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Abstract

Laser-induced three-dimensional (3D) Richtmyer–Meshkov and Rayleigh–Taylor instabilities (RMI and RTI) on metal
target in the semi-confined configuration (SCC) show the new paradigm of wave-vortex mixing. The SCC enables
extended lifetime of a hot vapor/plasma plume above the target surface and the formation of fast multiple reshocks.
This causes – in the central region (CR) of Gaussian-like spot – the evolution of RMI with the spike breakup
(Lugomer, 2016b), while in the near CR causes the RMI followed by the RTI. The density interface is transformed
into the large-scale broken irregular, quasi-periodic web, which comprises the RTI mushroom-shape spikes and the
coherent wave-vortex structures such as the line solitons and vortex filaments. The intensity and direction of reshocks
change (due to irregularity of the interface) and cause the formation of domains with the weak and the strong reshocks
effects. The weak reshocks affect mushroom-shape spikes only slightly, while the strong ones cause their deformation
and symmetry break, bubble collapse, and separation of the horizontal flow into vortex ribbons. Interaction of ribbons
with spikes and bubbles causes the ribbon pinning, looping, winding, and formation of knotted and tangled structures.
The line solitons, vortex filaments, and ribbons tend to organize into complex large-scale structures with the low wave-
vortex turbulent mixing. They represent the new paradigm of 3D RMI and RTI in which the transition to the small-
scale turbulent mixing does not appear.

Keywords: coherent structures; laser ablation; Rayleigh–Taylor instability; Richtnyer–Meshkov instability;
solitary waves; turbulent mixing; vortex filaments; wave-vortex phenomena

1. INTRODUCTION

The evolution of three-dimensional (3D) laser-induced
Richtmyer–Meshkov instability (RMI) on a metal surface
by using the semi-confined configuration (SCC) of experi-
ment was studied in paper I (Lugomer, 2016b). The beam
of Gaussian-like power profile causes different structure evo-
lution under shock wave in the central region (CR), the near-
central region (NCR), and the near-periphery region (NPR).
The SCC enables a long lifetime of the hot vapor/plasma
plume above the target surface extending to ∼200–300 μs
after pulse termination. It also enables formation of the fast
multiple reshocks, which establish the ultrasonic oscillatory
field of n∼ 7–8 MHz (Lugomer, 2016b). A complex

microfluid dynamics that leads to the new wave-vortex para-
digm of emerging coherent structures (Zabusky et al., 2005).
The evolution of the new wave-vortex structures in turbulent
mixing of the RMI after the shock wave and the series of re-
shocks in the CR was described in paper I (Lugomer,
2016b).
In this paper, we describe characteristics of 3D RMI and

Rayleigh–Taylor instability (RTI) and of the mixing struc-
tures in the NCR. The nanosecond laser pulse causes
plasma detonation and the shock wave that impulsively ac-
celerates the vapor plume [light fluid (ρL)] vertically into
the molten metal layer [heavy fluid (ρH)], with baroclinic
vorticity deposition and the RMI evolution. The initial per-
turbation of the interface determines the amplitude and the
wavelength of growing spikes and bubbles. Regarding the
anisotropic flow and growth of spikes and bubbles depends
on the momentum, M, transferred to the fluid parcel and on
the fluid density ratio expressed by the Atwood number,
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A= (ρH–ρL)H+ ρL. Both these parameters change in the
radial direction due to the lateral vapor/plasma plume ex-
pansion in the background gas (air) along the microchannel
of the SCC (Lugomer, 2016b).
The expansion causes decrease of the A number from the

CR to the NCR [A(CR)> A(NCR)]. In the same time, the
momentum, M, transferred to the fluid parcel also decreases
from the CR into the NCR [M(CR)>M(NCR)] of the spot.
(for details see Lugomer, 2016b and the Supplement). The
dynamics of a fluid parcel is governed by a balance per
unit mass of the rate of momentum gain M and the rate of
momentum loss M′ (Abarzhi, 2010; Lugomer, 2016a). De-
crease of these parameters is responsible that the shock in-
duced structures at the density interface change in the
radial direction from the CR to the NCR of circular Gaussian
spot. Their characteristics basically depend on the critical
points (Poincare) the nodal point, focal point, and the
saddle point at the interface (topological manifold). The
saddle point at the shocked interface represents the starting
configuration for the evolution of the RMI/RTI structures
in the saddle-point plane (henceforth, the base-plane). The
3D flow field connected with the saddle point on the inter-
face determines the topological characteristics of these struc-
tures in the CR and the NCR.
In the CR, a 3D turbulent flow field causes the density in-

terface transformation into the large-scale irregular (quasi-
periodic) RMI morphology (called “egg carton”or “egg car-
toon”), with the spike breakup (Lugomer, 2016b). This mor-
phology of the CR was favorably compared with morphology
obtained by 3D numerical simulation of the RMI initiated by
the fast and strong shock on the interface of two different
gasses (Sin’kova et al., 2007; Statsenko et al., 2014).
In the NCR, the evolving morphology is different from the

CR, because the RMI is followed by the reversal of pressure
and density gradients, which generate the RTI (Miles et al.,
2005; Suponitsky et al., 2013, 2014; Lugomer, 2016b).
The interface perturbations grow into spikes of heavy-fluid
into light-fluid and bubbles of light-fluid into heavy-fluid.
The density interface of NCR is transformed into the large-
scale irregular quasi-periodic morphology – but in contrast
to the CR – it comprises the mushroom-shape spikes. Such
morphology indicates that that the dynamics in the direction
of acceleration differs dramatically from that in the normal
plane (e.g., from the anisotropic), and that dynamics in the
normal plane can be regular (periodic) or almost regular
(quasi-periodic), or disordered (Abarzhi, 2008; Abarzhi,
2016, Private communication).
Regarding the anisotropic flow and growth of spikes and

bubbles for the multimode perturbation the bubble amplitude
grows in a different way than the spike amplitude. Various
nonlinear models of nonlinear dynamics and of the spike
and bubble evolution have been proposed (Lazer, 1955;
Zhang, 1998; Abarzhi, 2000) which are discussed in the
comparative analysis of Abarzhi (2008). For the nonlinear
RMI it is usually assumed that empirical models such as
drag model (Alon et al., 1996; Zhang, 1998) based on the

initial perturbation amplitude of modes give a “reliable in-
sight” on the evolution of a multi-mode initial perturbation.
However, there is no clear understanding on how the
system evolves for a multi-mode perturbation. For instance,
it is common to analyze the effect of amplitudes of the multi-
mode waves, whereas the effect of phase of the modes con-
stituting the initial perturbation is often ignored. From
other areas of physics it is known that the relative phase is
a key parameter of order and disorder (compare, for instance,
white light and lasers). Following this analogy, the new
model of the nonlinear RMI evolution, which takes into ac-
count both, the amplitude and the relative phase of waves
constituting multi-mode initial perturbation, has been intro-
duced by Abarzhi and co-workers (Pandian et al., 2016; Stel-
lingwerf et al., 2016a, b). Their model based on the group
theory analysis of the confluence effects of the relative
phase and amplitude of the perturbation waves, more
completely describes the evolution of large-scale structures
of bubbles and spikes in shock-driven RMI (Abarzhi,
2016, Private communication; Pandian et al., 2016;
Stellingwerf et al., 2016a, b).

The shock-driven RMI/RTI bubbles and spikes in the
SCC are exposed to fast reshocks in different ways in differ-
ent domains. In the domains of the weak reshocks, the effect
on the mushroom-shape spikes and on the wave-vortex for-
mations in the base-plane (mostly the line- and the horseshoe
solitons), is small. The organization of the line solitons into
polygonal web and of the horseshoe solitons into the rosette-
like structure is only slightly disturbed. In the domains of
strong reshocks, the effect on the spikes and on the base-
plane structures is significant. The pressure variation and
local pressure gradients cause the deformation of the
mushroom-shape spikes and 3D flow instability with forma-
tion of stripes and vortex ribbons in the base-plane. Their in-
teraction with deformed RTI spikes and bubbles causes
formation of the low-mixing large-scale complex structures.

The paper is organized as follows: In Section 2 (Experi-
mental details), short description of laser characteristics,
target characteristics and of the SC configuration are given.
The reference is made on the previous detail description of
experiment with illustrations including the Supplement
(Lugomer, 2016a). In Section 3 (Results and discussion)
we study from the scanning electron microscope (SEM) mi-
crographs of the 3D RMI/RTI morphology. The effect of the
reshocks on the fluid acceleration, and formation of domains
experiencing weak and strong reshock effects. In the subsec-
tion “Weak reshock effects on the RMI/RTI structures”, we
study the RMI/RTI spikes with damped spherical and pro-
late ellipsoidal mushroom shapes, and compare them with
the similar mushroom shapes obtained by 3D simulation of
various authors. In addition, we study the base-plane struc-
tures formed by the horizontal fluid flow that reveal large-
scale low-mixing structures. We also analyze the shapes of
mushroom spikes with those obtained by calculation with de-
pendence on the Eõtvõs and Morton numbers. In the subsec-
tion “Strong reshock effects on the RMI/RTI structures”, we
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study the deformation of mushroom-shape spikes under
strong reshocks, base-plane horizontal flow instability and
formation of stripes and ribbons, interaction of flow stripes
and ribbons with RMI/RTI structures, interaction of flow
stripes and ribbons with bubble-cavities (holes), interaction
of flow stripes and ribbons with mushroom-shape spikes
that form large-scale low-mixing structures. Section 4 is
Conclusion.

2. OUTLINES OF THE EXPERIMENT

The experiments were performed in the SCC in which the
target is irradiated through transparent quartz plate positioned
at Δ∼ 120 μm above the target surface (Lugomer, 2016b).
Irradiation was performed by a single pulse of a Q-switched
ruby laser E∼ 160 mJ (Es∼ 12 J/cm2; Ps∼ 0.48 × 109 W/
cm2 (∼0.5 GW/cm2); τ= 25 ns, λ= 628–693 nm). Indium
plates of 1 × 1 × 0.1 cm3, as a soft material with the melting
point TM= 429 K and boiling point TB= 2345 K, were used
as targets. Schematic representation of the experimental setup
is given in Figure 1. For better definition of the spot size, the
beam was, first expanded, and then focused by the optical fo-
cusing module (focal length, f= 35 cm) on the sample. The
sample was situated in the gas chamber and irradiated in the
presence of air as a background gas at the normal pressure
P0= 1 atm (Lugomer, 2016b). The spot diameter was D≃
1.3 mm, and the area irradiated was S= 0.013 cm2, and the
radius of the spot r= 650 μm).
The leading edge of a laser pulse causes the ablation of

indium and generates the vapor–plasma plume, which is
trapped in the microchannel of the SCC like a layer about
∼150 μm thick. This low-density layer, ρL, is in contact

with the high-density layer, ρH, of molten indium on the
solid (unaffected) target thus establishing vertical density
gradient. The absorption of laser energy causes subsequent
plasma ignition and detonation with generation of a shock
wave in the center of a microchannel. The shock-wave trav-
eling downward strikes the ρL/ρH interface causing deposi-
tion of baroclinic vorticity. The illustration is given in
Figure 1a–1d of paper I (Lugomer, 2016b), and also de-
scribed in its Supplement. The shock-wave traveling
upward is reflected as reshock from the cover plate. The re-
flection of the shock wave as the reshock and from the
target surface, as well as the lateral plume expansion in the
ambient gas are shown in Figure 1e–1h of paper I (Lugomer,
2016b), and the details described in its Supplement.
The growth of spikes and bubbles forms the morphology,

which stays frozen permanently by the fast solidification after
the termination of interaction. Since the structures are formed
in the microchannel of the SCC, they experienced fast re-
shocks, so that a posteriori study by the SEM JEOL, reveals
the final morphology.

3. RESULTS AND DISCUSSION

3.1. Surface morphology formed by RMI/RTI and
mixing

The SEM micrograph of circular Gaussian-like spot of the
RMI/RTI morphology with the excerpt of the CR and the
NCR (outer ring) is shown in Figure 2. The enlarged segment
of NCR in Figure 3a shows the quasi-periodic web with
the mushroom-shape spikes at the average distance of
∼40–50 μm. Since the SEM pictures of the spikes have
been taken a posteriori, the above distance between the
spikes is therefore distance at the end of interaction.
The spike breakup (in contrast to the CR) is a minor effect

[Fig. 3b (i) and (ii)]. Such morphology is the result of decrease
of the A number from the CR (A∼ 1–0.85) to the NCR (A∼
0.85–0.65) and of the decrease of the momentum transfer
from the maximal M∼Mmax (in the CR) to about M∼
(0.60–0.70) Mmax (in the NCR) (Lugomer, 2016b). Under
such conditions the RMI is followed by the reversal of pres-
sure and density gradients, which generate the RTI (Miles
et al., 2005; Suponitsky et al., 2013, 2014; Lugomer,
2016b); the interface perturbations grow into spikes of heavy-
fluid into light-fluid and bubbles of light-fluid into heavy-fluid.
The 3D quasi-periodic web may be compared with numer-

ically simulated regular periodic morphology. The 3D simu-
lated large-scale periodic RMI structures were generated by
both, the single-mode (Miles et al., 2005; Long et al.,
2009) and the multimode perturbations (Cohen et al.,
2002; Kartoon et al., 2003). An example is the large periodic
structure obtained for the vertical interface oscillation in a
square cell due to the single-mode 3D perturbation

z(x, y) = a0cos(kxx)cos(kyy), (1)

Fig. 1. Layout of the experiment and the laser beam characteristics. The
beam of ruby laser is expanded and after reflection directed to the sample
by the focusing module. The sample is in the SCC situated in the chamber
in the presence of background gas (air, atmospheric pressure), and irradiated
through the quartz window. Schematically, a small He–Ne laser is put in the
geometric axis of the beam for adjustment of the sample irradiation before
firing the Ruby laser.
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where a0= 3.45 mm, kx= ky=√2 π/W, and W=width of
the test section, for the weak shock of Ma= 1.22 and the
low Atwood number A= 0.65 (Long et al., 2009). Transfor-
mation of a regular periodic web into deformed one (broken)
may be attributed to the bubble shape oscillations driven by
the fast oscillatory reshocks (Lugomer, 2016b), and to the
effect of the reshocks on the fluid shear layer. The laterally
accelerated shear layer expands from the CR into the NCR
with the velocity U∼ 1650 m/s (the sonic velocity in
liquid indium), and suffers variation of thickness and veloc-
ity due to reshocks. The reshocks gradually become oblique
and randomly oriented (due to irregularity of the interface),

increasing the inhomogeneity of the fluid flow field. All fluid
parameters become more or less affected; the density ratio
(ρg/ρl; g= vapor/plasma gas, l= liquid indium), viscosity
ratio (μg/μl ), the A number, the Re number, etc. In such
flow field, two types of domains of the NCR can be roughly
distinguished: the domains of the weak reshock effects, and
the domains of the strong reshock effects on the RMI/RTI
mushroom-shape spikes and the base-plane structures.

3.2. Weak reshock effects on the RMI/RTI structures

The foregoing division of the inhomogeneous flow field into
two types of domains we continue with the analysis of the

Fig. 3. SEMmicrograph of the NCR corresponding to the random flow field
(incoherent domain) caused by the RMI/RTI turbulent mixing. (a) SEMmi-
crograph showing a dominant morphology of the NCR; the irregular
(broken) “egg carton” web with the RTI mushroom-shape spikes at the
nodal points and the cavities (collapsed bubbles). The irregular “walls”
around the bubbles are connected into a web corresponding to 2D deformed
lattice. (b) SEM micrographs showing the minor type of morphology of the
NCR: the jet-spike breakup similar to the CR (Lugomer, 2016a). The surface
morphology after the RMI jet spike breakup (i). Breakup of turbulent jet-
spike leaving only the “walls” on the surface (ii).

Fig. 2. SEM micrograph of the spot on indium surface after irradiation by a
circular laser beam with Gaussian-like laser power distribution. Note the for-
mation of four circular regions: the CR, NCR, NPR, and the periphery region
(PR). The morphology of the NCR (outer ring) is better seen in the magni-
fied excerpt from the spot.
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weak reshock effects, which only slightly affect RMI/RTI
structures: mushroom-shape spikes (damped-, spherical,
and elliptical), and the base-plane wave-vortex structures.

3.2.1. Damped mushroom-shape RTI spikes

The damped spherical mushroom spikes of diameter
∼15–30 μm and two vortex rings surrounding the spike –

one scarcely seen and the other larger deformed-ring – are
shown in Figure 4a–4c. The size of deformed ring increases
from (a) to (b) and to (c), while of the surroundings decreas-
es; the deformed ring becomes larger and stretches the small-
er one (Fig. 4c). The horseshoe type base-plane structures are

self-organized (SO) into the rosette-like configuration, which
is slightly perturbed by the weak reshocks. The horseshoe
structures are the parabolic-like solitary waves, similar to
that in the CR (Lugomer, 2016b). The straight-line structures
with the bell-shaped profile are – the line solitons – while the
others are cnoidal waves (Fig. 4d). Some of the line solitons
in Figure 4 (a – upper left; b and c – down right) interact be-
tween themselves giving rise to the resonant “Y-junction”
configuration. The roll-up of the waves into vortex filaments
occurs in the segments where the Re number reaches the crit-
ical value, Re≥ Recrit (∼2.3 × 103), while those with Re<
103 show the formation of nonlinear waves.

Fig. 4. SEM micrograph of the small partially-coherent-domains inside random flow field showing the SO of the horseshoe structures
into the rosette-like configuration (a–c). The symmetry of the rosettes is disturbed due to partial coherence of the flow field in the domains.
Note that every rosette comprises a damped mushroom-shape spike and two vortex rings. The size of damped mushroom-shape spike
increases from (a) to (b) and to (c). Simultaneously, the stronger ring increases in size and becomes more deformed at the expense of
the weaker one. (d) SEM profiles of radial structures of the rosettes: The bell shape profile indicates solitary waves (i, ii); the hump-like
indicates cnoidal waves (iii).
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The amplitude of the spikes hs∼ 20–25 μm, and of the
bubbles hB∼ 18–20 μm gives hS/hB∼ 1, indicating approx-
imately the same growth rate of damped mushroom spikes
and bubbles.
The comparison of damped spherical mushroom spikes in

Figure 4a–4c with those obtained by 3D numerical simula-
tion of RMI turbulent mixing for the lower Atwood and
the Mach numbers, shows a great similarity. In particular,
the single-mode initial perturbation with A= 0.65 and
Ma= 1.2 (Long et al., 2009), generates the spike with a
damped mushroom cap and two vortex rings, one of them
just above the base-plane. The deformed vortex ring
around the spike stretches the weaker one into deformed con-
figuration, similar to that in Figure 4a–4c. Generally, the
characteristics of the rings depend on the A number. At the
very low A (A= 0.15) flow instability possess symmetric fea-
tures in the formation of vortex rings (Chapman & Jacobs,
2006), whereas with a higher A the flow losses this symmetry
and at A= 0.65 the vortex ring becomes deformed (Long
et al., 2009).

3.2.2. Spherical RTI mushroom-shape spikes

Many domains of the NCR show spherical mushroom
spike, which is an indicator that the dynamics is isotropic
in the plane normal to acceleration. Below the mushroom
the vortex ring (or even two rings) of radius R∼ 15 μm
and the core diameter of σ∼ 3–4 μm, surrounding the
spike can be seen (Fig. 5a). Based on the above discussion
the rings surrounding the spike generated at A≥ 0.65
should be deformed and seen at the high resolution only
(Long et al., 2009). However, the rings in Figure 5a
formed at A∼ 0.85–0.65 are rather regular indicating depen-
dence on some other parameters, as described latter on.
The four radial structures divide the base-plane into four

angular segments. The (wall) border-lime between the seg-
ments (i) and (ii) is the pair of two vortex filaments under
an angle of α≤ 30 with the intersection in the nodal point.
The segments (i) and (ii) show only a small depression
(cavity) without a hole. The radial structures at the border
of the segments (ii)–(iii) and (iii)–(iv) are joined in the
nodal point at the base-plane. Finally, the border of the seg-
ments (i)–(iv) is the terrace-like wave formed by the pulsating
flow due to the reshocks and accumulation of material. The
surface depression and the hole in the segments (iii) and
(iv) are formed by the bubble collapse near the solid target
surface, so that the hole is created by the reentry jet
(Lugomer, 2016b). Various radial structures in the base-
plane in Figure 5a, like the nonlinear waves and the vortex
filaments result from the inhomogeneous fluid acceleration.
In such field, the fluid flow which does not reach the critical
Re number forms the nonlinear waves, while that reaching the
Recrit is rolled up into vortex filaments or the Kelvin-
Helmholtz (KH) rolls. The near-circular cross-section
through the single KH roll for Re> Recrit (∼2.3 × 103) in
Figure 5b, formed at the mid-span plane of interfacial surface
between the high-speed free-stream fluid (blue) and the

low-speed one (red), reveals the low mixing (Koochesfahani
& Dimotakis, 1986; Dimotakis, 2000; Zhou et al., 2003).
The cross-section through two pairing vortex rolls (Fig. 5c)
(Koochesfahani & Dimotakis, 1986), is a good representa-
tion of the cross-section through the pair of vortex filaments
at the border between the segments (i) and (ii) in Figure 5a.
Thus, even in the late phase the transformation of the large-
scale low-mixing structures into the small-scale turbulent
mixing does not take place.

The absence of the small-scale turbulence at the late times
is a complex problem and requires few more words. For the

Fig. 5. Small partially-coherent-domain inside random flow field. (a) SEM
micrograph showing the spherical mushroom-shape spike with two vortex
rings below the mushroom cap. The structures in the base-plane (interface:
saddle point plane), are the radial straight-line structures identified as the
nonlinear waves and cylindrical vortex filaments organized into polygonal
(square-like) web. The borders of the polygonal web divide the base-plane
into four angular segments (i–iv). For the characteristics of the border-lines
between the segments see text. Illustration of the cross-section through the
vortex filaments by digital laser-induced florescence (LIF) streak images:
(b) Digital LIF streak image showing low mixing for almost circular cross-
section through the single cylindrical vortex filament rolled up at the density
interface for Re= 1750. (c) Almost circular cross-section through two pair-
ing cylindrical vortex filaments for Re= 1750. (Courtesy of Professor Koo-
chesfahani M.M. and Dimotakis, P.E. Reproduced with permission of
Cambridge University Press from, Koochesfahani & Dimotakis (1986).
Copyright Cambridge University Press, 1986).
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experiments performed in SCC, it expected to show the same
behavior of RMI/RTI structures as those in the open config-
uration. It means that the large-scale low-turbulent structures
formed at the early times of interaction should vanish and the
small-scale structures should appear (characteristic for the
late times) after reshocks. Such behavior by a number of re-
spected authors (Cohen et al., 2002; Anuchina et al., 2004;
Miles et al., 2005; Long et al., 2009; Youngs, 2013), etc.
Even more, the transition to the small-scale highly-turbulent
structures in their pictures is observed not only on the base-
plane, but also on the mushroom-shape spikes. The examples
are Figure 5 of Long et al. (2009) especially between 5.96
and 11.43 ms, and also Figure 6 (Anuchina et al., 2004) be-
tween 0.064 and 0.108 ms, as well as Figures 7 and 8 of
Schiling and Latini between 8 and 11 ms, etc. Even more,
they reveal the formation of the cascade from the large to

the small-scale structures indicating self-similarity. The
mushroom spikes in their above-motioned pictures become
highly disturbed and show break down into small-scale high-
mixing turbulence as the stochastic process.
However, Figures 4, 5a, 7 (taken at the end of experiment,

i.e. at the late times), do not show the expected onset of
small-scale structures. Instead, they show large spherical
and ellipsoidal mushroom spikes with the smooth surface
without any indication of break down into smaller structures.
In the base-plane, they show nonlinear waves and vortex fil-
aments of the core size of∼5–7 μm, and∼50 μm long as the
large-scale coherent structures with quasi-regular or chaotic
organization.
The tentative interpretation may be that interfacial RMI/RTI

mixing in the SCC is somewhat different from the usual canon-
ical turbulence, which is an equivalent of a stochastic process.
In such process, the flow fluctuations are independent of the ini-
tial conditions, boundary conditions, and external forcing. For
canonical turbulence to occur the conditions of isotropy, local-
ity, homogeneity, and statistical steadiness should be fulfilled
(Abarzhi, 2016, Private communication). The micrographs in
Figures 4, 5a, and 7 indicate that such conditions in SCC are
not fulfilled or they are disturbed, so that the RT and RM
mixing flows do not form the small-scale structures. It seems
that their sensitivity to the initial conditions suggests that
mixing is more “chaotic” rather than stochastic processes
(Abarzhi, 2016, Private communication).
The comparison of spherical mushroom spike in Figure 5a

shows a great similarity with 3D numerical simulation of
RMI/RTI for the multicomponent flow at the high Atwood
and Mach numbers. A single-mode sinusoidal perturbation
for A= 0.82 and Ma= 2.5, generates the spherical mush-
room spike with vortex rings and four diagonal structures
in the base-plane (Anuchina et al., 2004) (Fig. 6). The spher-
ical mushroom spike appears at the short simulation times be-
tween t= 0.012 and 0.02 ms. At magnification, the
mushroom spike with vortex rings in Figure 6 (down),
shows the similarity with that in Figure 5a in more detail.
Diagonal structures in the base-plane (Fig. 6) are vortex

structures which form four identical segments similar to
that in Figure 5a. The shock-wave propagation through the
sinusoidally perturbed interface causes the formation of
vortex structures. In 3D simulation, the perturbation has dif-
ferent wavelengths in the diagonal directions from the cross-
sections what leads to the earlier termination of the shock
interaction with the interface in the diagonal sections
(Anuchina et al., 2004). The vortex platens (the raised flat
“walls” at the base-plane) are formed by the termination of
the shock-wave refraction in the diagonal section of the sim-
ulation cell at t1= 0.012 ms. The subsequent formation of
reflected shock waves causes impact at the cross-platens at
t2= 0.020 ms, causing the roll-up and formation of vortex fil-
ament crosspieces (Fig. 6). At the latter stages (at t3=
0.064 ms), the roll-up does not increase. Instead, the interac-
tion of the next-generation waves among themselves and
with the vortex formations takes place and initiates the

Fig. 6. 3D numerical simulation of the perturbation development into the
spherical mushroom-shape spike and diagonal structures in the time sequences
t= 0.012 ms, t2= 0.02 ms, t3= 0.064 ms; t4= 0.108 ms (Bottom). The
enlarged mushroom-shape spike developed at t= 0.012 (the first calculation
box) can be favorably juxtapositioned with the experimental one in Figure 4.
(Reproduced with permission of Elsevier from, Anuchina et al. (2004);
Copyright Elsevier, 2004).
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final small-scale turbulent mixing as seen in Figure 6 at t4=
0.108 ms (Anuchina et al., 2004).
Consider the growth rate of the experimental spherical mush-

room spikes and bubbles. The spike amplitude hS∼ 30 μm, and
of the bubbles hB∼ 18 μm (hS/hB∼ 1.66, hB/hS∼ 0.6), indi-
cating that spikes grow somewhat faster than bubbles but
slower than for the nonlinear multimodal perturbation since
hS/hB< 3 (hB/hS∼ 0.3–0.4) (Alon et al., 1996). The fact that
3D-simulatedRMI sphericalmushroom spike in Figure 6 gener-
ated by the single-mode perturbation of Anuchina et al., is very
similar to the experimental one in Figure 5a generated by the
multimode perturbation, leads to the tentative conclusion. In
the multimodal perturbation, only one – or few modes of close
wavelengths (band of modes) – causes the formation of a spher-
ical mushroom spikewhat makes it similar to that formed by the

single perturbation mode. However, the another possible inter-
pretation (which is more appropriate) indicates that interference
of perturbationmodes, which generates the resulting one, causes
the formationof a sphericalmushroomspike as shownbyAbarz-
hi and co-workers (Pandian et al., 2016; Stellingwerf et al.,
2016a, b). By using the group theory analysis and the Smooth
Particle Hydrodynamics numerical simulations they have
shown that symmetry of the coherent RMI pattern depends be-
sides the amplitude of the waves also on their relative phase.
Asa result, thewave interference influences symmetry,morphol-
ogy, and growth rate of the spikes and bubbles at the interface.

3.2.3. Prolate ellipsoidal RTI mushroom-shape spikes

Some of the domains of the NCR show the RTI prolate el-
lipsoidal mushroom spike (with the small axis of ∼20 μm

Fig. 7. SEM micrograph of the small partially-coherent domain inside random flow field showing the prolate ellipsoidal mushroom-
shape spike without vortex rings below the mushroom. The straight-line structures in the base-plane (interface: saddle point plane) are
the cnoidal waves (upper left), while the others (lower left and middle right) are the line solitary waves and vortex filaments SO into
the irregular polygonal web. The upper structures are vortex ribbons, while the bottom structures are the line solitons, which interact
and form the resonant “Y-junction” configuration.
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and the long one of∼35–40 μm), without the KH vortex ring
around the spike (Fig. 7). The comparison of elongated pro-
late mushroom spike with 3D simulation of such spikes is not
very favorable. Namely, the simulation performed for the
high A number (A= 0.9) gives the elongated 3D mushroom
spike for the late times (t= 2.5) (He et al., 1999). However, it
is not the prolate ellipsoid, but the elongated spike spherical
on top and flat on the bottom. Similarly, the 2D simulation
generates also the elongated mushroom spike for the same
late times (t= 2.5), but not the prolate ellipsoid (Zhang
et al., 2006). According to He et al., the elongated mushroom
formation results from the symmetric variation of the hori-
zontal growth rate, which increases with increasing height
until the equatorial maximum is reached; then the horizontal
growth rate starts to decrease thus forming the symmetric
elongated mushroom (He et al., 1999). The mushroom is
symmetric with respect to the vertical and the horizontal
cross-sections. In the case of simulation, the horizontal
growth (velocity) is large and stays almost constant with
growing vertical in the z-direction, until the top rounded sur-
face starts to form. Thus, the mushroom is symmetric with
respect to the vertical cross-section and asymmetric with re-
spect to the horizontal one (He et al., 1999). This rather ge-
neral description is valid for all types of the elongated spikes,
but does not elucidate their origin, especially not of the pro-
late one, and at present, its formation is not quite clear.
Consider the growth rate of experimental spikes and bub-

bles. The amplitude of the spikes hs∼ 30–35 μm and of the
bubles hB∼ 10 μm with hS/hB∼ 3–3.5, indicating three
times faster growth rate of the prolate ellipsoidal spikes
than of bubbles. This result is in agreement with the
growth rates of RMI spikes and bubbles for the nonlinear
multimodal perturbation, assuming that all incommensurate

modes take place in the formation of structure (Alon et al.,
1996). However, regarding the spike dynamics in the light
of empirical, semi-empirical and engineering models (such
as Layzer-type, drag model Alon et al., 1996; Zhang’s
model, 1998, etc.), more caution is required. As a matter of
fact, at present there is no a rigorous theoretical description
of the dynamics of nonlinear spikes. On the theory side,
the empirical models often have many limitations (such as
unphysical velocity fields, non-existing mass fluxes, etc.)
that are not confirmed in experiments. Extensive use of ad-
justable parameters enables the models agreement with ex-
periments (Abarzhi, 2016, Private communication).
The base-plane in Figure 7 (upper left) comprises the

straight “walls” with the profile of cnoidal waves, while the
other “walls” (lower left) as well as those on the right side
of the micrograph have the bell-shape profile of line solitons.
The line solitons observed at the lower side interact and form
the resonant “Y-junction” configuration (Kodama, 2004;
Oikawa & Tsuji, 2006; Lugomer et al., 2013; Lugomer,
2016a). (For details see the paper, Lugomer, 2016b, and
for the mathematical aspects, Kodama, Oikawa, Biondini).
A variety of wave-vortex structures indicates that the fluid
dynamics in the base-plane is inhomogeneous and causes
complex formations. An example is the anchored vortex fil-
ament with the spiral-like structure exposed to torsion (Fig. 7,
lower right side). Another example is the flattened vortex fil-
ament (upper left side) transformed by twisting into
twisted-ribbon (Lugomer & Fukumoto, 2010).

3.2.4. Damped, spherical, and elongated RTI mushroom
spikes

The shape variation of damped, spherical, and the prolate
ellipsoidal mushroom-shape spikes in Figures 4, 5a, and 7,
cannot be attributed to the variation of the A number only.
Description of the mushroom-shape variation requires char-
acteristics of the system, like the density ratio (ρl/ρb) and vis-
cosity ratio (μl/μb), where index, l, relates to liquid and, b, to
the bubble (gas), to be taken into account. Variation of the
RTI mushroom shapes has been studied by numerical simu-
lation for bubbles in a viscous liquid (Hua & Lou, 2007), in
the RTI (Unverdi & Trygvason, 1992), and under different
flow conditions with incorporation of the force term (Shu
& Yang, 2013). These models describe the gas–liquid
system in which the density (ρl) and the viscosity (μl), are
used for definition of the additional parameters like the
Eõtvõs number, Eo, and the Morton number, Mo. The
Morton number involves the fluid properties only, and the
Eõtvõs number is the nondimensional size of the bubble.
The bubble shape can be characterized by the Morton
number, Mo= gμl

4/ρlσ
3, by the Eõtvõs number, Eo=

ρlgdl
2/σ (also called the Bond number), and by dl, the effec-

tive radius of the bubble (Unverdi & Trygvason, 1992). The
rate of rise (growth) is expected as the Reynolds number in
terms of the rise velocity, Re= ρUdl/μ, whereU is the veloc-
ity. Often the Weber number, We= ρUdl/σ, is also used to
characterize the bubble.

Fig. 8. The steady state of a rising mushroom bubble for the ratio of densi-
ties, ρl/ρb= 40, as function of the Eõtvõs, Eo, and Morton, Mo, numbers.
The values of the viscosity ratio, μl/μb, in the rows from left to right.
Bottom row: 85; 151; 269; 479. Middle row: 88; 156; 277; 493. Top row:
88; 156; 277; 493 [the origin of the data is the paper: Unverdi & Trygvason
(1992)].
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In the analysis of the mushroom-shape variation, we rely
on the simulation of Unverdi and Trygvason for the mush-
room bubble shapes in RTI (Unverdi & Trygvason, 1992).
The analysis is based on the Boussinesq approximation for
the buoyant bubbles where two fluids have dependence
on the surface tension and difference of densities of the
fluid inside the bubble and the surrounding fluid (Unverdi
& Trygvason, 1992). The resulting diagram of the mushroom
shapes as function of the Eo and Mo for the constant density
ratio (ρl/ρb= 40), is shown in Figure 8. The diagram shows
mushroom shapes for the Eo ranging from 1–102, and Mo
number ranging from 10−7 to 102 (Unverdi & Trygvason,
1992). The viscosity ratio, μl/μb, for every particular case
is given in the caption to Figure 8.
For small Eo (large surface tension or small bubble), the

RTI bubbles are almost spherical (bottom row) (Fig. 8).
However, for small Eo and small Mo the bubble front is
slightly flatter than the back (bottom row, left), while for
the small Eo and higherMo the bubbles become more spher-
ical (bottom row, right).
For higher Eo (transition zone from small to large bub-

bles), the bubbles attain somewhat flat shape (middle row).
If the Mo is low (middle row, left), then the bubbles
become ellipsoidal (Fig. 8). With increasing Mo the bubble
front becomes semi-circular while bottom becomes more
flat (middle row, right). For the high Mo the bubbles
become ellipsoidal.
For the highest Eo (small surface tension or large bub-

bles), the solution is not truly steady state; the skirts of the
bubbles are pulled off with a separated flow increase contin-
uously in length (top row, left) (Fig. 8). The vertical rise of
the bubble is independent of theMo number; for largest bub-
bles the pressure drag and the velocity are independent of the
viscosity (Unverdi & Trygvason, 1992).
The Eo and Mo numbers for the mushroom shapes in

Figures 4, 5a, and 7 may be estimated from the comparison
with the calculated shapes in Figure 8. The damped
mushroom-shapes in Figure 4a–4c (A∼ 0.65), are similar
to the shapes in Figure 8, for Eo≳ 10 and 10−4≤Mo≤
10−1. The prolate ellipsoidal mushroom shape in Figure 7
is similar to the bubbles-with-skirts for Eo≳ 102 and, 10−1

≲Mo≲ 1, while the spherical one in Figure 4a (A= 0.85)
is similar to the spherical mushroom for Eo≳ 102 and
Mo∼ 102.

3.2.5. Low-mixing structures in the base-plane

The base-plane structures in Figures 4, 5a, and 7 – mostly
the nonlinear waves and vortex filaments – are the large-scale
formations with diameter (core size σ∼ 3–6 μm), and the
length L∼ 30–40 μm. These coherent formations are orga-
nized into various configurations: the nonlinear horseshoe
waves – into the rosette-like structures, and the line solitary
waves – into the polygonal web. The horseshoe waves are
similar to those in the CR (Lugomer, 2016b), and identified
as the parabolic-like solitary waves, which were studied by
various mathematical groups on the basis of the cyllindric

Kadomtsev–Petviashvilli equation (Klein et al., 2007; Khus-
nutdinova et al., 2013; Lugomer, 2016b). The straight-line
structures with the bell shape profile are – the line solitons
–while the others are cnoidal waves [Fig. 4(iv)]. The line sol-
itons interact between themselves giving rise to the
“Y-junction” or the “X-junction”, etc. as the resonant and
nonresonant configurations, respectively (Kodama, 2004;
Oikawa & Tsuji, 2006; Biondini, 2007; Lugomer, 2016b).
The other radial structures are vortex filaments formed by
the roll-up of the nonlinear waves. The roll up into KH
filament-rolls occurs in the segments where the Re number
reaches the critical value Re≥ 103. These base-plane struc-
tures show only the low mixing, which stays to the late
times and does no show transition to the small-scale turbulent
mixing.

The 3D RMI simulations reveal transition from the large-
scale low-mixing to the small-scale well-developed turbulent
mixing with randomly oriented structures at the late times
(Anuchina et al., 2004; Long et al., 2009). Such structures
are characteristic for the statistically random distribution of
velocity, density, or temperature (Zhou et al., 2003). Thus,
the late time, low-mixing, large-scale structures of nonlinear
waves, and vortex filaments in Figures 4, 5a, and 7, can be
compared with the similar simulated ones existing only for
the short times. In the experiment, the large-scale structures
persist to the late times when the solidification of target sur-
face takes place (∼200 μs after pulse termination). The tran-
sition to the small-scale turbulent mixing is frustrated
(prevented) most probably because of the interaction with
the nonstationary flow in the base-plane (Zhou et al., 2003);
and because of the collapse of bubbles, which generates the
shock waves into the surrounding fluid that wipe out the
small-scale structures. The existence of the large-scale struc-
tures even at the late times indicates the lack of turbulent
mixing with statistically random distribution of velocity or
density. Thus, the paradigm of the nonlinear low-mixing
wave-vortex structures characterizes the RMI/RTI in the NCR.

3.3. Strong reshock effects on the RMI/RTI structures

Strong reshocks have very dramatic effect on the mushroom-
shape spikes and on the base-plane structures. Under the
series of reshocks, the location of the interface moves down-
ward. As a result, the complexity of the structures increases
by deformation and with breakup of their symmetry.

3.3.1. Deformation of mushroom-shape spikes

Deformation of the mushroom-shape spikes and breakup
of their symmetry is shown in Figures 9a(i, ii), which can
be compared with the simulated ones for the initial RT
mixing layer (Zhang et al., 2006). Their 2D simulation of
the shock effect on RT structures at Ma= 6, shows the evo-
lution of deformation and symmetry breakup in t= 1.6, 1.85,
2.3, 2.6, and 3 (Fig. 9b). The great similarity with mushroom
structures in Figure 9a is observed for 1.6< t≤ 2.6. The de-
formation occurs when the interface with the shock wave
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moves downward (from above) (Zhang et al., 2006). If theMa
number of the shock is low the symmetric organization of two
mushroom structures is not perturbed. Increasing the Ma
number the symmetry is broken and the structures enter turbu-
lent mixing and merging. The insight into this process is ob-
tained from the temperature, entropy, and vorticity
measurement (Zhang et al., 2006). In the moment when the
shock hits the interface (t= 1.85), the temperature field is di-
vided along the shock location. The mushroom structures have
not yet changed from their original entropy values, and the
vorticity is small. After the passage of the reshock (t= 1.9),
the temperature and the entropy of the mushroom structure in-
crease rapidly with enhanced vorticity (Zhang et al., 2006).
However, the temperature and the entropy are different at

different locations. Below the mushroom they are lower and
the flow structures are stable. At the top of the mushroom
the entropy and temperature are higher indicating the higher
energy level and instability that leads to the breakdown of
flow structures into smaller ones (Zhang et al., 2006).
The simulation gives the evidence that the motion of the

interface continues until the mushroom structures are
broken into small turbulent pieces and merged with the base-
plane vorticity making a small-scale fully turbulent mixing
layer with stochastic distribution of temperature, density,
and entropy (Zhang et al., ). In contrast, Figure 9a shows
that the downward motion of the interface is stopped at
some small distance above the base-plane without of the
onset of small-scale turbulent mixing. Thus, the mushroom-

Fig. 9. The effect of a strong reshock on the RT-mushrooms and horizontal base-plane structures. (a) SEMmicrograph of RTI mushroom-
shape spikes showing deformation, breaking of the symmetry between them and disordered fluid flow in the base-plane. (b) Numerical
simulation of strong shock effects on the RTI mushrooms. The shock hits the RT interface at t= 1.85 and causes strong deformation,
which evolves in time: (a) t= 1.9; (b) t= 2.3; (c) t= 2.6; (d) t= 3.9. Note the similarity between deformation of mushrooms in Figure 7a
and simulated ones for 1.6< t≤ 2.6. [Courtesy of Dr. Y-T. Zhang. Reproduced with the permission of AIP Publishing from Zhang et al.
(2006); Copyright AIP, 2006.]
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shape structures – although deformed – stay above the base-
plane without transition to fully developed turbulence.

3.3.2. Formation of stripes and ribbons in the base-plane

The base-plane structures, namely the “egg carton” walls,
under reshoks also suffer deformation and symmetry breakup
[Fig. 10(i)]. The most dramatic effect is vanishing of the
“walls”, the increase of their size and spreading, as well as
their splitting into three or more stripes. Under spanwise per-
turbation the stripes are transformed into vortex ribbons
[Fig. 10(ii, iii)]. The longer ribbons tend to tangling due to
transversal perturbation [Figure 10(iv)].

3.3.2.1. Interaction of flow stripes and ribbons with RMI/
RTI structures. The stripes and ribbons interact with the
RTI mushroom spikes and bubbles, which may be assumed
the surface “point defects” characterized by their “trapping
potential”. Depending on the trapping potential, various

complex configurations may be formed by the ribbon
cyclic motion around the bubble (hole), looping around the
spikes, and pinning at the base of the spike (Lugomer
et al., 2007). Looping of the vortex filament (ribbon)
around the spike or bubble (point like defects) can be
interpreted on the basis of the Pedrizzetti model
(Pedrizzetti, 1992), and pinning at the spike on the basis of
the Schwartz model of pinning at protrusions (Schwarz,
1985).

3.3.2.2. Interaction of flow stripes and ribbons with
bubble-cavities. Figure 11a(i) shows two vortex filament
ribbons (incoming from above), one directed to the left and
other the right side, which enter the cyclic motion around
the cavity of a collapsed bubble; one forming a loop and
other spiraling down to the hole in the center of the cavity.
The ribbon structures in the vicinity merge with the ribbon
loop. More complex configuration arising from the ribbon
trapping with formation of closed loops and knotted
structures around cavities (point defects) can be seen in
Figure 11a(ii).

Point defects and trapping potential. The point defects are
assumed all structures on the target surface such as holes,
droplets, or other structures of spherical or hemispherical

Fig. 10. SEM micrographs of the domains experiencing strong reshocks
show breakdown of the “egg carton” web in the base-plane. Transformation
of the former “walls” of the web between the RTI mushroom spikes into var-
ious structures by spreading and deformation (i), by splitting and the roll up
into vortex ribbons due to transversal perturbation (ii, iii), and tendency to
tangling of ribbons due to spanwise perturbation (iv).

Fig. 11. Trapping of the filament-ribbon at the hole (assumed the “point
defect”) with the coiling SO. (a) SEM micrographs of the filament-ribbon
trapped at the hole (cavity) which form the open-loop structure (i), and the
multiple coils of closed-loop ribbons around two holes at few layers
giving rise to the 3D coil SO (ii). (b) The elongated cavity with a hole
(most similar to the real situation), representing a point defect surrounded
by a liquid shell (trapping region) of radius Rt. Trapping of the filaments
and ribbons is caused by the potential Vt. The trapping force Ft=−∂/∂x
(Vt), where Vt= Δp and Δp is the pressure difference between the point
defect and the surrounding area. The corresponding trapping potential Vt

and the effect of the trapping force on the ribbon configuration as a kind
of landscape is schematically shown in the lower picture diagram, where
the trapping potential is shown circular (symmetric) for simplicity.
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shape with diameter ∼15–20 μm (or more), which is much
larger than the core size of vortex filament (3–7 μm, usually).
In close interaction with rigid spheres and holes (cavities-
collapsed soft spheres or bubbles) – vortex filaments
become trapped giving rise to complex configurations
(Lugomer et al., 2007). The trapping results in the pinning
of filament at the rigid sphere, which can be interpreted on
the basis of the Pedrizzetti model (Pedrizzetti, 1992). More
complex behavior such as looping and spiraling of filament
around the sphere as the result of trapping, can be interpreted
on the basis of the Shwarz model (Schwarz, 1985). The
model describes vortex filament capture by a sphere or equiv-
alently by a hemispherical protrusion, because around the
point defect the boundary field exists, which tends to move
the filament around the sphere (Schwarz, 1985). When the
filament gets close enough, a cusp is pulled out by the boun-
dary field of a sphere, causing the vortex to approach the
sphere infinitely being finally pinned (Schwarz, 1985).
Pinning of filaments and ribbons (strings) onmaterial defects

is well known to occur in various physical, chemical, and bio-
logical systems.Generally speaking, the filamentsor the string-
like structures are pinned to the defects in various systems, an
example of which is pinning of the magnetic flux strings in su-
perconductors (Tonomura et al., 2001;Blatter et al., 2004), pin-
ning of carbon nanotubes to defects on silicon substrate
(Tsukruk et al., 2004), pinning of spiral vortex filaments like
various biological strings in excitable media (Pazo et al.,
2004), etc. When completing the list with recently observed
pinning of magnetic flux filaments in the Sun’s penumbra
(Thomas et al., 2002), one can say that pinning is a common
phenomenon taking place in the filamentary organized matter
from the atomic to the astrophysical scales.
Trapping of vortex ribbon at the cavity (the point defect)

can be described by the trapping potential, Vt, originating
from the pressure difference when the filament ribbon is in
the close vicinity of a defect, either because of self-induction,
or because of shear flow. The pressure difference or the hy-
drodynamic force is responsible for trapping at the distances
R≤ Rt, where Rt is the trapping radius (Fig. 11b) (Lugomer
et al., 2007). The topmost illustration in Figure 11b shows
the point defect (elongated cavity with a hole) formed by
the bubble collapse. Trapping of the filament ribbon by the
trapping potential Vt is schematically shown in Figure 11b
(middle). The trapping (drag) force is Ft=−∂/∂x (Vt),
where Vt= Δp, and Δp is is the pressure difference between
the point defect and the surrounding area. The trapping po-
tential, Vt, and the effect of the trapping force on the
ribbon configuration is schematically shown in the lower pic-
ture diagram; the trapping potential is shown with circular
symmetry for simplicity. The ribbon looping around a hole
occurs via continuous bending similar to the spiraling of an
elastic rod. The process is associated with the vortex-ribbon
splitting because of the strong strain field surrounding a hole
(Lugomer et al., 2007).
The high trapping potential of a cavity (hole) (Fig. 11)

causes the formation of ribbon coils, of closed-loop

structures as well as spiraling down cavity. It also causes
the formation of closed loops with more or less complex
knots, but the dense winding and merging with the nearby
structures causes their configuration difficult to be resolved.
Various fluid mechanic phenomena, like vortex filament
bending, looping, and spiraling on point defects (spheres
and cavities) have been studied in laser–matter (indium) in-
teractions (Lugomer et al., 2007). Also, the other phenomena
such as vortex filament reconnection, merging, and undula-
tion (Lugomer et al., 2007), as well as the formation of rib-
bons and ribbon helicoids, etc. (Lugomer & Fukumoto,
2010) have been studied in laser–matter interactions on var-
ious targets. In these interactions, it was naturally to assume
viscous phenomena like other authors (Pedrizzetti, 1992),
while some of them assume inviscid phenomena (Schwarz,
1985).
Generally speaking, interaction of filaments with (small)

material defects is well known to occur in various physical,
chemical, and biological systems. An example is the spiraling
of waves and vortex filaments around defects in active media
obtained as the solution of Ginsburg–Landau equation (Pazo
et al., 2004). Although the forces in these systems are differ-
ent, the effects on the filaments with formation of complex
structures as well as their topology are the same. Interesting-
ly, similar behavior was also found in the steady configura-
tions of a vortex filament embedded in a point-source or
point-sink flow in three dimensions, which shows looping
bending and spiraling quite similar to the interaction of fila-
ments and point defects (Fukumoto, 1997).
Regarding the spiraling around sphere, it was assumed that

the boundary field of point defect acts to distort the filament
such as to generate a self-induced motion toward the sphere
(defect). The frictional component of the motion also causes
the filament to spiral in, and in fact becomes the main factor
when the filament is far away. As the result, an initially
straight filament will undergo an inward-spiraling motion
(Schwarz, 1985).
For the analysis of dynamics, such spiraling and knotted

filament ribbons can be assumed as the “…. closed solution
curves of the vortex filament equation and the periodic prob-
lem connected with the nonlinear Schrödinger (NLS) equa-
tion….” (Calini & Ivey, 2001; Ivy, 2005). The knot types
of finite gap solution are related with the corresponding
NLS potential, but this is out of scope of this paper. For
this aspect of the problem the reader is directed to the math-
ematical literature (Calini & Ivey, 2001; Ivy, 2005).
Figure 12 shows a 3D flow separation of incoming fluid

into “A”, “B”, and “C” ribbon branches of which “B” and
“C” are bended under ∼90° with respect to the ribbon flow
“A”. The ribbon flow “A” makes an open loop around the
cavity (collapsed bubble) in the backward direction sche-
matically shown in the excerpt (upper right). The other ex-
cerpt (upper left), schematically shows the separation of the
incoming flow into two branches (left and right) that form
the open-loops around the cavities. The trapping potential
Vt is not as strong as in the case in Figure 11 and only
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changes the direction of the ribbon flow. The ribbon “A”
makes a loop around the cavity with the hole also formed
by the bubble collapse (Lugomer, 2016b). The ribbon “B”
is strongly bended around the bubble (hole) with tendency
to form a loop. Generally, such trapping at the point defect
(the spike or bubble) starts with approaching to the cavity
(sphere); the vortex ribbon first aligns itself along the circum-
ference in a straight form; then, closer to the cavity (sphere) it
becomes arc bended. Finally, at very small distance the fila-
ment is turned backward and the arc-bended segment be-
comes a loop. (Lugomer et al., 2007). It may be also
merged with the nearby ribbon as seen at the right side of
the micrograph. This ribbon (bypassing the hole) is exposed
to the local forces, which cause twisting and the formation of
knots (Lugomer & Fukumoto, 2010).

3.3.3.3. Interaction of flow stripes and ribbons with
mushroom-shape spikes. Interaction of vortex
filament-ribbons with two deformed RTI mushroom-shape
spikes as well as merging of two mushroom spikes are

shown in Figure 13. This figure clearly shows two
mushroom spikes at small distance connected by a bridge
what indicates merging. This effect is not a common
occurrence in laser experiments, but appears in the
experiments performed in the SCC. It was not observed in
the whole region, but only in some domains. In such
domains, all other structures in the base-plane are
deformed or tangled. Since the merging of spikes does not
normally appear (in contrast to bubble merging) this
phenomenon seems to be the effect of most probably of the
strong reshocks in such domains. An argument in favor is
the similarity of this picture to Figure 9 (especially to
Fig. 9a), and to the numerically simulated sequences of
mushroom spikes, which approach each other under
reshock (Fig. 8b) (Zhang et al., 2006).

This figure also shows the filament-ribbons incoming from
above which are layered one above the other and form 3D
configuration. One of the ribbons is pinned at the mushroom
spike (upper left) what can be interpreted on the basis of the
Schwartz model for the filament pinning at protrusion
(Schwarz, 1985; Lugomer et al., 2007). The pinned ribbon
makes the static irregular structure in the base of the spike
(Fig. 13). It seems that there is a deformed ring around the
RTI with a damped mushroom cap. The other ribbon
(center) makes a large loop around the spike because its trap-
ping potential is not strong enough to capture the ribbon. The
vortex filament in Figure 13 (upper right) is splitted into two

Fig. 12. SEMmicrograph of vortex ribbon trapping by the trapping potential
of the cavities with the hole. The trapping potential is not very strong, so that
ribbons make only the open loop around the holes. The incoming flow is sep-
arated into three ribbon flow branches: flow A, flow B, and flow C. Every
one of them enters close interaction with the hole inside the trapping distance
radius, Rt. The flow separation and looping around the holes (cavities) as the
point defects is schematically shown in the excerpt (upper left). The looping
around the bubbles with the change of direction of the ribbon flow is sche-
matically shown in the excerpt (upper right).

Fig. 13. SEMmicrograph of vortex ribbon trapping at deformed mushroom-
shape spike. A 3D flow separation of the incoming flow into few ribbons
(upper, center) trapped by the trapping potential of the spikes. One ribbon
branch is pinned at the spike, while the other two at the right side make
loops around the spike. The trapping potential causes a large loop around
the spike. The ribbon flow (upper right) is splitted into one smaller ribbon
branch, which makes a loop to the right and turns backward, while the
other ribbon extends along the other structures been deformed sinusoidally.
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branches; one, which makes a loop backward around the
cavity (dark), and another filament branch which spreads
up into a wide ribbon that passes along the other structures
being wavy-like deformed due to transversal oscillation. Ob-
viously, the mixing is relatively higher than in the domains of
the small reshock effects, but it is still the large-scale and not
the small-scale turbulent mixing.

4. CONCLUSION

Dominant RMI/RTI morphology in the NCRmake the “wall”-
like structures connected into the irregular, quasi-periodic web
(corresponding to deformed 2D lattice formed in the random
flow field). At A ∼(0.85–0.65) and M ∼(0.60–0.70) Mmax,
the RMI is followed by the RTI. The RTI mushroom spikes ap-
pearing at the nodal points of thewebwith discrete organization
indicate a strong horizontal fluid flow. Structures formed by the
first shock are exposed to the series of fast reshocks in the time
of∼200–300 μs after pulse termination because of the extended
life-time of the vapor–plasma plume in the SCC. The series of
fast reshocks affects the topological complexity of the mush-
room spikes and bubbles and of the base-plane structures. The
space-time variation of the reshock intensity and direction,
causes formation of domains of theweak reshockeffects and do-
mains of the strong reshock effects on the RMI/RTI structures.

(i) Weak reshocks do not affect much the high-symmetry
RTI damped, the spherical mushroom-shape spikes
and the prolate ellipsoidal ones. Also, they do not
affect much (or affect only slightly) the base-plane
structures (the nonlinear cnoidal and the line soliton
waves as well as the vortex filaments). These large-
scale structures correspond to the low-mixing, which
in the latter phase is not transformed into small-scale
fully turbulent mixing. These local coherent structures
(inside a random flow field) are organized into the
rosette-like configuration or the polygonal web and
represent the new paradigm of wave-vortex turbulent
mixing in the domains of weak reshocks.

(ii) Strong reshocks dramatically affect the RTI spherical
mushroom-shape spikes and cavities causing defor-
mation and symmetry breakup. The pressure variation
and the local pressure and velocity gradients in the
base-plane cause 3D fluid flow separation into stripes
and vortex ribbons (the fluid coherent structures) The
vortex ribbon flow is directed between the spikes and
bubbles which may be understood as a kind of surface
“point defects”. The trapping potential of the “point
defects” affects the ribbon flow and causes the com-
plex organizational phenomena: ribbon pinning at
the spike, looping around the spike or around the
cavity with the hole, as well as the ribbon coiling
around the hole. They represent the new paradigm
of the low-mixing structures in the domains of
strong reshocks.

It may be said that both domains, those experiencing weak
and the strong reshocks, show only a low (turbulent)
mixing, although the mixing is somewhat higher than in
the first ones. Without transition to the small-scale turbulent
mixing structures, the low-mixing large-scale structures and
their configurations represent the new mixing paradigm.
Therefore, the RTI/RMI small-scale fully turbulent mixing
with stochastic distribution of temperature, density and entro-
py usually observed in the open configuration does not take
place in the SC configuration.
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