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Abstract

The job scheduling problem (JSP) is considered as one of the most complex combinatorial optimization problems. JSP is
not an independent task, but is rather a part of a company business case. In this paper, we have studied JSPs under sudden
machine breakdown scenarios that introduce a risk of not completing the jobs on time. We have first solved JSPs using an
improved memetic algorithm and extended the algorithm to deal with the disruption situations, and then developed a simu-
lation model to analyze the risk of using a job order and delivery scenario. This paper deals with job scheduling under ideal
conditions and rescheduling under machine breakdown, and provides a risk analysis for a production business case. The
extended algorithm provides better understanding and results than existing algorithms, the rescheduling shows a good
way of recovering from disruptions, and the risk analysis shows an effective way of maximizing return under such situations.
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1. INTRODUCTION

Job scheduling is a common task in the manufacturing
industry. Over the last few decades, a considerable amount
of research has been carried out on how to develop effective
solution approaches for job scheduling problems (JSPs).
However, no single algorithm is well accepted as an effective
method for all kinds of JSPs (Hasan et al., 2011). Meeran and
Moeshed (2012) pointed out that none of the techniques are
sufficient on their own to solve these stubborn NP-hard prob-
lems. Although deterministic scheduling algorithms con-
verge to an optimal solution, these algorithms are incapable
of handling complex and large-scale problems (Qind-dao-
er-ji & Wang, 2012). Stochastic and heuristic algorithms per-
form relatively better in those cases (Nasr & ElMekkawy,
2011). However, the existing genetic algorithms (GAs) for
JSPs usually have slow convergence rates, and they can be trap-
ped into local optima. Many of such algorithms can solve small
problems optimally but have difficulty in solving large prob-
lems with optimal or near-optimal solutions within a reasonable
time limit. In order to enhance the performance of these algo-
rithms, researchers have been trying many different strategies,
such as hybridizing with different local search algorithms
(Qind-dao-er-ji & Wang, 2012). Although the deterministic

scheduling algorithms converge to the optimal solution, these
algorithms are incapable of handling complex and large-scale
problems. Stochastic and heuristic algorithms perform rela-
tively better in those cases (Nasr & ElMekkawy, 2011).

In this paper, we consider n jobs and m machines. The JSPs
have several constraints, such as machine capacity and prece-
dence requirements. It is considered that a machine can only
perform a particular type of operation. Thus, a machine is able
to execute just a single operation of a job. The operations are
nonpreemptive; an operation can neither be paused nor re-
sumed after it is started. The execution time for each of the
operations is known. The setup time or cost is assumed to
be negligible. An operation can only be started if the preced-
ing operations of the same job are complete. This description
is similar to a traditional job-shop scheduling problem (Hasan
et al., 2009; Ghasem & Mehdi, 2011).

In almost all research on JSPs, the schedule was produced
under ideal conditions, assuming there will be no disruptions
of any type. However, machine unavailability is a common
event on the shop floor due to both preventive and breakdown
maintenance of machineries and their supporting equipment
(Nasr & ElMekkawy, 2011). The inclusion of such unavail-
ability with the JSPs makes the resulting problem not only
more practical but also more complex and challenging. The
preventive maintenance schedules, which are usually known
in advance, can easily be incorporated in generating a job
scheduling. However, in the case of sudden machine failure,
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the tasks scheduled on the broken machine cannot be resumed
until the machine is appropriately repaired. During and after
the machine repair, the continued implementation of the
schedule generated earlier would delay the completion of
some jobs due to active precedence constraints. Such delays
may create a contractual problem with customers. In order
to minimize the delay, it is very important to reoptimize the
remaining tasks at the time of machine breakdown. Even after
reoptimization, it is expected that there will be some delay in
the completion of some or all jobs. Any late completion may
incur penalty costs for the existing jobs and may prevent the
acceptance of new jobs. The situation becomes even more
complex when the duration of delay is stochastic.

In this research, we have proposed an improved memetic
algorithm (IMA) for solving JSPs, which combines a GA
with a local search (/heuristic) technique. We have considered
the makespan minimization as our objective. The total time
between the starting of the first operation and the ending of
the last operation is termed as the makespan. For a candidate
solution, the heuristic technique identifies any gap left be-
tween any two consecutive operations (/jobs) on a machine.
A job from the right of the gap can then be placed in it, if
the gap is big enough for the operation without violating
any precedence constraints. The job can also be placed in
the gap, even if the gap is not big enough, but within a certain
tolerance limit of the operation time, if it improves the overall
fitness value. In this case, it may need to push (/shift) other
jobs to the right. We have extended this algorithm to study
JSPs under sudden machine breakdowns. In the case of ma-
chine breakdown, the breakdown information is known after
the actual breakdown when the schedule is under implemen-
tation. In such a case, it is required to reoptimize the remain-
ing operations by taking into account the machine downtime.
The breakdowns will affect the shop capacity and the accep-
tance of new jobs that would ultimately affect the revenue
earned. We have developed a mathematical model to study
the revenue earned under different scenarios and have found
the best parameter set for maximizing the revenue using a sim-
ulation model. With stochastic breakdown starting time and
duration, the simulation model basically suggests a way of
risk minimization in revenue generation.

To study the above approaches in a systematic manner, we
have chosen a manufacturing shop with 10 machines. We
have solved 20 benchmark test problems using the IMA
and have experimented by varying the tolerance limit for
placing the jobs in the gaps. We have shown that the inclusion
of the heuristic (discussed earlier) not only improves the per-
formance of the GAs but also reduces the overall computa-
tional requirements. We have observed that the solution qual-
ity gradually improves with the increase of the tolerance limit.
For the condition of machine breakdowns, we have used dif-
ferent distributions to generate a number of breakdown sce-
narios. We have found that the revised solution is able to re-
cover from most of the prescheduled breakdowns regardless
of when it occurs. The simulation model is developed based
on the job completion times under breakdowns. The model

shows that the revenue can be maximized by carefully analyz-
ing the different levels of risk.

The research contribution made in this paper can be sum-
marized as follows. The main research problem considered
in this paper is how to manage the financial risk in a job
shop business unit that as time passes, receives different job
orders from its customers and also faces frequent machine
breakdowns. A new methodology has been proposed to study
this problem. This methodology was developed, based on an
approach for scheduling under machine breakdowns that is
also proposed in this paper. The second approach was devel-
oped based on a scheduling algorithm under ideal situations,
in that the base algorithm in this study is basically an im-
proved version of our earlier algorithm. We have demon-
strated the usefulness of these approaches by solving test
problems under different scenarios.

The paper is organized as follows. After the Introduction, a
brief outline of a standard JSP with and without disruption is
given in Section 2. The GA to solve JSPs is discussed in Sec-
tion 3. Section 4 provides an experimental study for JSPs with
and without random machine breakdowns. Section 5 provides
a new procedure for managing financial considerations under
random disruption, along with results and discussions.
Finally, conclusions are drawn in Section 6.

2. JOB SCHEDULING AND DISRUPTION
PROBLEM

The standard JSP makes the following assumptions:

† Each job consists of a finite number of operations.
† The processing time for each operation in a particular

machine is defined.
† There is a predefined sequence of operations that has to

be maintained to complete each job.
† Delivery times of the products are not defined.
† There is no setup cost or tardiness cost.
† A machine can process only one job at a time.
† Each job visits each machine only once.
† No machine can deal with more than one type of task.
† The system cannot be interrupted until each operation of

each job is finished.
† No machine can halt a job and start another job before

finishing the previous one.
† Each and every machine has full efficiency.

The objective of the problem is to minimize the maximum
time taken to complete each and every operation while
satisfying the machining constraints and required operational
sequence of each job.

In practice, the operations may be interrupted or delayed
for many reasons, such as machine breakdown (including
tools and fixtures), unexpected machine setting up, arrival
of a new priority job, process time variation, change of job
priorities, defective materials, delay in transfer line between
machines, and order cancellation (Subramaniam et al.,
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2005; Fahmy et al., 2008). Machine breakdown is considered
as one of the most frequent and challenging issues in production
scheduling. The unavailability of machines, due to planned pre-
ventive maintenance, can be incorporated as a constraint when
solving for an optimal schedule. In the case of sudden break-
downs, the easiest solution is to apply some dispatching rules
that help to select a task immediatelyafter the breakdown occurs
(Blackstone et al., 1982).

Reactive scheduling was recently introduced to deal with
the unexpected interruptions. Liu et al. (2005) have proposed
dividing the scheduling process into two nonoverlapping
parts: predictive before the breakdown occurs, and reactive
when the machine is recovered after the breakdown. Fahmy
et al. (2008) have suggested inserting dummy tasks to remove
the affected tasks from the schedule and to later reschedule
them. The duration of the dummy task is equal to the recovery
time of the broken machine. Abumaizar and Svestka (1997)
have proposed repairing the reactive schedules using a right
shifting process. The process shifts each and every operation
to its right after the machine breakdown. Wu et al. (1993) de-
veloped a GA with a pairwise-swapping heuristic and pro-
posed using the right shifting technique to reoptimize. The
drawback in this technique is the presence of uniform shifting
for every operation, which increases the machine idle times
between consecutive operations.

3. JOB SCHEDULING WITH A GA

In this paper, we consider the minimization of makespan as the
objective of JSPs. According to the problem definition, the se-
quence of machines used (those are also the sequence of opera-
tions) by each job is given. That means each operation is linked
to one particular machine. In this case, if we know either the
starting or the finishing time of each operation, we can calculate
the makespan for each job and generate the whole schedule. In
JSPs, the main problem is finding the order of jobs to be oper-
ated on each machine that minimizes the overall makespan.

In solving JSPs using GAs, the chromosome of each indi-
vidual usually comprises the schedule. Chromosomes can be
represented by binary, integer, or real numbers. Some popular
representations for solving JSPs are operation based, job
based, preference-list based, priority-rule based, and job
pair-relation based representations (Ponnambalam et al.,
2001). We select the job pair-relation based genotype repre-
sentation due to the flexibility of applying genetic operators
(Nakano & Yamada, 1991; Paredis, 1992; Yamada & Na-
kano, 1997; Yamada, 2003). In this representation, a chromo-
some is symbolized by a binary string, where each bit stands
for the order of a job pair (u,v) for a particular machine m.

For a chromosome p,

CPuvm ¼
1 if the job u leads the job v on machine m
0 otherwise

�
:

A value of 1 means that, for the individual p, the job u must
lead the job v on machine m. The job having the maximum

number of 1s is the highest priority job for that machine. Fur-
ther details on this representation can be found in Yamada
(2003) and Hasan et al. (2009).

A GA starts with a set of randomly generated solutions,
known as the initial population. As indicated earlier, we use
the job pair relationship-based chromosome representation.
The main advantage of this representation lies with the orga-
nization of the genes. In this representation, two consecutive
genes represent the relationship between two job pairs in two
different machines. When a simple exchange crossover
or swap mutation is applied, it affects multiple machines.
Thus, this representation helps to generate diverse solutions.

It is well known that randomly generated solutions may not
be feasible in JSPs. For example, on a given machine, the or-
der of three jobs may be generated as follows: j1! j2, j2! j3,
and j3! j1. Unless we change the order from j3! j1 to j1!
j3, this looks like an infeasible assignment. We repair such in-
feasibility before applying the search operators. The mapped
phenotypes contain a set of randomly assigned tasks where
the constraints may be violated. For example, two different
jobs may be assigned to a single machine at the same time.
Therefore, this again requires repair operations. Nanko and
Yamada (1991) have referred to such repair processes as
harmonization. We apply similar repair mechanisms in this
research.

We have proposed a heuristic in this paper, introduced as
the job rearranging method for improving the performance
of GA. The job rearranging method process is applied to
the phenotypes to improve the solution, and thus ensure
feasibility. The heuristic can also be applied as a part of the
reactive scheduling.

3.1. Rearranging method

It is very common in practice to leave some gaps (i.e., ma-
chine idle time) between the consecutive tasks scheduled on
a machine. In some cases, these are absolutely necessary to
satisfy the precedence constraints. In other cases, this is due
to the generation of suboptimal solutions for implementation.
For the later cases, it is possible to improve the solution by
filling in the gaps with suitable tasks. In our proposed rearran-
ging method (RM), a gap will be filled in with a task if the gap
is good enough to accommodate it without creating infeasibil-
ity. In addition, a gap can also be filled in if it is smaller than
the task duration by a certain tolerance limit by shifting the
tasks to the right of the gap. Here, let us assume that gðtimeÞ
is a gap where we wish to fit a task with operation time tij.
By (i, j) we mean the task of job j that will be processed in ma-
chine i. We further assume that a is the tolerance limit, which
varies between 0 and 1. The necessary condition of applying
RM can be defined as follows: if gtime � (12a)tij, the job is
placed in the gap. Further, a gap may be removed or reduced
by simply moving a job to its adjacent gap at the left (left
shifting). This process could be used to develop a compact
schedule, starting from the left, and continuing up to the
last job for each machine. If we assume a¼ 0, the rearranging
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procedure would be similar to the gap reduction technique
used in the memetic algorithm recently reported by Hasan
et al. (2009). For convenience of applying RM, it is done
on the phenotype, just after the evaluation of individuals
(see below Step 2C).

3.2. IMA

The IMA can be described as follows:

1. Initialize P(t) as a random population P(t¼ 0) of size K.
2. Repeat until the stopping criteria is met.

A. Set t:¼t 2 1.
B. Evaluate P(t21) as follows:

i. Decode each individual p.
ii. Repair if the individual is infeasible.

iii. Generate schedule and calculate makespan.
iv. Go to step i, if every individual is not evaluated.
v. Rank the individuals according to the fitness val-

ues.
vi. Apply elitism. Assume P0(t21) are the nonelite

individuals.

C. Apply RM to all individuals in P0(t21).
D. Go to Step 3 if the stopping criteria is met.
E. Modify P0(t-1) using the following steps:

i. Select individuals for reproduction.
ii. Apply crossover.

iii. Apply mutation.
iv. Assign P(t) ¼ Modified P0(t21) þ the preserved

elite individuals (K – P0(t21)).

[End of Step 2 Loop]

3. Save the best solution among all of the feasible solu-
tions.
[End of Algorithm]

GA is similar to the above IMA except that it does not use
Step 2C.

4. EXPERIMENTAL STUDY

We have implemented IMA for solving JSPs. We have started
with a randomly generated population. Each individual is rep-
resented by the job-pair relation based representation. The pa-
rameters used in this study are similar to Hasan et al. (2009):
the population size is 2500, the probability of crossover is
0.65, the probability of mutation is 0.30, and the number of
generations is 1000. In JSPs, a large population is usually
used because the feasible space is too small compared to the
entire search space. As an example, Pezzella et al. (2008)
used a population size of 5000 merely to solve a 10�10 JSP.

We apply elitism in each generation to pass a few of the
best individuals unaltered to the next generation. We use a

tournament selection that chooses one individual from the
elite class of the individual (i.e., the top 15%) and two indi-
viduals from the rest. This selection then plays a tournament
between the last two and performs crossover between the win-
ner and the elite one. We use 2-point crossovers, and a bit-flip
mutation. We rank the individuals on the basis of their fitness
values. A high selection pressure on the better individuals
may contribute to premature convergence. If the most or all
of the elite class have the same solution, then their offspring
will be quite similar after some generations. In such cases, a
higher mutation rate would help to diversify the population.
We use the tolerance level a ¼ 0.20 for applying RM. We
have run IMA by varying the tolerance level a from 0.00 to
0.25 with an increment of 0.05 and decided upon the best a
by analyzing the best and the average fitness values, as well
as the computational times.

To test the performance of our proposed algorithms, we
solve 20 “la” series (10-machine) benchmark problems
(la16–la35) that were proposed by Lawrence (1985) and
compare with several existing algorithms. Based on the num-
ber of operations, these problems can be grouped into four
different sizes (10, 15, 20, or 30 operations) with five prob-
lems in each group.

The results for the benchmark problems are obtained by ex-
ecuting the algorithms on a personal computer, and the sum-
mary of results is tabulated in Table 1. From the results, it is
clear that the performance of both MA (where a ¼ 0) and
IMA is overwhelmingly better than GA. Out of 20 test prob-
lems, IMA obtained optimal solutions in 13 problems com-
pared to 11 for MA and 3 for GA. The average percentage de-
viation of fitness values from the known optimal is much lower
for IMA (1.047 compared to 1.129 for MA and 4.161 for
GA). The average percentage deviation is calculated using
the best of the best fitness values in each of the 30 indepen-
dent runs for each problem. We must mention here that
la16–la35 test problems are much harder than la01–la15.
For the first 15 la series test problems, GA was able to obtain
optimal solutions in 13 problems, whereas both MA and IMA
successfully achieved optimal solutions in all 15 problems.
Both IMA and MA are computationally more attractive
than GA. This means that the proposed hybridization of
GA not only improved the quality of solutions but also
reduced the requirement of the number of fitness evaluations
and the computational time (see Table 1).

Table 1. Comparing the performance of IMA with GA and MA

Algorithm
Optimal
Found

Average
Deviation (%)

Fitness
Evaluation

(103)

Average
Comp. Time

(s)

GA 3 4.161 992.38 291.76
MA 11 1.129 525.75 176.68
IMA 13 1.047 521.69 175.21

Note: GA, Genetic algorithm; MA, memetic algorithm; IMA, improved
memetic algorithm.
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The job shop scheduling problems have been solved by
using many different algorithms, such as exact algorithms,
heuristics, and population based stochastic search algorithms.
Although the exact algorithms produce one single solution,
the population based algorithms must be executed multiple
times, and the reported results must include at least the best
of all runs, the average of best objective values in all runs,
and their standard deviations. This is because an algorithm
may obtain the optimal solution for a given problem, due to
the many randomized parameters used in the algorithm,
even though the average performance is bad. For such algo-
rithms, we need to compare not only the best objective value
but also the average performance, using statistical significant
testing. It is interesting that it has not become a norm in job
shop problem solving using evolutionary algorithms (GA
and others), so we cannot make meaningful comparisons
(e.g., Qing-dao-er-ji & Wang, 2012). In addition, many re-
searchers solved nonstandard test problems and some others
solved only selected problems from the test sets (see Qiu &
Lau, 2014). Many others studied different variants of job
shop scheduling problems, for example, flexible, stochastic,
or multiobjective job shop (Lei, 2011; Zhang et al., 2013;
Demir & Isleyen, 2014). For the above reasons, we are unable
to appropriately compare our approach with the existing
algorithms.

We have compared our base algorithm with three different
well-known approaches that did solve all the test problems we
considered in our study (see Table 2). These algorithms are
widely cited in the literature of conventional job shop sched-
uling. The algorithms are GRASP (Bianto et al., 2000),
Shifting Bottleneck (Adams et al., 1994), and Local Search
1 & 2 (Aarts et al., 1988). GRASP (Bianto et al., 2000) is a
metaheuristic for combinatorial optimization that is basically
a greedy randomized adaptive search algorithm. The algo-
rithm produces a reasonably good solution within a reason-
able computational effort. The Shifting Bottleneck procedure
developed by Adams et al. (1994) is an approximation ap-
proach where a local reoptimization method is applied when
a bottleneck is identified in the scheduling process. The algo-
rithm showed reasonably good performance in solving the
complex test problems. Aarts et al. (1988) proposed two local
search algorithms that were used with other metaheuristic

algorithms, including a GA. According of Table 2, IMA
outperforms all other algorithms compared.

4.1. Rescheduling under machine breakdown

In this study, we consider disruptions caused bysudden machine
breakdowns in the classical JSPs. In the case of sudden break-
down, it is required to reoptimize the affected tasks for the re-
maining operations from the time of breakdown. The situation
becomes complex when there are multiple breakdowns.

The most obvious issue of a breakdown is that the broken
machine cannot be used until it is either repaired or replaced.
In the JSPs, the tasks are interrelated. Thus, if any task is in-
complete due to a broken machine, the task must wait for a
certain period of time. In reactive scheduling, the right-
shifting strategy is normally applied to the affected tasks for
the generation of a revised schedule. We instead apply the
RM that minimizes the possible gaps left before pushing
the tasks toward the right. Here, we make the following
assumptions and definitions.

† Any task that needs to be relocated due to the interrup-
tion is classified as affected. The set of affected tasks is
generated based on the precedence relationships of the
tasks. For any instance, if the shifting of a task (because
of breakdown) does not affect its successor task, then
the successor task is not considered as affected.

† Reactive schedules consist of the affected tasks that
begin from a revised starting time of each machine.
The starting times are calculated from the finishing
time of the completed tasks.

To analyze the reschedules under machine breakdown, we
define a machine breakdown scenario by l(i, t, r), which indi-
cates that a machine i that breaks at time t needs r units of time to
be recovered. In this study, a breakdown instance is generated
randomly. More specifically, we use a uniform distribution to
identify the machine i, a Poisson distribution for t, and exponen-
tial distribution for r. For multiple breakdowns, for convenience
of analysis, we divide the time line into several segments and
generate the breakdown instances, one in each segment.

We solve the JSPs using IMA under ideal conditions. We
generate a number of interruption scenarios l as discussed
earlier. We introduce these breakdowns to only the best solu-
tion obtained from IMA, and apply the RM alone to reopti-
mize the affected tasks.

4.2. Experimental study with breakdown scenarios

In this section, for ease of explanation, we define the follow-
ing terms:

† Problem instance: each test problem (from 20 bench-
mark problems)

† Breakdown frequency: one, two, three, or four break-
downs

Table 2. Comparing our algorithm with other related
algorithms

Authors Algorithm
Optimal
Found

Average
Deviation (%)

Fitness
Deviation SD

Our algorithm IMA 13 1.0471 1.6548
Hasan et al. MA 11 1.1290 1.6659
Bianto et al. GRASP 8 2.5631 3.2270
Adams et al. SB 5 4.7644 4.1633
Aarts et al. GLS1 3 2.6245 2.7781
Aarts et al. GLS2 3 2.2739 2.2998

Note: MA, Memetic algorithm; IMA, improved memetic algorithm.
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† Breakdown scenario: representing the parameters for
l(i, t, r) for a given breakdown frequency of a problem
instance

† Approach: RM

Two sets of experimentation were performed. The purpose
of the first set was to analyze the effect of the number of
breakdowns on the overall makespan. The second set was
designed to see the combined effect of breakdowns.

4.2.1. Experiment 1: Different number of breakdowns

In this experiment, analysis was performed for a fixed
number of breakdown frequencies that varied from one to
four. The steps of the first set of experimentation were the
following:

1. Select a problem instance.
2. Select a breakdown frequency.
3. Generate 100 different breakdown scenarios.

† Choose a machine or machines.
† Choose start time for breakdown(s).
† Choose breakdown duration(s).

For one breakdown, we choose l(i, t, r): a machine, a
downtime start time, and a repair duration using the distribu-
tion discussed earlier. For the two breakdowns, we choose
two different machines, two nonoverlapping downtime start
times (one for each machine), and their durations. Similarly,
three and four nonoverlapping downtimes are generated for
three and four machines, respectively. The length of machine
breakdown for one downtime is assumed to be higher than
each machine’s downtime for the two downtimes. The down-
time for each machine for the two downtimes is higher than
the average downtime of each machine for the three down-
times case. We can make similar statements between the three
and four downtime cases. In our experiments, we assume that
the total downtime duration is nearly equal in all cases of the
breakdowns, for convenience of judging the algorithm per-
formance in terms of individual breakdown duration and
frequency.

In the experiments, we pick the best solution from IMA, in-
troduce breakdowns, and produce the reactive schedule. In
the part of reactive scheduling, we apply RM to reoptimize
the affected subsolution. For multiple breakdowns, we intro-
duce the first breakdown and reoptimize the solution. Then
we introduce the second breakdown, and so on. In this sec-
tion, we have presented the results of four test problems,
the last test problem from each of four groups, in Figure 1.
In the figure the x-axis shows the number of breakdowns,
and the y-axis represents the duration (the sum of breakdowns
and the increase in makespan). The increase in makespan is
equal to the difference between the makespan after reschedul-
ing and the same under ideal conditions. These figures show
that the rescheduled makespan decreases with the number of
breakdowns, in situations where the total length of break-

downs is approximately equal for all breakdown frequencies.
The revised (/rescheduling) makespan is clearly lower than
the sum of the original makespan under ideal conditions
and the total breakdown duration.

As discussed earlier, the total length of breakdowns for any
reschedule is designed to be approximately equal. This means
that the length of downtime in a one-breakdown case is ap-
proximately equal to the sum of all of the breakdowns in a
four-breakdown case. It is interesting that the solution quality
has a strong relationship with the frequency of breakdowns
when the duration of the total breakdown is fixed. As evident
in the above figures, multiple smaller breakdowns are better

Fig. 1. (a) Problem La20, (b) problem La25, (c) problem La30, and (d)
problem La35.
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than one long breakdown, in terms of minimizing the loss due
to breakdowns.

From our experiments, we have observed that the location
of breakdowns within the scheduling duration influences the
makespan of the reoptimized schedule. If a breakdown occurs
during the early stage of a solution, the effected tasks could be
rescheduled with only a small increase in makespan. This is
because an early breakdown has more alternatives to resched-
ule the remaining jobs than does a later breakdown. To study
this aspect, we have divided the makespan duration of each
job into four equal time windows. In the study, one single
breakdown is introduced in the first half of the first time win-
dow randomly, with an average downtime of 7% of the make-
span, and the rescheduled makespan is recorded. The process
is repeated 100 times for each time window. The average de-
viations from makespan for four test problems, considered for
the breakdown frequencies above, are presented in Figure 2.
The observed average deviations are 1.78%, 2.94%, 5.31%,
and 6.67% from the makespan for time windows 1, 2, 3,
and 4, respectively.

4.2.2. Experiment 2: Combined effect of breakdowns

In this experiment, the mix of the number of breakdowns is
considered. This is because a practical situation may face dif-
ferent numbers of breakdowns at different time periods. The
steps of the second set of experimentation were the following:

1. Select a problem instance.
2. Generate 100 different breakdown scenarios as follows.
3. For each scenario:

† Choose a breakdown frequency randomly;
† Choose a machine(s);
† Choose start time for breakdown(s); and
† Choose breakdown duration(s).

Other conditions are the same as Experiment 1. The results of
four test problems (as selected in Experiment 1), in terms of
average makespan, are presented in Table 3. Although, as ex-
pected, the average makespans are higher than the makespan
under ideal conditions, they are a little lower than the average
of the makespan calculated from the results of Experiment 1,
and are much lower than the same obtained from the Right
Shifting method. From the last column of Table 3, it is clear

that the percentage difference from the right-shifting tech-
niques increases with the increase in size of the problems.

4.3. Summary of rescheduling approach

In Section 4, we have proposed a methodology for reschedul-
ing jobs under machine breakdowns, and provided experi-
mental studies with different machine breakdown scenarios
and their analysis. Although machine breakdown is common
in practice, for judging the performance of our approach,
there is no test problem or practical data available in the litera-
ture. To generate the breakdown scenarios, we have intro-
duced random breakdowns to the existing benchmark prob-
lems. The experiments were conducted to analyze the effect
of a fixed number of breakdowns, which varied from one to
four, on the makespan, as well as the combined effect of
different numbers of breakdowns in the test set. For a fixed
number of breakdowns, the revised makespan depends on
the frequency of breakdowns, the duration of breakdowns,
and the timing of breakdowns. From the experimental result
analysis, it is found that an early breakdown has a lower effect
on the makespan than a breakdown of similar duration at a la-
ter stage of the schedule, and multiple smaller breakdowns
will have a lower effect than one long breakdown. The effect
for mixed cases is somewhat an average of the fixed number
of breakdowns.

5. MANAGING FINANCIAL RISK

In the previous two sections, we discussed the effect of sud-
den disruptions on different JSPs. In this section, we propose
a procedure to manage the risk effectively in a manufacturing
shop that receives different job orders from its customers and
faces frequent machine disruptions. We assume, under ideal
conditions, that the shop would accept N numbers of job or-
ders. If the shop experiences any disruptions, it may not be
able to accept all N job orders due to shop capacity and
customer assigned due dates. Hence, it needs to develop a
methodology for accepting or rejecting job orders that will
maximize the benefit to the company or minimize the risk
of losing revenue. We assume the company has the right to
accept or reject any external job order.Fig. 2. The influence of the location of breakdowns.

Table 3. Makespans after rescheduling

Average Makespan

Test
Problem
Number

Makespan
Under Ideal
Conditions

After
Rescheduling

With Proposed
Approach (A)

After
Rescheduling
With Right

Shifting
Method (B)

% Difference
¼ 100×

(A – B)/A

la20 902 979.34 1087.557 11.05
la25 977 1124.13 1275.325 13.45
la30 1355 1482.68 1690.848 14.04
la35 1888 1981.46 2318.11 24.49
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A new job order would be accepted by the shop if it has the
capacity to process it within the agreed delivery time. How-
ever, because of the stochastic nature of the disruptions, we
assume the manufacturing shops accept a new job order, as
a rule of thumb, if the estimated processing time [¼(1 þ d)
� (average processing time of the job)] is available before
the delivery time. If the tolerance d is too high, we would ac-
cept a lower number of job orders than expected, which
would hence reduce the shop revenue. In contrast, a small d
may force some jobs to be tardy (late completion). We assume
that any late completion would incur a penalty cost. There-
fore, a question arises of what is the appropriate value of d
that would maximize the benefit to the shop under uncertain
disruptions. To answer this question and analyze the relevant
factors, we develop a simulation model and implement it
using the data and results generated in the previous sections.
The simulation model is briefly discussed below.

A manufacturing shop usually contains a fixed number of
machines and receives a known variety of job orders. Initially,
we made limited experimentation with 5, 10, 15, and 20 ma-
chines to observe their behavior. We have then fixed the num-
ber of machines to 10 (a reasonable number for practice) for a
complete set of experiments because we have observed sim-
ilar behavior with different numbers of machines. The 20 test
problems studied earlier will be used as the mix of job orders.
The job orders may be given to a manufacturing shop either
randomly or following any particular pattern.

5.1. A simulation model

We have developed a simulation model to analyze the effect
of d on the revenue (or profit) of the shop. In other words, it
will determine the value of the appropriate d that would mini-
mize the financial risk. In the simulation model, the external
job orders (arriving based on a certain arrival pattern) join the
queue for order acceptance and processing. The current order
will be accepted if the estimated delivery time is earlier than
or equal to the required delivery time as shown below:

EDtij � RDtij;

EDtij ¼ max
k

Ctk þ ð1þ dÞ � APtj,

where k [ AJ and k � (i 2 1), EDtij is the estimated delivery
time of the ith job of type j, RDtij is the required delivery time
of the ith job of type j, APtj is the average processing time of
job type j, Ctk is the completion time of job k (here i¼ k), d is
the allowable delivery tolerance, and AJ is a set of accepted
jobs for processing.

We assume an order will be assigned for processing imme-
diately after its acceptance (i.e., the earliest possible start
time), if the shop is free. Otherwise, the accepted orders will
be placed in a queue. The average processing time, for each
job type, can be obtained from the shop’s historical data.
The actual processing time (Pti) for each job type is generated
using a certain distribution that represents the shop’s historical
pattern (including disruption information). The actual delivery

time (ADti) is calculated and compared with the required
delivery time (RDti). If ADti . RDti, we also assume there
will be a penalty cost (PCi) based on the duration of delay.

PCi ¼
ðADti � RDtiÞ � UPCi, if ADti . RDti
0 otherwise

�

Under this situation, the total revenue (TR) earned by the
shop in a given time period can be calculated as follows:

TR ¼
X

i
fRi � PCig �

X
j

OLj,

where UPCi is the penalty cost per unit time, Ri is the earning
($) for job i, OLj is the opportunity loss ($) for job j, and

Ri ¼
Ri, if job i is accepted for processing

0 otherwise

�
,

OLj ¼
OLj, if job j is rejected for processing

0 otherwise

�
:

The TR equals the revenue from all accepted and delivered or-
ders minus the penalty cost for delayed delivery minus the op-
portunity loss for orders rejected due to shortage of capacity. Al-
though the opportunity loss component can be excluded from
the total earning equation, its inclusion puts more pressure to ac-
cept more jobs by increasing the value of d specifically for the
scenarios with relatively lower penalty cost. Based on the orga-
nizational goal, one can define Ri as either profit or revenue.

Assume that ShopSchedule is a routine that receives the
orders from a customer, calculates the feasibility, and pro-
cesses the accepted job using its Execute subroutine. In addi-
tion, arrival of a job creates an event ARRIVE, while comple-
tion of a job creates an event FINISH. Finally, the program
generates statistics depending on the status of the job and cal-
culates overall revenue. The steps of the simulation model are
briefly stated below.

function ShopSchedule

1. Set job number i ¼ 0.
2. Get the current time T from the system.
3. If event ¼ ARRIVE, then

a. Set i¼ iþ 1, get the job type j, order time ORtij, and
required delivery time RDtij of the arrived job order.

b. Set the estimated delivery time EDtij.
c. Calculate the actual processing time Ptij using a nor-

mal distribution (parameters shown in Appendix A)
of the job type j.

d. If RDtij , ORtij , then

i. Set status :¼ DECLINED.
ii. Go to Step 2.

e. Else if shopstat ¼ FREE, then

i. Start executing the job order immediately.
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f. Else

i. Put the job order in the Queue for delayed pro-
cessing.

[End of Step 3.d If]

4. Else if event ¼ FINISH, then

a. Set shopstat :¼ FREE.
b. Set the first job order in the queue as the current job

order.
c. Start executing the current job order.
d. Delete the current job order from the Queue.

[End of Step 2 If]

5. Repeat Steps 1 to 4 until all the arrival job orders have
been processed.

[End of function ShopSchedule]

function Execute (Current, T)

1. Set the starting time of the current job as T.
2. Set the actual delivery ADti :¼ T þ Pti.
3. Calculate the penalty duration PDti :¼ ADTi – RDti.
4. If PDti . 0, then

a. Set status :¼ PENALTY.

5. Else

a. Set status :¼ NOPENALTY.
[End of Step 4 If]

[End of function Execute]

In the above algorithm, “Shopstat :¼ Free,” means that the
shop is free to start processing a job order.

5.2. Experimental study

The simulation model was coded in Cþþ and run on a PC. We
have run the simulation model for 1000 job orders with 10 dif-
ferent d (from 0.05 to 0.50 with an increment of 0.05). For the
experiments, the job order arrivals, the type of job, and the re-
quired delivery times were generated randomly. The average
job processing times were taken from previous experiments
as reported in Appendix A. The actual processing times, for
each job type, were generated using a normal distribution
with average and standard deviation as shown in Appendix
A. We found that the distribution of job processing times
with machine disruption (as discussed in the previous section)
approximately follows a normal distribution.

In a job shop business, some of the arriving jobs can be pro-
cessed within their given due dates. Some other jobs can be de-
livered late with an agreed penalty per unit time delayed. If the
delay is too long, the penalty will be higher, and that will reduce
the overall revenue. Based on a given job arrival pattern, we
have studied the level of delayed jobs that can be accepted for

maximizing the company revenue. The level of delay is repre-
sented by the parameter d in this study. We have experimented
with different values of d for different job arrival scenarios, and
analyzed the job orders acceptance and rejection numbers and
the overall revenues. For different d values, the percentage of
job orders accepted (with and without penalty) and job orders
declined are presented in Table 4. The results show that the ac-
ceptance of job orders decreases with the increase of the d value.
This is because the penalty is higher with a higher value of d,
and that reduces the overall revenue. Although this behavior is
expected, in this experiment, we are interested finding an appro-
priate value of d that maximizes the earning of the company or
minimizes the financial risk. To determine the best value of d,
we have assumed that an average earning from a successful de-
livery is $500, an opportunity lost cost for a job order is $50, and
a penalty cost is $0.50 per unit time per job order. The resulting
TR values are plotted against d values in Figure 3. From the ex-
perimental results, it shows that d¼ 0.15 is the most appropriate
value to minimize the financial loss, for a given arrival pattern,
under uncertain disruptions. With a lower or higher value of d¼
0.15, the revenue will be reduced for the given capacity.

5.3. Summary of risk management

In Section 5, we have proposed a procedure that makes the ac-
ceptance/rejection decision of the arriving jobs as time passes,
and at the same time, schedules all the accepted jobs, while
considering that the system may be disrupted. In our approach,
we intend to maximize the earning of the production system,
which is basically minimizing the risk of losing revenue. In
making the acceptance/rejection decision, an arriving job
will be accepted if there is enough capacity within its tolerance
limit. We have presented a numerical example to demonstrate
the use of the proposed approach and experimented with dif-
ferent tolerance levels. It is interesting to report that a small tol-
erance is more appropriate than having either no or higher tol-
erance. We are not aware of any such research in the literature.

Table 4. Accepted and declined jobs with varying d

Average Percentage of Jobs

d

Total
Accepted

Accepted
With

Penalty

Accepted
Without
Penalty Declined

0.05 61 22.4 38.6 39
0.10 58 22.2 35.8 42
0.15 54.9 21.3 33.6 45.1
0.20 52.2 20.8 31.4 47.8
0.25 50.2 19.9 30.3 49.8
0.30 48.4 19.5 28.9 51.6
0.35 46.1 18.3 27.8 53.9
0.40 44 17.8 26.2 56
0.45 42.8 18.1 24.7 57.2
0.50 41.9 17.8 24.1 58.1
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6. CONCLUSIONS

The JSP is a well-known combinatorial optimization prob-
lem. A considerable amount of research has already been car-
ried out to improve the algorithms for solving JSPs. Some of
these algorithms are designed for specific cases of these prob-
lems, but still no algorithm guarantees optimality for all JSPs.
In this paper, we have introduced an IMA that provides better
solutions for JSPs than many existing algorithms. As com-
pared to GA alone, we have shown that the IMA not only im-
proves the performance of GA but also reduces the overall
computational requirements.

In almost all research on JSPs, the schedules were produced
under ideal conditions, assuming that there will be no interrup-
tions of any type. We have used IMA as a base algorithm to study
JSPs under sudden machine breakdowns, where the breakdown
information is known after the actual breakdown takes place. We
have solved and experimented with 20 benchmark test problems.
For the condition of machine breakdowns, we have used differ-
ent distributions to generate a numberof breakdown scenarios. In
this study, the experiments were conducted to analyze the effect
of a fixed number of breakdowns on makespan. From the exper-
imental result analysis, it is found that an early breakdown has a
lowereffect on makespan than a breakdown of similar duration at
a later stage of the schedule, and multiple smaller breakdowns
will have a lower effect than one long breakdown.

We have considered JSPs as a business case and developed a
mathematical model to study the revenue earned under differ-
ent scenarios and have also implemented a simulation model to
find the best parameter set for maximizing the revenue. The
simulation model is developed based on the job completion
times under breakdowns. The model shows that the revenue
can be maximized by carefully analyzing the different levels
of risk. In this study, an arriving job is accepted if the process-
ing time of the job is within a certain tolerance limit of the ca-
pacity. From the experiments with different tolerance levels, it
shows that a small tolerance is more appropriate than having
either no or a higher tolerance for minimizing financial risk.
We believe this approach is unique and new in the literature.
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APPENDIX A

Experimental results with random breakdown scenarios

Problems Optimal Average Solution Standard Deviation

la16 945 1027.35 35.062
la17 784 884.90 30.776
la18 848 961.00 34.131
la19 842 975.75 36.963
la20 902 979.34 28.804
la21 1046 1212.91 37.077
la22 927 1111.35 23.984
la23 1032 1162.98 25.556
la24 935 1128.60 27.958
la25 977 1124.13 25.353
la26 1218 1406.39 26.364
la27 1235 1433.55 26.594
la28 1216 1420.29 32.242
la29 1157 1378.33 25.824
la30 1355 1482.68 31.444
la31 1784 1874.68 30.164
la32 1850 2003.95 26.221
la33 1719 1812.67 28.489
la34 1721 1863.48 32.370
la35 1888 1981.46 25.162
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