in [z0, z0 + l] is to
replace the profile with three compressed images of the original with the middle image
flipped. This is how the compressive and rotational motions observed in turbulent
flows are represented in ODT (Kerstein 1999a). The triplet map is adopted because
it is the simplest map satisfying the following physical requirements: all moments

of the flow properties are preserved by the map, i.e.
∫ h

0
sn(z) dz is preserved, where

s = u, v, w, ρ, T , S, property profiles remain continuous, and changes in the property
gradients of order greater than 1 are prevented (Kerstein 1999a). The dependence
of model results on the use of either the triplet map or another map satisfying
the physical requirements has been addressed in a different context (Kerstein 1991).
Qualitative behaviours are unaffected and quantitative differences are absorbed in the
adjustment of model parameters.

The form of the function K(z) and the constants ci = (cu, cv, cw) in (2.2) are now
discussed (cf. Kerstein et al. 2001; McDermott 2005 and Wunsch & Kerstein 2005 for
additional details). The operations (2.2) induce a change of kinetic energy associated
with a velocity component i of

�KEi =
ρ0

2

∫ h

0

[
(ui(f (z)) + ciK(z))2 − u2

i (z)
]
dz, (2.4)

and a change in potential energy of

�PE = g

∫ h

0

(ρ(f (z)) − ρ(z))z dz. (2.5)

Energy conservation requires
∑

i �KEi = −�PE . Notice in (2.4) that �KEi = 0 if
ciK(z) = 0. Hence, the terms ciK(z) are needed to conserve energy in stratified
flows. Furthermore, the terms ciK(z) allow the introduction of a pressure scrambling
mechanism that redistributes the kinetic energy among different velocity components
while conserving energy. In other words, the addition of ciK(z) in (2.2) allows changes
in �KEi while enforcing

∑
i �KEi = −�PE . The function K(z) is conveniently

defined by

K(z) = z − f (z), (2.6)

which is the simplest continuous function that modifies property profiles only in the

eddy region (K(z) = 0 outside [z0, z0+l]) while conserving momentum (
∫ h

0
K(z) dz = 0).

The function K(z) represents the vertical displacement of fluid elements z − f (z)
induced by a triplet map. By using definitions (2.3) and (2.6), expressions (2.4) and
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(2.5) become, after some algebraic manipulation,

�KEi =
2

27
ρ0l

3c2
i + ρ0l

2ui,Kci, (2.7)

and

�PE = gl2ρK, (2.8)

where

sK =
1

l2

∫ h

0

s(f (z))K(z) dz, (2.9)

with s = u, v, w, ρ, T , S and ρK/ρ0 = βSSK − βT TK . The pressure scrambling
mechanism is modelled by assuming �KEi = α(−Qi + Qj/2 + Qk/2), where j and
k denote indices other than i, α is a constant and Qi is a function of ui,K only.
The function Qi is assumed to be equal to the maximum amount of energy that can
be extracted from a given velocity component, which is obtained by differentiating
�KEi with respect to ci in (2.7), and equals (27/8)ρ0lu

2
i,K . In addition, equipartition

of energy among the velocity components gives α = 2/3. Finally, a quadratic equation
for each of the constants ci is obtained by using the previous considerations, together
with (2.7) and (2.8), and

∑
i �KEi = −�PE , where the terms on the left hand side are

incremented equally to satisfy this. The solution of these quadratic equations gives

ci =
27

4l

⎛
⎝−ui,K + sgn(ui,K )

(
1

3

(∑
i

u2
i,K − 8

27
gl

ρK

ρ0

))1/2
⎞
⎠, (2.10)

where the summation is over the three velocity components, and sgn is the sign
function.

2.3. Sampling of eddy events

Each event is characterized by a length scale l and a location z0 which are randomly
sampled from a joint probability density function p(l, z0; t) defined by

p(l, z0; t) =
λ(l, z0; t)∫ h

0

∫ h

0

λ dl dz0

. (2.11)

p(l, z0; t) dl dz0 can be interpreted as the probability of occurrence of an eddy event
of size within the range [l, l + dl] with its lower boundary located within the range

[z0, z0 +dz0].
∫ h

0

∫ h

0
λ dl dz0 is the overall event rate.

The eddy rate distribution λ is given by

λ =
C

l3

(∑
i

u2
i,K − 8

27
gl

ρK

ρ0

− Z
(ν

l

)2

)1/2

, (2.12)

if the expression inside the square root is positive, and λ= 0 otherwise. In (2.12),
the summation is over the three velocity components, and C and Z are model
parameters, discussed further in § 2.5. Eddy events are sampled independently, but the
time dependence of λ correlates these events in time. This feature of ODT generates
an energy cascade, as explained in Kerstein (1999a).

The eddy rate distribution (2.12) is obtained as follows (cf. McDermott 2005 and
Kerstein 2009 for more details). Recognizing that λ has units of length−2 × time−1,
and using the eddy length scale l, an eddy mass ρ0l and an eddy energy E,
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dimensional reasoning gives λ∼ (E/(ρ0l))
1/2/l3. This scaling relationship establishes

the dependence between the eddy sampling process, related to λ and l, and the
properties of the flow, embodied in E. The eddy energy E is assumed to be the
maximum energy extractable using (2.7) upon completion of the eddy event, which
equals

∑
i Qi from the previous discussion, minus the eddy-induced potential-energy

change given by (2.8). Hence, the following expression for λ is obtained:

λ ∼ 1

l3

(∑
i

u2
i,K − 8

27
gl

ρK

ρ0

)1/2

. (2.13)

The eddy rate expression (2.12) is finally obtained by using a proportionality constant
C and by inserting the term −Z(ν/l)2 inside the square root in (2.13), to prevent the
occurrence of eddies with a time scale longer than the viscous time scale l2/ν.

Physically, the eddy rate expression incorporates into ODT the effects of
stratification, shear and viscous damping on the turbulent fluctuations, with C

determining the generation rate. In (2.12), turbulent fluctuations are generated by
shear through

∑
i u

2
i,K , damped by viscous action through −Z(ν/l)2 and suppressed

(generated) by the salinity (temperature) field through −(8/27)gl(ρK/ρ0), recalling
that ρK/ρ0 = βSSK–βT TK .

2.4. An assessment of ODT

ODT has reproduced a variety of turbulence phenomena with a concise representation
of the interaction between molecular transport, advection and buoyant forcing.
It has captured, for example, the Kolmogorov cascade for velocity fluctuations in
homogeneous isotropic turbulence (Kerstein 1999a). Nonetheless, ODT is a model
that seeks to emulate Navier–Stokes turbulence on a 1D domain. Thus, its results
need to be interpreted with care, and compared with other models and available
measurements. This approach is taken throughout the present work. Next, three
limitations of ODT are discussed.

First, ODT does not capture 3D coherent flow structures and their corresponding
effects on the flow. For example, in the simulation of mixing layers and wakes, even
though ODT profiles agree reasonably well with those from DNS, the probability
density function of the (passive) scalar near the edges differs considerably between
ODT and DNS (Kerstein et al. 2001). This disagreement is caused by the inability
of ODT to capture 3D flow structures occurring in this region (Kerstein et al.
2001). For the present problem, ODT does not capture interfacial waves. The effect
of these waves on the fluxes across (unsheared) double-diffusive interfaces is still
unclear (Turner 1965; Linden & Shirtcliffe 1978; Fernando 1989). Second, ODT is
limited to horizontally homogeneous flows, so it cannot be used to study the effect
of geometry. As an example, the so-called wind of turbulence of Rayleigh–Bénard
convection cannot be studied with ODT, since the geometry of the cell has an
important effect on it (Wunsch & Kerstein 2001). Notwithstanding the above two
shortcomings, a comparison of ODT results with those from experiments or DNS
can be used to determine how sensitive is a particular observable of the flow to the
effect of flow structures and geometry. For example, the amplitude of the temperature
fluctuations in the core of a Rayleigh–Bénard cell may depend on the cell geometry
(Wunsch & Kerstein 2001). However, the shape of the probability density function
of these fluctuations is seen to be the same in experiments and ODT, consistent with
experimental indications of insensitivity to cell geometry (Wunsch & Kerstein 2001).
Finally, a third shortcoming of ODT is that the model constants C and Z need
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adjustment for ODT results to agree with those from experiments or DNS. As an
example, in wall-bounded flows, Z needs adjustment for ODT to properly capture
the transition from the viscous sublayer to the log layer (Schmidt et al. 2003). This
adjustment is needed because viscous effects are very important near the wall, and
Z is the parameter that controls the suppression of the smallest eddies in the flow
by viscous action, cf. § 2.5. It is remarkable, nonetheless, that with only two model
constants, ODT can capture a wide variety of flow behaviour. In the following, we
will see that the effect of C and Z on scaling exponents is not large.

2.5. Numerical implementation

The ODT model consists of the following components: the flow boundary and initial
conditions; the diffusion equations (2.1); the eddy operations (2.2); the sampling
of eddy occurrence times and, using (2.11), eddy sizes and locations; the discrete
implementation of the diffusion equations and the eddy operations; and the two free
parameters C and Z.

Two flow configurations are considered. In the jump-periodic configuration, the
following boundary conditions are applied to the diffusion equations (2.1):

u(t, z =h) = u(t, z = 0) + �U, v(t, z = h) = v(t, z = 0), w(t, z = h) = w(t, z = 0),

(2.14)

T (t, z = h) = T (t, z = 0) + �T, S(t, z = h) = S(t, z = 0) + �S. (2.15)

For the rundown configuration, the following boundary conditions are used:

∂s

∂z
|t,z=0 =

∂s

∂z
|t,z=h = 0, (2.16)

where s = u, v, w, T , S. In addition, in the jump-periodic (rundown) configuration,
triplet maps are allowed (prevented) across z = 0 and z = h. For the initial conditions
given below, the flow is seen to reach a quasi-steady state with jump-periodic boundary
conditions, while it remains unsteady in the rundown configuration. In contrast with
previous studies, which use either a heated-bottom or a rundown configuration (cf. § 1),
most of the results presented here are for the jump-periodic configuration. Because
they are obtained from quasi-steady conditions, these results are not contaminated
by time-dependent effects and can be compared with available steady-state theories.
Selected results for the rundown configuration are presented in § 3.4, though.

The initial conditions are

u(t = 0, z) = �U

[
1

2
+

1

2
tanh

(
z − h/2

δu/2

)]
+ r, (2.17)

v(t = 0, z) = 0, w(t = 0, z) = 0, (2.18)

T (t = 0, z) = �T

[
1

2
− 1

2
tanh

(
z − h/2

δT /2

)]
, (2.19)

S(t = 0, z) = �S

[
1

2
− 1

2
tanh

(
z − h/2

δS/2

)]
, (2.20)

where δu = δT =0.1h, δS = 0.01h and r is a small random perturbation. We observe
only a slight dependence of the observables studied here on the choice of δu, δT ,
δS and r , the shear direction, and the use of profiles similar to the ones above but
with functions other than tanh. With these initial conditions, a single double-diffusive
interface is considered, as done in previous studies (e.g. Turner 1965; Crapper 1975;
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Marmorino & Caldwell 1976; Linden & Shirtcliffe 1978; Fernando 1989; Worster
2004). While the study of a single interface is more fundamental, that of multiple
interfaces is of more practical relevance and should be considered in the future (cf. § 5).

Direct sampling of eddy events requires the reconstruction of the probability
density function p(l, z0; t) as the flow evolves. This costly operation is avoided by
using a Monte Carlo method called thinning (Kerstein 1999a; Law & Kelton 2000).
The application of this method in ODT is described elsewhere (cf. Kerstein 1999a;
McDermott 2005).

The diffusion equations and the triplet map are implemented using a first-order
finite-volume scheme with a non-uniform adaptive mesh (cf. Krishnamoorthy 2008;
Ricks et al. 2010 for more details). This approach allows accurate resolution of
regions of the flow with very large property gradients. Within this framework, the
flow property profiles within a given finite volume are uniform, and the finite volumes
can be split, displaced and merged. Additionally, the application of the triplet map
involves three steps. First, the finite volumes containing z0 and z0 + l are split at
these respective locations. Second, each finite volume in the eddy region [z0, z0 + l]
is split into three identical volumes, each of width one-third of the width of the
original volume. Third, the new finite volumes are displaced to mimic the alteration
of the property profiles given by the continuous triplet map (2.3). Triplet maps are
implemented only for eddies spanning at least six finite volumes. This finite-volume
triplet map retains the characteristics of its continuous counterpart.

The splitting and displacement of finite volumes or cells by the triplet map may
produce a mesh structure that can degrade computational accuracy and efficiency.
Hence, the last component of the discrete implementation is a mesh management
strategy. With this strategy, the splitting and merging of finite volumes is performed
considering the following factors: cell size, gradient resolution, curvature resolution
and cell size variation. Grid cells that are below a specified minimum size are merged
with neighbouring cells until the cell is enlarged above the minimum size. Offending
cells are treated in order of increasing size, and merging is done with the smaller of
the two neighbouring cells. This is done in a manner that precludes any directional
bias in the merging. Cells are merged if the variation in a specified property field (e.g.
velocity) is below a specified fraction of the total variation in that field. The same
is done for changes in the slope of the profile. Cells are split if the variation in the
property field, or its slope, is greater than a specified fraction of the total variation in
that field. Finally, cells are split in order to maintain the ratio of adjacent cell sizes
(size of the larger of a pair of cells divided by the size of the smaller cell of the pair)
between 1 and 2.5. This procedure results in an efficient computational grid, with
good resolution of property fields with high gradients or regions of high curvature,
while avoiding abrupt variations in the grid. Five mesh adaption parameters are
specified with the current approach (small cell and upper and lower thresholds for
gradients and curvature). The parameters used here are selected so that the ODT
solutions are approximately independent of them, i.e. the results presented here are
approximately grid independent. A similar mesh management strategy was used and
verified by Krishnamoorthy (2008).

The model parameter C determines the strength of the turbulence in ODT. Low
values of C, say C < 0.1, give a low rate of occurrence of eddies, from (2.11) and
(2.12), and consequently almost no eddies are implemented. In other words, when
C is small enough, the flow is laminar. Such a condition is of no interest here. On
the other hand, large values of C produce a lot of eddies, and thus the flow is very
turbulent. We observe that for C > 1000 so many eddies are implemented that the
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simulations become computationally very expensive for the ranges of Ra and Ri

considered. Therefore, we vary C over C = 1–100 to test the results presented here
for their sensitivity to C. The viscous cutoff parameter Z controls the suppression of
the smallest eddies of the flow by viscous action. Notice in (2.12) that for fixed Z

and small-enough eddy size l, the term inside the square root can become negative,
in which case the eddy is not implemented. As with small values of C, large values
of Z, say Z > 1000, produce a laminar flow, which is of no interest here. We observe
that the variation of Z when Z < 0.001 has almost no effect on the flow. Thus, we
consider the range Z = 0.01–100 to test the results presented here for their sensitivity
to Z.

The ODT model is made dimensionless for numerical simulation by using h, h2/ν

and ρ0 as length, time and density scales, respectively, and by making the temperature
and salinity dimensionless with βT and βS .

2.6. ODT observables

ODT simulations generate flow realizations, i.e. time sequences of the instantaneous
snapshots of the flow field. For a quasi-steady flow, only one realization is needed to
obtain a time average of an observable. On the other hand, when the flow is transient,
an ensemble of realizations is used, from which an observable is averaged for each
time t .

In ODT, for quasi-steady flows, the turbulent kinetic energy per unit mass TKE is
calculated as

TKE =
1

2

∑
i

(u′
i)

2, (2.21)

and the viscous dissipation ε is given by

ε = ν
∑

i

(
∂u′

i

∂z

)2

, (2.22)

where u′
i = ui − 〈ui〉t , and 〈 〉t denotes a time average. The time and spatial average

of TKE is used to define a Reynolds number as follows:

Re =
(〈〈TKE 〉z〉t )

1/2h

ν
, (2.23)

where 〈 〉z denotes a spatial average. This average is taken away from the interface
where the velocity fluctuations are damped. Notice that Re is not an independent
variable but an observable representing a measure of the velocity fluctuations induced
by thermal convection. Similarly, a time and spatial average of ε is used and is denoted
by 〈〈ε〉z〉t .

The vertical flux Fs of the flow property s is expressed as Fs = F diff
s + F adv

s , where
s = u, T , S, and F diff

s and F adv
s are respectively the diffusive and advective fluxes of

s. Here Fs , F diff
s and F adv

s represent fluxes that are temporally averaged over a time
interval �t and spatially averaged along the computational domain. F diff

s is found by
temporally and spatially averaging the diffusive fluxes −κs(∂s/∂z) across the finite-
volume faces, where κs = ν, κS, κT . The advective flux F adv

s is produced by the vertical
displacement of fluid elements induced by triplet maps and can be interpreted as the
ODT analogue of 〈〈w′s ′〉z〉t calculated in a Navier–Stokes simulation. This flux is
calculated as

F adv
s =

1

h�t

∑
eddies

∫ h

0

s(f (z))K(z) dz, (2.24)
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Figure 1. Temporal evolution in the jump-periodic configuration of (a) the dimensionless
heat flux Nu and (b) the buoyancy ratio Rf . Parameter values are Rρ = 7, Ra = 108, Le = 0.01,
Pr = 7, C =10 and Z = 1.

where
∑

eddies denotes a summation over all the eddies implemented during the
time interval �t . Recalling that K(z) represents the vertical displacement of fluid
elements induced by a triplet map, this expression follows from the assumed spatial
homogeneity and the definition of the flux of s as 1/�t times the net transfer of
property s across any location z during �t .

With jump-periodic boundary conditions the fluxes FT and FS are observed to be
approximately spatially uniform (not shown). In the rundown configuration, for a
given time, these fluxes decrease approximately linearly from a maximum value at
z/h ≈ 0.5 to a value of zero at z/h = 0 and z/h =1 (not shown). Thus, the spatial
averaging has no effect on how FT and FS scale with the governing parameters in
either configuration.

Figure 1 shows a typical time variation of the fluxes for the jump-periodic
configuration. Notice in figure 1(a) that, after an initial transient, the heat flux reaches
a quasi-steady state, where it fluctuates around a mean value. Other observables
were seen to behave similarly (not shown). Throughout the present work the fluxes
and other observables are time averaged during this quasi-steady state for the jump-
periodic configuration. On the other hand, because the flux is unsteady in the rundown
configuration, the fluxes are ensemble averaged. This is further discussed in § 3.4.

2.7. Verification

For the present application, the variable-mesh code developed was tested for accuracy
and consistency by verifying its results with those from the uniform-mesh code
BasicODT (Kerstein 2007). Figure 2 shows the ratio of buoyancy fluxes Rf predicted
by the code used in the present work and by BasicODT. The largest discrepancy is
11 %. This is acceptable for the study conducted here.

3. Unsheared interfaces
The representation of double-diffusive convection in the diffusive regime by ODT

is explained next in § 3.1 (cf. also Kerstein 1999b). This is followed by discussions
of the effect of Rρ , Ra , Pr and Le on the fluxes of heat and salt across unsheared
interfaces in §§ 3.2–3.6. Additionally, the effect of these parameters on the intensity of
the convection, represented by Re, is considered.
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Figure 2. Comparison of the predicted ratio of buoyancy fluxes Rf between the variable-mesh
code used in the present work (diamonds) and the uniform-mesh code BasicODT by Kerstein
(2007) (circles). (a) Effect of Rρ in unsheared interfaces for Ra = 108, Le = 0.01 and Pr = 7.

(b) Effect of Ri for Rρ =6, Ra =5 × 108, Le = 0.0125 and Pr = 7. Model parameter values are
C = 10 and Z = 100. The largest discrepancy is 11 %.
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Figure 3. Temporal sequence of the locations z0 and sizes l (vertical bars) of eddy events
generated in an ODT simulation of double-diffusive convection. Every eddy event implemented
in the simulations is shown for the time interval 0.2 (h2/ν). Parameter values are Ra = 108,
Le = 0.01, Pr = 7, C = 10, Z = 1, and (a) Rρ = 2 and (b) Rρ = 4. Notice the more aggressive
erosion of the interface at the lower value of Rρ .

3.1. Flow description

Figure 3 shows the temporal sequence of the locations z0 and sizes l, denoted with
vertical bars, of eddy events generated during two ODT simulations at different
values of Rρ . These eddy events are sampled in the manner described in § 2.3. They
modify the flow property profiles through the operations (2.2). Figure 4 shows time-
averaged density profiles. The characteristic structure of double-diffusive convection
in the diffusive regime is evident in figures 3 and 4: a double-diffusive interface can
be seen in figure 3 as a region near z/h ≈ 0.57 where eddies are suppressed, while
it appears in figure 4 as a sharp density gradient around z/h ≈ 0.57. This interface
separates well-mixed convective regions where the turbulent activity is strong, cf.
figure 3, and the time-averaged flow properties are approximately constant with z, cf.
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Figure 4. Effect of Rρ on the time-averaged density ρ/�ρ profiles, where �ρ = βS�S−βT �T .

Parameter values are Rρ = 1.5 (solid line), 2 (dashed line), 4 (dash-dotted line), and Ra = 108,
Le = 0.01, Pr = 7, C = 10 and Z = 1. The unstable stratification near the edges of the diffusive
interface generates convective motions that ‘lift’ the salt.

figure 4 for density. The unstable density stratification near the interface, noticeable
in figure 4, generates convective motions. The distinctive coupling between molecular
transport and turbulent convection is represented in ODT as follows. The much higher
diffusivity of heat than salt generates the unstable stratification producing turbulent
convective motions. These motions, in turn, transport the heat and salt from the
edges of the interface into the mixed regions, and may penetrate the interface, cf.
figure 3(a). This eroding process has been observed in experiments (Fernando 1989)
and also in previous ODT simulations (Kerstein 1999b). The convective motions,
thus, sharpen the temperature and salinity profiles at the interface, modifying the
molecular transport of heat and salt there. For quasi-steady-state conditions, the
transport by the convective motions is balanced by the molecular transport, as long
as the interface is not heavily eroded or broken; otherwise, the transport of heat and
salt is determined by turbulent motions. The dominant transport mechanism depends
on Rρ , as discussed next, and on Ri, as discussed later in § 4.

3.2. Effect of Rρ

The stability parameter Rρ represents the ratio of the stabilizing effect of salinity
and the destabilizing effect of temperature. We consider here the range Rρ = 1.05–8,
Pr = 7 and Le = 0.01. The regime Rρ � 10 is not explored here but has previously been
studied with ODT (Kerstein 1999b). ODT simulations show that when Rρ � 2 eddies
heavily erode the interface and may penetrate into it, cf. figure 3(a). The interface
is said to be unstable. Thus, the transport of heat and salt is due to turbulent
entrainment and Rf increases with decreasing Rρ (Turner 1979), as can be seen in
figure 5(a). On the other hand, these simulations show that when Rρ ≈ 2–8, the ratio
Rf reaches an approximately constant value, cf. figure 5(a). This can be interpreted
as a balance between convective and molecular transport (Linden & Shirtcliffe 1978;
Turner 1979, p. 277). The interface is said to be stable, and the regime is referred to
as the constant-Rf regime.

A comparison between figures 5(a) and 5(b) shows that the trends predicted by
ODT simulations agree with results from bottom-heating experiments. Notice in
these figures that results from simulations with C = 10 and Z = 100 are consistent
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Figure 5. Effect of Rρ on the ratio of buoyancy fluxes Rf . (a) Simulation results for the
jump-periodic (lines) and rundown (circles) configurations. (b) Results from bottom-heated
experiments compiled by Kelley (1990) (dots) and the theoretical prediction by Linden (1974)
(solid line). Parameter values of the simulations are Ra = 108, Le = 0.01 and Pr = 7. Model
parameter values are C = 10 and Z = 1 (solid line), C = 10 and Z =100 (dash-dotted line),
C = 1 and Z = 1 (dotted line), C = 10 and Z = 0.01 (dashed line), and C = 10 and Z = 1 for
the rundown configuration. The fluxes are ensemble averaged over 10 realizations with the
rundown configuration. The horizontal lines denote Rf =0.15. Both experiments and ODT
simulations show that turbulent entrainment dominates when Rρ � 2, and that molecular
processes become important when Rρ � 2, giving an approximately constant value of Rf . ODT
results for C = 10 and Z = 100 agree well with experimental data.

with those measured in the experiments. It is difficult, however, to quantify the
agreement between results from these ODT simulations and those from experiments
when Rρ � 2 because of the large scatter of experimental data (Kelley 1990).

The foregoing physical picture is incorporated in the model by Linden (1974)
as follows. This model is discussed here since it incorporates the effects of Rρ

and Le on Rf in a simple theoretical framework. The fluxes of heat and salt are
divided into double-diffusive and entrainment components. The former arises from
convective motions generated by the double-diffusive instability that do not penetrate
the interface, while the latter is due to motions that heavily erode the interface and
can penetrate into it. These components are assumed to be additive. The ratio of the
double-diffusive components of the salt and heat fluxes is assumed to be equal to
Le1/2 by an argument discussed later. A Ri−3/2-entrainment law is used to model the
entrainment components of the fluxes (Fernando 1991). The above arguments lead to

Rf =
Cl74Rρ + Le1/2(Rρ − 1)3/2

Cl74 + (Rρ − 1)3/2
, (3.1)

where Cl74 is an adjustable constant, set to 0.05 in Linden (1974). Figure 5 shows that
(3.1) is within the results from experiments and from ODT simulations with C =10
and Z = 100.

By increasing Rρ the overall stratification becomes stronger and the regions of
unstable stratification at the edges of the diffusive interface become less pronounced,
cf. figure 4. Consequently, the convection is slowed down and the heat flux is reduced.
Figure 6 shows that this trend is seen in both ODT simulations and bottom-heated
experiments. Also notice in figure 6 that results from ODT simulations with C =10
and Z = 100 in the range Rρ ≈ 2–8 are within 20 % of those obtained in bottom-heated
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Figure 6. Effect of Rρ on the dimensionless heat flux Nu . (a) Simulation results for the
jump-periodic (lines) and rundown (circles) configurations. (b) Empirical fit by Kelley (1990)
using data from bottom-heated experiments (solid line with error bars) and the theoretical
prediction by Linden & Shirtcliffe (1978) (solid line). The error bars denote the average
deviation of 32 % from the experimental data reported by Kelley (1990). Parameter values of
the simulations are the same as in figure 5. The stratification becomes stronger as Rρ increases,
and the heat flux Nu decreases accordingly.

experiments. A comparison between results from ODT simulations and those from
experiments when Rρ � 2 is not made here since, in addition to the large scatter
of the experimental data discussed previously, there are mechanisms in the bottom-
heated experiments when Rρ � 2 that are not present with the configurations used
in the present work. These mechanisms include the distortion of the double-diffusive
interface by the impingement on the interface of convective elements generated at
the heated bottom, and by the grid stirring used in some of the experiments (Worster
2004). Further comparisons between ODT results and those from bottom-heated and
rundown experiments are given in Kerstein (1999b).

Figure 6 also shows that when Rρ � 6, results from ODT simulations with C = 10
and Z = 100 and Z = 1 agree well with predictions from the model by Linden &
Shirtcliffe (1978). This model predicts Nu as a function of Ra , Rρ and Le by
considering a diffusive interface with regions of unstable stratification at its edges,
and by assuming steady-state conditions, so that molecular fluxes across the interface
are balanced by convective fluxes. As discussed above, this flow structure and flux
balance are observed with ODT simulations in the range Rρ ≈ 2–8. The convective
flux is assumed by Linden & Shirtcliffe (1978) to occur as a cyclic eruption of
boundary layers: at the edges of the diffusive interface unsteady boundary layers
grow with time, and once a critical Rayleigh number (based on the boundary layer
thickness) is reached, the boundary layers detach, transporting with them heat and
salt into the well-mixed regions. Within this picture, as Le increases (recall that
Le = κS/κT ) more salt diffuses into the unstable regions before they erupt, so that
Rf increases with Le as Rf =Le1/2 (cf. § 3.6 and Turner 1979, p. 277). By further

assuming Nu/Ra1/3 = F (Rρ, Le) the following expression for Nu is obtained:

Nu

Ra1/3
= Cl78

(1 − Le1/2Rρ)
4/3

(1 − Le1/2)1/3
, (3.2)

where Cl78 = 0.0587. This model has been modified to include time-dependent effects
(Worster 2004).
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Figure 7. Effect of Ra on Nu . Parameter values are Rρ = 1.05 (dots), 1.25 (circles), 2 (inverse
triangles), 3 (left triangles), 4 (crosses), Le = 0.01, and Pr = 7. Model parameter values are
C = 10 and Z = 1 (solid lines), C = 10 and Z =100 (dashed-dotted lines), and C = 1 and Z = 1
(dotted lines). ODT results give Nu ∼ (Ra/Rρ)0.37±0.03. Here (Ra/Rρ) can be seen as the ratio
of destabilizing and stabilizing effects.

The ODT parameter C controls the generation rate of turbulent fluctuations, cf.
§ 2.3. Hence, higher values of C are associated with higher levels of interface erosion
and, thus, higher Rf and Nu . This can be seen in figures 5 and 6, where an increase of
C from 1 to 10 at fixed Z produces increases of Rf and Nu . Similarly, lower values of
Z produce a more aggressive erosion of the interface (not shown) and, consequently,
lead to an increase of Rf and Nu , as can be seen in figures 5 and 6, where Z is varied
from 0.01 to 100. Even though C and Z have a noticeable effect on Rf and Nu , their
effect on how these observables scale with the dominant parameters is rather small,
as shown next.

3.3. Effect of Ra

The scaling of flow observables with Ra predicted by ODT simulations has been
observed to agree well with experiments and DNS in the problems of Rayleigh–
Bénard convection (Wunsch & Kerstein 2005) and vertical slot convection (Dreeben
& Kerstein 2000). Such a scaling is discussed next for the present problem. The
following parameters are considered: Rρ = 1.05–6; Ra = 106–1010; Pr = 7; Le = 0.01;
C = 1, 10 and Z =0.01, 1, 100.

Figures 6 and 7 show, respectively, that Nu depends on Rρ and Ra through power
laws. Hence, data from ODT simulations can be fitted to Nu ∼ (Rρ)

nRρ (Ra)nRa , where
nRρ

and nRa are the exponents to be found. This expression is chosen for simplicity,
even though observables in thermal convection are seen to be better described with a
linear combination of power laws (Grossmann & Lohse 2000). Also notice in figure 7
that the exponent of the power law relating Nu to Ra depends slightly on the model
parameters C and Z. Here we fit ODT results to the previous expression for each
combination of C and Z in order to calculate the sensitivity of the exponents to
these parameters. This sensitivity is expressed by the range of values over which the
exponents are seen to vary. The following correlation is obtained with least-squares
minimization:

Nu ∼ (Ra/Rρ)
0.37±0.03, (3.3)
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Figure 8. Nu correlation obtained for C = 10 and Z = 1. Parameter values are
the same as in figure 7.

with an average (maximum) deviation of the data of 6 % (18 %). The range in the
exponent denotes its sensitivity to C and Z. This notation is used throughout § 3,
unless stated otherwise. The dimensionless group Ra/Rρ is not assumed a priori but
is a result of the least-squares minimization. It is interesting that Ra/Rρ appears as a
dominant parameter. This parameter can be interpreted as the ratio of destabilizing
and stabilizing effects. Figure 8 shows that the dependence of Nu on Ra and Rρ is well
captured, albeit with some systematic residual dependence on Rρ , by Nu ∼ (Ra/Rρ)

0.36

when C = 10 and Z = 1. Here the value of the exponent is that found for these model
parameters.

A comparison is now made with the scaling of Nu with Ra found in Rayleigh–
Bénard convection at large Rayleigh numbers. In this form of convection, ODT
simulations show that Nu ∼ Ra0.3±0.03 when Ra = 106–1012 (Wunsch & Kerstein
2005), with the range in the exponent denoting its sensitivity to Pr , C and Z.
Recent experiments using water (Pr ≈ 4.4) show Nu ∼ Ra0.3±0.03 when Ra = 108–1011

(Funfschilling et al. 2005). Additionally, mixing-length ideas result in Nu ∼ Ra1/3 when
Pr � 0.1 (Siggia 1994). This expression can also be obtained with dimensional analysis
by assuming no interaction between the top and bottom walls, so that the heat flux FT

is independent of h. In comparison, the present results for double-diffusive convection
suggest that Nu depends on Ra through a power law with an exponent slightly larger
than that observed in Rayleigh–Bénard convection.

The Reynolds number Re defined by (2.23) can be seen as a measure of the velocity
fluctuations induced by thermal convection. Notice in figure 9 the power-law increase
of Re with Ra . The following correlation for Re is obtained using the same approach
as for Nu:

Re ∼ Ra0.45±0.04R−0.12±0.05
ρ . (3.4)

The average (maximum) deviation of the data is 7 % (15 %). Figure 10 shows how
(3.4) fits the data when C = 10 and Z = 1.

With regard to the effect of Ra on Rf , we observe that Rf increases with Ra when
Rρ = 1.05 and 1.25, and that this tendency is reduced for increasing Rρ . This is shown
in figure 11 for C = 10 and Z = 1 and is seen for other model parameters (not shown).
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Figure 9. Effect of Ra on Re. Parameter values are the same as in figure 7. ODT simulations
show that Re ∼ Ra0.45±0.04R−0.12±0.05
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Figure 10. Re correlation obtained for C =10 and Z = 1. Parameter values are the same
as in figure 7.

The larger sensitivity of Rf to Ra at smaller values of Rρ may explain in part the
large scatter of experimental data observed at these values.

3.4. Effect of boundary conditions

Next we show that (3.3) is also valid in the rundown configuration. Because in this
configuration the flux is zero at the boundaries, the differences of temperature �T

and salinity �S across the interface decrease with time as the two fluid layers mix.
As a result, the governing parameters Rρ and Ra vary with time, cf. figure 12(a), and
the fluxes decrease with time, cf. figure 12(b). The initial value of Rρ is set to 1.1
and that of Ra is set to a value in the range 107–1010. Other parameter values are
Le = 0.01, Pr = 7, C = 10 and Z =1. Since the flow is unsteady, ensemble averages
over 10 realizations are used, i.e. 10 sets of temporal curves like those shown in figure
12 are ensemble averaged. The effect of Rρ on Rf and Nu is similar in both the
jump-periodic and rundown configurations, cf. figures 5 and 6. The combined effect
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Figure 11. Effect of Ra on Rf . Parameter values are the same as in figure 7. The larger
sensitivity of Rf to Ra at smaller values of Rρ may explain the large scatter of experimental
data observed at these values.
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Figure 12. Temporal evolution in the rundown configuration of (a) the governing parameters
Rρ (solid line) and Ra (dashed line), and (b) the heat (upper curve) and salt (lower curve)

fluxes in arbitrary units. Initial values of Rρ = 1.1 and Ra = 108 are used. Other parameter
values are Le = 0.01, Pr = 7, C = 10 and Z = 1. Results from one unsteady simulation are
shown.

of Rρ and Ra on Nu for the rundown configuration is shown in figure 13. With the
data in figure 13, the least-squares minimization procedure described previously gives

Nu ∼ (Ra/Rρ)
0.35, (3.5)

with an average (maximum) deviation of the data of 8 % (19 %). The sensitivity of
the exponent to the model parameters is not explored. Figure 14 shows how this
correlation fits the data. This correlation is close enough to (3.3) to consider the effect
of the boundary conditions used here on the scaling of Nu with Ra negligible.

3.5. Effect of Pr

The subsequent discussion on the effect of Pr is based on data from simulations with
the following parameters: Rρ = 2–6; Ra = 106, 107, 108; Pr = 0.01–100; Le =0.01;
C = 1, 10; and Z = 1, 100.
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Figure 13. Normalized heat flux Nu in the rundown configuration. Initial values used
are Rρ = 1.1 and Ra = 107 (asterisks), 108 (plus signs), 109 (inverse triangles) and 1010

(circles). Other parameter values are Le = 0.01, Pr = 7, C =10 and Z = 1. Results from an
ensemble average over 10 unsteady simulations are shown. ODT results for the rundown
configuration give Nu ∼ (Ra/Rρ)0.35. This result is close to the relationship (3.3) obtained with
the jump-periodic configuration.
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Figure 14. Nu correlation obtained for the rundown configuration using least-squares
minimization. Parameter values are the same as in figure 13.

Figure 15 shows a power-law increase of Nu with Pr when Pr =0.01–1. Hence, the
simulation data are fitted to Nu ∼ (Ra/Rρ)

n(Pr)nPr , where n and nPr are the exponents
to be found. The following correlation is obtained:

Nu ∼ (Ra/Rρ)
0.31Pr0.22±0.04, when Pr =0.01–1, (3.6)

with an average (maximum) deviation of the data of 8 % (17 %). The sensitivity
of the exponent of (Ra/Rρ) in (3.6) to C and Z is not explored here. The value
of this exponent is for C = 10 and Z = 1. Figure 16 shows how (3.6) fits the data
when C = 10 and Z = 1 using values of the exponents obtained for these parameters.
In comparison, ODT simulations of Rayleigh–Bénard convection for Ra = 109 show
Nu ∼ Pr0.23±0.03 when Pr � 1 (using the data in figure 2 of Wunsch & Kerstein 2005).
This scaling relationship agrees with (3.6). Rayleigh–Bénard convection experiments
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Figure 15. Effect of Pr on Nu . (a) Ra = 107, Rρ = 2 (inverse triangles), 4 (crosses) and 6

(asterisks). (b) Rρ = 6, Ra =106 (solid squares), 107 (solid circles), 108 (solid triangles). Other
parameter values are Le = 0.01, C = 10 and Z = 1 (solid lines), C = 10 and Z = 100 (dash-dotted
line), and C = 1 and Z = 1 (dotted line). Notice that Nu increases (slightly decreases) with Pr
when Pr � 10 (Pr � 10).
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Figure 16. Nu correlation obtained for C = 10 and Z = 1. Parameter values are the same as
in figure 15.

for Ra ∼ 105–107 indicate the same trend, but a weaker dependence, with Nu ∼ Pr1/8

for Pr � 1 (Ahlers, Grossmann & Lohse 2009).
Also notice in figure 15 that Nu slightly decreases with Pr for Pr ≈ 10–100. Not

enough data are obtained here to quantify such a decrease. It is found, however,
that Nu ∼ (Ra/Rρ)

0.36 for Pr = 3–100. This is consistent with (3.3), which is based on
parameter variations for Pr = 7. A decrease of Nu with increasing Pr has also been
observed in Rayleigh–Bénard convection: ODT simulations show Nu ∼ Pr−0.1±0.02

when Pr � 10 (using the data in figure 2 of Wunsch & Kerstein 2005), and some
experiments indicate a slight decrease for Pr � 1 (Ahlers et al. 2009). There are,
however, experiments showing a very mild increase of Nu with increasing Pr (Ahlers
et al. 2009).
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Figure 17. Effect of Pr on Re. Parameter values and layout of the figure are the same as in
figure 15. ODT simulations show that Re ∼ Ra0.43R−0.15

ρ P r−0.58±0.03.
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Figure 18. Re correlation obtained for C = 10 and Z = 1. Parameter values are the same as
in figure 15.

A power-law dependence of Re on Pr can be seen in figure 17. We obtain the
following correlation:

Re ∼ Ra0.43R−0.15
ρ P r−0.58±0.03, when Pr = 0.01–100, (3.7)

with an average (maximum) deviation of the data of 9 % (30 %). The fitting of the
data by (3.7) can be seen in figure 18 for C = 10 and Z = 1. The sensitivity of the
exponents of Ra and Rρ in (3.7) to C and Z is not explored here. Notice that these
exponents are consistent with those in (3.4).

The turbulent kinetic energy equation is used next to show that (3.7) is consistent
with (3.3) and (3.6). In a quasi-steady flow with no background shear and the present
boundary conditions, the turbulent kinetic energy equation becomes

〈〈ε〉z〉t ∼ g(βT FT − βSFS), (3.8)

after temporally and spatially averaging (along 0 � z � h) its terms. By taking
〈〈ε〉z〉t ∼ U 3/L, where U and L are respectively the velocity and length scales, we
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Figure 19. Effect of Pr on Rf . Parameter values and layout of the figure are the same as in
figure 15.

obtain

Re3 ∼ RaNuPr−2(1 − Rf ), (3.9)

after using U ∼ (〈〈TKE 〉z〉t )
1/2 and L ∼ h. Parallel but more rigorous derivations of

(3.9) are given in Ahlers et al. (2009) for 3D Rayleigh–Bénard convection and in
Wunsch & Kerstein (2005) for the ODT analogue of this form of convection. Notice
in figure 19 that the buoyancy ratio Rf is approximately constant over the ranges of
Pr and other parameters considered. Thus, the term (1 − Rf ) is assumed constant.

By inserting (3.3) into (3.9) we obtain Re ∼ Ra0.46R−0.12
ρ P r−0.66, while by using (3.6)

with (3.9) we obtain Re ∼ Ra0.44R−0.1
ρ P r−0.59. Here the ranges of the exponents have

been dropped for clarity. These last two expressions are close to (3.7).
Mixing-length theory of thermal convection gives for Pr � 0.1 the scaling

relationships Nu ∼ Ra1/3, i.e. Nu is independent of Pr and Re ∼ Ra4/9Pr−2/3, while
for Pr � 0.1 it suggests Nu ∼ Ra1/3Pr1/3 (Siggia 1994). The last expression can also be
obtained with dimensional analysis by assuming that the heat flux FT is independent
of h, as explained before, and is also independent of viscosity, since ν � κT . These
scaling relationships are not the same as (3.3)–(3.7), but may be close enough for
rough calculations.

3.6. Effect of Le

The effect of Le on Nu predicted by ODT simulations and by the theory of Linden
& Shirtcliffe (1978) is shown in figure 20. ODT data with the following parameters
are considered here: Rρ = 1.25, 2, 4, 6; Ra = 108; Pr = 7; Le = 10−3–10−1; C = 10;
and Z =1, 100. Figure 20 shows that simulations and theory predict a decrease
of Nu when Le → 1, and that this decrease starts at lower values of Le in more
stable interfaces (larger Rρ). Similar trends can be seen in figure 21 for Re. These
decreases of Nu and Re occur because the mechanism producing thermal motions is
suppressed when Le → 1 and this suppression becomes active at lower Le in more
stable interfaces. Figure 20 indicates that, as Le decreases, simulations and theory
predict a decreasing sensitivity of Nu to Le. Figure 21 shows a similar behaviour
for Re. The implication is that the diffusion of heat is so much larger than that of
salt that the latter has no effect on thermal convection anymore. Interestingly, while
the model of Linden & Shirtcliffe (1978) gives a monotonic variation of Nu as Le
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Figure 20. Effect of Le on Nu for Rρ = 1.25 (circles), 2 (inverse triangles), 4 (crosses) and 6

(asterisks). (a) Simulation results for Ra = 108, Pr = 7, C = 10 and Z = 1. (b) Results from the
theory by Linden & Shirtcliffe (1978).
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102
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Figure 21. Effect of Le on Re predicted by ODT simulations. Parameter values of the
simulations are the same as in figure 20(a).

decreases, ODT simulations show a non-monotonic behaviour. It is plausible that the
double-diffusive interface exhibits more complicated behaviour than that predicted
by the model of Linden & Shirtcliffe (1978), but independent confirmation of the
behaviour indicated by ODT is needed to verify its validity. The foregoing trends, as
well as the following ones on the effect of Le on Rf , were also observed with Z = 100.

Figure 22(a) shows the effect of Le on Rf predicted by ODT simulations at various
Rρ , and that measured by Turner (1965), Shirtcliffe (1973) and Takao & Narusawa
(1980) for the constant-Rf regime. The experiments of Turner (1965) are bottom-
heated experiments for the heat/salt system (Le = 0.01); Shirtcliffe (1973) uses the
rundown configuration and the salt/sugar system (Le = 0.33) and Takao & Narusawa
(1980) uses the bottom-heated configuration with three types of aqueous solutions
(Le =0.02, 0.01, 0.003). Also shown in figure 22(a) is the relationship Rf = Le1/2,
which is obtained by Linden & Shirtcliffe (1978) and found to be a lower bound
for Rf by Stern (1982) (cf. § 3.2). Notice in figure 22(a) that ODT results for Rρ =4
and 6 are in the constant-Rf regime. For this regime, figure 22(a) shows that the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

78
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.78


242 E. Gonzalez-Juez, A. R. Kerstein and D. O. Lignell

(a)
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(b) 100

10–1

Le
10–3 10–2 10–1

Le
10–3 10–2 10–1

Figure 22. Effect of Le on Rf . Parameter values are the same as in figure 20(a). (a)
Simulation results. (b) Results from the theory by Linden (1974). Also shown in (a) are
results for the constant-Rf regime from the experiments by Turner (1965) and Shirtcliffe
(1973) (diamonds), and those by Takao & Narusawa (1980) (stars), as well as the relationship
Rf = Le1/2 (unmarked solid line), explained in the text. For the constant-Rf regime, ODT
simulations agree better with the experiments by Turner (1965) and Shirtcliffe (1973) than
with those by Takao & Narusawa (1980).

simulation results agree better with the experiments by Turner (1965) and Shirtcliffe
(1973) than with those by Takao & Narusawa (1980). This is also supported by ODT
results with Z = 100 (not shown). By fitting a power law to the simulation results in
the constant-Rf regime, we obtain Rf ∼ Le0.41±0.04, where the range in the exponent
denotes its sensitivity to Z. It can also be seen in figure 22(a) that, for fixed Le, ODT
results for Rf in the constant-Rf regime are larger than Rf = Le1/2. This is consistent
with a variational analysis showing that this expression represents a lower bound for
Rf (Stern 1982).

Figure 22(a) generalizes, to a range of Le values, the results of figure 5 indicating
that ODT predictions of Rf for Rρ = 1.25 and 2 are larger than those in the constant-
Rf regime, for given Le. This happens because at these lower values of Rρ the
interface is heavily eroded by eddies enhancing the transport of salt, as discussed
in § 3.2. Notice in figure 22(b) that the theory of Linden (1974) predicts a similar
behaviour, including increasing Rρ sensitivity as Le decreases.

4. Sheared interfaces
The effect of background shear on the heat and salt fluxes is discussed in this section.

The following parameters are considered: Ri ≈ 10−4–104, Rρ = 1.1–6, Ra = 107–109,
Pr = 7, Le = 0.01, C =1, 10 and Z = 0.01, 1, 100. We will compare ODT results
with those from a Reynolds stress model (Canuto et al. 2008a) and with stirring
experiments (Atkinson 1994). This comparison is qualitative and is not used to
validate our results since molecular processes are unresolved in Reynolds stress
models, while they are fully resolved in ODT, and grid-stirred turbulence differs from
shear-induced turbulence (Turner 1979). We start by giving a description of the flow in
§ 4.1, then describe briefly the model by Canuto et al. (2008a) and finish by presenting
our simulation results in § 4.3.
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Figure 23. Effect of Ri on (a) the time-averaged density ρ/�ρ and (b) horizontal velocity
u/�U profiles. Parameter values are Ri = 794 (dashed lines), 7.94 (dash-dotted lines), 0.1 (solid
lines), and Rρ = 6, Ra = 108, Le = 0.01, Pr =7, C = 10 and Z = 1.

4.1. Flow description

Figure 23(a) shows that when the background shear is not too high (Ri is high
enough), the characteristic structure of the double-diffusive interface, cf. § 3.1, is
preserved, and the shape of the horizontal velocity profile resembles that set initially,
cf. § 2.5. Also, as long as the shear is not too high, the eddy erosion of the double-
diffusive interface becomes more aggressive as the shear level increases (Ri decreases),
as can be seen in figures 24(a), 24(b) and 24(c) where the interface is at z/h ≈ 0.5.
Notice in figure 24(c) that some eddies penetrate into the interface. Consequently, a
shear increase leads to a sharpening of the density gradient at the interface, cf. figure
23(a). These observations are similar to those discussed in § 3.2 on the effect of the
stability parameter Rρ . Eventually, when the background shear is high enough (Ri is
low enough), the interface is broken, cf. figure 24(d ), and the density and horizontal
velocity profiles become linear, cf. figure 23. Smaller eddies can be seen at this high
level of shear in figure 24(d ), where Re = O(103), in comparison with those at lower
levels of shear in figures 24(a), 24(b) and 24(c), where Re = O(102).

4.2. Reynolds stress model of Canuto et al. (2008a)

The Reynolds stress model of Canuto et al. (2008a) gives algebraic relationships
between the dimensionless heat and salt fluxes and their governing parameters.
Within this framework the effects of pressure and molecular processes are modelled.
The dimensionless heat and salt fluxes are represented by

Γh = Γh(Rρ, Ri), Rf = Rf (Rρ, Ri), (4.1)

where the heat mixing efficiency Γh is defined by

Γh = − N2

〈ε〉V

FT

�T/h
, (4.2)

where N2 = −g(�ρ/ρ0)/h, and 〈〉V denotes a volumetric average. The definitions of
Γh, Rρ , Ri and N2 are based on the vertical gradients of u, ρ/ρ0, T and S averaged
over some appropriate vertical length scale, much larger than those associated with
molecular processes. Here these gradients become �U/h, (�ρ/ρ0)/h, �T/h and
�S/h when averaged along 0 � z � h.
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Figure 24. Temporal sequence of the locations z0 and sizes l (vertical bars) of eddy events
generated in an ODT simulation of double-diffusive convection with background shear. For
clarity, not every eddy event implemented in the simulations is shown. Values of Ri are (a) ∞,
(b) 794, (c) 7.94 and (d ) 0.1. Other parameter values are Rρ = 6, Ra = 108, Le = 0.01, Pr = 7,
C =10 and Z = 1.

In the model by Canuto et al. (2008a) the governing equations for ui =(u, v, w),
T and S are the Navier–Stokes equations with the Boussinesq approximations. The
flow properties are decomposed into mean and fluctuating parts, i.e. s = 〈s〉 + s ′,
where s = ui, T , S, and 〈s〉 and s ′ denote the mean and fluctuating components
of s, respectively. This decomposition is substituted into the governing equations.
Further algebraic manipulation gives a set of governing equations for the second-
order moments 〈u′

iu
′
j 〉, 〈u′

iT
′〉, 〈u′

iS
′〉, 〈T ′2〉, 〈S ′2〉 and 〈T ′S ′〉. Of main interest are the

moments 〈w′T ′〉 and 〈w′S ′〉 representing the vertical heat and salt fluxes, respectively.
The governing equation for any second-order moment ψ has the form

Dψ

Dt
= S + D + P − τ−1

ψ ψ. (4.3)

Here S represents the source or sink terms that can be calculated directly, i.e.
without modelling, D is a turbulent diffusion term containing third-order moments,
P contains certain terms arising from pressure/turbulence interactions and −τ−1

ψ ψ

represents the combined effect of dissipation by molecular processes and the return-
to-isotropy induced by pressure, with τψ being a relaxation–dissipation time scale for
the moment ψ . The terms D, P and τψ require further modelling. The modelling of
P and τψ is described in Canuto et al. (2001). By assuming D = 0, quasi-steady-state
conditions, and neglecting all gradients except those in the vertical direction z, a set
of algebraic linear equations for the second-order moments are obtained. The model
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Figure 25. Effect of Ri on Rf . (a) Simulation results. (b) Results from Canuto et al. (2008a).
Parameter values are Rρ = 1.25 (circles), 2 (inverse triangles), 4 (crosses), 6 (asterisks), and

Ra = 108, Le = 0.01, Pr = 7, C = 10 and Z = 1. The sensitivity of the results to C and Z,
defined in the text, is denoted with error bars in (a) for Rρ = 2 and 6. The horizontal line
denotes the value of Rf = 0.15 found in experimental studies of unsheared double-diffusive
interfaces (Turner 1965). A transition between two flow regimes occurs near Ri ∼ 1.

is completed with an expression for the time scales τψ . These time scales have usually
been treated as adjustable constants. The key contribution of Canuto et al. (2008a ,b)
is to express the relaxation–dissipation time scales of the heat and salt fluxes as
functions of Rρ and Ri based on the following physical arguments: these time scales
are damped (reduced) in strongly stratified environments, which introduces the effect
of Ri, and such damping is counteracted by thermal convection in double diffusion,
introducing the effect of Rρ .

The heat mixing efficiency Γh and the flux ratio Rf are direct outputs of the
model by Canuto et al. (2008a). They are obtained by solving iteratively the algebraic
equations (13a)–(13c), (14), (16c), (A1)–(A4) and (B1)–(B6) of Canuto et al. (2002),
but with (B1) replaced with (4l ) of Canuto et al. (2008a). With this replacement,
the relaxation–dissipation time scales of the heat and salt fluxes are not adjustable
constants but functions of Rρ and Ri.

4.3. Effect of Ri

The effect of Ri on Rf is shown in figures 25 and 26. These figures show the
predictions by both ODT and the model by Canuto et al. (2008a). Hereinafter this
model is referred to as C8. The symbols in all the figures in § 4.3 (figures 25–33) denote
the data obtained from ODT, C8 or experiments, and the curves in these figures are
made by connecting the symbols with line segments. The error bars in figure 25(a)
denote the range of variation of Rf when C and Z are varied and other parameters
are held constant. The ODT curves in figure 25(a) are for C = 10 and Z = 1. The
variations shown by these error bars suggest that the trends shown in figure 25 are
insensitive to the model parameters. Such trends were also observed to be insensitive
to Ra (not shown).

Notice in figures 25 and 26 the large variation of Rf with Ri ∼ 1. This variation
is seen to be more abrupt in ODT results than in predictions by C8. When Ri lies
outside the transition region near Ri ∼ 1, figures 25 and 26 show that it has no effect
on Rf , according to both ODT and C8. Also, notice in figure 27 that for Ri � 1,

results from ODT simulations agree better with the limit Ri = ∞, shown in this figure
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Figure 26. Effect of Ri on Rf /Rρ . Parameter values and layout of the figure are the same
as in figure 25. Also shown are the experimental results from Atkinson (1994) for Rρ = 1.48,
2.26, 2.39, 3.33 and 4.97 (large diamonds), in order of increasing Rist , as well as those
for Rρ = 17.9–437 (small diamonds). For the experimental data, the abscissa represents Rist ,
defined in the text.
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Figure 27. Effect of Rρ on Rf . (a) Simulation results. (b) Results from Canuto et al. (2008a).
Parameter values for the simulations are Ri = 0.04–0.1 (circles), 1.8–8.0 (inverse triangles),
40–88 (crosses), 1800–7000 (asterisks), and Ra = 108, Le = 0.01, Pr = 7, C = 10 and Z = 1.
Input values for the theory are Ri = 0.07 (circles), 4 (inverse triangles), 65 (crosses) and 4500
(asterisks). Experimental results for unsheared interfaces compiled by Kelley (1990) are also
shown (dots).

using experimental data of unsheared interfaces, than results from C8. The latter
results are seen to be insensitive to Ri when Ri � 4500.

In grid-stirring experiments of double-diffusive interfaces a warm layer of saline
water is set under a layer of cold fresh water in an insulated tank, i.e. a rundown
configuration is used, with a pair of oscillating grids at the centre of each layer
(Crapper 1976; Atkinson 1994). The turbulence induced by stirring a grid in a fluid
with no density stratification is characterized by a velocity scale ust and a length scale
lst . Using these scales a Richardson number can be defined as Rist = g(�ρ/ρ0)lst /u

2
st .

Only the data of Atkinson (1994) are used here since Crapper (1976) does not give
enough information to calculate Rist . In the experiments of Atkinson (1994) the
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Figure 28. Effect of Ri on the heat mixing efficiency Γh. Parameter values, layout of the
figure and definition of the error bars in (a) are the same as in figure 25.

Richardson number Rist is varied by holding ust and lst approximately constant
and by varying Rρ in the range Rρ = 1.5–437. Figure 26 shows that the transition
region predicted by ODT and C8 for double diffusion with background shear is also
observed in the grid-stirring experiments by Atkinson (1994). In figure 26 the abscissa
represents Rist for the experimental data.

Figure 28 shows how the heat mixing efficiency Γh varies with Ri according to both
ODT simulations and C8. The error bars in figure 28(a) are defined as in figure 25(a).
The effects of the model parameters on this variation were observed to be small. Also
the effect of Ra on such variation was seen to be small (not shown). Figure 28 shows
that ODT and C8 give a similar variation of Γh with Ri. However, as seen before for
Rf , there is some discrepancy when Ri � 1, where ODT predicts smaller values of
Γh, cf. figure 28.

So far, in this section, results from ODT simulations have been compared with
those from C8 and experiments. Next, ODT results are used to discuss in more depth
the effect of Ri on the fluxes of heat and salt.

For values of Ri � 1, figure 26 shows that Rf = Rρ . This result suggests that the
same mechanism is transporting the heat and salt. Moreover, figure 29 indicates that
when Ri � 1, the production of turbulent kinetic energy (TKE ) by the mean shear,
PU = −〈u′w′〉�U/h, is dominant in comparison with the production of TKE by the
temperature field, PT = gβT FT , and its destruction by the salinity field, DS = gβSFS .
Therefore, the mechanism transporting the heat and salt is the turbulence induced by
the background shear. The shapes of the curves in figure 29, which are for Rρ =4, are
observed to be representative of the range Rρ = 2–6 (not shown). On the other hand,
figures 25 and 27 show that when Ri � 1, the variation of Rf with Rρ resembles
that seen in unsheared interfaces, suggesting that the process of double-diffusive
convection is dominant. This observation is supported by figure 29, which shows that
for Ri � 1, the turbulent fluctuations are mainly produced by the temperature field.

In the transition region near Ri ∼ 1, an increase of shear (decrease of Ri) enhances
the vertical transport of salt and heat, since it increases both Rf and Nu , as can
be seen, respectively, in figures 25 and 30. Figure 30 shows the effect of Ri on Nu
according to both ODT and C8. The values of Nu from C8 are calculated with
Nu = −Γh 〈ε〉V /(N2κT ), which is obtained using (1.2) and (4.2). For this calculation,
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Figure 29. Effect of Ri on the production of turbulent kinetic energy by the mean shear,
PU = −〈u′w′〉�U/h (dashed line), and by the temperature field, PT = gβT FT (dash-dotted
line), and its destruction by the salinity field, DS = gβSFS (solid line). These terms are made
dimensionless using h as a length scale and h2/ν as a time scale. Shown are the results from
ODT simulations for Rρ =4, Ra = 108, Le = 0.01, Pr =7, C = 10 and Z = 1.
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Figure 30. Effect of Ri on Nu . Parameter values and layout of the figure are
the same as in figure 25.

we use the results in figure 28(b) for Γh and values of 〈ε〉V /(N2κT ) from ODT
simulations, with 〈ε〉V = 〈〈ε〉z〉t , cf. § 2.6.

The enhancement of the fluxes near Ri ∼ 1 with decreasing Ri can be seen to
occur in two steps: one gradual and the other abrupt. Consider first a decrease of Ri

from, say, 102 to 10. The eddy erosion on the interface becomes more aggressive, cf.
figures 24(a), 24(b) and 24(c) for example. Figures 25(a) and 30(a) show that the salt
and heat fluxes increase slightly. Figure 29 indicates that the production of turbulent
fluctuations from background shear PU starts to become important. Figure 29 also
shows that the damping of fluctuations by the salinity field DS , which is constant
when Ri � 1, starts to increase, while the contribution by the temperature field to
the turbulent kinetic energy PT remains constant. Thus, the fluctuations induced by
shear start to mix the salt, but their effect on PT is small. On the other hand, once the
value of PU is large enough in comparison with PT , as occurs near Ri ≈ 1 in figure 29
for Rρ =4, PT starts to be affected by the background shear and increases sharply
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Figure 31. Effect of Ri on (a) Re and (b) buoyancy Reynolds number Reb defined as
Reb = 〈〈ε〉z〉t /(νN2). Parameter values are the same as in figure 25.

with decreasing Ri. At this point the turbulent fluctuations induced by shear are high
enough to break the double-diffusive interface, cf. figure 24(d ) for example. A further
decrease of Ri leads to a drastic increase of the fluxes of heat and salt, cf. figures 25
and 30.

The variation of the turbulence intensity with Ri resembles that described for
Nu . This can be seen in figures 31(a) and 31(b), where the turbulence intensity
is represented respectively by Re, as done throughout the present work, and by a
buoyancy Reynolds number Reb defined as Reb = 〈〈ε〉z〉t /(νN2), which is commonly
used by oceanographers (e.g. Gargett 1989). The turbulence intensity cannot be
analysed in this way with C8.

Figure 32(a) shows that when Ri � 1, the heat flux scales as Nu ∼ �Uh/ν, in
agreement with the previous finding that the transport of heat is dominated by
shear-induced turbulence. On the other hand, notice in figure 32(a) the large scatter
of the data when using this scaling for Ri � 1. Such scatter is reduced by assuming
Nu ∼ (Ra/Rρ)

0.36, cf. § 3.3, as can be seen in figure 32(b). This agrees with the previous
observation that the transport of heat is dominated by double-diffusive convection
when Ri � 1. Notice also in figure 32(c) that the scaling Nu/Re collapses the data
for all values of Ri, though there is some scatter when Ri � 1. The normalization
of the heat flux shown in figure 32 highlights a transition near Ri ∼ 1 between a
shear-dominated and a double-diffusion-dominated regime.

We remark that a Richardson number defined as Rig = −g(∂(ρ/ρ0)/∂z)/(∂u/∂z)2,
with the gradients evaluated at the interface, is within the same order of magnitude
of Ri, cf. figure 33. This is useful since Ri is easier to measure.

5. Summary and conclusions
The present work is a parametric study of the heat and salt fluxes across double-

diffusive interfaces. It employs one-dimensional-turbulence simulations to determine
the scaling of these fluxes with the governing parameters. Both unsheared and
sheared interfaces are considered by using jump-periodic boundary conditions. Key
distinctions of this work are the consideration of a very broad parameter space and
the analysis of fully resolved sheared double-diffusive interfaces.
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Figure 32. Effect of Ri on the rescaled heat flux. Parameter values are Rρ =1.1 (squares),
1.25 (circles), 1.5 (triangles), 2 (inverse triangles), 3 (left triangles), 4 (crosses), 5 (plus signs),
6 (asterisks); Le = 0.01, Pr = 7, C = 10 and Z = 1. Results for Ra = 107, 108 and 109 are shown.
The scaling Nu/(�Uh/ν) in (a) highlights a shear-turbulence-dominated regime for Ri � 1, and
the scaling Nu/(Ra/Rρ)0.36 in (b) highlights a double-diffusive-convection-dominated regime
for Ri � 1. Notice in (c) that the scaling Nu/Re collapses the data for all values of Ri, though
there is some scatter when Ri � 1.

Simulations of unsheared interfaces with Rρ = 1.05–6, Ra = 106–1010 and Le = 0.01
show that

Nu ∼
{

(Ra/Rρ)
0.37±0.03 when Pr = 3–100

(Ra/Rρ)
0.31Pr0.22±0.04 when Pr = 0.01–1,

(5.1)

Re ∼ Ra0.45±0.04R−0.12±0.05
ρ P r−0.58±0.03 when Pr = 0.01–100. (5.2)

A slight decrease of Nu with Pr is seen when Pr ≈ 10–100, but it is not quantified
since it is too small to accurately fit the available data. The sensitivity of the exponents
to the model parameters C and Z is denoted above with ranges. ODT simulations
also show that Rf stays approximately constant as Pr is varied, and that Rf increases
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Figure 33. Effect of Ri (open symbols) and Rig (solid symbols) on (a) Rf and (b) Nu for
Rρ = 1.25 (circles), 2 (inverse triangles) and 4 (squares). Parameter values are the same as in
figure 25.

slightly with Ra when Rρ is low, i.e. when the interface is unstable, and that this
tendency is reduced for increasing Rρ . The above scaling of Nu with Ra/Rρ is also
observed for Pr =7 when a rundown configuration is used. Nonetheless, in general,
some sensitivity of the exponents of the identified correlations to the boundary
conditions is expected. This sensitivity could be explored in future studies.

Interestingly, Ra/Rρ appears as a dominant parameter for Nu in the above
correlations, as a result of least-squares minimization. Ra/Rρ can be seen as a
ratio of destabilizing and stabilizing effects. To our knowledge, the above scalings
between Nu and Ra are, together with those by Marmorino & Caldwell (1976),
Nu ∼ Ra0.37±0.1 for Ra ∼ 1010–1011 and Pr ≈ 7 (cf. Kelley et al. 2003), the only ones
obtained for double-diffusive convection in the diffusive regime by means other than
dimensional reasoning.

Regarding the effect of Le in unsheared interfaces, ODT simulations for Pr = 7 and
Le = 10−3–10−1 show that Nu → 0 when Le → 1, as the double-diffusive convection
is suppressed, and that Nu approaches an approximately constant value when Le
decreases in the range 10−3–10−1, since the diffusion of salt becomes small enough
for it not to have an effect on thermal convection. Similar trends are indicated by
the model of Linden & Shirtcliffe (1978). However, while this model shows that Nu
monotonically approaches an approximately constant value, the simulations show a
more complex non-monotonic behaviour. In stable interfaces (Rρ = 4 and 6), Rf is
observed to scale as Rf ∼ Le0.41±0.04. This result is important because of a previous
discrepancy among experiments. The scaling exhibited by ODT agrees better with
the experiments by Turner (1965) and Shirtcliffe (1973) than with those by Takao
& Narusawa (1980). In unstable interfaces (Rρ =1.25 and 2), Rf deviates from
this scaling relationship, as the erosion of the interface becomes important. Such a
behaviour is also indicated by the model of Linden (1974).

Three flow regimes are observed in ODT simulations of sheared interfaces with
Pr = 7 and Le =0.01. When Ri � 1, shear-induced mixing dominates, the interface
is broken and the fluxes are given by Nu ∼ �Uh/ν and Rf =Rρ . Near Ri ∼ 1, a
transition region occurs. In this region the heat and salt fluxes increase as the shear
increases (Ri decreases). This agrees with the observations in the ocean of double-
diffusive interfaces (Padman 1994) but contrasts with the observations in salt-fingering
interfaces, where the fluxes appear to be damped by background turbulence (Linden
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1971; St. Laurent & Schmitt 1999). Finally, when Ri � 1, double-diffusive convection
dominates, the characteristic structure of the double-diffusive interface is preserved
and the scaling of the fluxes resembles that in unsheared interfaces.

The transition region merits further study with experiments or DNS, in order
to obtain an accurate estimate of the transition value of Ri and to explore the
possible effect of interfacial waves on the fluxes, which cannot be captured with ODT.
Although it has been argued that these waves would increase the fluxes by sharpening
interfacial gradients (Linden & Shirtcliffe 1978, p. 428) and/or by breaking (Turner
1979, p. 275), visualizations of unsheared interfaces do not show the presence of such
waves (Fernando 1989).

Overall, the agreement between ODT results for sheared interfaces and predictions
by Canuto et al. (2008a) is satisfactory, though the latter predicts a less abrupt
transition near Ri ∼ 1, and higher values of Rf and ΓH when Ri � 1. These
comparisons are important since models like that of Canuto et al. (2008a) are
ultimately used in ocean circulation models. ODT can complement such models by
providing information that is not otherwise available, including measures of turbulence
intensity such as Re(Ri, Rρ), a relationship between bulk (Ri) and gradient (Rig)
Richardson numbers, and transient effects. The accuracy of this information would
be subject to ongoing evaluation as reliable comparison data become available.

A follow-up of the present study of a single double-diffusive interface could be
that of a double-diffusive staircase. Although the former case is more fundamental,
the latter is of more practical relevance. An unsheared double-diffusive staircase has
already been simulated using a minimal ODT formulation that is not applicable to
sheared interfaces (Kerstein 1999b). Future work could use the present formulation
to simulate a sheared staircase and study the evolution of the interfaces, as well
as the parametrization of the fluxes. Moreover, future studies should consider the
effect of having a nonlinear equation of state for the fluid and determine if the
phenomenon of interface migration is due to the nonlinearity of the equation of state
for seawater (McDougall 1981; Kelley et al. 2003). In addition, future work could
consider the regime Pr < 0.01, of importance in astrophysics (Chabrier & Baraffe
2007), and transient effects in the regime Rρ > 10, of interest for the design of solar
ponds (e.g. Newell 1984; Suárez, Tyler & Childress 2010).

This work was supported by the US Department of Energy, Office of Basic
Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Sandia
National Laboratories is a multi-program laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the US Department of Energy under contract DE-
AC04-94-AL85000. Simulations were performed at Sandia National Laboratories on
the Shasta Linux Cluster.
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