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We present a new method for solving the minimization problem in ferromagnetism.
Our method is based on replacing the non-local non-convex total energy of
magnetization by a new local non-convex energy of divergence-free fields. Such a
general method works in all dimensions. However, for the two-dimensional case, since
the divergence-free fields are equivalent to the rotated gradients, this new energy can
be written as an integral functional of gradients and hence the minimization problem
can be solved by some recent non-convex minimization procedures in the calculus of
variations. We focus on the two-dimensional case in this paper and leave the
three-dimensional situation to future work. Special emphasis is placed on the analysis
of the existence/non-existence depending on the applied field and the physical
domain.

1. Introduction

The model of micromagnetism seeks the magnetization m : Ω ⊂ RN → RN of a
body occupying the region Ω by minimizing the energy functional

I(m) = 1
2α

∫
Ω

|∇m(x)|2 dx +
∫

Ω

ϕ(m(x)) dx −
∫

Ω

H · m(x) dx + 1
2

∫
RN

|F (z)|2 dz

(1.1)
among all admissible magnetizations m satisfying

m ∈ L∞(Ω), |m(x)| = 1 a.e. x ∈ Ω, (1.2)

where F ∈ L2(RN ; RN ) is the unique field determined by the simplified Maxwell
equations:

curlF = 0, div(−F + mχΩ) = 0 in RN . (1.3)

Here α > 0 is a material constant, ϕ is the density of anisotropy that is min-
imized along preferred crystallographic directions, H is a given external applied
field (typically constant) and F is the induced magnetic field on the whole RN

related to m via Maxwell’s equations (1.3). The first term in the energy I(m) is
called the exchange energy, the second term the anisotropy energy, the third term
the external interaction energy and the last term is a non-local energy and is usu-
ally called the magnetostatic energy. The non-locality and non-convexity of the total
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energy not only present a major and challenging mathematical problem but also
provide a concrete example for some other physical problems of a similar nature.
Therefore, the model has been at the centre of much of current active research
(see [2, 6, 7, 9–15, 17–19] for more references and [14] for a recent comprehensive
survey on the model and related problems).

Here we are only concerned with existence of minimizers of the energy I and
their dependence on the given applied field under various sets of assumptions on
exchange and anisotropy energies. We will not study the important issues on pos-
sible microstructure when minimizers do not exist or are not unique.

We will restrict our attention to the two-dimensional case, N = 2, deferring the
three-dimensional case to a future work. We will proceed in three steps of increasing
complexity.

(i) The soft case. Here we neglect both the exchange energy and the anisotropy
energy, and focus on the problem

minimize in m : I(m) = 1
2

∫
R2

|F (z)|2 dz −
∫

Ω

H · m(x) dx (P)

subject to

m ∈ L∞(Ω), |m(x)| = 1 a.e. x ∈ Ω,

curlF = 0, div(−F + mχΩ) = 0 in R2.

(ii) The hard case. Here we consider the effect of a hard anisotropy, either uniaxial
or cubic, but still neglect the exchange energy. In the uniaxial case, we will
postulate anisotropy in the particular form

ϕ(m) = β(1 − |m · e|), (1.4)

where β > 0 and e ∈ S1 is the unique preferred direction (easy axis); in the
biaxial or cubic case, we assume that

ϕ(m) = min{β1(1 − |m · e1|), β2(1 − |m · e2|)}, (1.5)

where β1, β2 > 0 and e1, e2 ∈ S1 are two independent preferred directions
(easy axes). Here β, β1 and β2 represent the strengths of the anisotropies.
Indeed, we will treat the particular case where e1 and e2 are mutually orthogo-
nal, and the strength of anisotropy is the same in both directions β1 = β2 = β.

(iii) The full case. Here we assume that α > 0 and try to understand the interplay
among the different contributions to the energy.

The main qualitative result concerning the existence of minimizers in all these
cases can be summarized in the following theorem. More specific, quantitative
results are given later.

Theorem 1.1. According to each case listed above, we have the following results.

(i) In the soft case, I(m) always has a minimizer for all domains Ω and all given
fields H.
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(ii) In the hard case, there exists a proper, non-empty set H � R2 (depending on
the domain Ω and the anisotropy density ϕ) such that I(m) has a minimizer
if H /∈ H and does not have any minimizers if H ∈ H; in the uniaxial case
0 ∈ H and in the biaxial case 0 /∈ H.

(iii) In the full case, I(m) always has a minimizer.

Our general procedure for attacking these problems (which is also valid regardless
of dimension) is as follows. First we introduce a new field, G = −F + mχΩ and a
new augmented energy

A(m, G) = 1
2α

∫
Ω

|∇m|2 +
∫

Ω

ϕ(m) −
∫

Ω

H · m + 1
2

∫
RN

|mχΩ − G|2

=
∫

Ω

[ 12α|∇m|2 + ϕ(m) − (H + G) · m + 1
2 (|G|2 + 1)] + 1

2

∫
Ωc

|G|2.
(1.6)

We then define a new energy for G ∈ L2(RN ; RN ) by setting

J(G) = inf
m∈L∞(Ω), |m|=1

A(m, G). (1.7)

Here we do not distinguish between the cases α = 0 and α > 0, but we use the
convention that, for the admissible m,∫

Ω

|∇m|2 dx = ∞

unless m ∈ H1(Ω). Therefore, if α > 0, J(G) = infm∈H1(Ω), |m|=1 A(m, G).
The following easy facts establish our general philosophy that solving the min-

imization problem for energy I over unit directions in Ω ⊂ RN is equivalent to
solving the minimization problem for the new energy J over divergence-free fields
on RN . We will apply this general philosophy to the two-dimensional case in this
paper and to the three-dimensional situation in a future work.

Proposition 1.2.

(i) For any m ∈ L∞(Ω) with |m(x)| = 1 almost everywhere (a.e.),

I(m) = min
G∈L2(RN ;RN ), div G=0

A(m, G).

Moreover, if I(m) < ∞, then the minimizer G = Gm is unique and satisfies

div Gm = 0, curl(mχΩ − Gm) = 0; (1.8)

hence F = Fm = mχΩ − Gm is the unique solution to Maxwell’s equations
(1.3).

(ii) For any G ∈ L2(RN ; RN ), J(G) is attained by minimizers; that is,

J(G) = min
m∈L∞(Ω), |m|=1

A(m, G).

We denote by Σ(G) the set of all these minimizers.
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(iii) It follows that

inf
m∈L∞(Ω), |m|=1

I(m) = inf
G∈L2(RN ;RN ), div G=0

J(G). (1.9)

Moreover, if m̄ ∈ L∞(Ω), |m̄| = 1, is a minimizer of I, then the function
Gm̄ determined by the Maxwell equation (1.8) is a minimizer of J ; if Ḡ ∈
L2(RN ; RN ), div Ḡ = 0, is a minimizer of J , then any function m̃ ∈ Σ(Ḡ) is
a minimizer of I.

Proof. The proof of this proposition is straightforward. It shows that finding opti-
mal magnetic configurations amounts, after all, to minimizing the energy A(m, G)
recursively on m or on G, depending on which is more convenient. The main obser-
vation here is that, for given m, the minimization in divergence-free vector fields G
takes place for

1
2

∫
RN

|mχΩ − G|2.

It is well known that the unique solution is determined by the Helmholtz projection

div G = 0, curl(mχΩ − G) = 0.

On the other hand, for G fixed, the minimization on m is a regular variational
problem for α > 0 (coercive and convex). If α = 0, then optimal fields m arise by
pointwise minimizing the integrand

min
|m|=1

(ϕ(m) − (H + G)m).

Part (iii) is a direct consequence of parts (i) and (ii).

The case involving the derivative of field m presents an easier problem regarding
the existence of minimizers by virtue of the following result, although the concrete
computations of minimizers seem a much harder non-local problem [2,6].

Proposition 1.3. Let α > 0. Then the energy J defined above is sequentially
weakly lower semicontinuous and coercive on L2(RN ; RN ), and hence J possesses
a minimizer over the divergence-free fields; therefore, the energy I has minimizers
m̄ ∈ Σ(Ḡ), where Ḡ is any minimizer of J . Furthermore, any such pair (m̄, Ḡ) is
also a minimizer for the augmented energy A defined above.

Proof. Assume that Gj ⇀ G0 weakly in L2(RN ; RN ). By proposition 1.2(ii), there
exist minimizers mj ∈ L∞(Ω) with |mj(x)| = 1 a.e. such that

J(Gj) = A(mj , Gj) � M, j = 0, 1, . . . ,

where M < ∞ is some constant. Since α > 0, it follows that mj ∈ H1(Ω) and
‖∇mj‖L2(Ω) � M ′ for another constant M ′. We can assume, without loss of gener-
ality, that mj ⇀ m∗ weakly in H1(Ω) and mj(x) → m∗(x) and hence |m∗(x)| = 1
for almost every x ∈ Ω. Note that

A(mj , Gj) = 1
2α

∫
Ω

|∇mj |2 +
∫

Ω

ϕ(mj) −
∫

Ω

H · mj + 1
2

∫
RN

|mjχΩ − Gj |2.
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Taking the liminf as j → ∞, we have

lim inf
j→∞

J(Gj) = lim inf
j→∞

A(mj , Gj)

� 1
2α

∫
Ω

|∇m∗|2 +
∫

Ω

ϕ(m∗) −
∫

Ω

H · m∗ + 1
2

∫
RN

|m∗χΩ − G0|2

= A(m∗, G0)
� J(G0).

This proves the lower semicontinuity of J on L2(RN ; RN ). Moreover, it follows
easily that (even when α = 0)

J(G) � 1
4‖G‖2

L2(RN ;RN ) − C,

where C is a constant depending only on ϕ and H. This proves the coercivity of J .
The rest of the proof follows easily.

Remark 1.4. If dimension N = 2, we can use the angle as an independent variable
to represent the direction of magnetization m as

m = (cos θ, sin θ), θ : Ω → R.

Notice that |∇m|2 = |∇θ|2. If we introduce v = (v1, v2) = (θ, u), where G = ∇⊥u,
then the augmented energy A(m, G) above can be written as a variational integral:

A(m, G) = E(v) =
∫

R2
W (x,v(x),∇v(x)) dx, (1.10)

where W (x,v, A) is a function of x,v ∈ R2 and the 2 × 2 matrix A defined by

W (x,v, A) = 1
2 |A2|2 +χΩ(x)[ϕ(cos v1, sin v1)− (H +A⊥

2 ) · (cos v1, sin v1)+ 1
2α|A1|2]

(1.11)
with A1 and A2 respectively denoting the first and second rows of matrix A. In fact,
if α > 0, this density function W (x,v, A) is convex in A, and hence the minimization
problem in this case can be solved easily by the standard direct method of calculus
of variations.

The rest of the discussion is devoted to the case when there is no exchange energy.
Again our discussion is valid regardless of dimension. Let α = 0 and write

A(m, G) =
∫

Ω

ρ(m(x), G(x)) dx + 1
2

∫
Ωc

|G(z)|2 dz; Ωc = RN \ Ω,

where
ρ(h, ξ) = ϕ(h) − (H + ξ) · h + 1

2 (|ξ|2 + 1).

Define the function

Ψ(ξ) = min
h∈SN−1

ρ(h, ξ) = min
h∈SN−1

[ϕ(h) − (H + ξ) · h + 1
2 (|ξ|2 + 1)] (1.12)

and its minimal set

σ(ξ) = {h ∈ SN−1 | ρ(h, ξ) = Ψ(ξ)}. (1.13)
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The following proposition is a more explicit way of writing the one above for the
case when α = 0.

Proposition 1.5. Let α = 0. Then the energy J(G) defined above is given by

J(G) =
∫

Ω

Ψ(G(x)) dx + 1
2

∫
Ωc

|G(z)|2 dz = A(mG, G),

where mG ∈ L∞(Ω) is any function satisfying

mG(x) ∈ σ(G(x)) a.e. x ∈ Ω; (1.14)

all such functions mG constitute the solution set Σ(G) defined in proposition 1.2.

We now discuss the two-dimensional case. Assume dimension N = 2. Then every
divergence-free field G can be written as a rotated gradient:

G(x) = T∇u(x) = ∇⊥u(x),

where ∇u(x) = (ux1 , ux2) and T (a, b) = (a, b)⊥ = (−b, a). Therefore, if α = 0, the
energy J(G) can be written as a variational integral

J(G) = E(u) =
∫

R2
Φ(x,∇u(x)) dx, (1.15)

where u : R2 → R is measurable with distributional gradient ∇u belonging to
L2(R2; R2) and

Φ(x, λ) = χΩ(x)ψ(λ) + χΩc(x) 1
2 |λ|2, λ ∈ R2,

where ψ(λ) = Ψ(λ⊥).

Proposition 1.6. Let N = 2 and α = 0. Then any minimizer ū of E gives a
minimizer Ḡ of J in terms of Ḡ = ∇⊥u, and hence gives a minimizer m̄ of I in
terms of m̄(x) ∈ σ(∇⊥u(x)) for almost every x ∈ Ω.

It is interesting to note that, in some cases, one can compute the density ψ(λ) =
Ψ(λ⊥) explicitly. In fact, in the soft case ϕ ≡ 0, one can find easily that

ψ(λ) = 1
2 (|λ − H⊥| − 1)2 − 1

2 |H|2 + λ · H⊥.

In the uniaxial case with e pointing in the easy direction, one can find

ψ(λ) = 1
2 (|λ|2 + 1) + β −

√
|λ − H⊥|2 + 2β|(λ − H⊥) · e⊥| + β2,

where β > 0 is the parameter associated with the strength of anisotropy. A similar
expression can be given in the biaxial case (see § 4.2).

The analysis of the corresponding variational problems leads to a scalar, non-
convex problem for certain integral functionals of gradients on the whole space.
In § 2, we study a general variational principle which works explicitly for such
functionals on the whole space. In this setting, some existence results (see, for
example, [3–5, 7, 8, 20]) under lack of convexity can nevertheless be applied. Then,
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in §§ 3 and 4, we apply this general principle to the soft and hard cases of two-
dimensional ferromagnetism. In the soft case, we have the existence of minimizers
for all domains and all applied fields (§ 3), and sometimes we even have explicit
solutions. In the hard case, we have results on the non-existence of minimizers in the
uniaxial case for some applied fields H (these are already very well known [7,9,13])
and the existence of minimizers for other H, and similar results in the cubic (biaxial)
case (§ 4). In the case of a unit disc, we have a rather explicit characterization of the
set H. We emphasize that the main purpose of this (and the forthcoming) paper is
to provides a new method for the micromagnetism problem parallel to the existing
methods in [7, 9, 13,17].

2. A general variational principle

Though the minimization problem in (1.15) is equivalent to the micromagnetics
functional only for dimension N = 2, it is worth analysing such a functional regard-
less of dimension. In this section we therefore focus on the minimization problem
for variational functionals of the type defined by (1.15); that is,

E(u) =
∫

RN

Φ(x,∇u(x)) dx =
∫

Ω

ψ(∇u(x)) dx + 1
2

∫
Ωc

|∇u(x)|2 dx,

where N is any dimension, Ω ⊂ RN is a bounded domain with piecewise smooth
boundary and ψ : RN → R is a locally Lipschitz function satisfying, for some
constants c2 � c0 > 0, c1, c3 ∈ R,

c0|λ|2 − c1 � ψ(λ) � c2|λ|2 + c3, λ ∈ RN .

The natural admissible class for E(u) is the space of functions u ∈ H1
loc(R

N ) whose
gradient ∇u belongs to L2(RN ; RN ); in this case, the functional E is finite valued.
Also, it is easy to see that E(u) = E(u + c) for all constants c ∈ R. Note that for
all u ∈ H1

loc(R
N ) the trace Γu = u|∂Ω is well defined and, by the trace theorem [1],

the trace operator Γ : H1
loc(R

N ) → H1/2(∂Ω) is onto; moreover, Γ is also compact
from H1

loc(R
N ) into L2(∂Ω).

We introduce the following function spaces:

X =
{

u ∈ H1
loc(R

N )
∣∣∣∣ ∇u ∈ L2(RN ; RN ),

∫
∂Ω

Γu(x) dS = 0
}

, (2.1)

Y = Γ (X) =
{

g ∈ H1/2(∂Ω)
∣∣∣∣
∫

∂Ω

g dS = 0
}

. (2.2)

Define spaces X1, X2 to be the restriction of X on Ω and Ωc, respectively. Note that
if ui ∈ Xi (i = 1, 2) satisfy u1|∂Ω = u2|∂Ω , then the function u = χΩu1+χΩcu2 ∈ X.

We study the minimization problem for functional E on the space X. To this
end, we define the relaxation functional of E by

E#(u) =
∫

Ω

ψ#(∇u(x)) dx + 1
2

∫
Ωc

|∇u(x)|2 dx, (2.3)

where ψ# is the convexification of ψ.
The following result establishes that the standard relaxation theorem still holds

in this case where E(u) is not a standard variational integral on bounded domains.
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Proposition 2.1. It follows that

inf
u∈X

E(u) = min
u∈X

E#(u).

Proof. Since E is not a standard variational integral defined on bounded domains,
we include the proof for completeness. We show first that infX E = infX E# and
then that the infimum of E# is attained. Assume that infX E# < ∞. Given any
ε > 0, let uε ∈ X be such that E#(uε) � infX E# + ε. Let gε = Γuε = uε|∂Ω ∈ Y .
By the standard relaxation theorem [16],

inf
v∈H1(Ω), v|∂Ω=gε

∫
Ω

ψ(∇v(x)) dx = inf
v∈H1(Ω), v|∂Ω=gε

∫
Ω

ψ#(∇v(x)) dx.

Hence, there exists vε ∈ H1(Ω) with vε|∂Ω = gε such that∫
Ω

ψ(∇vε) dx � inf
v∈H1(Ω), v|∂Ω=gε

∫
Ω

ψ#(∇v) dx + ε �
∫

Ω

ψ#(∇uε) dx + ε.

Let ũ = χΩvε + χΩcuε. Then ũ ∈ X and

E(ũ) =
∫

Ω

ψ(∇vε) dx + 1
2

∫
Ωc

|∇uε|2 dx

�
∫

Ω

ψ#(∇uε) dx + ε + 1
2

∫
Ωc

|∇uε|2 dx

= E#(uε) + ε

� inf
X

E# + 2ε.

From this it follows that infX E � infX E#. Hence, infX E = infX E#. To show
that E# has a minimizer on X, we use the standard direct method. Let {uj} be
a minimizing sequence of E#. Then {∇uj} is a bounded sequence in L2(RN ; RN ).
Hence, assume (via a subsequence) ∇uj ⇀ U weakly in L2(RN ; RN ) for some
function U ∈ L2(RN ; RN ). The gradient structure of ∇uj and this weak convergence
imply that ∫

RN

U(x) · ζ(x) dx = 0

for all test functions ζ ∈ C∞
0 (RN ; RN ) with div ζ = 0. Therefore, U is a gradient;

that is, U = ∇ū for some function ū ∈ H1
loc(R

N ) (see, for example, [21, pp. 13–16]).
On the other hand, since ∫

∂Ω

Γuj dS = 0,

it follows that {uj} is a bounded sequence in H1(Ω). Hence, assume (also via a
subsequence) uj ⇀ v̄ weakly in H1(Ω). The compactness of the trace operator also
implies that ∫

∂Ω

Γ v̄ dS = 0.

Since ∇ū = ∇v̄ in Ω, it follows that ū(x) = v̄(x) + c for almost every x ∈ Ω and a
constant c. Therefore, ũ = ū − c ∈ X and from the lower semicontinuities of both
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parts of E#(u) it follows easily that E#(ũ) � lim inf E#(uj) = infX E#. Hence,
ũ ∈ X is a minimizer of E# on X.

To characterize the minimizers of E#, we first have the following exterior unique-
ness result.

Proposition 2.2. Let u1, u2 be any two minimizers of E# on X. Then u1 = u2
on Ωc. Therefore, there exists a unique ḡ ∈ Y such that all minimizers ū of E#

satisfy Γ ū = ū|∂Ω = ḡ.

Proof. We write E#(u) = P1(u) + P2(u), where

P1(u) =
∫

Ω

ψ#(∇u(x)) dx, P2(u) = 1
2

∫
Ωc

|∇u(x)|2 dx.

Let f(t) = E#(tu1+(1−t)u2) and pi(t) = Pi(tu1+(1−t)u2), i = 1, 2, for 0 � t � 1.
Then all these functions are convex on [0, 1] and f(t) = p1(t) + p2(t). Moreover,
f(0) = f(1) = min[0,1] f . From this it follows easily that f(t) = f(0) for all t ∈ [0, 1].
Since pi(t) � tpi(1) + (1 − t)pi(0), i = 1, 2, the equality f(t) = f(0) = f(1) implies
that pi(t) = tpi(1)+(1− t)pi(0) for i = 1, 2. In particular, p2( 1

2 ) = 1
2 (p2(0)+p2(1)).

This equality implies ∇u1 = ∇u2 on Ωc. Hence, u1 = u2 on Ωc since∫
∂Ω

Γui dS = 0 for i = 1, 2.

In particular, u1|∂Ω = u2|∂Ω . This proves the proposition.

If ψ# is C1, the minimizers of E# can be exactly solved as the weak solutions
of the Euler–Lagrange equation for E#. From this, we have the following result
characterizing the minimizers of E# and hence the boundary data ḡ.

Theorem 2.3. Let ψ# be C1. Then, ū = χΩ v̄ +χΩcw̄ is a minimizer of E# if and
only if v̄, w̄ satisfy the following conditions:

w̄|∂Ω = v̄|∂Ω ,

∆w̄ = 0 in Ωc,

div[(ψ#)′(∇v̄)] = 0 in Ω,

∂w̄

∂n
= (ψ#)′(∇v̄) · n on ∂Ω,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.4)

where n(x) is the unit outward normal to the boundary ∂Ω of the interior domain Ω.

Proof. Since E#(u + c) = E#(u) for all c ∈ R, it follows that a function ū =
χΩ v̄+χΩcw̄ is a minimizer of E# on X if and only if it is a minimizer of E# on the
linear space X0 = {u ∈ H1

loc(R
N ) | ∇u ∈ L2(RN ; RN )}. Since E# is convex on X0,

the minimizers of E# on X0 are exactly the weak solutions of the Euler–Lagrange
equation. Therefore, ū = χΩ v̄ + χΩcw̄ is a minimizer of E# if and only if∫

Ω

(ψ#)′(∇v̄) · ∇ζ dx +
∫

Ωc
∇w̄ · ∇ζ dx = 0 for all ζ ∈ X0. (2.5)

Clearly, this condition is equivalent to the last three conditions in (2.4).
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Remark 2.4. Certainly, (2.4) is a difficult condition involving the mixed Dirichlet–
Neumann boundary conditions and depending heavily on the structures of function
ψ# and domain Ω; nevertheless, it always has solutions. Also, from proposition 2.2,
although the solution v̄ to (2.4) may not be unique, the solution w̄ and hence the
boundary trace ḡ = w̄|∂Ω = v̄|∂Ω must be unique.

Using the unique boundary data ḡ, we can derive a necessary and sufficient
condition for minimizers of E#.

Theorem 2.5. Let ḡ ∈ Y be the unique boundary data determined in the previous
proposition. Then ū ∈ X is a minimizer of E# on X if and only if ū = χΩ v̄+χΩcw̄,
where w̄ = ω(ḡ) is the unique solution to the Dirichlet problem:

∆w̄ = 0 in Ωc, w̄|∂Ω = ḡ, (2.6)

and v̄ is any minimizer of the following problem:∫
Ω

ψ#(∇v̄) dx = min
v∈H1(Ω), v|∂Ω=ḡ

∫
Ω

ψ#(∇v) dx. (2.7)

Proof. First, assume that ū ∈ X is a minimizer of E#. Then, by proposition 2.2,
ū|∂Ω = ḡ. Let E#(u) = P1(u) + P2(u) with Pi introduced in the previous proof.
Since E#(ū) � E#(ū + ζ) for all ζ ∈ X, it follows by choosing ζ = 0 on Ωc or
on Ω that ū minimizes each Pi with the given boundary data ḡ. The minimizer of
P2 must be harmonic and given by the unique solution w̄ = ω(ḡ) of the Dirichlet
problem (2.6) above. Therefore, ū = χΩ v̄ + χΩcω(ḡ), where v̄ ∈ X1 is a minimizer
of problem (2.7). Now, assume that ū = χΩ v̄ + χΩcw̄, where v̄ ∈ X1 is a minimizer
of problem (2.7) and w̄ = ω(ḡ) is the solution of the Dirichlet problem (2.6). We
want to show E#(ū) = minX E#. Let ũ ∈ X be a minimizer of E# on X; that is,

min
X

E# = E#(ũ) =
∫

Ω

ψ#(∇ũ) dx + 1
2

∫
Ωc

|∇ũ|2 dx.

Since ũ|∂Ω = ḡ, by the assumptions of v̄ and w̄, the first term on the right-hand
side of this equation is no less than∫

Ω

ψ#(∇v̄) dx

and the second term is no less than

1
2

∫
Ωc

|∇w̄|2 dx.

Hence, E#(ũ) � E#(ū). This shows that E#(ū) = E#(ũ) = minX E#.

We now give the necessary and sufficient condition for the existence of minimizers
of the original functional E(u).

Theorem 2.6. Let ḡ ∈ Y be the unique boundary data determined in proposi-
tion 2.2. Then, the functional E has a minimizer over X if and only if the mini-
mization problem

inf
v∈H1(Ω), v|∂Ω=ḡ

∫
Ω

ψ(∇v(x)) dx (2.8)
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has a minimizer. Moreover, a function ū ∈ X is a minimizer of E if and only if

ū = χΩ ṽ + χΩcω(ḡ), (2.9)

where ṽ is any minimizer of problem (2.8).

Corollary 2.7. ū ∈ X is a minimizer of E if and only if ū is a minimizer of E#

and
ψ(∇ū(x)) = ψ#(∇ū(x)) for all x ∈ Ω. (2.10)

Furthermore, if ψ# is C1 and ū = χΩ v̄ + χΩcw̄, then ū is a minimizer of E if and
only if v̄, w̄ satisfy the following conditions:

w̄|∂Ω = v̄|∂Ω ;

∆w̄ = 0 in Ωc;

div[(ψ#)′(∇v̄)] = 0 in Ω;

∂w̄

∂n
= (ψ#)′(∇v̄) · n on ∂Ω;

ψ#(∇v̄) = ψ(∇v̄) in Ω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.11)

Remark 2.8. If both ψ and ψ# are C1, then any function ū satisfying condi-
tion (2.11) must be a weak solution of the Euler–Lagrange equation for the func-
tional E(u). To see this, we simply note that in this case (ψ#)′(λ0) = ψ′(λ0)
whenever ψ#(λ0) = ψ(λ0). However, as in most non-convex problems, the Euler–
Lagrange equation for E(u) alone only provides a necessary condition for possible
minimizers of E(u), but it is far from being sufficient for the existence of minimizers.
When the condition ψ(∇ū) = ψ#(∇ū) a.e. in Ω is not satisfied by any minimizers
ū of E# the (non-convex) functional E does not have any minimizers.

The following result provides a sufficient condition for existence of minimizers
of E.

Corollary 2.9. Assume that ψ# is affine on each component of the detachment
set D = {λ | ψ#(λ) < ψ(λ)}. Then the energy E has minimizers.

Proof. Under the given condition, we can easily see that the conditions of [3, the-
orem 2.1] are all satisfied. This implies that the functional

F (v) =
∫

Ω

ψ(∇v(x)) dx

itself has minimizers for all boundary data g. Let ṽ ∈ X1 be any minimizer of F for
the unique boundary data ḡ determined above. Then, by theorem 2.6, the function

ũ = χΩ ṽ + χΩcω(ḡ)

is a minimizer of E.

Finally, we have an explicit result in the case when domain Ω is the unit ball.
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Theorem 2.10. Let Ω = B be the unit ball in RN . Then

inf
X

E = min
X

E# = |B| min
λ∈RN

(
ψ#(λ) +

N − 1
2

|λ|2
)

= |B|
(

ψ#(λ̄) +
N − 1

2
|λ̄|2

)
,

where λ̄ ∈ RN is uniquely determined. In this case, the minimizers of E# are given
by

ū = χB(x)v̄(x) + χBc(x)
λ̄ · x

|x|N ,

where v̄ is any function satisfying

v̄|∂B = λ̄ · x,

∫
B

ψ#(∇v̄(x)) dx = |B|ψ#(λ̄).

Furthermore, E has a minimizer if and only if either ψ(λ̄) = ψ#(λ̄) or

λ̄ ∈ intconv{λ1, λ2, . . . , λk} (the interior of the convex hull of λ1, . . . , λk)

for some λj ∈ RN , j = 1, 2, . . . , k, satisfying
⋂k

j=1 ∂ψ(λj) �= ∅.

Remark 2.11.

(i) If ψ# is C1, then λ̄ is uniquely determined by the algebraic equation

(ψ#)′(λ̄) + (N − 1)λ̄ = 0. (2.12)

(ii) The last condition
⋂k

j=1 ∂ψ(λj) �= ∅ is equivalent to ψ# being affine on the
convex hull conv{λ1, λ2, . . . , λk}.

We need the following elementary result for proving this theorem.

Lemma 2.12. Let f and g be two functions on RN and let f be convex. Assume
that f + g has a local minimum at λ0 and g is differentiable at λ0. Then it follows
that

f(λ0 + η) � f(λ0) − g′(λ0) · η for all η ∈ RN .

Proof. Suppose the inequality does not hold. Then there exist η0 ∈ RN and ε0 > 0
such that

f(λ0 + η0) < f(λ0) − g′(λ0) · η0 − ε0.

Let h(t) = f(λ0 + tη0) − f(λ0) + g′(λ0) · tη0. Then h is convex in t ∈ R and
h(0) = 0, h(1) < −ε0. By convexity, for all 0 < t < 1,

h(t) − h(0)
t − 0

� h(1) − h(0)
1 − 0

and hence h(t) � −ε0t for all t ∈ (0, 1). This implies that

f(λ0 + tη0) � f(λ0) − g′(λ0) · tη0 − ε0t for all t ∈ (0, 1).

On the other hand, since g is differentiable at λ0, it follows that

g(λ0 + tη0) = g(λ0) + g′(λ0) · tη0 + o(t), t → 0+.

Therefore, we would have f(λ0+tη0)+g(λ0+tη0) < f(λ0)+g(λ0) for all sufficiently
small t > 0. This contradicts the local minimality of f + g at λ0.
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Proof of theorem 2.10. Let ū = χB v̄ + χBcw̄, where v̄(x) = λ̄ · x and w̄(x) =
(λ̄ · x)/|x|N . Then ū ∈ X and we will show that ū is a minimizer of E#. It is easy
to show by elementary calculations that

∆w̄ = 0,
∂w̄

∂n
= (1 − N)λ̄ · x,

∫
Bc

|∇w̄|2 = |B|(N − 1)|λ̄|2.

Using lemma 2.12 for f = ψ# and g = 1
2 (N − 1)|λ|2, we have

ψ#(λ̄ + η) � ψ#(λ̄) − (N − 1)λ̄ · η for all η ∈ RN . (2.13)

Then, for all ζ ∈ X,

E#(ū + ζ) =
∫

B

ψ#(λ̄ + ∇ζ) dx + 1
2

∫
Bc

|∇w̄ + ∇ζ|2 dx

=
∫

B

ψ#(λ̄ + ∇ζ) dx + 1
2

∫
Bc

|∇w̄|2 dx

+
∫

Bc

∇w̄ · ∇ζ dx + 1
2

∫
Bc

|∇ζ|2 dx

�
∫

B

[ψ#(λ̄) − (N − 1)λ̄ · ∇ζ] dx +
N − 1

2
|λ̄|2|B|

−
∫

∂B

∂w̄

∂n
ζ dS + 1

2

∫
Bc

|∇ζ|2 dx

= |B|
[
ψ#(λ̄) +

N − 1
2

|λ̄|2
]

+ 1
2

∫
Bc

|∇ζ|2 dx

= E#(ū) + 1
2

∫
Bc

|∇ζ|2 dx.

This proves that

E#(ū) = |B|
(

ψ#(λ̄) +
N − 1

2
|λ̄|2

)

is the minimum of E#. The remaining part of the necessary and sufficient condition
for the existence of minimizers of E follows from theorem 2.6 and the results of [4,5]
(see also [20, theorem 1.1]).

3. The two-dimensional soft ferromagnetism

We will first apply our general principle to the simple case of two-dimensional soft
ferromagnetism. Therefore, assume that N = 2 and ϕ ≡ 0. In this case, after
some elementary calculus computations, the function Ψ(ξ) defined by (1.12) can be
written as

Ψ(ξ) = min
h∈S1

[−(H + ξ) · h + 1
2 (|ξ|2 + 1)] = 1

2 (|ξ + H| − 1)2 − 1
2 |H|2 − ξ · H,

and the set σ(ξ) is given by

σ(−H) = S1; σ(ξ) =
{

H + ξ

|H + ξ|

}
if ξ �= −H.
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The corresponding functional E(u) defined by (1.15) above is thus

E(u) =
∫

R2
Φ(x,∇u(x)) dx =

∫
Ω

ψ(∇u(x)) dx + 1
2

∫
Ωc

|∇u(x)|2 dx,

where
ψ(λ) = Ψ(λ⊥) = 1

2 (|λ − H⊥| − 1)2 + λ · H⊥ − 1
2 |H|2.

The convexification of ψ can be easily computed and expressed in the form

ψ#(λ) =

{
1
2 (|λ − H⊥| − 1)2 + λ · H⊥ − 1

2 |H|2 if |λ − H⊥| � 1,

λ · H⊥ − 1
2 |H|2 if |λ − H⊥| � 1.

Note that ψ# is in fact C1 and

(ψ#)′(λ) =

⎧⎪⎨
⎪⎩

λ − λ − H⊥

|λ − H⊥| if |λ − H⊥| � 1,

H⊥ if |λ − H⊥| � 1.

The detachment set for this function ψ is D = {|λ − H⊥| < 1}, on which the
convexification ψ# is affine. By corollary 2.9, we easily have the following existence
result.

Theorem 3.1. In the two-dimensional soft case, the energy E and hence the energy
I always have minimizers. Moreover, a minimizer m̄ of I is given in the form of

m̄(x) =
H + ∇⊥ū(x)
|H + ∇⊥ū(x)| for a.e. x ∈ Ω,

where ū is a minimizer of E.

However, even in this concrete case, finding a minimizer of E may be a very
difficult problem, as the necessary and sufficient condition for minimizers illustrated
by condition (2.11) is difficult to study. By (2.11)3, only functions u ∈ X satisfying
|∇u(x) − H⊥| � 1 for almost every x ∈ Ω can be minimizers of energy E.

We will examine two special cases.

3.1. The case of small external applied fields

First, we focus on functions u ∈ X that satisfy

|∇u(x) − H⊥| = 1 a.e. x ∈ Ω. (3.1)

For all such functions, the third condition in (2.4) always holds, and the second and
fourth conditions in (2.4) reduce to the exterior Neumann boundary problem:

∆u = 0 in Ωc,
∂u

∂n
= H⊥ · n on ∂Ω. (3.2)

This problem has a unique solution u = wH ∈ X2, which also depends linearly
on H. In fact, let wi ∈ X2, i = 1, 2, be the unique solution of

∆wi = 0 in Ωc,
∂wi

∂n
= ni on ∂Ω,
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where n = (n1, n2), as always, is the outward unit normal to the interior domain Ω.
Then the solution u = wH of the Neumann problem (3.2) above can be written as

wH = −h2w1 + h1w2 = H⊥ · (w1, w2) in Ωc.

Let ui ∈ X be an extension of wi to whole R2, i = 1, 2, and define

uH = −h2u1 + h1u2 = H⊥ · (u1, u2) in R2.

Define g̃ = wH |∂Ω ∈ Y . Under condition (3.1), this g̃ will be the unique boundary
data ḡ as determined in the general setting above. However, equation (3.1) must
be combined with the boundary condition

u|∂Ω = g̃ = wH |∂Ω . (3.3)

We assume that Ω is sufficiently smooth so that ui ∈ X∩C1(R2). It is well known [8]
that problem (3.1), (3.3) admits (infinitely many) solutions if

|∇uH − H⊥| � 1 in Ω. (3.4)

We have thus proved the following.

Proposition 3.2. If condition (3.4) holds, then the minimizers of E are given by

u = χΩv + χΩcwH ,

where wH ∈ X2 is the unique solution of problem (3.2) and v is any function
satisfying

|∇v(x) − H⊥| = 1 in Ω, v|∂Ω = wH |∂Ω .

In particular, when there is no applied field: H = 0, then the distance function
v(x) = dist(x, ∂Ω) provides a minimizer u = χΩ(x) dist(x, ∂Ω).

Note that

|∇uH(x) − H⊥| = |h1||∇u2(x) − (0, 1)| + |h2||∇u1(x) − (1, 0)| � C|H|, x ∈ Ω,

where C is a constant depending only on the domain Ω. Therefore, condition (3.4)
is always satisfied if |H| is sufficiently small.

3.2. The case of the unit disc

Let Ω = B, the unit disc in R2. By theorem 2.10 and remark 2.11, the unique
boundary data ḡ = λ̄·x and the corresponding exterior harmonic function ω(ḡ)(x) =
(λ̄ · x)/|x|2, where λ̄ ∈ R2 is the unique solution of

(ψ#)′(λ̄) + λ̄ = 0.

Solving this equation yields λ̄ = −H⊥ if |H| � 1
2 and λ̄ = −H⊥/2|H| if |H| � 1

2 .
Therefore, by theorem 2.6, we have the following.
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Figure 1. The graph of h(t, s).

Proposition 3.3.

(i) If |H| < 1
2 , then the minimizers of E are given non-uniquely by

u = χB(x)v(x) − χBc(x)
H⊥ · x

|x|2 ,

where v is any function satisfying

|∇v(x) − H⊥| = 1 in B, v|∂B = −H⊥ · x. (3.5)

(ii) If |H| � 1
2 , then the (unique) minimizer of E is given by

ū = −χB(x)
H⊥ · x

2|H| − χBc(x)
H⊥ · x

2|H||x|2 .

4. The two-dimensional hard ferromagnetism

4.1. The uniaxial case

As mentioned in § 1, we assume that the anisotropy density ϕ is given by

ϕ(m) = β(1 − |m · e|),

where β > 0 and e ∈ S1 are given. In this case, we can easily compute the function
Ψ defined above as follows:

Ψ(ξ) = min
h∈S1

[β − |βe · h| − (H + ξ) · h + 1
2 (|ξ|2 + 1)]

= 1
2 (|ξ|2 + 1) + β − max{|ξ + H + βe|, |ξ + H − βe|}

= 1
2 (|ξ|2 + 1) + β − max

±
{|ξ + H ± βe|}.

In this case, the density function ψ is given by

ψ(λ) = Ψ(λ⊥) = 1
2 (|λ|2 + 1) + β − max

±
{|λ − (H ± βe)⊥|}.
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Let
E(u) =

∫
Ω

ψ(∇u(x)) dx + 1
2

∫
Ωc

|∇u(x)|2 dx.

In order to study the minimization problem for E(u), we need to find the convex-
ification ψ#. Writing λ = te⊥ + se + H⊥ with (t, s) ∈ R2, we can express ψ(λ) in
terms of (t, s) as follows:

ψ(λ) = h(t, s) + (e⊥ · H⊥)t + (e · H⊥)s + β + 1
2 (1 + |H|2),

where the nonlinear part h(t, s) is given by

h(t, s) = 1
2 (t2 + s2) −

√
(|t| + β)2 + s2.

(See figure 1 for a graph of h.)
It suffices to compute the convexification h# of h on R2. Note that h satisfies

h(−t, −s) = h(t, −s) = h(−t, s) = h(t, s), (t, s) ∈ R2.

We can restrict the computation to the first quadrant Q = {t � 0, s � 0}. Note
that on Q

ht(t, s) = t − t + β√
(t + β)2 + s2

, hs(t, s) = s − s√
(t + β)2 + s2

.

We want to know where h(t, s) is increasing regarding t and s individually. So we
consider the domain Γ ⊂ Q defined by ht(t, s) � 0 and hs(t, s) � 0: Γ is the non-
shaded area of Q in Figure 3(a). Then Γ = {(t, s) ∈ Q | t

√
(t + β)2 + s2 � t + β}.

Write Γ = {(t, s) ∈ Q | s � 0, γ(s) � t < ∞}, where t = γ(s), s > 0, is the inverse
function of function

s = σ(t) =
t + β

t

√
1 − t2, 0 < t � 1.

Easy calculations show that h(t, s) is convex on Γ and increasing on t and on s. Let
δ(s) = h(γ(s), s) for s � 0. Then δ(s) is C∞ on s � 0 and δ′(s) = hs(γ(s), s) > 0
for s > 0, and hence δ is increasing on s � 0. We now define a function h̃ on Q by

h̃(t, s) =

{
h(γ(s), s), s � 0, 0 � t � γ(s),
h(t, s), s � 0, γ(s) � t < ∞.

Then it follows easily that h̃ is convex on Q and non-decreasing in each of t � 0
and s � 0. We extend h̃(t, s) onto (t, s) ∈ R2 according to the property

h̃(−t, −s) = h̃(t, −s) = h̃(−t, s) = h̃(t, s), (t, s) ∈ R2.

Then this new function h̃ is convex on R2 and we have the following.

Proposition 4.1. The convexification h# of h is equal to the extended function h̃.
Therefore, the convexification ψ# is given by ψ#(λ) = h̃(t, s) + (λ − H⊥) · H⊥ +
β + 1

2 (1 + |H|2) and satisfies

(ψ#)′(λ) = h̃t(t, s)e⊥ + h̃s(t, s)e + H⊥, (4.1)

where λ = te⊥ + se + H⊥.
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Remark 4.2. Note that ψ# is not affine on the detachment set D = {λ | ψ#(λ) <
ψ(λ)} and hence we cannot apply corollary 2.9. In fact, in this case, the minimizers
may not exist. For example, assume that H = 0. Then (ψ#)′(0) = 0; hence, by (2.4),
the unique boundary data ḡ = 0. Moreover, any minimizer ū of E must satisfy

∇ū(x) ∈ {e⊥,−e⊥} a.e. x ∈ Ω; ū|∂Ω = 0,

which is certainly impossible. Therefore, E(u) does not have any minimizers for
any domain Ω if H = 0. This was initially shown in [13], and further pursued and
explored in many other works (see, in particular, [7]).

However, for some other H, the minimizers may exist. We study the special case
for the unit disc. In this case, to determine the boundary data ḡ, we need to solve
the equation (ψ#)′(λ)+λ = 0. Writing H⊥ = ae⊥+be and using (4.1), this equation
is equivalent to

h̃t(t, s) + t + 2a = 0, h̃s(t, s) + s + 2b = 0.

The solution (t̄, s̄) is uniquely determined by (a, b) and hence by H. Define the set

H = {H ∈ R2 | h(t̄, s̄) > h̃(t̄, s̄)}.

Then, it is easy to see that the line {se | s ∈ R} ⊂ H and the half-rays {te⊥ | |t| �
1
2} ⊂ R2 \ H. Hence, H � R2.

Proposition 4.3. Let Ω = B be the unit disc. Then the uniaxial ferromagnetic
energy I(m) has (unique) minimizer if H /∈ H and has no minimizers if H ∈ H.

Proof. Since h̃ and hence ψ# are not affine on any open sets, by theorem 2.10,
E and hence I have a minimizer if and only if h(t̄, s̄) = h̃(t̄, s̄). This proves the
result.

Remark 4.4. This result says that if the applied field is in the direction of the
easy axis, then there are no global minimizers, but the preferred magnetizations
can easily form a microstructure to minimize the total energy. If the applied field
is large and orthogonal to the easy direction, then forming the microstructure will
cost more energy and the global energy minimizer exists.

4.2. The biaxial case

For the cubic (biaxial) situation we will set

ϕ(m) = β min{1 − |m · e|, 1 − |m · e⊥|},

where e is a unit vector pointing in the direction of one of the easy axes. Pursuing the
computations in the uniaxial case with the same notation, one finds the expression

ψ(λ) = h(t, s) + (e⊥ · H⊥)t + (e · H⊥)s + β + 1
2 (1 + |H|2),

where the nonlinear part h(t, s) is given by

h(t, s) = 1
2 (t2 + s2) − max{

√
(|t| + β)2 + s2,

√
(|s| + β)2 + t2}.
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Figure 2. The graph of h(t, s).
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Figure 3. Detachment sets. (a) The uniaxial case (see figure 1). (b) The biaxial case
(see figure 2). Shaded areas represent the non-existence of minimizers.

In addition to the symmetries that we had in the uniaxial case, we also have
h(t, s) = h(s, t). We can calculate that the detachment set is the region bounded
by curves ht(t, s) = hs(t, s) and also that the convexification h̃ of h is constant
(h̃ = minh) on the square Q = {|t| + |s| � 1} and is affine only on each line
segment of |t| + |s| = c, c � 1, between the curves mentioned (see figure 3(b)).

Again, we consider the case when Ω = B is the unit disc. Let λ̄ = t̄e⊥ + s̄e + H⊥

be the solution of (ψ#)′(λ̄)+λ̄ = 0 with (t̄, s̄) uniquely determined by H, and define
the following sets:

H1 = {H ∈ R2 | h(t̄, s̄) = h̃(t̄, s̄)}, H2 = {H ∈ R2 | (t̄, s̄) ∈ Q}.

Then, we have the following existence and non-existence results.

Proposition 4.5. Let Ω = B be the unit disc. Then the biaxial ferromagnetic
energy I(m) has a unique minimizer if H ∈ H1, infinitely many minimizers if
H ∈ H2 and no minimizers if H /∈ H1 ∪ H2.
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Proof. Since the open set where h̃ is affine is only the square {(t, s) ∈ R2 | |t| +
|s| < 1}, by theorem 2.10, E and hence I have a minimizer if and only if either
h(t̄, s̄) = h̃(t̄, s̄) or |t̄| + |s̄| < 1. In the first case we have the unique minimizer and
in the second case we have infinitely many minimizers. This proves the result.
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