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Abstract

We prove an analogue of Belyi’s theorem in characteristic two. Our proof consists
of the following three steps. We first introduce a new notion called pseudo-tameness
for morphisms between curves over an algebraically closed field of characteristic two.
Secondly, we prove the existence of a ‘pseudo-tame’ rational function by showing the
vanishing of an obstruction class. Finally, we construct a tamely ramified rational
function from the ‘pseudo-tame’ rational function.

1. Introduction

Belyi’s theorem (cf. [Bel79]) states that a proper smooth curve X defined over the field of
complex numbers is defined over a number field if and only if X admits a rational function f
on X such that f has at most three branch points when regarded as a morphism from X to the
projective line. In [Saï97], Saïdi remarked that the following analogue of Belyi’s theorem holds
in odd positive characteristics.

Theorem 1.1 (Saïdi). A proper smooth curve C defined over a field of odd characteristic is
defined over a finite field if and only if C admits a rational function f such that f is tamely
ramified everywhere and has at most three branch points when regarded as a morphism from C
to the projective line.

In characteristic two, it is easy to see that the ‘if’ part of the same statement holds true;
however, the ‘only if’ part has remained open. In this paper we give a proof of the ‘only if’
part by proving the following statement, which is well known when the base field k is not of
characteristic two (cf. [Ful69]).

Theorem 1.2. Let X be a proper smooth curve over an algebraically closed field k. Then X
admits a morphism f : X → P1

k which is tamely ramified everywhere.

After the first draft of this paper had appeared in arXiv, Nurdagül Anbar and Seher Tutdere
[AT18] gave an alternative proof of the theorem above in the language of function fields. We note
that their proof is based on some of our key results (Theorems 2.11 and 2.10) and the argument
using Tsen’s theorem in our proof of Lemma 3.4 below.

Let us give an outline of our proof of Theorem 1.2. Let k(X) be the function field of a curve
X over an algebraically closed field k of characteristic two. We set H = k(X)\k(X)2. This can be
identified with the set of finite separable morphisms from X to P1

k. Our aim is to find an element
f ∈ H which is tamely ramified at every closed point of X. The first step is to introduce a
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new notion of ‘pseudo-tameness’ by weakening the condition of tameness of a morphism between
curves. We use this notion for morphisms from X to P1

k. In this case, a precise definition can be
given as follows: a rational function f ∈ H is called pseudo-tame at a closed point x ∈ X if it
becomes tame at x by adding a fourth power of some h ∈ k(X). A rational function f is said
to be pseudo-tame on X when f is pseudo-tame at every closed point of X. As we see from
Lemma 2.4, pseudo-tameness is stable under the action of Γ = PGL2(k(X)4) on H given by
fractional linear transformations. The key step is to prove the existence of an element f ∈ H
which is pseudo-tame on X. We explain more about this step in the next paragraph. In the final
step, we show that any pseudo-tame rational function can be made tame everywhere on X when
translated by some element of Γ using the Riemann–Roch theorem.

We prove the existence of a pseudo-tame rational function on X in the following way. We
start by introducing a map

a(−,−) : H×H→ k(X)/k(X)2.

See Definition 2.8 for the definition of a(−,−). The map a(−,−) has the following nice properties.
First, it follows from the construction that a(−,−) is symmetric and bi-Γ-invariant. Second, we
have a criterion for pseudo-tameness in terms of the map a(−,−). We refer to Theorem 2.10 for
a precise statement. Third, as we will see in Proposition 2.11, the map a(−,−) satisfies a certain
cocycle condition. These properties and Tsen’s theorem allow us to introduce an obstruction class
β(X) ∈H1(X,OX/O2

X) to the existence of a pseudo-tame rational function on X. Finally, we use
the Serre duality to prove that the obstruction class β(X) always vanishes, that is, a pseudo-tame
rational function on X always exists.

Let us explain the organization of this paper. In § 2 we first introduce a new notion of ‘pseudo-
tameness’ for morphisms between curves over an algebraically closed field of characteristic two,
and observe their basic properties. In Definition 2.8 we introduce the map a(−,−) mentioned
in the previous paragraph, and then study its properties. As we will see in Theorem 2.10, the
map a(−,−) turns out to be closely related to pseudo-tameness. In § 3 we define the obstruction
class β(X) to the existence of a pseudo-tame rational function on a curve X in characteristic
two using a(−,−). Then we prove that this obstruction class always vanishes. As a consequence,
we have a pseudo-tame rational function on any curve in characteristic two. In § 4 we construct
a tamely ramified rational function from any pseudo-tame rational function. In § 5 we give an
explicit upper bound, for any given curve X in characteristic two, of the minimum of the degrees
of pseudo-tamely ramified rational functions on X and those of tamely ramified rational functions
on X.

2. Pseudo-tame morphisms

We fix an algebraically closed field k of characteristic two. By a ‘curve’ we mean a one-dimensional
integral scheme which is proper and smooth over k. For a curve X, we denote by k(X) the field
of rational functions on X.

2.1 Basic facts on curves
We recall some basic facts on curves over an algebraically closed field of characteristic two
(cf. [Har77]).

Let X be a curve. Since the relative Frobenius on X over k is of degree two and k is
algebraically closed (in particular, perfect), the function field k(X) is a two-dimensional k(X)2-
vector space, where

k(X)2 = {f2 | f ∈ k(X)}.
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Note that the differential dg vanishes on X if and only if g ∈ k(X)2. Thus, for any g ∈ k(X) with
dg 6= 0, the function field k(X) is the direct sum k(X)2 ⊕ k(X)2g as a k(X)2-vector space.

We denote by BX the sheaf OX/O2
X of O2

X -modules on X. Let X(1) = X×Spec(k),Frob2 Spec(k)
be the Frobenius twist of X. As we explain in § 3.3, we may identify the O2

X -module BX on
X with Raynaud’s OX(1)-module B on X(1) introduced by Raynaud [Ray82] via the canonical
isomorphism of ringed spaces

X(1) ∼−→ (X,O2
X).

Moreover, the Jacobian of X is ordinary if and only if H0(X,BX) = 0. Note that for an open
subset U ⊂ X, we may identify H0(U,BX) with the set of elements of k(X)/k(X)2 that are
regular at every closed point of U .

2.2 Pseudo-tame morphisms
In this subsection we introduce the notion of pseudo-tameness for morphisms between curves.

Let X,Y be curves and f : X → Y be a finite morphism. For a closed point x ∈ X, the
morphism f induces the local homomorphism f∗ : OY,y → OX,x, where y = f(x) ∈ Y . We denote
by t ∈ OY,y a uniformizer at y and let vx be the normalized valuation of OX,x.

Definition 2.1. Let the notation be as above. We say that the morphism f is pseudo-tame at
x if there exists an element h ∈ OX,x such that vx(f∗t+ h4) is an odd number.

In particular, if the morphism f : X → Y is at most tamely ramified at a closed point x ∈ X,
then f is pseudo-tame at x. One can check easily that pseudo-tameness is independent of the
choice of a uniformizer t. For a nonempty open subset U ⊂ X, we say that f is pseudo-tame on
U if f is pseudo-tame at every closed point of U .

In this paper we mainly deal with the case where Y = P1
k, that is, f is a rational function

on X. We remark that in [Hos17], Hoshi recently gave a natural interpretation of pseudo-tame
rational functions in terms of certain rank-two vector bundles.

Definition 2.2. We say that a rational function f ∈ k(X) is pseudo-tame at a closed point
x ∈ X if f : X → P1

k is pseudo-tame at x. For a nonempty open subset U ⊂ X, we say that a
rational function f is pseudo-tame on U if f is pseudo-tame at every closed point of U .

2.3 Paraphrasing pseudo-tameness
Let us fix a curve X and let

H = k(X)\k(X)2

denote the set of finite separable rational functions on X. In this subsection we give some
equivalent conditions for a rational function on X to be pseudo-tame at a given closed point.
These conditions are given in terms of the action of the group Γ = PGL2(k(X)4) on H by
fractional linear transformations.

Let us remark that the completion of the local ring OX,x helps us to understand the pseudo-
tameness of f : X → Y .

Remark 2.3. Let s ∈ OX,x and t ∈ OY,y be uniformizers at closed points x ∈X and y = f(x) ∈ Y ,
respectively. Let us consider the power series expansion of f∗(t) ∈ OX,x with respect to s. Then,
by definition, the following conditions are equivalent:
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• f is pseudo-tame at x;
• for any nonvanishing term in the power series expansion of f∗(t) with degree smaller than

ordx(df∗t) + 1, the degree is a multiple of four.
Now let X, x, and s be as above and let f ∈ H be a rational function. Let us consider the

Laurent series expansion f =
∑

n�−∞ cns
n of f at x with respect to s. Then, as the consequence

of the equivalence above, f is pseudo-tame at x if and only if any integer n with n < ordx(df)+1
and cn 6= 0 is a multiple of four.

Set Γ = PGL2(k(X)4). Then the group Γ acts onH freely by fractional linear transformations.
The following lemma describes the pseudo-tameness of a rational function f ∈ H in terms of the
Γ-orbit of f .

Lemma 2.4. A rational function f ∈ H is pseudo-tame at x ∈ X if and only if there exists γ ∈ Γ
such that vx(γf) = 1.

Proof. Let us check that for any f ∈ H, we have an element γ ∈ Γ such that vx(γf) ∈ {1, 2}.
By adding some element of k(X)4 to f , we may assume vx(f) 6≡ 0 mod 4. If vx(f) ≡ 1, 2 mod 4
(respectively, vx(f) ≡ 3 mod 4), then it is easy to find an element g ∈ k(X)× such that the
element f ′ = g4f (respectively, f ′ = g4/f) satisfies vx(f ′) ∈ {1, 2}. Note that f ′ is a fractional
linear transformation of f by some element of Γ. Hence the assertion follows from Remark 2.3
on the pseudo-tameness of a rational function f ∈ H since we have

{γ ∈ Γ | vx(γf) = 1} ∩ {γ ∈ Γ | vx(γf) = 2} = ∅. 2

Corollary 2.5. For a rational function f ∈ H, the following conditions are equivalent:

(1) f is pseudo-tame at x;

(2) f belongs to the Γ-orbit of a uniformizer at x;

(3) for any γ ∈ Γ, the rational function γf is pseudo-tame at x.

2.4 The obstruction A(f, g)
Let X be a curve. Corollary 2.5 implies that the pseudo-tameness of a rational function f at a
closed point of X depends only on the Γ-orbit of f . In this subsection we give some criteria when
two functions f, g ∈ H are in the same Γ-orbit. These lead to the definition of A(f, g) ∈ k(X)2

for f, g ∈ H, which serves as the obstruction class for f and g to be the same Γ-orbit. At the end
of this subsection we give some basic properties of A(f, g).

Note that since k(X) = k(X)2 ⊕ k(X)2g, we may write a rational function f as

f = F 2
0 + F 2

1 g = f40 + f41 g + f42 g
2 + f43 g

3

with some rational functions Fi, fj ∈ k(X).

Lemma 2.6. Let the notation be as above. Then the following conditions are equivalent:

(1) f and g are in the same Γ-orbit;

(2) 1, f, g and fg are linearly dependent over k(X)4;

(3) f1f3 + f22 = 0.

Proof. It is clear that assertion (1) implies assertion (2). Let us prove the converse is also true.
Assertion (2) gives a nontrivial k(X)4-linear relation a4 + b4f + c4g + d4fg = 0. It suffices to
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show a4d4 6= b4c4. Note that we have (b4, d4) 6= (0, 0) since 1 and g ∈ H are linearly independent
over k(X)2 (especially over k(X)4). Then we have

f =
a4 + c4g

b4 + d4g
.

Now f /∈ k(X)4 implies a4d4 6= b4c4 as desired.
Finally, let us consider the k(X)4-linear endomorphism Tf,g of k(X) which maps the elements

1, g, g2, g3 to the elements 1, g, f and fg, respectively. Note that we have f ≡ f42 g2+f43 g
3 and fg ≡

f41 g
2 +f42 g

3 modulo the k(X)4-linear subspace of k(X) spanned by 1 and g. These relations show
that the endomorphism Tf,g has the determinant (f1f3 + f22 )4, which proves that assertions (2)
and (3) are equivalent. 2

Let f, g ∈ H. It follows from Lemma 2.6 that the element A(f, g) = f21 f
2
3 +f42 ∈ k(X)2 serves

as the obstruction for f and g to be in the same Γ-orbit. For later use, we note the following
formula:

A(f, g) =

(
dF0

dg

)2

+

(
dF1

dg

)2

g +

(
dF1

dg

)
F1, (2.1)

which we can check easily from the definition of A(f, g). We note that A(f, g) is neither symmetric
in f and g nor bi-Γ-invariant. Indeed, we have our next lemma.

Lemma 2.7. For f, g ∈ H, we have the following:

(1) A(a4f, g) = a4A(f, g) for any a ∈ k(X)×;

(2) A(f + b4, g) = A(f, g) for any b ∈ k(X);

(3) A(f, 1/g) = g4A(f, g);

(4) A(f, g) = (df/dg)3A(g, f).

Proof. We give a proof of property (4). The other properties can be checked easily.
In the proof of Lemma 2.6 we have seen that the k(X)4-linear endomorphism Tf,g of k(X)

has determinant A(f, g)2. Hence it suffices to show that the k(X)4-linear automorphism P of
k(X) that takes the basis 1, g, g2, g3 to the basis 1, f, f2, f3 has the determinant (df/dg)6.

Let us consider another basis 1, g, f2, gf2 of k(X). Then P is the composite of the following
two automorphisms P1 and P2:

P1 : 1, g, g2, g3 7→ 1, g, f2, gf2,

P2 : 1, g, f2, gf2 7→ 1, f, f2, f3.

Observe that P1 preserves the direct sum decomposition k(X) = k(X)2 ⊕ k(X)2g and that P2 is
k(X)2-linear. Using these observations and by noting that df/dg = F 2

1 is equal to the determinant
of the k(X)2-linear automorphism of k(X) that takes the basis 1, g to the basis 1, f , we can
easily check that detP1 = (df/dg)4 and detP2 = (df/dg)2. Thus we have detP = (df/dg)6 as
desired. 2

2.5 The modified obstruction a(f, g)
Let X be a curve and let f, g ∈ H. Lemma 2.7 tells us how to modify A(f, g) to make it
better behaved. The modified obstruction is given in Definition 2.8 and is denoted by a(f, g).
It is an element of k(X)/k(X)2. After summarizing basic properties of a(f, g), we prove that,
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roughly speaking, the regularity of a(f, g) reflects the pseudo-tameness of f and g (Theorem 2.10).
In Proposition 2.11 we prove that a(f, g) has a beautiful cocycle condition. Using this cocycle
condition, we will introduce in Definition 3.2 an obstruction forX to admit a pseudo-tame rational
function on X.

Definition 2.8. For f, g ∈ H, we set

a(f, g) =
A(f, g)g

(df/dg)
mod k(X)2

=
(f21 f

2
3 + f42 )g

f43 g
2 + f41

mod k(X)2 ∈ k(X)/k(X)2.

We summarize basic properties of a(f, g).

Proposition 2.9. The element a(f, g) is a symmetric, bi-Γ-invariant obstruction for f, g ∈ H
to be in the same Γ-orbit. That is, the following hold for any f, g ∈ H:

(1) the two functions f and g are in the same Γ-orbit if and only if a(f, g) = 0;

(2) a(f, g) = a(g, f);

(3) a(f, g) = a(f, γg) for any γ ∈ Γ.

Proof. Property (1) follows from the fact that A(f, g) is the obstruction for f, g to be in the same
Γ-orbit. Property (4) in Lemma 2.7 implies property (2). Property (3) follows from properties (1),
(2) and (3) in Lemma 2.7 together with property (2). 2

The next theorem states that the regularity of a(f, g) reflects the pseudo-tameness of f and g.

Theorem 2.10. Let f, g ∈ H. Suppose that g is pseudo-tame at a closed point x ∈ X. Then the
following two conditions are equivalent:

(1) a(f, g) is regular at x, or equivalently, the differential form A(f, g)dg/(df/dg) associated
with a(f, g) is regular at x;

(2) f is pseudo-tame at x.

Proof. From Lemma 2.4, we recall that f ∈ H is pseudo-tame at x ∈ X if and only if there
exists γ ∈ Γ satisfying vx(γf) = 1 and that f ∈ H is not pseudo-tame at x ∈ X if and only if
there exists γ ∈ Γ satisfying vx(γf) = 2. Since a(f, g) is bi-Γ-invariant (Proposition 2.9), we may
assume that g is a uniformizer at x.

First, we prove that condition (2) implies condition (1). Since f is pseudo-tame at x, we may
assume f is a uniformizer at x. Writing f as f = F 2

0 + F 2
1 g, we have F1 ∈ O×X,x and F0 ∈ mX,x.

Then it suffices to prove that A(f, g)dg/(df/dg) is regular at x. Since dg ∈ ΩX are regular at x
and df/dg = F 2

1 ∈ O
×
X,x, this follows from the formula (2.1).

Next, we prove that condition (1) implies condition (2). Suppose f is not pseudo-tame at x.
By replacing f with γf for some suitable γ ∈ Γ, we may assume vx(f) = 2. Write f as f =
F 2
0 + F 2

1 g = f40 + f41 g + f42 g
2 + f43 g

3. Then we have

F0 = f20 + f22 g ∈ mX,x\m2
X,x

and

F1 = f21 + f23 g ∈ mX,x.

This implies that f2 ∈ O×X,x and f1 ∈ mX,x. Thus we have A(f, g) = f21 f
2
3 + f42 ∈ O

×
X,x and

df/dg = F 2
1 ∈ m2

X,x. As a result, A(f, g) dg/(df/dg) is not regular at x, which contradicts (2). 2
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Surprisingly, it turns out that the obstruction a(f, g) satisfies the following cocycle condition.

Proposition 2.11. For f, g, h ∈ H, the following Čech 1-cocycle condition holds:

a(f, g) + a(g, h) + a(h, f) = 0 ∈ k(X)/k(X)2.

Proof. We note that an element F ∈ k(X) belongs to k(X)2 if and only if dF = 0 ∈ ΩX and that
A(f, g), df/dg ∈ k(X)2. Hence, it suffices to show

A(f, g)

df/dg
dg +

A(g, h)

dg/dh
dh+

A(h, f)

dh/df
df = 0 ∈ ΩX .

The relation A(f, g) = (df/dg)3A(g, f) reduces us to showing the equality

A(g, f) +

(
dh

df

)2

A(g, h) +

(
dg

dh

)
A(h, f) = 0 ∈ k(X).

Write g, h as g = G2
0 +G2

1f , h = H2
0 +H2

1f , and g = g20 + g21h. By formula (2.1) we have

A(g, f) =

(
dG0

df

)2

+

(
dG1

df

)2

f +
dG1

df
G1, (2.2)(

dh

df

)2

A(g, h) =

(
dg0
df

)2

+

(
dg1
df

)2

h+
dg1
df
g1H

2
1 ,

and

dg

dh
A(h, f) =

(
dH0

df

)2

g21 +

(
dH1

df

)2

g21f +
dH1

df
g21H1.

Hence, by applying the equalities G0 = g0 + g1H0 and G1 = g1H1 to (2.2), we obtain the desired
equality. 2

2.6 Stability under the composition
In this last part of this section we would like to mention, although we do not use it in the rest of
the paper, that pseudo-tameness is stable under the composition of morphisms.

Proposition 2.12. Let X,Y, Z be curves and f : X → Y , g : Y → Z be finite morphisms. Let
x ∈ X be a closed point and set y = f(x). Suppose f, g are pseudo-tame at x, y, respectively.
Then g ◦ f is pseudo-tame at x.

Proof. By Remark 2.3, we may prove the assertion by passing to the formal completions at the
closed points. Let S ⊂ tk[[t]] denote the subset of formal power series f in t such that f + h4 has
an odd vanishing order at t = 0 for some h ∈ tk[[t]]. It suffices to show that S is closed under the
composition of formal power series. Let f1, f2 ∈ S and let us write fi = gi +h4i for i = 1, 2, where
hi ∈ tk[[t]] and gi has an odd vanishing order at t = 0. Since f1(f2(t)) = g1(f2(t)) + h1(f2(t))

4,
it suffices to show that g1(f2(t)) ∈ S. Let m denote the vanishing order of g1 at t = 0. Since
f2 = g2 + h42, the vanishing order n of fm2 − h4m2 at t = 0 is odd and the vanishing order of
f i2 − h4i2 at t = 0 is greater than n for any i > m. This implies that g1(f2(t)) − g1(h42(t)) has
an odd vanishing order at t = 0. Since g1(h42(t)) belongs to (tk[[t]])4, we have g1(f2(t)) ∈ S, as
desired. 2
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3. Existence of a pseudo-tame rational function

3.1 Construction of an obstruction class β(X)
For a curve X, we introduce a cohomology class β(X) ∈ H1(X,BX) which turns out to be an
obstruction for X to have a pseudo-tame rational function on X. First, we introduce a notion of
a certain class of coverings of X.

Definition 3.1. For a curve X, an open covering U = (Ui)i∈I of X is called sufficiently refined
if each Ui ⊂ X is nonempty and affine, and there exists a pseudo-tame rational function on Ui.

We remark that any curve X admits a sufficiently refined open covering of X. For example,
we can construct it as follows. Take I as the set of closed points of X. For each closed point
x ∈ X, take a uniformizer tx at x and let Ux be an affine open neighborhood at x on which the
rational function tx is unramified. Then the covering U = (Ui)i∈I is a sufficiently refined open
covering of X. Note that for any quasi-coherent O2

X -module, its cohomology groups coincide with
the corresponding Čech cohomology groups with respect to the covering U since Ui is affine for
each i ∈ I.

Definition 3.2. For a curve X, let U = (Ui)i∈I be a sufficiently refined open covering of X
with a pseudo-tame rational function fi on Ui. We set βi,j = a(fi, fj). Theorem 2.10 implies
βi,j ∈ H0(Ui ∩ Uj , BX). Thus Proposition 2.11 tells us that the family (βi,j) defines an element
of H1(X,BX). We denote this element by β(X,U , (fi)) ∈ H1(X,BX).

Proposition 3.3. The element β(X,U , (fi)) ∈ H1(X,BX) is independent of the choices of U
and (fi). Therefore we denote it by β(X).

Proof. First, we prove that, for any fixed sufficiently refined open covering U = (Ui)i∈I of X,
the cohomology class β(X,U , (fi)) is independent of the choice of (fi). Let us take any two
families (fi) and (gi) such that fi, gi ∈ k(X) are pseudo-tame on Ui for each i ∈ I. We check
that the two families (a(fi, fj))i,j and (a(gi, gj))i,j define the same element of H1(U , BX). Set
Hi = a(fi, gi) ∈ k(X)/k(X)2 for each i. Since the rational functions fi and gi are pseudo-tame
on Ui, it follows from Theorem 2.10 that Hi belongs to H0(Ui, BX). By Proposition 2.11, we have
a(fi, fj) =Hi+a(gi, fj) and a(gi, gj) = a(gi, fj)+Hj . Hence we have a(fi, fj)−a(gi, gj) =Hi−Hj ,
which implies that the Čech 1-cocycle a(fi, fj)−a(gi, gj) is a 1-coboundary. Therefore (a(fi, fj))i,j
and (a(gi, gj))i,j define the same element of H1(U , BX). In particular, they define the same
element of H1(X,BX). Thus we may denote the element β(X,U , (fi)) by β(X,U).

It remains to show that β(X,U) is independent of U . Let U = (Ui)i∈I and V = (Vj)j∈J be
two sufficiently refined open coverings of X. It suffices to show β(X,U) = β(X,V). First, suppose
that V is a refinement of U . Fix a map ι : J → I such that Vj ⊂ Uι(j). We choose a family
(fi)i∈I such that fi is pseudo-tame on Ui. For each j ∈ J , we set gj = fι(j)|Vj . Then the families
(a(fi1 , fi2))i1,i2∈I and (a(gj1 , gj2))j1,j2∈J define the elements β(X,U) and β(X,V), respectively.
Hence by the definition of H1(X,BX), we have β(X,U) = β(X,V). In general, let us choose a
common refinement U ′ of U and V. Then we have β(X,U) = β(X,U ′) = β(X,V) as desired. 2

3.2 β(X) as an obstruction class
Let K be a field. Recall from [Ser79, X, § 7] that K is called quasi-algebraically closed if K
satisfies the following condition: if F ∈ K[T] is a homogeneous polynomial of n variables with
deg(F ) < n, then F has a nontrivial root in K⊕n. Suppose that K is of transcendental degree
one over an algebraically closed field. Then Tsen’s theorem (cf. [Ser79, X, § 7]) states that K is
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quasi-algebraically closed. In particular, for any curve X, its function field is quasi-algebraically
closed.

Lemma 3.4. For any g, a ∈ H, there exists f ∈ H such that

a(f, g) = a mod k(X)2 ∈ k(X)/k(X)2.

Proof. Since k(X) = k(X)2 ⊕ k(X)2g, there exists a unique element b ∈ k(X) satisfying a ≡
b2g mod k(X)2. For any f ∈ H, let us write f as f = f40 + f41 f + f42 g

2 + f43 g
3. Recall that a(f, g)

is defined as

a(f, g) = (f21 f
2
3 + f42 )g/(f43 g

2 + f41 ) mod k(X)2 ∈ k(X)/k(X)2.

Thus it suffices to show that there exists fi ∈ k(X) such that

(f1, f3) 6= (0, 0), b =
f1f3 + f22
f23 g + f21

.

Set F (T1, T2, T3) = T1T3+T 2
2 +bgT 2

3 +bT 2
1 ∈ k(X)[T1, T2, T3]. Then F is a homogeneous quadratic

polynomial in three variables with coefficients in k(X). Tsen’s theorem implies F has a nontrivial
root in k(X)⊕3. Then the root gives (f1, f2, f3) as desired. 2

The following theorem ensures that the cohomology class β(X) is the obstruction class for X
to admit a pseudo-tame rational function on X.

Theorem 3.5. Let X be a curve. The following are equivalent:

(1) β(X) = 0 ∈ H1(X,BX);

(2) there exists a pseudo-tame rational function on X.

Proof. First, we prove that condition (2) implies condition (1). Let f ∈ k(X) be a pseudo-tame
rational function on X. Then β(X) = 0 ∈ H1(X,BX) follows from a(f, f) = 0 (Proposition 2.9).

Next, we prove that condition (1) implies condition (2). Take a pair (U = (Ui)i∈I , (fi)i∈I)

defining β(X). Since β(X) = 0 ∈ H1(X,BX), there exists a family (ai)i∈I with ai ∈ H0(Ui, BX)
satisfying a(fi, fj) = ai−aj . Lemma 3.4 implies that for each i ∈ I, there exists gi ∈ H satisfying
a(fi, gi) = ai. Since ai is regular on Ui, it follows from Theorem 2.10 that the function gi is
pseudo-tame on Ui. On the other hand, the cocycle condition shows

a(gi, gj) = a(gi, fi) + a(fi, gj)

= ai + (a(fi, fj) + a(fj , gj))

= ai + (ai − aj) + aj

= 0.

Therefore a(gi, gj) is clearly regular on Uj . That is, gi is pseudo-tame on Uj . Since j is arbitrary,
gi is pseudo-tame on X. 2

3.3 Vanishing of β(X)
Our next aim is to prove the following vanishing theorem for β(X).

Theorem 3.6. For any curve X, we have β(X) = 0.
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Our main tool for the proof of Theorem 3.6 is the duality of cohomology groups for the
sheaf BX . This duality follows from the duality of Raynaud’s sheaf B (cf. [Ray82, § 4]) since we
may identify B with BX as follows. Since the base field k is algebraically closed (in particular,
perfect), we have the canonical isomorphism of ringed spaces

X(1) = X ×Spec(k),Frob2 Spec(k)
∼−→ (X,O2

X)

which makes the diagram

X
π // X(1)

∼=
��

X
ι // (X,O2

X)

commutative, where the map π is the relative Frobenius on X over k and the map ι denotes the
morphism given by the identity map on the underlying space of X and the inclusion O2

X ↪→ OX .
Via the isomorphism, we identify Raynaud’s sheaf B with the O2

X -module BX on X.
Raynaud [Ray82, § 4] gave a pairing

B ×B → Ω1
X(1)/k

by using the Cartier isomorphism. Under the above identification of B and BX , the pairing

BX ×BX → Ω1
(X,O2

X)/k

can be written as

([f ], [g]) 7→ (df/dg) d(g2) (3.1)

if [g] 6= 0, where [f ] and [g] denote the classes of local sections f , g of OX , respectively. Here, we
regard the ringed space (X,O2

X) as a k-scheme via the isomorphisms

Γ(X,O2
X)

∼=−→
ι∗

Γ(X,OX)
∼=−→ k,

where the isomorphism ι∗ is induced by ι. We regard the cohomology groups H i(X,BX) (i = 0, 1)
as k-vector spaces via the k-scheme structure of (X,O2

X). Then the Serre duality gives a k-bilinear
perfect pairing

( , ) : H0(X,BX)×H1(X,BX) → k. (3.2)

In order to prove the vanishing of β(X), we give an explicit description of the pairing (3.2).
For f ∈ k(X)/k(X)2, take a representative f̃ ∈ k(X) of f and write df for the meromorphic
differential 1-form df̃ ∈ ΩX . Note that df depends only on f and is independent of the choice
of f̃ . For a nonempty open subset U ⊂ X, we have

H0(U,BX) = {f ∈ k(X)/k(X)2 | df ∈ ΩX is regular on U}.

Let X = U ∪ V be an affine open covering. The Mayer–Vietoris exact sequence

H0(U,BX)⊕H0(V,BX) → H0(U ∩ V,BX) → H1(X,BX) → 0

gives the surjection

H0(U ∩ V,BX) → H1(X,BX)

which we denote by ΨBX ,U,V .
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Then the pairing (3.2) can be explicitly written as follows. Take any f ∈ H0(X,BX) and
α ∈ H1(X,BX). Given an affine open covering X = U ∪ V , we write α = ΨBX ,U,V (g) for
some g ∈ H0(U ∩ V,BX). Let us take representatives f̃ , g̃ ∈ k(X) of f, g ∈ k(X)/k(X)2. We
may assume f 6= 0. Then we have g0, g1 ∈ k(X) such that g̃ = g20 + g21 f̃ . By (3.1), we have

(f, α) =

( ∑
x∈X\U

Resx(g1 df̃)

)2

.

Here Resx(g1 df̃) is the residue of g1 df̃ ∈ Ωx at a closed point x.
We are now ready to prove Theorem 3.6.

Proof of Theorem 3.6. Let X be a curve. It suffices to show that (f, β(X)) = 0 ∈ k for any
f ∈ H0(X,BX). We can assume that f 6= 0 ∈ k(X)/k(X)2. Take a representative f̃ ∈ k(X) of f .
Let S be the set of closed points of X at which f̃ is not tame. Then there exists g ∈ k(X) such
that g2 + f̃ is tame on S. Let T be the set of closed points of X at which g2 + f̃ is not
tame and we set U = X\S, V = X\T . By definition of β(X), we have β(X) = ΨBX ,U,V (a) for
a = a(f̃ , g2 + f̃) ∈ H0(U ∩ V,BX). Recall that we have

a =

(
dg

df̃

)2

f̃ mod k(X)2.

Then we have

(f, β(X)) =

(∑
x∈S

Resx

((
dg

df̃

)
· df̃

))2

.

Since Resx((dg/df̃) · df̃) = Resx(dg) = 0 at any closed point x ∈ X, we have (f, β(X)) = 0. 2

Thus we conclude that we have a pseudo-tame rational function for any curve.

Corollary 3.7. For any curve X, there exists a rational function f ∈ H which is pseudo-tame
on X.

Remark 3.8. We remark that the set of Γ-orbits of pseudo-tame rational functions on X has
the following H0(X,BX)-torsor structure: if S is the Γ-orbit of a pseudo-tame rational function
f ∈ k(X) and a ∈ H0(X,BX), then a · S is the set of g ∈ H satisfying a(f, g) = a. It follows
from Lemma 3.4 that this set is nonempty and it follows from Proposition 2.9 that it consists of
a single Γ-orbit. The cocycle condition in Proposition 2.11 implies that a · (b ·S) = (a+ b) ·S for
any a, b ∈ H0(X,BX).

In particular, if the Jacobian of X is ordinary, then the pseudo-tame rational functions on X
form a single Γ-orbit.

4. Existence of a tamely ramified rational function

In the previous section we proved the existence of a pseudo-tame rational function on any curve.
The aim of this section is to prove Theorem 4.1, which states that any Γ-orbit of a pseudo-tame
rational function contains a tamely ramified rational function. Our main idea of the proof of
Theorem 4.1 is to consider the cube f3 of a certain pseudo-tame rational function f on X instead
of f itself.
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We fix and recall some notation. For a curve X over k, we identify the rational functions on
X with the morphisms from X to the projective line P1

k over k. We say that a rational function
on X is tamely ramified if it is, as a morphism from X to P1

k, at most tamely ramified at every
closed point of X. With this notation, our main result can be stated as follows.

Theorem 4.1. Let X be a curve. Let us fix a closed point x ∈X and set A = Γ(X\{x},OX). Let
f0 be a pseudo-tame rational function on X. Then there exists an element γ ∈ Γ = PGL2(k(X)4)
such that f = γf0 ∈ A and that f is a tamely ramified rational function.

We give a proof of the theorem at the end of this section. Let g denote the genus of X. For
an element f ∈ k(X), we denote the order of pole at x by deg(f), that is, deg(f) = −ordx(f).

Lemma 4.2. For a nonzero ideal I ⊂ A, we set d = dimk A/I. Then, for any integer n with
n > 2g + d, there exists an element f ∈ I such that deg(f) = n.

Proof. Let D be the effective divisor on Spec(A) = X\{x} associated with the ideal I. Then we
have deg(D) = d. The Riemann–Roch theorem implies

dimkH
0(X,O(nx−D)) = n− d+ 1− g

and
dimkH

0(X,O((n− 1)x−D)) = n− d− g.
In particular, we have an inequality

dimkH
0(X,O(nx−D)) > dimkH

0(X,O((n− 1)x−D)).

Thus there exists f ∈ k(X)× such that div(f)+nx−D is effective and that div(f)+(n−1)x−D
is not effective. Then the element f satisfies the desired condition. 2

Lemma 4.3. For an element f ∈ A, we assume that f is pseudo-tame at x and that the order of
the differential df at x satisfies −ordx(df) > 8g. Then there exists h ∈ A such that deg(f +h4) =
−ordx(df)− 1.

Proof. We define an integer e by 2e = −ordx(df). Then we prove the lemma by induction on
deg(f)− 2e. If deg(f)− 2e < 0 then we can take h = 0. Otherwise, let us define an integer d by
4d = deg(f). By assumption, we have an inequality d > 2g. Thus Lemma 4.2 implies that there
exists an element h0 ∈ A with deg(h0) = d. Then for some a ∈ k, we have deg(f + (ah0)

4) < 4d.
By the induction hypothesis, we can take h1 ∈ A with deg(f + (ah0)

4 + h41) = 2e − 1, that is,
h = ah0 + h1 is the desired element. 2

Lemma 4.4. For a nonzero ideal I ⊂ A, we set d = dimk A/I. Then, for any a ∈ A, there exists
f ∈ A satisfying f ≡ a mod I and deg(f) < d+ 2g.

Proof. Let f ∈ A be a representative of (a mod I) ∈ A/I such that deg(f) 6 deg(f1) for any
other representative f1 ∈ A of (a mod I). Then the element f ∈ A satisfies deg(f) < d + 2g. In
fact, suppose deg(f) > d+ 2g. Then Lemma 4.2 gives us an element h ∈ I with deg(h) = deg(f).
Then there exists b ∈ k such that deg(f + bh) < deg(f) and f + bh ≡ a mod I. This contradicts
the minimality of deg(f). 2

Lemma 4.5. Let f0 be a pseudo-tame rational function on X and r a positive integer with
r > 8g−1. Then there exists an element γ ∈ Γ such that f = γf0 satisfies the following conditions:

(1) f = γf0 ∈ A;

(2) deg(f) is odd and deg(f) > r;

(3) any zero of f is simple.
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Proof. Let us write f0 = h0/h1 for some h0, h1 ∈ A. Then f1 = h41f0 = h31h0 ∈ A is a pseudo-tame
rational function on X. Take h2 ∈ A satisfying −ordx(df1) + 4 deg(h2) > r+ 1 and set f2 = h42f1,
2e = −ordx(df2). Since we have 2e > r+1 > 8g, Lemma 4.3 implies that we can take h3 ∈ A with
deg(f2 + h43) = 2e− 1 > r. Then f3 = f2 + h43 ∈ A is a pseudo-tame rational function satisfying
condition (2). Finally, by adding some constant to f3, we obtain a rational function f satisfying the
desired properties. 2

Finally, we are ready to prove our main result.

Proof of Theorem 4.1. Fix a pseudo-tame rational function f ∈ A in the Γ-orbit of f0 as in
Lemma 4.5 with r = max(12g − 2, 0) and set 2e − 1 = deg(f). Let us denote by Z the set
of the zeros of df . For each z ∈ Z, set 2mz = ordz(df). Since deg(div(df)) = 2g − 2, we have∑

z∈Z mz = e+ g − 1. Let I ⊂ A be an ideal associated with the effective divisor∑
z∈Z,
mz>1

(bmz/2c+ 1)z

on Spec(A) = X\{x}. Then we have an inequality dimk(A/I) 6 e + g − 1. We note that
condition (2) of Lemma 4.5 implies that f(z) 6= 0 for any z ∈ Z. In particular, we have
ordz(d(f3)) = 2mz for any z ∈ Z. Thus there exists an element a ∈ A such that for any h ∈ A
with h ≡ a mod I, f3 + h4 is tame at any z ∈ Z.

Let us fix such a ∈ A. Then Lemma 4.4 implies that there exists an element h ∈ A with
h ≡ a mod I and deg(h) < 2g+(e+g−1). We note that f3 +h4 is tame at any z ∈ Z. Now let us
check that f3+h4 is tame at x. By our assumption, we have 2e−1 > 12g−2. Since this inequality
implies 8g + 4(e+ g − 1) 6 3(2e− 1), we obtain 4 deg(h) < 3 deg(f). Thus f3 + h4 is tame at x.
Finally, we prove that f3 + h4 is tame outside of Z ∪ {x}. The equation d(f3 + h4) = f2df and
condition (2) in Lemma 4.5 imply that 0 6 ordy(d(f3 + h4)) 6 2 for any y /∈ Z ∪ {x}. Since
f3 + h4 is everywhere pseudo-tame, the inequality implies that f3 + h4 is tame at y /∈ Z ∪ {x}.
Thus we conclude that f3 + h4 is a tamely ramified rational function on X. 2

Proof of Theorem 1.2. The assertion follows from [Ful69] if the characteristic of k is not equal
to 2. When k is of characteristic two, the assertion follows from Corollary 3.7 and Theorem 4.1. 2

5. An upper bound of the minimum degree

Theorem 5.1. Let X be a curve of genus g > 1, and let x ∈ X be a closed point. Let A =
Γ(X\{x},OX). Then there exists an element f ∈ A such that deg(f) 6 48g2 + 22g− 1 and that
f is a pseudo-tame function on X.

Proof. By Lemma 4.2, we can choose two elements f, t ∈ A with deg(f) = 2g+1 and deg(t) = 2g.
By adding to t a suitable element of smaller degree if necessary, we may assume that k(X) is
a separable extension of k(t). Let Z be the set of zeros of df . For z ∈ Z, set 2mz = ordz(df).
Let I denote the ideal of A associated with the effective divisor

∑
z∈Z(mz + 1)z. Then there

exists an element a ∈ A such that for any h ∈ A with h ≡ a mod I, f + h2 is tame at any
z ∈ Z. The argument in the proof of Theorem 4.1 shows that dimk(A/I) 6 4g. Hence it follows
from Lemma 4.4 that there exists h ∈ A with deg(h) < 6g such that f ′ = f + h2 is tame on
U = X\{x}. Set V = X\Z. It follows from the definition that β(X) is equal to the image of
a(f, f ′) ∈ H0(U ∩ V,BX) under the map ΨBX ,U,V in § 3.3. Since β(X) = 0, there exists an
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element a ∈ H0(U,BX) = A/A2 such that a+ a(f, f ′) is regular at x. Choose a unique b ∈ k(X)
satisfying a = b2f mod k(X)2 and let us consider the polynomial F (T1, T2, T3) = T1T3 + T 2

2 +
bfT 2

3 + bT 2
1 . Then the argument in the proof of Lemma 3.4 and Theorem 3.5 shows that, for any

nontrivial solution (g1, g2, g3) ∈ A3 of F (T1, T2, T3) = 0, the element g41f + g42f
2 + g43f

3 ∈ A is a
pseudo-tame rational function on X.

Observe that a(f, f ′) = (dh/df)2f mod k(X)2 and that deg(dh/df) 6 4g − 1. The latter
implies deg((dh/df)2f) 6 10g − 1. Since 10g − 1 > 4g, it follows from Lemma 4.2 that there
exists a lift ã ∈ A of a satisfying deg(ã) 6 10g − 1. Observe that b2 = dã/df . This implies
deg(b) 6 4g − 1. Since

∑
z∈Z mz = 2g, it follows from Lemma 4.2 that there exists a nonzero

c ∈ A with deg(c) 6 4g satisfying bc ∈ A. Then we have deg(bc) 6 8g− 1. Hence cF (T1, T2, T3) is
a homogeneous quadratic polynomial with coefficients in A and the degree of each coefficient
is at most 10g.

Note that, for any nonzero φ ∈ k[t] and i ∈ {0, 1, . . . , 2g − 1}, the degree of φf i is congruent
to i modulo 2g. This implies that 1, f, . . . , f2g−1 are linearly independent over k[t]. Let L be the
Galois closure of k(X) over k(t) in a separable closure of k(X), and let us consider the polynomial

G =
∏
σ

σ(F )

(2g−1∑
i=0

σ(f)iS1,i,

2g−1∑
i=0

σ(f)iS2,i,

2g−1∑
i=0

σ(f)iS3,i

)
,

where σ runs over the element of Gal(L/k(t))/Gal(L/k(X)), in variables S1,i, S2,i, S3,i (i ∈ {0, 1,
. . . , 2g−1}). ThenG is a homogeneous polynomial of degree 4g in 6g variables, and the coefficients
of G are polynomials in k[t] whose degrees are at most 2(2g − 1) deg f + 10g = 8g2 + 10g − 2.
Hence the argument in the proof of Tsen’s theorem (cf. [Sha10, ch. 1, 6.2, Corollary 1.11]) shows
that there exists a nontrivial solution of G = 0 in k[t]6g whose all entries are polynomials in
t of degree at most 4g + 2. Since 1, f, . . . , f2g−1 is linearly independent over k[t], this shows
that there exists a nontrivial solution (g1, g2, g3) ∈ A3 of F (T1, T2, T3) = 0 satisfying deg(gi) 6
(2g − 1) deg(f) + (4g + 2) deg(t) = 12g2 + 4g − 1. Thus we may find a pseudo-tame rational
function g′ = g41f + g42f

2 + g43f
3 ∈ A on X of degree at most 4(12g2 + 4g − 1) + 3 deg(f) =

48g2 + 22g − 1, as desired. 2

Corollary 5.2. Let X, x, and A be as in Theorem 5.1. Then there exists an element f ∈ A
such that deg(f) 6 144g2 + 66g − 3 and that f is a tamely ramified rational function on X.

Proof. By Theorem 5.1, we can take f ∈ A such that deg(f) 6 48g2 + 22g − 1 and that f is a
pseudo-tame function on X. By replacing f with fh4 for some suitable h ∈ A with deg(h) = 3g
if −ordx(df) < 8g, and then by applying Lemma 4.3, we obtain an element f ′ ∈ A such that
deg(f ′) is odd with 12g < deg(f ′) 6 48g2 + 22g− 1 and that f ′ is a pseudo-tame function on X.
Then the argument of the proof of Lemma 4.5 and Theorem 4.1 shows that a function of the
form (f ′ + c)3 + h′4 for some c ∈ k and h′ ∈ A with 4 deg(h′) < 3 deg(f ′) is a tamely ramified
rational function on X, which proves the assertion. 2
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