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Abstract

We present two studies on neural network architectures that learn to represent sentences by composing
their words according to automatically induced binary trees, without ever being shown a correct parse
tree. We use Tree-Long Short-Term Memories (LSTMs) as our composition function, applied along a tree
structure found by a differentiable natural language chart parser. The models simultaneously optimise
both the composition function and the parser, thus eliminating the need for externally provided parse
trees, which are normally required for Tree-LSTMs. They can therefore be seen as tree-based recurrent
neural networks that are unsupervised with respect to the parse trees. Due to being fully differentiable, the
models are easily trained with an off-the-shelf gradient descent method and backpropagation.

In the first part of this paper, we introduce a model based on the CKY chart parser, and evaluate its
downstream performance on a natural language inference task and a reverse dictionary task. Further, we
show how its performance can be improved with an attention mechanism which fully exploits the parse
chart, by attending over all possible subspans of the sentence. We find that our approach is competitive
against similar models of comparable size and outperforms Tree-LSTMs that use trees produced by a
parser.

Finally, we present an alternative architecture based on a shift-reduce parser. We perform an analysis
of the trees induced by both our models, to investigate whether they are consistent with each other and
across re-runs, and whether they resemble the trees produced by a standard parser.

Keywords: sentence representations; representation learning; latent tree learning; grammar induction

1. Introduction

Recurrent neural networks (RNNG), in particular the Long Short-Term Memory (LSTM) archi-
tecture (Hochreiter and Schmidhuber 1997) and some of its variants (Graves and Schmidhuber
2005, Bahdanau, Cho, and Bengio 2015), have been widely applied to problems in natural lan-
guage processing (NLP). Examples include language modelling (Sundermeyer, Schliiter, and Ney
2012, Jézefowicz, Vinyals, Schuster, Shazeer, and Wu 2016), textual entailment (Bowman, Angeli,
Potts, and Manning 2015, Sha, Chang, Sui, and Li 2016) and machine translation (Sutskever et al.
2014; Bahdanau et al. 2015), amongst others.

The topology of an LSTM network is linear: words are read sequentially, normally in left-to-
right order. However, language is known to have an underlying hierarchical, tree-like structure
(Chomsky 1957). How to capture this structure in a neural network, and whether doing so leads to
improved performance on common linguistic tasks, is an open question. The Tree-LSTM network
(Tai, Socher, and Manning 2015, Zhu, Sobhani, and Guo 2015) provides a possible answer, by
generalising the LSTM to tree-structured topologies. It was shown to be more effective than a
standard LSTM in semantic relatedness and sentiment analysis tasks.
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Despite their superior performance on these tasks, Tree-LSTM networks have the drawback of
requiring an extra labelling of the input sentences in the form of parse trees. These can be either
provided by an automatic parser (which may not be available for the target domain or language),
or from manual annotations by trained experts (which are expensive to obtain). Yogatama et al.
(2016) proposed to remove this requirement by including a shift-reduce parser in the model, to be
optimised alongside the composition function based on a downstream task. This makes the full
model non-differentiable, so it needs to be trained with reinforcement learning, which can be slow
due to high variance.

Building on the work of Yogatama et al. (2016), in this paper we present two studies on the
use of Tree-LSTM-based architectures which learn to embed sentences using an automatically
induced parse tree. The models we use are fully differentiable, thus removing the need to use
reinforcement learning. This not only sidesteps the issues with high variance, but also makes
the models trainable end to end for a downstream task by using standard oftf-the-shelf stochastic
gradient descent.

In the first study, we explore the feasibility of augmenting a Tree-LSTM model with a fully
differentiable chart parser, inspired by the CKY constituency parser (Kasami 1965, Younger 1967,
Cocke 1969). We show that the proposed method outperforms baseline Tree-LSTM architectures
based on fully left-branching, right-branching and supervised parse trees on a natural language
inference task and a reverse dictionary task. We also introduce an attention mechanism in the
spirit of Bahdanau et al. (2015) which attends over all possible subspans of the source sentence via
the parse chart, further improving performance.

For the second study, we perform an analysis of the trees induced by our model, to investigate
whether they resemble those that would be produced by the Stanford parser (Manning et al. 2014).
We also investigate whether the model consistently learns to induce the same trees, by training
five different instances of the same model using different random initialisations, and comparing
the trees they produce. Finally, we describe a second model based on a differentiable shift-reduce
parser and repeat the analysis for the trees it produces.?

2. Related work

Our work can be seen as a part of a wider class of sentence embedding models that let their com-
position order be guided by a tree structure. These can be further split into two groups: (1) models
that rely on traditional syntactic parse trees, usually provided as input, and (2) models that induce
a tree structure based on some downstream task.

In the first group, Paperno, Pham, and Baroni (2014) take inspiration from the standard
Montagovian semantic treatment of composition. They model nouns as vectors, and relational
words that take arguments (such as adjectives that combine with nouns) as tensors, with ten-
sor contraction representing application (Coecke, Sadrzadeh, and Clark 2011). These tensors are
trained via linear regression based on a downstream task, but the tree that determines their order
of application is expected to be provided as input. Socher et al. (2012) and Socher et al. (2013) also
rely on external trees, but use recursive neural networks as the composition function.

Instead of using a single parse tree, Le and Zuidema (2015) propose a model that takes as input
a parse forest from an external parser, in order to deal with uncertainty. The authors use a convo-
lutional neural network composition function and, like our model, rely on a mechanism similar to
the one employed by the CYK parser to process the trees. Ma et al. (2015) propose a related model,
also making use of syntactic information and convolutional networks to obtain a representation
in a bottom-up manner. Convolutional neural networks can also be used to produce embeddings
without the use of tree structures, such as in Kalchbrenner, Grefenstette, and Blunsom (2014).

Bowman ef al. (2016) propose an RNN that produces sentence embeddings optimised for a
downstream task, with a composition function that works similarly to a shift-reduce parser. The

2This particular work was also presented at the ACL Workshop on the Relevance of Linguistic Structure in Neural

Architectures for NLP (Maillard and Clark 2018).
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model is able to operate on unparsed data by using an integrated parser. However, it is trained to
mimic the decisions that would be taken by an external parser and is therefore not free to explore
using different tree structures. Dyer et al. (2016) introduce a probabilistic model of sentences that
explicitly models nested, hierarchical relationships among words and phrases. They too rely on a
shift-reduce parsing mechanism to obtain trees, trained on a corpus of gold-standard trees.

In the second group, Yogatama et al. (2016) use reinforcement learning to learn tree structures
for a neural network model similar to Bowman et al. (2016), taking performance on a down-
stream task that uses the computed sentence representations as the reward signal. Choi, Yoo, and
Lee (2018) take a related approach, but use a parsing strategy more similar to easy-first parsing.
The authors use the straight-through Gumbel-Softmax (Jang, Gu, and Poole 2017) to obtain an
approximate gradient, and are thus able to train with backpropagation. Kim et al. (2017) take a
slightly different approach: they formalise a dependency parser as a graphical model, viewed as
an extension to attention mechanisms, and hand-optimise the backpropagation step through the
inference algorithm.

Williams, Drozdov, and Bowman (2018) investigate the trees produced by Yogatama et al.
(2016) and Choi et al. (2018) when trained on a natural language inference task, and analyse the
results. We adopt their strategy for evaluating the trees induced by our models. Finally, in recent
work, Htut, Cho, and Bowman (2018) show how a convolutional neural network with structured
attention can be trained on language modelling, and successfully used for grammar induction.

3. Models

All the models take a sentence as input, represented as an ordered sequence of words. Each

word in the vocabulary is encoded as an embedding w; € RY. The models then output a sentence
representation i € RP, where the output space R does not necessarily coincide with the input
space RY.

3.1 Bag of words

Our simplest baseline is a bag-of-words (BoW) model. Due to its reliance on addition, which is
commutative, any information on the original order of words is lost. Given a sentence encoded by
embeddings wy, . . ., wy, it computes

h= Z tanh (le- + b)
i=1

where W is a learned input projection matrix.

3.2 Long short-term memory
An obvious choice for a baseline is the popular LSTM architecture of Hochreiter and Schmidhuber

(1997). It is an RNN that, given a sentence encoded by embeddings wy, . . ., wr, runs for T time

steps t =1, ..., T and computes
it
I

Ut

= WWt + Uhtfl + b;

0t
¢t =c¢—1 @ o (f,) + tanh (u) © o (iy),
h; = o (o) © tanh (¢;)
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where o (x) = Tle*x is the standard logistic function. The LSTM is parametrised by the matri-
ces W € R*P*d J ¢ R*P*D and the bias vector b € R*P. The vectors o (i), o(f,),o(or) € RP are
known as input, forget and output gates, respectively, while we call the vector tanh (u;) the can-
didate update. We take hr, the h-state of the last time step, as the final representation of the
sentence.

Following the recommendation of Jozefowicz, Zaremba, and Sutskever (2015), we deviate
slightly from the vanilla LSTM architecture described above by also adding a bias of 1 to the forget
gate, which was found to improve performance.

3.3 Tree-LSTM

Tree-LSTMs are a family of extensions of the LSTM architecture to tree structures (Tai et al. 2015,
Zhu et al. 2015). We implement the version designed for binary constituency trees. Given a node
with children labelled L and R, its representation is computed as

i
f1
fR =Ww+ Uhy + Vhg + b,
u

o

c=c,O0o(f;)+crOo(fg)+tanh (1) © o (i),
h=o0(0) ® tanh (c)

where w above is a word embedding, only nonzero at the leaves of the parse tree; and hy, hg and
cL, cg are the node children’s h- and c-states, only nonzero at the branches. These computations
are repeated recursively following the tree structure, and the representation of the whole sentence
is given by the h-state of the root node. Analogously to our LSTM implementation, here we also
add a bias of 1 to the forget gates.

3.4 CKY-based unsupervised Tree-LSTM

While the Tree-LSTM is very powerful, it requires as input not only the sentence, but also a parse
tree structure defined over it. Our proposed extension optimises this step away, by including a
basic CYK-style (Cocke 1969; Younger 1967; Kasami 1965) chart parser in the model. The parser
has the property of being fully differentiable and can therefore be trained jointly with the Tree-
LSTM composition function for some downstream task.

The CYK parser relies on a chart data structure, which provides a convenient way of represent-
ing the possible binary parse trees of a sentence, according to some grammar. Here we use the
chart as an efficient means to store all possible binary-branching trees, effectively using a gram-
mar with only a single non-terminal. This is sketched in simplified form in Table 1 for an example
input. The chart is drawn as a diagonal matrix, where the bottom row contains the individual
words of the input sentence. The nth row contains all cells with branch nodes spanning n words
(here each cell is represented simply by the span - see Figure 1 for a forest representation of the
nodes in all possible trees). By combining nodes in this chart in various ways, it is possible to
efficiently represent every binary parse tree of the input sentence.

The CKY-based unsupervised Tree-LSTM uses an analogous chart to guide the order of com-
position. Instead of storing sets of non-terminals, however, as in a standard chart parser, here
each cell is made up of a pair of vectors (h, ) representing the state of the Tree-LSTM RNN at
that particular node in the tree. The process starts at the bottom row, where each cell is filled
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Table 1. Chart for the sentence ‘neuro linguistic programming rocks’

neuro linguistic programming rocks

neuro linguistic programming linguistic programming rocks
neuro linguistic linguistic programming programming rocks
neuro linguistic programming rocks

neuro linguistic programming rocks
A

neuro linguistic
programming
A

neuro
linguistic
A

(OOOAO.O] (.OOAOO.] [OOO‘.OO]
-_treeII_STM -_treeII_STM treeIl_STM treeII_STM
Figure 1. CKY-based unsupervised Tree- i i i i
LSTM network structure for the sentence @Jed) @er 1) @Cee

‘neuro linguistic programming rocks’. neuro linguistic programming rocks

in by calculating the Tree-LSTM output as defined above, with w set to the embedding of the
corresponding word. These are the leaves of the parse tree. Then, the second row is computed
by repeatedly calling the Tree-LSTM with the appropriate children. This row contains the nodes
that are directly combining two leaves. They might not all be needed for the final parse tree: some
leaves might connect directly to higher-level nodes, which have not yet been considered. However,
they are all computed, as we cannot yet know whether there are better ways of connecting them
to the tree. This decision is made at a later stage.

Starting from the third row, ambiguity arises since constituents can be built up in more
than one way: for example, the constituent ‘neuro linguistic programming’ in Table 1 can be
made up either by combining the leaf ‘neuro’ and the second-row node ‘linguistic program-
ming’ or by combining the second-row node ‘neuro linguistic’ and the leaf ‘programming’. In
these cases, all possible compositions are performed, leading to a set of candidate constituents
(c1,h2), ..., (cn> hy). Each is assigned an energy, given by

e; = cos (u, h;) (1)

where cos (-, ) indicates the cosine similarity function and u € RP is a (trained) vector of
weights. All energies are then passed through a softmax function to normalise them, and the cell
representation is finally calculated as a weighted sum of all candidates using the softmax output:

si = softmax(e; /1), )
n n
c= Z SiCis h= Z Sihi
i=1 i=1
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The softmax uses a temperature hyperparameter ¢t which, for small values, has the effect of making
the distribution sparse by making the highest score tend to 1. In all our experiments, the temper-
ature is initialised as t =1, and is smoothly decreasing as t = 1/2°, where e € Q is the fraction
of training epochs that have been completed. In the limit as t — 0", this mechanism will only
select the highest scoring option, and is equivalent to the argmax operation. The same procedure
is repeated for all higher rows, and the final output is given by the h-state of the top cell of the
chart.

The whole process is sketched in Figure 1 for an example sentence. Note how, for instance, the
final sentence representation can be obtained in three different ways, each represented by dashed
line exiting a Tree-LSTM node. All are computed, and the final representation is a weighted sum
of the three, represented by the merging of the dashed lines. When the temperature ¢ in Equation
(2) reaches very low values, this effectively reduces to the single ‘best’ tree, as selected by gradient
descent.

3.5 Shift-reduce unsupervised Tree-LSTM

Our second proposed approach is based on shift-reduce parsing and uses beam search to make
the model differentiable. The CKY component of the previous model is replaced here with a
shift-reduce parser. It works with a queue which holds the embeddings w; € R? for the nodes rep-
resenting individual words which are still to be processed, and a stack which holds the h-states and
c-states (€ RP) of the nodes which have already been computed. The standard binary Tree-LSTM
function, described in Section 3.3, is used to compute the embeddings of nodes.

At the start, the queue contains embeddings for the nodes corresponding to single words.
Analogously to the CKY-based variant, these are obtained by computing the Tree-LSTM with
w set to the word embedding, and hy g, c/r set to zero. When a SHIFT action is performed, the
topmost element of the queue is popped and pushed onto the stack. When a REDUCE action is
performed, the top two elements of the stack are popped. A new node is then computed as their
parent, by passing the children through the Tree-LSTM, with w = 0. The resulting node is then
pushed onto the stack.

Parsing actions are scored with a simple multi-layer perceptron, which looks at the top two
stack elements and the top queue element:

r=Wg - -hq+Wg-ho+Wg-hg,
p =softmax (a+ A - tanhr)

where h1, hsy, hg1 are the h-states of the top two elements of the stack and the top element of the

queue, respectively. The three matrices W e RP*D the vector a € R2, and the matrix A € R?*P
are all learned. The final scores are given by log p, and the best action is greedily selected at every
time step. The sentence representation is given by the h-state of the top element of the stack after
2n — 1 steps.

In order to make this model trainable with gradient descent, we use beam search to select the
b best action sequences, where the score of a sequence of actions is given by the sum of the scores
of the individual actions. The final sentence representation is then a weighted sum of the sentence
representations from the elements of the beam. The weights are given by the respective scores of
the action sequences, normalised by a softmax and passed through a straight-through estimator
(Bengio, Léonard, and Courville 2013). This is equivalent to having an argmax on the forward
pass, which discretely selects the top-scoring beam element, and a softmax in the backward pass.
The whole process for b = 3 is illustrated in Figure 2 with an example sentence, showing the three
different trees with the corresponding embeddings, and their weighted sum represented by the
dashed lines.
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neuro linguistic programming rocks

treeLSTM
000000 0Oceee Clj 00000 @00000
neuro linguistic linguistic
programmmg m i i m progr rocks

neuro programming
linguistic rocks
A A
©@eCecO®0C00e [ooo‘oool[ooooo@
neuro programming
treeLSTM [ 1 [ 1 treeLSTM
linguistic [%] ©00609 (000080 @60008) 000 eee (treeLsT™] = “rocks
Qe D 00ee®
prégrawjing [treeLsT™]  (treeLsT™M] [treeLsT™M] (treeLsTM™] |Wg
[ooooooj(oooooo] @000 I(oogqj @000 (ooto) [oooooo)(oooooo]
neuro inguistic rogrammin rocks
freeisma)  (weeis) GUSte programming freeisma)  (eeism)
neuro linguistic programming  rocks

Figure 2. Shift-reduce unsupervised Tree-LSTM network structure for the sentence ‘neuro linguistic programming rocks’,
with a beam size of three.

4. Experiments with the CKY-based model

All experiments in this section are implemented in Python 3.5.2 with the DyNet neural network
library (Neubig et al. 2017) at commit face8e7. The code for all following experiments is available
on the first author’s website. Performance on the development data is used to determine when to
stop training. Each model is trained three times, and the test set performance is reported for the
model performing best on the development set.

The natural language inference model was trained on a 2.2 GHz Intel Xeon E5-2660 CPU, and
took 3 days to converge. The reverse dictionary model was trained on a NVIDIA GeForce GTX
TITAN Black GPU, and took 5 days to converge.

In addition to the baselines already described in Section 3, for the following experiments we
also train two additional Tree-LSTM models that use a fixed composition order: one that uses a
fully left-branching tree, and one that uses a fully right-branching tree.

4.1 Natural language inference

We test our CKY-based model and baselines on the Stanford Natural Language Inference (SNLI)
task (Bowman et al. 2015), consisting of 570 k manually annotated pairs of sentences. Given two
sentences, the aim is to predict whether the first entails, contradicts or is neutral with respect to
the second. For example, given ‘children smiling and waving at camera’ and ‘there are children
present, the model would be expected to predict entailment.

For this experiment, we chose 100D input embeddings, initialised with 100D GloVe vectors
(Pennington et al. 2014) and with out-of-vocabulary words set to the average of all other vectors.
This results in a 100 x 37 369 word embedding matrix, fine-tuned during training. For the super-
vised Tree-LSTM model, we used the parse trees included in the data set. For training, we used
the Adam optimisation algorithm (Kingma and Ba 2015), with a batch size of 16.

Given a pair of sentences, one of the models is used to produce the embeddings sy, s € R'%.
Following Yogatama et al. (2016) and Bowman et al. (2016), we then compute

u = (s1—s2)%
= 5105, (3)

Phttp://www.maillard.it/
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Table 2. Test set accuracy (higher is better) on the SNLI data set, and number of parameters. We also report the number
of intrinsic model parameters (excluding the number of word embedding parameters). Other models based on sentence
embeddings are also reported

Model Test accuracy (%) # Parameters
100D Bag-of-words (Section 3.1) 77.6 91k
100D LSTM (Section 3.2) 82.2 161k
lOODLeftbranChmgTreeLSTM(sectlon 33) 821 e 231k
100DR,ghtbranchmgTreeLSTM(Sect,on33) e 825 e 231k e
100D Supervised Tree-LSTM (Section 3.3) 82.5 231k
160[5 CKvY-bvased Tvreev—LS;rM (Section 3.4)‘ - - 82.8 o . '23'1 kv
100D|_STM .(B.O.W,.m.av.n.e;&[-,é.ois.). e 776 e 220k e
300DSP|NN(Bowmanem[2016) SO 832 TS 37M B
100D RL-SPINN (Yogatama et al. 2016) 80.5 500 k
1OODSTGumbe|(ChOI Etalzols) e 826 e 262k -
300DSTGumbe|(Cho| eta/2018) e 856 e 29M .
300D DiSAN (Shen et al. 2018) 85.6 2.35M

u

v
g=RelLU | A +a
1

$2

where A € R?%0%400 and g € R0 are trained parameters. Finally, the correct label is predicted by
p(3=c| ¢B, b) cexp(B.q + b.), where B € R**2% and b € R? are trained parameters.

Table 2 lists the accuracy and number of parameters for our model, baselines, as well as other
sentence embedding models in the literature. These figures are based on the data from the SNLI
website® and the original papers.

4.1.1 Attention

Attention is a mechanism which allows a model to soft-search for relevant parts of a sentence.
It has been shown to be effective in a variety of linguistic tasks, such as machine translation
(Bahdanau et al. 2015, Vaswani et al. 2017), summarisation (Rush, Chopra, and Weston 2015)
and textual entailment (Shen et al. 2018).

In the spirit of Bahdanau et al. (2015), we modify our LSTM model such that it returns not
just the output of the last time step, but rather the outputs for all steps. Thus, we no longer have
a single pair of vectors sy, s; as in Equation (3), but rather two lists of vectors sy,1,. . ., s1,,, and
$2,15 - - - » S2,n,. Then, we replace sy in Equation (3) with s defined as follows:

o S1,i> S S1,i
5,1 _ Zl—l exp (f( 1, 2,"2)) 1, , w1thf(x,}’) =g -tanh (Ai_x + Asy)

DLy exp (fls1os2,m,))

“https://nlp.stanford.edu/projects/snli/
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Table 3. Test set accuracy (higher is better) on the SNLI data set for
the two attention models

Model Test accuracy (%)
100D LSTM + attention (Section 3.2) 82.7
100D Unsupervised Tree-LSTM + attention (Section 3.4) 83.2

where f is the attention mechanism, with vector parameter a and matrix parameters A;, A;.
This can be interpreted as attending over sentence 1, informed by the context of sentence 2 via
the vector s; ,,. Similarly, s, is replaced by an analogously defined s, with separate attention
parameters.

Further, we also extend the mechanism of Bahdanau et al. (2015) to the CKY-based unsuper-
vised Tree-LSTM. In this case, instead of attending over the list of outputs of an LSTM at different
time steps, attention is over the whole chart structure described in Section 3.4. Thus, the model
is no longer attending over all words in the source sentences, but rather over all their possible
subspans. The results for both attention-augmented models are reported in Table 3.

4.2 Reverse dictionary

We also test the CKY-based model and baselines on the reverse dictionary task of Hill et al. (2016),
which consists of 852 k word-definition pairs. The aim is to retrieve the name of a concept from a
list of words, given its definition. For example, when provided with the sentence ‘control consisting
of a mechanical device for controlling fluid flow}, a model would be expected to rank the word
‘valve’ above other confounders in a list. We use three test sets provided by the authors: two sets
involving word definitions, either seen during training or held out; and one set involving concept
descriptions instead of formal definitions. Performance is measured via three statistics: the median
rank of the correct answer over a list of over 66 k words, and the proportion of cases in which the
correct answer appears in the top 10 and 100 ranked words (top 10 accuracy and top 100 accuracy).

As output embeddings, we use the 500D CBOW vectors (Mikolov, Yih, and Zweig 2013) pro-
vided by the authors. As input embeddings we use the same vectors, reduced to 256 dimensions
with Principal Component Analysis (PCA). Given a training definition as a sequence of (input)
embeddings wy, ..., w, € R2%6, the model produces an embedding s € R2%6 which is then mapped
to the output space via a trained projection matrix W € R>0*2%¢_ The training objective to be
maximised is then the cosine similarity cos (Ws, d) between the definition embedding and the
(output) embedding d of the word being defined. For the supervised Tree-LSTM model, we addi-
tionally parsed the definitions with Stanford CoreNLP (Manning et al. 2014) to obtain parse trees.

We use simple stochastic gradient descent for training. The first 128 batches are held out from
the training set to be used as development data. The softmax temperature in Equation (2) is
allowed to decrease as described in Section 3.4 until it reaches a value of 0.005, and then kept
constant. This was found to have the best performance on the development set.

Table 4 shows the results for our model and baselines, as well as the numbers for the cosine-
based ‘w2v’ models of Hill et al. (2016), taken directly from their paper. Our bag-of-words model
consists of 193.8 k parameters; our LSTM uses 653 k parameters; the fixed-branching, supervised
and unsupervised Tree-LSTM models all use 1.1 M parameters. On top of these, the input word
embeddings consist of 113 123 x 256 parameters. Output embeddings are not counted as they are
not updated during training.

dWe note that our reimplementation of the ‘w2v cosine’ models of Hill et al. (2016) labelled 100D bag-of-words in 4,
using vectors provided by the authors, achieved lower performance than theirs. This was the case even when matching the
vector dimension used in the original paper. While we were unable to reproduce their results, we include their numbers for
completeness. Our baselines are architecturally different from theirs, but we found our variants to perform better.
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Table 4. Median rank (lower is better) and accuracies (higher is better) at 10 and 100 on the three test sets for the reverse
dictionary task: seen words (S), unseen words (U) and concept descriptions (C)

Median rank Top 10 accuracy Top 100 accuracy
Model S V) C S V) C S V) C
100D Bag-of-words 75.0 66.0 70.5 30.3 29.9 25.8 53.7 55.2 56.6
100D LSTM 57.5 59.0 48.5 28.9 29.7 29.3 55.3 56.8 57.1
Tree-LSTM

100D Left-branching 78.0 64.0 48.0 28.9 28.3 28.8 52.7 54.8 61.1
100D nghtbramhmg - 705 . 510 . 425 301 - 309 R 298 R 545 . m 621
100D Supervised 108.5 79.0 160.5 23.1 26.9 20.2 49.0 52.9 42.4
1OODCKYba5ed T 585 . m . M R M s M — ﬁ I m 571 R m

Hill et al. (2016)

512D LSTM 19 19 26 44 44 38 70 69 66

500D Bag-of-words 15 14 28 46 46 36 71 71 66

4.3 Discussion

The results in Tables 2—-4 show a strong performance of the CKY-based unsupervised Tree-LSTM
against our tested baselines, as well as other similar methods in the literature with a comparable
number of parameters.

For the natural language inference task, our model outperforms all baselines including the
supervised Tree-LSTM, as well as some of the other sentence embedding models in the literature
with a higher number of parameters. The use of attention, extended for the CKY-based model to
be over all possible subspans, further improves performance.

In the reverse dictionary task, the poor performance of the supervised Tree-LSTM can be
explained by the unusual tokenisation used in the data set of Hill et al. (2016): punctuation is
simply stripped, turning, for example, ‘(archaic) a section of a poem’ into ‘archaic a section of a
poem’ or stripping away the semicolons in long lists of synonyms. On the one hand, this might
seem unfair on the supervised Tree-LSTM, which received suboptimal trees as input. On the other
hand, it demonstrates the robustness of our method to noisy data. Our model also performed well
in comparison to the LSTM and the other Tree-LSTM baselines. Despite the slower training time
due to the additional complexity, Figure 3 shows how our model needed fewer training examples
to reach convergence in this task.

Following Yogatama et al. (2016), we also manually inspect the learned trees to see how closely
they match conventional syntax trees, as would typically be assigned by trained linguists. We anal-
yse the same four SNLI sentences they chose. The trees produced by our model are shown in
Figure 4. One notable feature is the fact that verbs are joined with their subject noun phrases first,
which differs from the standard verb phrase structure. However, formalisms such as combinatory
categorial grammar (Steedman 2000), through type-raising and composition operators, do allow
such constituents. The spans of prepositional phrases in (b), (c) and (d) are correctly identified at
the highest level, but only in (d) does the structure of the subtree match convention. As could be
expected, other features such as the attachment of the full stops or of some determiners do not
appear to match human intuition.

Further, we also analyse the trees induced by the model trained on the reverse dictionary task.
The unusual tokenisation of this data, described earlier in this section, makes it hard to perform
any kind of systematic comparison between the trees induced by the models trained on the two
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Figure 3. Median rank (lower figures are better) on the development data set for the reverse dictionary task. The CKY-based
unsupervised Tree-LSTM requires fewer training examples for a given performance level.

(a) (b)

frowning

drags his sleds Snow

a woman is a boy through the
wearing sunglasses

(c) (d)

standing

family members home are playing frisbee in

outside a two men the park

Figure 4. Binary trees of SNLI sentences induced by the CKY-based model.

(a) (b)
simple an obsolete form of

past tense and past participle of “canes”

“clotted”

(©) (d)

blade

the west anything

in resembling a

or situated “blade”
“western”

lying toward

Figure 5. Binary trees of dictionary definitions induced by the CKY-based model.

data sets. However, a manual inspection of the development set revealed some interesting regular-
ities specific to the language constructs typical of dictionary definitions. Figure 5 shows definitions
which refer the reader to other words, and how they were parsed. The referenced word, which is
semantically closest to the word being defined, is almost always at the top of the tree, presumably
making its effect stronger on the whole sentence representation, and aiding the model in perform-
ing its downstream task. Another notable regularity involved definitions of verbs (e.g. ‘trawling: to
fish from a slow moving boat, ‘defer: to commit or entrust to another’) which were often very close
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to fully right-branching, putting the initial ‘to’ and the subsequent infinitive very close to the top.
A similar behaviour was observed for definitions of nouns starting with the indefinite article ‘@,
such as fawn: a young deer, especially ...’. None of these phenomena were observed for the model
trained on natural language inference.

5. Analysis of the induced trees

For our second set of experiments, we performed a more detailed analysis of the trees induced by
the CKY-based and shift-reduce unsupervised Tree-LSTM models.

We noticed in our experiments that, despite the use of the temperature hyperparameter in
Equation (2), the weighted sum of the CKY-based model still occasionally assigned non-trivial
weight to more than one option. The model was thus able to utilise multiple inferred trees, rather
than a single one, which would have potentially given it an advantage over other tree-inducing
models. Hence, as the aim of these experiments is to analyse the (single) tree produced by each
model for a given sentence, here we replace the temperature-weighting mechanism with a softmax
followed by a straight-through estimator, identical to the one used by the beam search model. This
change led to a slight decrease in downstream performance for the CKY-based model. We deem
this acceptable, as the aim of this set of experiments is not to obtain the best possible downstream
performance.

All experiments are run using natural language inference as the downstream task, evaluating
on both the SNLI corpus (Bowman et al. 2015) and the MultiNLI corpus (Williams, Nangia, and
Bowman 2018) (augmented with SNLI training data, and using the matched version of the devel-
opment set). As in Section 4.1, we use pre-trained 100D GloVe word embeddings, fine-tuned
during training, and the models are optimised with Adam (Kingma and Ba 2015). For each com-
bination of model and data set, we train five instances, each with a different random initialisation
of the neural network parameters. Each model is also fed the training data in a different random
order. Thus, in total, we trained 2 x 2 x 5 = 20 different instances.

To ensure that models are learning useful sentence representations, we measure the down-
stream performance of our best CKY-based and shift-reduce models (as selected by development
set performance) on both test data sets. Table 5 shows test accuracies of our best models, along with
those of several other baselines and the models of Yogatama et al. (2016) and Choi et al. (2018).
We further report accuracy on the de-biased hard subsets of SNLI and MultiNLI, as provided by
Gururangan et al. (2018).

Further, we perform a quantitative analysis of the induced trees, by adapting the code of
Williams et al. (2018), which examines the trees induced for all hypotheses and premises in the
data sets. To evaluate the consistency of trees induced by our models, we find the models’ self-
FI: this is defined as the unlabelled F1 between trees by two instances of the same model (given
by different random initialisations), averaged over all possible pairs. To make these figures more
easily interpretable, we also report the self-F1 between randomly generated trees. We also mea-
sure the inter-model F1, defined as the unlabelled F1 between instances of our two models trained
on the same data, averaged over all possible pairs. We find an average inter-model F1 of 42.6 for
MultiNLI and 55.0 for SNLI, both above the random tree baseline.

To investigate whether these models induce trees which are fully left-branching or right-
branching, or similar to trees that would be produced by the Stanford parser, we report the
unlabelled F1 between these and the trees from our models in the rightmost columns of Table 6.

Next, we study whether the known annotation biases that have been reported for the NLI
data (Gururangan et al. 2018) have an influence on the induced trees. In Table 7, we evaluate
the induced trees in the same way as above, but on the de-biased hard subsets of the data provided
by Gururangan et al. (2018). Additionally, we also break down the analysis of the development
sets evaluated in Table 6 by NLI gold standard label. Finally, we report statistics for the subsets of
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Table 5. SNLIand MultiNLI (matched) test set accuracy. Results marked with x are for the more complex model variants with
an extra leaf RNN transformation. We also report the performance of our models on the hard subsets of Gururangan et al.

Model SNLI MultiNLI

Prior work: using external trees

100D Tree-LSTM (Yogatama et al. 2016) 78.5 -

300D SPINN (Williams et al. 2018) 82.2 67.5

Prior work: tree-inducing models

100D ST-Gumbel* (Choi et al. 2018) 81.9 -
300D ST-Gumbel* (Williams et al. 2018) 83.3 69.5
300D5TGumbe|(Wlulamseta,2018) e e w e 675
IOODRLSPINN(YOgatamaeta[2016) e 805 e _
300D RL-SPINN (Williams et al. 2018) 82.3 67.4
This work
100D CKY-based 82.2 69.1
iOOD S‘hift‘-rec‘iu& o 83.0 o o 69.0
100D CKY-based, hard 64.6 52.5
IOODShIftreduce’hard e e 655 e 531

the development sets which were correctly and incorrectly labelled by the models, to investigate
whether there is any correlation between the semantic performance (on the NLI task) and the
syntactic performance of the latent parsing mechanism.

5.1 Discussion

The figures in Table 5, along with the similar results from the previous study in Table 2, demon-
strate that, while our models do not achieve the state of the art on natural language inference,
they match or outperform other tree-inducing methods using 100D embeddings, as well as larger
models using externally provided parse trees. The accuracy drops noticeably when evaluating the
models on the hard subsets, in line with the results of Gururangan et al. (2018).

From the self-F1 results of Table 6, we see that our models are all above the baseline of ran-
dom trees. Remarkably, the models trained on SNLI are noticeably more self-consistent, showing
that the specific training data can play an important role, even when the downstream task is the
same. The inter-model F1 scores reported earlier (42.6 for MultiNLI and 55.0 for SNLI) are not
much lower than the self-F1 scores. This shows that, given the same training data, the grammars
learned by the two different models are not much more different than the grammars learned by
two instances of the same model.

While some of our models show a slight preference towards left-branching structures, it can be
seen from the last column of Table 6 that they do not learn anything resembling the trees from the
Stanford parser.

We also see, from Table 7, the same results broken down in several ways. From the label break-
down, we notice that neutral pairs tend to have less consistent parses (lower self-F1), as well as
lower similarity to Stanford trees. This might be explained by the fact that neutral hypotheses
tend to be longer, and are often constructed by introducing extra clauses, which complicate the
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Table 6. Unlabelled F1 scores of the development set trees induced by various models against: other runs of the same
model, fully left- and right-branching trees, and Stanford parser trees provided with the data sets. Results marked with f are
as reported in Williams et al. (2018); those marked with # are from Yogatama et al. (2016); and those marked with x* are for
the more complex model variant with the leaf RNN transformation

Flw.rt.
L-branching R-branching Stanford
Model Self-F1 n(o) max (o) max n(o) max
MultiNLI
300D SPINN** 71.5 19.3 (0.4) 19.8 36.9 (3.4) 42.6 70.2 (3.6) 74.5
300D ST-Gumbel** 49.9 32.6(2.0) 35.6 37.5(2.4) 40.3 23.7(0.9) 25.2
300D ST-Gumbel' 41.2 30.8(1.2) 32.3 35.6 (3.3) 39.9 27.5(1.0) 29.0
300D RL-SPINNT 98.5 99.1(0.6) 99.8 10.7(0.2) 111 18.1(0.1) 18.2
100D CKY-based 45.9 32.9(1.9) 35.1 31.5(2.3) 35.1 23.7(1.1) 25.0
100D Shift-reduce 46.6 40.6 (6.5) 476 24.2 (6.0) 27.7 23.5(1.8) 26.2
Random Trees® 32.6 27.9(0.1) 27.9 28.0(0.1) 28.1 27.0(0.1) 27.1
SNLI
100D RL-SPINN* - — 41.4 - 19.9 - 41.7
100D CKY-based 59.2 43.9(2.2) 46.9 33.7(2.6) 36.7 30.3(1.1) 32.1
100D Shift-reduce 60.0 48.8 (5.2) 53.9 26.5 (6.9) 34.0 32.8 (3.5) 36.4
Random Trees 35.9 32.3(0.1) 324 32.5(0.1) 32.6 32.3(0.1) 32.5

Best performance on the given dataset.

grammatical structure (Gururangan et al. 2018) and complicate the work of the parsing mech-
anism. Indeed, a repeated measures one-way ANOVA shows a significant effect on the self-F1
statistic across labels (p < 0.001) for all cases except the MultiNLI-trained shift-reduce parser.

From the breakdown by correctly and incorrectly labelled sentence pairs, we see that the for-
mer have slightly higher F1 with Stanford trees and higher self-F1. We conducted paired-samples
t-tests to compare these two metrics across correct and incorrect examples, and found the effect
to be significant in all cases (p < 0.001). This is evidence of correlation between semantic perfor-
mance on the downstream task and syntactic performance in terms of parsing consistency. It is
therefore not entirely surprising that, on the hard data sets of Gururangan et al., the self-F1 metric
is lower compared to the figures given in Table 6 for the same models.

6. Conclusions

We presented two studies on jointly learning sentence embeddings and syntax, based on the Tree-
LSTM composition function. We demonstrated the benefits of our two models over the standard
Tree-LSTM approach, using natural language inference and reverse dictionary as the downstream
tasks. Introducing an attention mechanism over the parse chart of the CKY-based model was
shown to further improve performance for the natural language inference task. Both models are
conceptually simple and easy to train via backpropagation and stochastic gradient descent.

Finally, we analysed the trees induced by our CKY-based and shift-reduce models. Our results
confirm those of previous work on different models (Williams ef al. 2018), showing that the
learned trees do not resemble Penn Treebank-style grammars. Remarkably, we saw that our two
different models tend to induce trees which are not much more different than those learned by
two instances of the same model.
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Table 7. Unlabelled F1 scores of the development set trees induced by various models, similar to Table 6. Results are broken
down by NLI gold label (entailment, neutral, contradiction) and by the correctness of the model’s prediction. We also report
results for the trees in the hard data sets of Gururangan et al.

L-branching R-branching Stanford
Model Self-F1 (o) max (o) max (o) max
MultiNLI, CKY
entailment 45.8 32.9(1.7) 35.1 31.4(2.0) 35.0 23.8(0.9) 24.9
.n,éL.jt}a.l D 453 I 325(18) I ,.3.4,'.9. I ,.3.0;.5.(2'(.)),. I 342 I 231(10) I 245
contradiction 46.6 33.3(L.7) 35.4 32.4(2.1) 36.0 24.1(1.0) 25.4
comect 464 3317 35 31821 35 239(10) 252
mcorrect [ .4.5.'4. S .3.2-.1.(1.‘.7). I ,.3.4,'.3. O ”3.0:7.(i_§)” I .3.4;1. I 232(09) I 244
hard R 455 B 322(16) 341308 (21) — 346 — 230 (09) 243

MultiNLI, shift-reduce

entailment 46.8 40.9 (5.8) 47.9 24.1(5.3) 31.9 23.7(1.6) 26.2
.n.éL.jt}a.l B 461 S 397(56) s 464 I ..2.3...5.(5'.2).. I ..3.1;.1. I 230(18) I 258
contradiction 46.9 41.1(6.1) 48.4 24.9 (5.7) 33.8 23.8(1.6) 26.5
comect 413 411(59) 480 24455 327 237(16) 262
.ir.lc.o.rréc.t ............ 4.6..0 ....... 3.9-.6.(5.‘.7) ........ 4.6.’.5 ......... 2.3,’.6.(5.-.2) ........ 3.1;3 ...... 2.3;2.(.1'2.3) ......... 261
hard 462 I ..4.0..0.(.5.8.). 470236(54) — 318 - 230(17)255
SNLI, CKY
entailment 59.4 45.1(2.3) 48.9 34.4(2.8) 38.0 31.4(0.9) 33.1
.n.él.jt}a.l D 578 I 424(17) I 449 I ..3.2;.8.(2'(.)).. I 355 I 290(11) I 310
contradiction 60.3 44.1(1.8) 47.0 33.9(2.1) 36.5 30.5 (1.0) 32.2
comect 595 442000 473 338(23) 368  304(10) 322
.ir.lc.o;’réc.t. [ .57..7. I .4.2‘.5.(1.‘2.3). O 453 I ,.3.3;.2.(2..1),. I .3.6;0. I ..2.9;7.(.1'(.)),. I 316
hé.rd.. R 589 — ..4.3..5.(.2.6). 465334(24) — 366 I 302 (10)321
SNLI, shift-reduce
entailment 61.4 51.1(5.2) 56.9 26.8 (6.6) 34.8 33.6(3.0) 36.9
.n.él.jt}a.l D 583 R 468(43) I ..5.1...5. I ..2.5;.8.(5'5).. I 333 I 316(32) I 353
contradiction 60.2 48.4 (4.5) 53.3 26.8 (6.0) 343 33.1(3.3) 36.9
comect 603 49047 542 26562 341 32932 365
mcorrect [ 591 R .4.7‘.4.(4‘(.5). I ,.5.2;.7. I ,.2.6;.2.(6..2),. I 339 I ,.3.2;.1.(é'i),. I 355
hard R 599 B 483(45) 533261 (60) — 336 — 327 (33) 366

One potential limitation of using NLI as a downstream task is the presence of biases and anno-
tation artefacts on the two most popular training data sets (Gururangan et al. 2018), which were
used in this work. This leads to models exploiting shortcuts such as word-level heuristics in order
to game the task, which is likely to provide a low-quality training signal for the parsing mechanism.
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This hypothesis is supported by the bottom section of Table 5, showing that our two models exhibit
much lower performance on the de-biased data sets of Gururangan et al.

In future work, it may be possible to obtain trees closer to human intuition by selecting harder
downstream tasks. Recent work by Htut et al. (2018) suggests that language modelling should
be further investigated as a downstream task for grammar induction. Another interesting future
direction involves training models to perform well on multiple objectives instead of a single one.
By requiring unsupervised Tree-LSTM models to provide sentence representations suitable for
solving several tasks, involving different aspects of language, it may be possible to obtain trees
which are both more familiar and more consistent. Multi-task training has been used to great
effect in NLP for the training of sentence encoders, with tasks such as masked language modelling,
next and previous sentence prediction, and neural machine translation (see e.g. Devlin et al. 2018,
Subramanian et al. 2018).
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