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abstract

In this paper we adopt the multiple time-series modelling approach suggested by Tiao & Box
(1981) to construct a stochastic investment model for price inflation, share dividends, share
dividend yields and long-term interest rates in the United Kingdom. This method has the
advantage of being direct and transparent. The sequential and iterative steps of tentative
specification, estimation and diagnostic checking parallel those of the well-known Box-Jenkins
method in the univariate time-series analysis. It is not required to specify any a priori causality as
compared to some other stochastic asset models in the literature.
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". Introduction

1.1 Stochastic investment modelling has attracted considerable interest
from actuaries around the world in recent years.

1.2 Wilkie (1986, 1995) developed linear stochastic asset models for
United Kingdom data. Wright (1998) proposed an alternative model based
on vector autoregression. Chan & Wang (1998) refined the price inflation
component of the Wilkie model by performing a time-series outlier analysis.
Whitten & Thomas (1999) suggested a threshold-type non-linear model for
U.K. investment series.

1.3 Following Wilkie's footsteps, stochastic investment models have
been developed for other countries. They include: Metz & Ort (1993) for
Switzerland; Deaves (1993) for Canada; Daykin et al. (1994) for Finland;
Thomson (1996) for South Africa; Frees et al. (1997) for the United States of
America; and Sherris et al. (1999) for Australia.
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1.4 In addition to Wilkie's method, other non-linear or non-Gaussian
approaches for building stochastic asset models have been discussed in the
literature. They include, among many others: Praetz (1972); Carter (1991);
Clarkson (1991); Klein (1993); Finkelstein (1997) and Wong & Li (2000).
1.5 Many stochastic investment models were developed using Box &

Jenkins' (1976, Chapter 11) transfer function techniques. Transfer function
models combine information of other related (and possible stochastic) time
series and an ARIMA (autoregressive-integrated moving average) model of
an underlying disturbance to describe the behaviour of a single series.

1.6 However, in many applications, unidirectional assumptions may not
be appropriate. For example, it is often difficult to postulate the one-way
dynamic relationships between major economic variables using only economic
theory. On the contrary, when studying such variables, a primary objective
may be to uncover the interdependence among the variables of the system.

1.7 In this paper we consider a general VARMA (vector autoregressive-
moving average) model for U.K. investment data. It should be noted that all
stochastic models with transfer function structures could be written as
restricted VARMA models where no feedback is allowed.

1.8 We shall adopt the multiple time-series modelling approach
suggested by Tiao & Box (1981). This method has the advantage of being
direct and transparent. The sequential and iterative steps of tentative
specification, estimation and diagnostic checking parallel those of the well-
known Box-Jenkins method for univariate time-series analysis. Actuarial
applications of this approach can be found in Frees et al. (1997) and Chan
(1998a).

á. Preliminary Data Analysis

2.1 We consider annual observations of force of price inflation I�t�,
share dividend yield Y �t�, force of share dividend growth K�t�, and long-term
interest rate C�t�, from 1923 to 1996 in the U.K. The data used here are the
same as those used by Wilkie (see Acknowledgement).

2.2 Following notations in Wilkie (1995) the force of price inflation I�t�
is defined as:

I�t� � ln Q�t� ÿ ln Q�tÿ 1�

where Q�t� is the value of a retail price index at year t. The force of share
dividend growth K�t� is given by:

K�t� � ln D�t� ÿ ln D�tÿ 1�

where D�t� is the value of a dividend index on ordinary shares at year t.
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Following Wilkie (1995, p857) the real part of the long-term interest rate is
computed as:

CR�t� � C�t� ÿ CW � CM�t�
CM�t� � CD � I�t� � �1ÿ CD� � CM�tÿ 1�

�
where CW � 1:0 and CD � 0:045. The starting value required for the CM�t�
series includes a carry forward from past inflation:

CM�0� �
�

CD

1ÿ �1ÿ CD�B
�

I�0�

where the backwards step operate B is defined by:

B �X�t� � X�tÿ 1�:

Following Wilkie (1987, p70), we shall use the inflation mean parameter
QMU for the neutral value of CM�0�. The definition of QMU can be found
in Wilkie (1995, p780) or {6.2.1 in this paper.

2.3 It is common for the variance of a time series to change as its
level changes. To overcome this non-stationary problem, Box & Cox (1964)
proposed a method for searching for a proper variance stabilising
transformation. A detailed description of the method is available in Wei
(1990). After performing the Box & Cox analysis, we conclude that
logarithmic transformation is needed for the variables Y �t� and CR�t�.
Finally, the variables are arranged into a vector form:

Z�t� �
I�t�

ln Y �t�
K�t�

ln CR�t�

0BB@
1CCA:

2.4 Four commonly used types of outliers are considered in this paper.
They are additive outlier (AO), innovational outlier (IO), level shift (LS) and
temporary change (TC). An additive outlier (AO) affects only the level of
the given observation while an innovational outlier (IO) affects all
observations beyond the given time through the memory of the underlying
outlier-free process. A level shift (LS) is an event that affects a time series at
a particular time point whose effect becomes permanent. A temporary
change (TC) is an event having an initial impact and whose effect decreases
exponentially according to a fixed dampening parameter. For comprehensive
discussions on definitions of time-series outliers and detection algorithm
refer to Chen & Liu (1993) and Chan (1998b).
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2.5 Chan & Wang (1998) performed a time-series outlier analysis on
U.K. inflation data. In some circumstances, not adjusting for outliers could
lead to model mis-specification (Chan, 1992) and biased parameter
estimation (Chang et al., 1988). This can happen when the outliers are due to
poor data readings or where there were disturbances in expected results. In
these circumstances, the outliers should not, or are extremely unlikely to, be
repeated in the future, and not adjusting for the outliers when constructing
the model may then lead to poor forecasts (Ledolter, 1989).

2.6 We have performed outlier detection procedures proposed by Chen
& Liu (1993) on each element of Z�t� and the results are summarised in
Table 2.1.

2.7 The consols yield C�t� is decomposed into two components (see
{2.2):

C�t� � CR�t� � CM�t�
where CM�t� is an allowance for expected future inflation and CR�t� is the
`real' yield. There is no outlier detected in the ln CR�t� series (see Table 2.1).
It should be noted that both the C�t� and the CM�t� series could contain
outliers, but the difference between them (i.e., the real yield series) is not
significantly contaminated. For example, if both C�t� and CM�t� were
contaminated by an additive outlier of size o, then:

CR�t� �
�
C�t� � o

�
ÿ
�
CM�t� � o

�
� C�t� ÿ CM�t�

will not be contaminated. It is often called the cancellation effect.

Table 2.1. Outlier detection results for U.K. investment data, 1923-1996
Outlier

Variable Year Size t-value Type Event

I�t� 1940 0.167 5.33 IO World War II
I�t� 1948 0.089 3.40 AO Post-WWII
I�t� 1975 0.121 3.85 TC First oil shock
I�t� 1980 0.108 3.46 IO Second oil shock

ln Y �t� 1933 ÿ0.443 ÿ3.42 TC World depression
ln Y �t� 1940 0.437 3.98 AO World War II
ln Y �t� 1974 0.670 5.18 TC First oil shock

K�t� 1931 ÿ0.331 ÿ5.79 IO World depression
K�t� 1941 ÿ0.172 ÿ6.07 AO World War II
K�t� 1980 0.218 7.69 AO Second oil shock

ln CR�t� no outlier found
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2.8 Descriptive statistics for both the original series and the outlier-
adjusted series are summarised in Table 2.2. A further display of possible
interrelationships of the variables using a scatterplot matrix is given in
Figure 2.1. As anticipated, the graph shows a positive relationship between
the force of inflation and all other variables.

2.9 Whitten & Thomas (1999) suggested a two-regime non-linear model
for U.K. force of price inflation:

I�t�� QMU1� QA1 � �I�tÿ 1� ÿ QMU1� � QSD1 � QZ�t� if I�tÿ 1� � 10%
QMU2� QA2 � �I�tÿ 1� ÿ QMU2� � QSD2 � QZ�t� if I�tÿ 1� > 10%

�
where QMU1 and QMU2 are the long-run averages of price inflation in the
lower and upper regimes; QA1;QA2;QSD1 and QSD2 are the autoregressive
and standard deviation parameters for the corresponding regimes. This class of
non-linear time-series models was also proposed by Tong (1983, 1990), and is
often referred to as a `threshold autoregressive' (TAR)model in the literature.

2.10 In order to examine whether threshold behaviour is present in the
inflation series, we compute the likelihood ratio test statistic derived by Chan
& Tong (1990). The value is 1.41 for the original data and 5.84 for the
outlier-adjusted series. They should be compared with the critical value of the
test, which is 11.81 at the 5% level. There is insufficient evidence to confirm
that TAR processes are appropriate for modelling U.K. price inflation series
with this test statistic. Furthermore, there are only three observations in the
upper regime of the model for the outlier-adjusted inflation series according
to the partition rule (I�tÿ 1� > 10%) proposed by Whitten & Thomas (1999).
It is difficult to produce efficient estimates of parameters in that regime.

Table 2.2. Summary statistics
Original data Outlier-adjusted series

I�t� ln Y �t� K�t� ln CR�t� I�t� ln Y �t� K�t� ln CR�t�

n 74 74 74 74 74 74 74 74
Mean 0.043 ÿ3.19 0.057 ÿ3.61 0.025 ÿ3.21 0.064 ÿ3.61
Median 0.034 ÿ3.21 0.063 ÿ3.64 0.024 ÿ3.20 0.062 ÿ3.64
Std. dev. 0.056 0.23 0.095 0.57 0.043 0.16 0.064 0.57
Minimum ÿ0.063 ÿ3.66 ÿ0.333 ÿ4.79 ÿ0.079 ÿ3.53 ÿ0.105 ÿ4.79
Maximum 0.232 ÿ2.62 0.269 ÿ2.18 0.153 ÿ2.83 0.185 ÿ2.18
Skewness 0.91 0.12 ÿ1.70 0.24 0.15 0.03 ÿ0.53 0.24
Kurtosis 4.24 2.69 7.94 2.65 3.31 2.59 3.05 2.65

Correlation Correlation
I�t� 1.00 1.00

ln Y �t� 0.59 1.00 0.22 1.0
K�t� 0.37 0.06 1.00 0.38 ÿ0.08 1.00

ln CR�t� 0.51 0.57 0.13 1.0 0.61 0.43 0.11 1.00
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2.11 On the basis of the above preliminary analysis, we prefer to use the
vector ARMA models rather than cascade-type transfer function models or
threshold autoregressive models. Vector ARMA models are closely linked to
other econometric models, such as state-space models (see Reinsel, 1997,
p53) and simultaneous equation models (see Lu« tkepohl, 1993, Chapter 10).
We will aim to show that VARMA models can lead to more effective
characterisations of multivariate time-series (see {6.5).

â. Model Building Strategy for VARMA Models

3.1 In this section we review the multiple time-series modelling
approach due to Tiao & Box (1981). We shall restrict the discussion to points
necessary for describing the applications in this paper. Further details can
be found in Tiao & Box (1981) and Reinsel (1997).

Figure 2.1. Scatterplot matrix for U.K. outlier-adjusted investment data,
1923-1996

I�t�

ln Y �t�

K�t�

ln CR�t�
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3.2 We consider a k-dimension vector time series Z�t� � �Z1�t�;
Z2�t�; . . . ;Zk�t��0 with a VARMA(p; q) representation:

Z�t� � C0 �
Xp

i�1
AiZ�tÿ i� �

Xq

j�1
Bje�tÿ j� � e�t�

where C0 is a k� 1 intercept vector and Ais and Bjs are k� k autoregressive
and moving average coefficient matrices, respectively. The residual vectors
e�t� are independently and identically distributed as normal variates with
mean zero and variance-covariance matrix R. For the application in this
paper, the vector Z is given in {2.3 and k � 4.

3.3 The elements of the autoregressive coefficient matrices Ai can be
denoted by far;s;ig, where r � 1; . . . ; k and s � 1; . . . ; k. It should be noted that
ar;s;i is a coefficient quantifying the lead-lag relation between the rth element
of Z�t� and the sth element of Z�tÿ i�. Similarly, fbr;s;ig, the �r; s� element of
Bi, is a coefficient representing the lead-lag relation between the rth element
of e�t� and the sth element of e�tÿ i�. For example, with the vector Z given in
{2.3, the value for a2;3;4 would quantify the lead-lag relation between the
logarithm of dividend yields (ln Y �t�) and the force of share dividend growth
i � 4 time periods earlier K�tÿ i�. Similarly, the value for b1;2;4 would
quantify the lead-lag relation between the residual error for the force of
inflation and the residual error for the logarithm of dividend yields i � 4 time
periods earlier.

3.4 It should be noted that the mean l of the vector process Z,
l � E�Z�t��, is related to the intercept term C0 according to:

l � �Iÿ A1 ÿ A2 ÿ . . .ÿ Ap�ÿ1C0

where I is the k� k identity matrix.
3.5 We define the autoregressive matrix polynomial of order p as:

A�B� � A0 ÿ A1Bÿ A2B
2 ÿ . . .ÿ ApB

p

where A0 � I and B is the `lag operator'. The lag operator is defined by the
transformation:

BtZ�t� � Z�tÿ t� t � 1; 2; 3; . . . :

3.6 The vector time-series process Z�t� is stationary if the zeros of the
determinantal polynomial jA�B�j are all outside the unit circle. Stationarity
imposes a behaviour on the series that is without any systematic changes in
level (trend), variance or strictly periodic behaviour (Chatfield, 1985). In this
paper we only consider stationary processes for Z�t�.
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3.7 A stationary VARMA model can be characterised by its cross-
correlation matrices, denoted by:

r�l� � Cor�Z�t�;Z�tÿ l��

for all integers l.
3.8 Analogous to the partial autocorrelation function for univariate

time-series (Box & Jenkins, 1976, p64), Tiao & Box (1981) defined the partial
autoregression matrix at lag l, denoted by P�l�, as the last coefficient matrix
of the following multivariate linear regression:

Z�t� l� � Ul;1Z�t� lÿ 1� �Ul;2Z�t� lÿ 2� � � � � �Ul;lZ�t� � e

where e is the error term.
3.9 When p � 0, that is Z�t� is a vector AR(p) process, the partial

autoregression matrices P�l� are zero for l > p. On the other hand, the cross-
correlation matrices r�l� of a vector MA(q) process are zero for l > q. These
`cut-off' properties provide very useful information for identifying the order
of the underlying VARMA model.

3.10 The orthodox modelling strategy (iterative stages of model
identification, estimation and diagnostic checking) proposed by Box &
Jenkins (1976) for univariate time-series can be extended and applied to
multiple time-series.

3.11 Given a vector time-series of n observations Z�1�;Z�2�; . . . ;Z�n�,
we can compute the sample cross-correlation matrix (SCCM):

bq�l� � fbrij�l�g

where the brij�l� are the sample cross-correlations for the ith and jth
component series:

brij�l� �
Pnÿl

t�1�Zi�t� ÿ Zi��Zj�t� l� ÿ Zj�
�Pn

t�1�Zi�t� ÿ Zi�2
Pn

t�1�Zj�t� ÿ Zj�2�1=2

and Zi and Zj are the sample averages of the corresponding component
series. If the series e�t� is a white noise, the standard error of each element of
the SCCM is approximately 1=

���
n
p

.
3.12 The sample partial autoregression matrices (SPAM) P̂�l� and their

standard errors can be obtained by fitting autoregressive models of
successively higher order by least squares. Tiao & Box (1981) recommended
using the likelihood ratio statistic to test the null hypothesis P�l� � 0 against
the alternative P�l� 6� 0. To conduct such a test, we compute:
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U � jR̂�l�j=jR̂�lÿ 1�j

where R̂�l� is the matrix of residual sum of squares and cross products after
fitting a vector AR(l) to the data. Using Bartlett's (1938) approximation, the
likelihood statistic:

M�l� � ÿ nÿ 3
2
ÿ lÿ l � k

� �
ln U

is, on the null hypothesis, asymptotically distributed as w2 with k2 degrees of
freedom (k is the dimension of the model).

3.13 The SPAM are particularly useful in identifying lower order
autoregressive models, as its theoretical counterparts P�l� are zero beyond lag
p for a vector AR(p) process.

3.14 Unfortunately, the SCCM and SPAM are complex when the
dimension of the vector is increased. The crowded figures often make
recognition of patterns difficult. To alleviate the problem, Tiao & Box (1981)
suggested summarising these matrices using indicator symbols �, ÿ and �,
where � denotes a value greater than twice the estimated standard error, ÿ
denotes a value less than twice the estimated standard error, and � denotes an
insignificant value based on the above criteria.
3.15 After the order of the VARMA model is tentatively selected,

asymptotically efficient estimates of the parameters can be determined using
the maximum likelihood approach. Approximate standard errors of the
estimates of the elements of Ai and Bj can also be obtained and used to test
for the significance of the parameters. Further gains in the efficiency of the
estimates may be achieved by eliminating parameters that are found to be
statistically insignificant. Interested readers may refer to Reinsel (1997,
Chapter 5) for a detailed discussion of the maximum likelihood estimation
for vector ARMA models.

3.16 The maximisation of the likelihood function can be conducted
by a conditional likelihood method or an exact likelihood method. The
conditional likelihood method is computationally convenient, but may be
inadequate if the sample size (n) is not sufficiently large. In this paper
we estimate the parameters initially using the conditional likelihood
approach and eliminate parameters that are small relative to their
standard error. The model is then re-estimated using the exact likelihood
method.

3.17 To guard against model mis-specification, a detailed diagnostic
analysis of the residuals is required. This includes an examination of the plots
of standardised residuals and the SCCM and SPAM of the residuals. At
this stage, the M�l� statistic provides a criterion for checking residual serial
correlation.
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ã. The Fitted Model

4.1 The Box & Tiao's (1981) VARMA modelling strategy has been
implemented by some time-series computer packages, such as Autobox and
SCA. The analysis performed in this paper was carried out using the SCA
programming system (Liu & Hudak, 1994).

4.2 We first compute the sample cross-correlation matrices (SCCM) and
the sample partial autoregression matrices (SPAM) for U.K. investment
series.

4.3 Part (a) of Table 4.1 contains summary information for the SCCM
in terms of the ��;ÿ; �� symbols. The criteria used to designate a symbol were
discussed in {3.14. The �i; j� element of the indicator matrix at lag l
summarises the significance of the lag l cross-correlation when the
component series Zj�t� leads the component series Zi�t�. Furthermore, the
diagonal elements summarise the significance of the sample autocorrelations
for each series.

4.4 Part (b) of Table 4.1 shows the indicator symbols for the SPAM.
Like the partial autocorrelation function for the univariate case, the SPAM
has the `cut-off' property for vector AR processes. However, it is important
to note that, unlike the univariate partial autocorrelation function, the off-
diagonal elements of the SPAM are not proper correlation coefficients (see
Wei, 1990, p353 for details). Therefore, in general, SPAM(1) 6� SCCM(1).
4.5 The SCCM clearly does not show a `cut-off' pattern. The M�l�

statistic for the SPAM at the first lag is 202.54, which should be compared
with w216;0:95 � 26:30 at a 5% level. We also see that SPAM(2) and SPAM(3)
have no significant terms, and SPAM(4) has only two out of 16. We
tentatively specify a VAR(1) model for the data.

Table 4.1. Indicator matrices for the SCCM and SPAM
lag l

1 2 3 4 5

(a) Sample cross-correlation matrices (SCCM)

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA
� � � �
� � � �
� � � �
� � � �

0BB@
1CCA
� � � �
� � � �
� � � �
� � � �

0BB@
1CCA
� � � �
� � � �
� � � �
� � � �

0BB@
1CCA
� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

(b) Sample partial autoregression matrices (SPAM)

� ÿ � �
� � � �
� � � �
� ÿ � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � ÿ �
� � � �

0BB@
1CCA

� ÿ � �
� ÿ � �
� � � �
� � � �

0BB@
1CCA

M�l� 202.54 14.25 15.01 18.05 33.96

554 Stochastic Investment Modelling: a Multiple Time-Series Approach

https://doi.org/10.1017/S1357321700003822 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700003822


4.6 We first estimate the specified VAR(1) model using the conditional
likelihoodmethod (seeWilson, 1973). All parameters in themodel are computed.
Imposing zero restrictions on the coefficients that are insignificant, we re-
estimate the remaining parameters by the exact likelihood method (see Reinsel,
1997, Chapter 5). The final estimated parametermatrices are given as follows:

Ĉ0 �

ÿ0:049
ÿ1:172
0:047
ÿ1:221

0BBB@
1CCCA Â1 �

0:502 ÿ0:044 0 0:021
0 0:646 0:551 0
0 0 0:280 0
0 ÿ0:328 0 0:955

0BBB@
1CCCA

and

R̂ �

0:000820
0:000136 0:014797
0:000579 ÿ0:000164 0:003706
0:001710 0:003680 0:000679 0:038967

0BBB@
1CCCA:

4.7 We examine, in Table 4.2, the indicator matrices of the SCCM and
SPAM for the residuals from the fitted VAR(1) model. There are some
significant cross-correlations left in the residuals. The M�l� statistic for the
residual SPAM at the fourth lag is still 27.35, which should be compared
with w2

16;0:95 � 26:30 at a 5% level. The results indicate that a simple VAR

Table 4.2. Indicator matrices for the residual SCCM and SPAM of the
fitted VAR(1)

lag l
1 2 3 4 5

(a) Sample cross-correlation matrices (SCCM)

� � � �
� � � �
� ÿ � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � ÿ �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� ÿ � �
� � � �
� � � �

0BB@
1CCA

(b) Sample partial autoregression matrices (SPAM)

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � ÿ �
� � � ÿ

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � ÿ
� � � �
� � ÿ �
� � � �

0BB@
1CCA

� � � �
� ÿ � �
� � � �
� � � �

0BB@
1CCA

M�l� 16.16 10.80 11.75 27.35 24.28
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model (as suggested by Wright, 1998) cannot efficiently describe the
behaviour of the vector series. We need a mixed vector process. Therefore, a
simple mixed VARMA(1,1) model is re-specified.

4.8 We estimate all the parameters in the VARMA(1,1) model using the
conditional likelihood method. We refer to this as the `full model'. Imposing
zero restrictions on the coefficients that are insignificant, we re-estimate the
`final model' by the exact likelihood method. The estimation results are
summarised in Table 4.3.

4.9 The final estimated model in Table 4.3 can be re-written as follows:

I�t� � 0:074� 0:506 I�tÿ 1� � 0:017 ln CR�tÿ 1� � e1�t� ÿ 0:063 e2�tÿ 1�
ln Y �t� � ÿ1:583� 1:067 I�tÿ1� � 0:487 ln Y �tÿ1� � 0:025 ln CR�tÿ1� � e2�t�

K�t� � 0:087ÿ 0:342 K�tÿ 1� � e3�t� � e3�tÿ 1�
ln CR�t� � ÿ0:365� 0:897 ln CR�tÿ 1� � e4�t� ÿ 0:522 e2�tÿ 1� � 0:266 e4�tÿ 1�

with:

R̂ �

0:000804
0:000103 0:014178
0:000404 ÿ0:001131 0:002695
0:001340 0:003279 0:000278 0:036243

0BBB@
1CCCA:

4.10 The corresponding residual correlation matrix is computed as:

1
0:031 1
0:274 ÿ0:183 1
0:248 0:145 0:028 1

0BBB@
1CCCA:

The two standard error limits �2= ���
n
p

, appropriate for a vector white noise
process, can be used as guidelines in assessing the significance of individual
residual correlations. With n � 74 observations, only values over 0.232 would
be significant at a 2.5% level, so four out of these six correlations could
reasonably be taken as zero, and the other two are not vastly significant.

4.11 The indicator matrices of the SCCM and SPAM for the residuals
are given in Table 4.4. The M�l� statistics for l � 1; . . . ; 5 are, respectively,
16.74, 9.86, 8.20, 18.50 and 18.04, which are insignificant at a 5% level (note
that the critical value for a � 5% is w216;0:95 � 26:30). Residual checks using
the cross-correlation matrices show no significant serial correlation. We
conclude that the fitted model is adequate for the vector series.
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Table 4.3. Estimation results� of the VARMA(1,1) model based on outlier-adjusted data
C0 A1 B1 R� 10ÿ2

(a) Full model

ÿ0:022
�0:091�

ÿ1:431
�0:405�

ÿ0:285
�0:258�

ÿ0:845
�0:853�

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

0:787 ÿ0:012 ÿ0:043 0:002
�0:157� �0:032� �0:109� �0:010�

0:937 0:540 ÿ0:070 0:018
�0:710� �0:142� �0:382� �0:047�

0:582 ÿ0:111 ÿ0:359 ÿ0:000
�0:480� �0:090� �0:124� �0:034�

0:694 ÿ0:089 ÿ0:149 0:845
�1:539� �0:299� �0:577� �0:106�

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

0:379 0:070 ÿ0:052 ÿ0:053
�0:210� �0:046� �0:138� �0:021�

0:443 ÿ0:062 ÿ0:704 ÿ0:106
�0:859� �0:181� �0:456� �0:083�

0:589 ÿ0:054 ÿ0:971 0:012
�0:401� �0:065� �0:089� �0:031�

0:918 0:353 ÿ0:572 ÿ0:505
�1:544� �0:295� �0:609� �0:136�

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

0:0749

ÿ0:0036 1:2515

0:0496 ÿ0:1096 0:2596

0:1272 0:2267 0:0308 3:6611

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA

(b) Final model

0:074
�0:027�

ÿ1:583
�0:268�

0:087
�0:014�

ÿ0:365
�0:188�

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

0:506 0 0 0:017
�0:091� �0:007�

1:067 0:487 0 0:025
�0:383� �0:090� �0:032�

0 0 ÿ0:342 0
�0:106�

0 0 0 0:897
�0:051�

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

0 0:063 0 0
�0:027�

0 0 0 0

0 0 ÿ1:000 0
�0:024�

0 0:522 0 ÿ0:266
�0:185� �0:117�

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

0:0804

0:0103 1:4178

0:0404 ÿ0:1131 0:2695

0:1340 0:3279 0:0278 3:6243

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

�Note: Standard errors of the estimates are given in parentheses.

S
tochastic

Investm
entM

odelling:a
M

ultiple
T
im

e-S
eries

A
pproach

557

https://doi.org/10.1017/S1357321700003822 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1357321700003822


ä. Discussion

5.1 Data-Based vs Theory-Based Modelling Approaches
5.1.1 Huber & Verrall (1999) argued that a theory-based approach is the

most suitable method for actuarial economic modelling. Their paper
addresses one of the most fundamental issues in the philosophy of scientific
modelling, namely the way that models are formulated.

5.1.2 Analogous to Bayesianism in statistical modelling, theory-based
methods take in financial economic theories as prior knowledge. On the other
hand, following the frequentist philosophy in statistics, data-based methods
mainly rely on observed data.

5.1.3 Actuaries, economists and statisticians have been discussing the
appropriateness of these modelling approaches for many years. Feller (1966,
p52) stated that:

``Theories of this nature [developed purely with an industry of goodness of fit testing,
without theoretical reasons why the proposed models are appropriate] are short-lived
because they open no new ways, . . ., it may be useful to have an explicit demonstration of
how misleading a mere goodness of fit can be.''

On the other hand, Chatfield (1995, p428) quoted Professor John Tukey's
comment on this issue from a frequentist's point of view:

``we need more honest foundations for data analysis which do not rely on `assuming that
we always know what is in fact we never know'.''

Table 4.4. Indicator matrices for the residual SCCM and SPAM of the
final model

lag l
1 2 3 4 5

(a) Sample cross-correlation matrices (SCCM)

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� ÿ � �
� � � �
� � � �

0BB@
1CCA

(b) Sample partial autoregression matrices (SPAM)

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � ÿ
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� ÿ � �
� � � �
� � � �

0BB@
1CCA

M�l� 16.74 9.86 8.20 18.50 18.04
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5.1.4 However, these two approaches of modelling are not always
mutually exclusive. In fact, most researchers used a blend of both methods,
perhaps with a greater emphasis on one over the other. For examples:
Blaug (1992); Hausman (1992); Caldwell (1994); Pemberton (1999) and
Huber & Verrall (1999) favoured the Bayesian/theory-based philosophy.
Others, like Box (1976); Leamer (1978, Chapter 6); Efron (1986) and Tiao
& Tsay (1994) have put a greater emphasis on frequentist/data-based
methods.

5.1.5 Huber & Verrall (1999) characterised the original Wilkie (1986,
1995) model as data-based. On the contrary, Wilkie (2000) described his
model as strongly theory-based:

``My method is not like that at all. It is very strongly theory-based, though it is different
theory from that of some financial economists. Further, my approach has changed to some
extent over the years, from the Report of the Maturity Guarantees Working Party (Ford
et al., 1980) through Wilkie (1981) and Wilkie (1986) to Wilkie (1995). As I have learned
more, my method has become even more theory-based.''

5.1.6 While debating for the philosophical superiority of theory-based
or data-based methods is beyond the scope of this paper, it is important
to note that we have emphasised the frequentist viewpoint in deriving the
final model. Even though the proposed VARMA(1,1) model is very
much data-driven, its coefficients are not totally without economic
explanation.

5.1.7 The first equation in {4.9 indicates that the force of inflation is
positively led by the last year's inflation and long-term real interest rates.
Fama (1990) has also found that long-term interest rates might be helpful in
forecasting the future path of inflation. Furthermore, during a recession, it is
well-known that low inflation would lead to fall of corporate profits. The
second equation of {4.9 has correctly identified a positive coefficient between
ln Y �t� and I�tÿ 1�.

5.1.8 Wilkie (1995, p839) specified the connection between I�t� and K�t�
through a DM�t� variable. Wilkie (2000) explained the theory behind his
formulation. In this article, we do not assume the DM�t� structure as in
Wilkie (1995, p835). However, the relationship between I�t� and K�t� has
been automatically revealed (and modelled) in the residual correlation matrix
(see {4.10) of the final model. The corresponding correlation coefficient is
0.274, the highest among all the entries in the matrix.

5.2 Outliers in the Data
5.2.1 Whether or not it is appropriate to adjust the data for the outliers

depends on the purpose to which the model so derived will be used. If
the model will be used in an application for which extreme stochastic
fluctuations are less important (e.g. to ensure that premiums are adequate in
most, but not extreme, scenarios), then it may be preferable to use a model
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based on outlier-adjusted data. If, however, the model will be used in an
application for which extreme stochastic fluctuations are important (such as
pricing catastrophe risks or ensuring that investment guarantee reserves are
sufficient to keep an insurance company solvent in all but the most extreme
scenarios), then a model which is sympathetic to outliers in the data ought to
be used.

5.2.2 Various alternative approaches have been proposed for dealing
with outliers. For example, one would use the outlier-adjusted data to build
the `skeleton' of the model, and then estimate the parameters from the data
with the outliers put back in. For U.K. investment data, the `skeleton' of the
model is specified as VARMA(1,1), using the outlier-adjusted data in {4.
The estimated parameters from the raw data (i.e., with the outliers put back
in) are given as:

Ĉ0 �

0:132
�0:036�
ÿ1:311
�0:292�
0:040
�0:016�
ÿ0:325
�0:183�

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
Â1 �

0:411 0 0 0:029
�0:096� �0:009�
0:627 0:487 0 0:099
�0:391� �0:095� �0:040�

0 0 0:289 0
�0:182�

0 0 0 0:908
�0:050�

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

B̂1 �

0 ÿ0:035 0 0
�0:027�

0 0 0 0

0 0 ÿ0:302 0
�0:181�

0 0:485 0 ÿ0:308
�0:135� �0:118�

0BBBBBBBBBBB@

1CCCCCCCCCCCA
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R̂ �

0:001642

0:002407 0:024432

0:001305 0:000374 0:006383

0:000224 0:007577 ÿ0:000748 0:034812

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

:

5.2.3 The fitted VARMA(1,1) model using the above parameters can be
re-written in equation format as:

I�t� � 0:132� 0:411 I�tÿ 1� � 0:029 ln CR�tÿ 1� � e1�t� � 0:035 e2�tÿ 1�
ln Y �t� � ÿ1:311� 0:627 I�tÿ1� � 0:487 ln Y �tÿ1� � 0:099 ln CR�tÿ1� � e2�t�

K�t� � 0:040� 0:289 K�tÿ 1� � e3�t� � 0:302 e3�tÿ 1�
ln CR�t� � ÿ0:325� 0:908 ln CR�tÿ1� � e4�t�ÿ0:485 e2�tÿ1� � 0:308 e4�tÿ1�:

5.2.4 On the other hand, we may keep the structure and the parameter
values exactly as in Table 4.3, in which the outliers are omitted, and then
only estimate the residual variance-covariance matrix R from the data
without omitting the outliers. This approach can also be used for dealing
with outliers. The estimation result is given as:

R̂ �
0:001653
0:002672 0:026073
0:001336 0:002095 0:013268
0:000922 0:011364 0:004651 0:042972

0BB@
1CCA:

5.2.5 An alternative approach for dealing with outliers involves sampling
from the empirical distribution of fitted `errors' instead of sampling from the
assumed multivariate normal distribution. This is called `resampling' or
`bootstrapping' in the literature. The procedure effectively approximates the
theoretical distribution of innovations by the empirical distribution of the
observed residuals. Thus it is a distribution-free method. An excellent review
on the use of computationally intensive methods for complex economic
models is given by Veall (1989).

5.2.6 Another approach is to assume a non-Gaussian heavy-tailed error
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distribution to model the outliers. Classical analysis of non-Gaussian time-
series models sometimes requires computationally intensive techniques such
as Markov chain Monte Carlo (MCMC) methods. Interested readers may
refer to Chambers et al. (1976); Finkelstein (1997) and Durbin & Koopman
(2000).

å. Comparison with the Wilkie Model

6.1 Force of Price Inflation
6.1.1 The Wilkie (1995) model for the force of price inflation series I�t�

is:

I�t� � QMU� QA�I�tÿ 1� ÿ QMU� � QE�t�

QE�t� � i:i:d: N�0;QSD2�:

6.1.2 The fitted parameters, based on the original series from 1923 to
1996, were computed as:

QMU � 0:0459 QA � 0:6100 QSD � 0:04229:

The values are very similar to the results given by Wilkie (1995, p785) for
the period 1923-94.

6.1.3 The estimated parameters for the outlier-adjusted series of the
same period were obtained as:

QMU� � 0:0284 QA� � 0:6653 QSD� � 0:03139:

6.1.4 The force of price inflation process obtained by the preliminary
VAR(1) model in {4.6 is:

I�t� � ÿ0:049� 0:502 I�tÿ 1� ÿ 0:044 ln Y �tÿ 1� � 0:021 ln CR�tÿ 1� � e1�t�

with QSD�� � 0:0286.
6.1.5 The force of price inflation equation implied by the final fitted

VARMA model in Table 4.3, using the outlier-adjusted data is:

I�t� � 0:074� 0:506 I�tÿ 1� � 0:017 ln CR�tÿ 1� � e1�t� ÿ 0:063 e2�tÿ 1�

with QSD��� � 0:0284. In addition to its last year's realisation, the price
inflation series is led one-year by both the long-term real interest rate and the
residual of the corresponding share dividend yield series.

6.1.6 The force of price inflation equation derived from the final fitted
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VARMA model in {5.2.2, using the original data (without outlier
adjustments), is:

I�t� � 0:132� 0:411 I�tÿ 1� � 0:029 ln CR�tÿ 1� � e1�t� � 0:035 e2�tÿ 1�

with QSD���� � 0:0405.
6.1.7 Another model discussed in {5.2.4 is to keep the inflation equation

exactly as in {6.1.5, and then compute the residuals (and QSD) from the
original data. The result is QSD����� � 0:0407:
6.1.8 We now analyse residuals obtained from different models for price

inflation. For convenience, the models described in {6.1.2, {6.1.3, {6.1.4,
{6.1.5, {6.1.6 and {6.1.7 are denoted by Model A1, Model B1, Model C1,
Model D1, Model E1 and Model F1, respectively.

6.1.9 Normality, independence, homoscedasticity and linearity assumptions
for residuals were formally checked by statistical tests. We employ Jarque &
Bera's (1981) test for normality, Ljung & Box's (1978) test for serial
independence, Engle's (1982) test for homoscedasticity and McLeod & Li's
(1983) test for linearity. A brief description of these tests is given in Appendix
A. The test results are summarised in Table 6.1. Model B1, Model C1 and
Model D1 passed all the tests. However, it should be noted that Models B1 -
D1 are based on the outlier-adjusted inflation series, while Model A1 and
Models E1 - F1 are for the raw price inflation data.

6.1.10 The price inflation rates can be converted back to the retail price
index Q�t�:

Q�t� � Q�tÿ 1� � exp�I�t��:

6.1.11 In Figure 6.1, we show a set of ten simulations of Q�t� using
Model B1 from 1997 to 2050, along with the past record since 1950, all on a
logarithmic scale. Another ten simulations using Model D1 are plotted in
Figure 6.2. The same innovations are used for these two sets of simulations.

6.1.12 The simulations using the Model D1 system fluctuate more
widely as compared with those from the outlier adjusted Wilkie model. This
is because the variation of future inflation paths is dominated by its QE�t�
random series under the Wilkie model. On the other hand, price inflation
under the proposed VARMA(1,1) structure has explicit interaction among
other variables (see {4.9). Its future movements are also affected by the error
terms of other variables implicitly through the residual variance-covariance
matrix R̂.

6.2 Share Dividend Yields
6.2.1 The model proposed by Wilkie (1995, p818) for the share dividend

yield (with logarithmic transformation) at time t, ln Y �t�, is as follows:

Stochastic Investment Modelling: a Multiple Time-Series Approach 563

https://doi.org/10.1017/S1357321700003822 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700003822


ln Y �t� � ln Y MU� Y W � I�t� � Y N�t�
Y N�t� � YA � Y N�tÿ 1� � Y E�t�

Y E�t� � i:i:d: N�0; Y SD2�:

6.2.2 The suggested parameters, based on the experience from 1923 to
1996, were computed as:

Y MU � 0:0378 Y W � 1:7853 YA � 0:5708 Y SD � 0:154:
�0:0089� �0:4241� �0:0946�

The corresponding standard errors of the estimates are given in parentheses.
6.2.3 There were doubts about including the parameter Y W in the

model. Wilkie (1995, p821) supported the original model (i.e. Y W is

Table 6.1. Diagnostic checking of residuals from different models
for inflation

Model

A1 B1 C1 D1 E1 F1

(1) Model characteristics
Type AR AR VAR VARMA VARMA VARMA
Order (1) (1) (1) (1,1) (1,1) (1,1)
Period 1923-96 1923-96 1923-96 1923-96 1923-96 1923-96
Outlier adjustment No Yes Yes Yes No Yes/No�

(2) Analysis of residuals
Median ÿ0.0003 0.0002 ÿ0.0001 0.0014 0.0001 0.0095
Standard deviation 0.0426 0.0313 0.0286 0.0284 0.0408 0.0407
Skewness 1.1311 0.1020 0.1214 0.2327 0.9412 1.1759
Kurtosis 5.1414 3.0635 2.9344 3.0733 4.5771 5.1299

(a) Test for normality
Test statistic (JB) 29.51 0.14 0.19 0.68 18.34 30.62
p-value 0.0000 0.9324 0.9094 0.7118 0.0001 0.0000

(b) Test for independence
Test statistic (Q15) 8.90 9.92 10.74 8.90 10.90 8.50
p-value 0.8374 0.7680 0.5513 0.6311 0.4517 0.6679

(c) Test for ARCH effects
Test statistic �L M� 0.1955 0.0283 0.2747 0.1452 0.9908 0.0116
p-value 0.6584 0.8665 0.6002 0.7031 0.0000 0.9141

(d) Test for linearity
Test statistic (Q�12) 6.1245 8.6526 11.9678 10.8172 7.3551 4.9138
p-value 0.9097 0.7323 0.4483 0.5446 0.8333 0.9608

�Note: the model uses both the original and outlier-adjusted data (see {5.2.4)
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Figure 6.1. Retail prices index, 1950-1996, and simulations, 1997-2050,
using Model B1

Figure 6.2. Retail prices index, 1950-1996, and simulations, 1997-2050,
using Model D1
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retained), and produced two arguments: (i) the parameter estimate for Y W
is over three standard errors away from zero, so is clearly significant; and (ii)
omitting Y W worsens the log likelihood function by 6.9 (much more than
the commonly used criterion 2.0), so the improvement of the model with Y W
is highly significant.

6.2.4 The fitted parameters for the outlier-adjusted series were
calculated as:

Y MU� � 0:0399 Y W � � 0:3444 YA� � 0:6072 Y SD� � 0:127:
�0:0093� �0:4922� �0:0935�

6.2.5 It is interesting to note that Y W � is now not significantly different
from zero (t-value � 0:70). Excluding Y W � from the model only worsens the
log likelihood function by 0.51. It again shows that adjusting the data for
outliers could significantly affect the estimation results.

6.2.6 The share dividend yield process obtained by the preliminary
VAR(1) model in {4.6 is:

ln Y �t� � ÿ1:172� 0:646 ln Y �tÿ 1� � 0:551 K�tÿ 1� � e2�t�

with Y SD�� � 0:122:
6.2.7 The share dividend yield equation implied by the final fitted

VARMA model in Table 4.3 is:

ln Y �t� � ÿ1:583� 1:067 I�tÿ 1� � 0:487 ln Y �tÿ 1�
� 0:025 ln CR�tÿ 1� � e2�t�

with Y SD��� � 0:119.
6.2.8 The share dividend yield equation derived from the fitted

VARMA model in {5.2.2 is:

ln Y �t� � ÿ1:311� 0:627 I�tÿ 1� � 0:487 ln Y �tÿ 1�
� 0:099 ln CR�tÿ 1� � e2�t�

with Y SD���� � 0:156.
6.2.9 An alternative model, discussed in {5.2.4, is to keep the share

dividend yield equation exactly as in {6.2.7, and then compute the residuals
from the original data. The resulting Y SD����� value is 0.161.
6.2.10 We now analyse residuals obtained from different models for

ln Y �t�. For convenience, the models described in {6.2.2, {6.2.4, {6.2.6,
{6.2.7, {6.2.8 and {6.2.9 are denoted by Model A2, Model B2, Model C2,
Model D2, Model E2 and Model F2, respectively. The results are
summarised in Table 6.2.
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Table 6.2. Residual checking of different models for share dividend yields
Model

A2 B2 C2 D2 E2 F2

Median ÿ0.0193 0.0046 0.0025 0.0006 ÿ0.0086 ÿ0.0138
Standard deviation 0.1546 0.1277 0.1216 0.1192 0.1574 0.1615
Skewness 0.2273 0.1328 0.0380 ÿ0.0118 0.4960 0.6812
Kurtosis 3.1524 2.5285 2.4373 2.7650 4.5591 3.7149

(a) Test for normality
Test statistic (JB) 0.70 0.89 0.98 0.17 10.39 14.59
p-value 0.7047 0.6408 0.6126 0.9139 0.0055 0.0007

(b) Test for independence
Test statistic (Q15) 14.6 11.1 12.2 16.1 13.7 13.8
p-value 0.2640 0.5204 0.3488 0.1411 0.2500 0.2443

(c) Test for ARCH effects
Test statistic �L M� 0.5497 0.9395 0.0214 0.0005 0.0796 0.0039
p-value 0.4584 0.3324 0.8837 0.9828 0.7779 0.9500

(d) Test for linearity
Test statistic (Q�12) 17.0459 25.5918 8.6673 10.9147 7.9970 4.4407
p-value 0.1479 0.0123 0.7311 0.5211 0.7854 0.9741

Figure 6.3. Dividend yield, 1950-1996, and simulations, 1997-2050,
using Model D2
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6.2.11 The linearity test result with Model B2 (see part (d) of Table 6.2)
shows that the outlier adjustments could affect linearity. This is consistent
with Chan (1994), who found that standard portmanteau tests are not
generally robust to outliers. It therefore appears that the portmanteau-type
test for linearity employed in this paper could be affected by time-series
outlier adjustments.

6.2.12 In Figure 6.3 we show a set of ten simulations of Y �t� at annual
intervals from June 1997 to 2050, along with the past record since 1950, on a
linear scale using the proposed VARMA(1,1) model in {4.9.

6.3 Force of Share Dividend Growth
6.3.1 The original model proposed by Wilkie (1995) for the force of

share dividend growth at time t, K�t�, is as follows:
K�t� � DMU� DI�t� � DY � Y E�tÿ 1� � DB � DE�tÿ 1� � DE�t�

DI�t� � DW � DM�t� � �1ÿ DW � � I�t�
DM�t� � DD � I�t� � �1ÿ DD� � DM�tÿ 1�

DE�t� � i:i:d: N�0;DSD2�:

6.3.2 The estimation results of the above model using observations from
1923 to 1996 are:

DMU � 0:0135 DY � ÿ0:1800 DB � 0:5495
�0:0120� �0:0427� �0:0977�

DW � 0:5358 DD � 0:1528 DSD � 0:0664:
�0:2146� �0:0789�

The corresponding standard errors of the estimates are given in parentheses.
The values are very similar to the results given by Wilkie (1995, p843) for the
period 1923-94.

6.3.3 The estimated parameters for the outlier-adjusted series are shown
below:

DMU� � 0:0416 DY � � ÿ0:1138 DB� � 0:4075
�0:0086� �0:0470� �0:1101�

DW � � 0:5575 DD� � 0:0578 DSD� � 0:0525:
�0:2031� �0:0305�

6.3.4 The force of share dividend growth process obtained by the fitted
VAR(1) model in {4.6 is:

K�t� � 0:047� 0:280 K�tÿ 1� � e3�t�

with DSD�� � 0:0609.

568 Stochastic Investment Modelling: a Multiple Time-Series Approach

https://doi.org/10.1017/S1357321700003822 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700003822


6.3.5 The force of share dividend growth equation implied by the final
fitted VARMA model in Table 4.3 is:

K�t� � 0:087ÿ 0:342 K�tÿ 1� � e3�t� � e3�tÿ 1�

with DSD��� � 0:0519.
6.3.6 The force of share dividend growth equation derived from the

fitted VARMA model in {5.2.2 is:

K�t� � 0:040� 0:289 K�tÿ 1� � e3�t� � 0:302 e3�tÿ 1�

with DSD���� � 0:0799.
6.3.7 An alternative model, discussed in {5.2.4, is to keep the force of

share dividend growth equation exactly as in {6.3.5, and then compute the
residuals from the original data. The resulting DSD����� value is 0.1152.
6.3.8 We now analyse residuals obtained from different models for K�t�.

For convenience, the models described in {6.3.2, {6.3.3, {6.3.4, {6.3.5,
{6.3.6 and {6.3.7 are denoted by Model A3, Model B3, Model C3, Model
D3, Model E3 and Model F3, respectively. The results are summarised in
Table 6.3. Only Model D3 passed all the tests.

Table 6.3. Residual checking of different models for the force of share
dividend growth

Model

A3 B3 C3 D3 E3 F3

Median 0.0065 0.0067 ÿ0.0019 0.0028 0.0105 0.0103
Standard deviation 0.0664 0.0525 0.0609 0.0519 0.0804 0.1152
Skewness ÿ0.7776 ÿ0.4004 ÿ0.6470 ÿ0.0332 ÿ0.9186 ÿ1.8904
Kurtosis 4.0564 3.0053 3.4747 2.7391 4.9680 8.6096

(a) Test for normality
Test statistic (JB) 10.60 1.92 5.70 0.22 22.05 139.2
p-value 0.0050 0.3829 0.0578 0.8958 0.0000 0.0000

(b) Test for independence
Test statistic �Q15� 18.6 24.6 29.2 16.4 14.60 58.27
p-value 0.0456 0.0062 0.0061 0.2282 0.3330 0.0000

(c) Test for ARCH effects
Test statistic �L M� 5.3564 2.0626 0.0179 0.8001 7.1600 24.0963
p-value 0.0206 0.1510 0.8935 0.3711 0.0075 0.0001

(d) Test for linearity
Test statistic (Q�12) 11.3753 17.2084 23.7405 19.2093 16.4849 27.7847
p-value 0.4971 0.1419 0.0221 0.0836 0.1700 0.0059
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6.3.9 In Figure 6.4 we show a set of simulations of D�t� at annual
intervals from June 1997 to 2050, along with the past record since 1950, all
on a logarithmic scale using the proposed VARMA(1,1) model in Table 4.3.

6.3.10 The model proposed by Wilkie (1995) for the value of a price
index of ordinary shares at time t, P�t�, is as follows:

P�t� � D�t�=Y �t�:

6.3.11 In Figure 6.5 we show a set of simulations of P�t� at annual
intervals from June 1997 to 2050, along with the past record since 1950, all
on a logarithmic scale using the proposed model (Model D).

6.4 Long-Term Real Interest Rates
6.4.1 The simplified model for ln CR�t� proposed by Wilkie (1995, p857)

is:

ln CR�t� � ln CMU� CN�t�
CN�t� � CA � CN�tÿ 1� � CY � Y E�t� � CE�t�

CE�t� � i:i:d: N�0;CSD2�:

Figure 6.4. Dividend index, 1950-1996, and simulations, 1997-2050,
using Model D3
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6.4.2 The fitted parameters, based on the experience from 1923 to 1996,
were computed as:

CMU � 0:0285 CY � 0:3781 CA � 0:9040 CSD � 0:2027:
�0:0131� �0:1596� �0:0432�

The corresponding standard errors of the estimates are given in parentheses.
The values are very similar to the results given by Wilkie (1995, p861, model
(iv)) for the period 1923-94.
6.4.3 There was a large residual in 1974 from the above fitted model.

Wilkie (1995, {6.3.4) noticed this extreme value, and he employed a dummy
variable to accommodate its effect.

6.4.4 Our outlier analysis in Table 2.1 indicates that no outlier was
found for the ln CR�t� series. The extreme residual value in 1974 is
unexpected, and it seems worth investigating further. The model for the
logarithm of CR�t� is essentially an AR(1) process, plus an additional effect
transferred from the current share dividend yield error term Y E�t�. Figure 6.6
gives a standardised plot of Y E�t�. There was an outstanding spike in 1974.
The extreme residual in 1974 from the original model for ln CR�t� could be
`imported' from the Y E�t� series. The Y E�t� series itself `inherited' the outlier
from the price inflation and share dividend yield series through the original
model for ln Y �t�, described in {6.2.1. It should be noted that large outliers

Figure 6.5. Share price index, 1950-1996, and simulations, 1997-2050,
using Model D
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were found in 1974 and 1975 for ln Y �t� and I�t�, respectively. For cascade-
type transfer function models, effects of contaminated observations could
spread from the sources of the `cascade' down to other variables in the system.

6.4.5 The estimated parameters, based on the outlier-adjusted series
from 1923 to 1996, were obtained as:

CMU� � 0:0286 CY � � 0:2861 CA� � 0:9128 CSD� � 0:2077:
�0:0148� �0:1983� �0:0444�

6.4.6 The long-term real interest rate process obtained from the
preliminary VAR(1) model in {4.6 is:

ln CR�t� � ÿ1:221ÿ 0:328 ln Y �tÿ 1� � 0:955 ln CR�tÿ 1� � e4�t�

with CSD�� � 0:197:
6.4.7 The long-term real interest rate equation implied by the final fitted

VARMA model in Table 4.3 is:

ln CR�t� � ÿ0:365� 0:897 ln CR�tÿ 1� � e4�t�
ÿ 0:522e2�tÿ 1� � 0:266e4�tÿ 1�

with CSD��� � 0:190.

Figure 6.6. Standardised plot of the Y E�t� series
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6.4.8 The long-term real interest rate equation derived from the fitted
VARMA model in {5.2.2 is:

ln CR�t� � ÿ0:325� 0:908 ln CR�tÿ 1� � e4�t�
ÿ 0:485e2�tÿ 1� � 0:308e4�tÿ 1�

with CSD���� � 0:187.
6.4.9 An alternative model, discussed in {5.2.4, is to keep the long-term

real interest rate equation exactly as in {6.4.7, and then compute the
residuals from the original data. The resulting CSD����� value is 0.207.
6.4.10 Residuals obtained from different models for ln CR�t� were

analysed. For convenience, the models described in {6.4.2, {6.4.5, {6.4.6,
{6.4.7, {6.4.8 and {6.4.9 are denoted by Model A4, Model B4, Model C4,
Model D4, Model E4 and Model F4, respectively. The results are
summarised in Table 6.4. Both Model D4 and Model E4 passed all the
tests.
6.4.11 In Figure 6.7 we show a set of ten simulations of C�t� at annual

intervals from June 1997 to 2050, along with the past record since 1950, on a
linear scale using the proposed Model D.

Table 6.4. Residual checking of different models for long-term real
interest rates

Model

A4 B4 C4 D4 E4 F4

Median 0.0043 0.0002 ÿ0.0023 0.0063 ÿ0.0068 ÿ0.0067
Standard deviation 0.2027 0.2077 0.1978 0.1907 0.1879 0.2073
Skewness ÿ0.6265 ÿ0.4051 ÿ0.4400 ÿ0.1778 ÿ0.1136 ÿ0.4711
Kurtosis 3.5814 4.3465 3.8191 3.7723 3.5972 4.3156

(a) Test for normality
Test statistic (JB) 5.73 7.41 4.40 2.20 1.24 7.96
p-value 0.0570 0.0246 0.1108 0.3329 0.5379 0.0187

(b) Test for independence
Test statistic (Q15) 22.9 24.8 26.7 15.0 17.0 25.7
p-value 0.0286 0.0158 0.0029 0.1321 0.0744 0.0042

(c) Test for ARCH effects
Test statistic �L M� 1.6350 0.4695 0.7419 1.7404 0.0750 0.4533
p-value 0.2010 0.4932 0.3891 0.1871 0.7842 0.5008

(d) Test for linearity
Test statistic (Q�12) 11.0998 9.8855 11.4322 12.7699 13.0076 10.8099
p-value 0.5204 0.6260 0.4923 0.3860 0.3685 0.5453
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6.5 Over Parameterisation?
6.5.1 It should be noted that each model contains a different number of

parameters. Therefore, it is not appropriate to focus on only the fit of the
models. Akaike (1974) proposed an information criterion to compare
alternative models fitted to a data set with different numbers of parameters.
The criterion has been called AIC (Akaike Information Criterion) in the
literature, and is defined as:

AIC � �ÿ2 ln�maximised likelihood� � 2r�=n

where r denotes the number of parameters in the model and n is the sample
size.

6.5.2 A simplified version of AIC is considered in this paper (see
Reinsel, 1997, p102):

AIC�i � ln�jR̂ij� � �2ri�=n

where R̂i is the fitted residual variance-covariance matrix for Model i, and
ri is the number of parameters in Model i. The criterion considers both the
model fitting (ln�jR̂j�) and the model parsimony (r). Under this criterion,
one should choose the model with the smallest AIC�.

Figure 6.7. Consols yield, 1950-1996, and simulations, 1997-2050,
using Model D4
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6.5.3 Model A and Models E to F are based on the original series, and
Models B to D are based on the outlier-adjusted data. We can compare these
two groups of models separately using AIC� values. The results are
summarised in Table 6.5. The AIC model selection criterion chooses the
proposed VARMA(1,1) model (i.e., Model D) for the outlier-adjusted series
and Model E for the raw series.

6.5.4 It can be seen that Model E gives a marginal improvement over
Models A and F for explaining the non-adjusted data, while Model D gives a
slightly more significant improvement over Models B and C for the outlier-
adjusted data. Hence the extra parameters seem justifiable.

6.6 Summary
6.6.1 We have examined the Wilkie (1995) composite model for the

variables I�t�, ln Y �t�, K�t� and ln CR�t�.
6.6.2 The estimated parameters for the original model were computed

using observations from 1923 to 1996. The resulting model is denoted by
Model A (with component Models A1-A4). The model was also fitted using
outlier-adjusted series, and it is represented by Model B (with component
Models B1-B4). A pure VAR(1) model was also considered, and it is denoted
by Model C (with component Models C1-C4). These three models were
compared with the proposed VARMA(1,1) model based on the outlier-
adjusted data (denoted by Model D), Model E (the fitted VARMA model
using the original series) and Model F (structure of Model D, but standard
deviations are estimated from the original data).
6.6.3 Residual checking of these models revealed that there was some

violation of residual assumptions for Model A, Model B, Model C, Model E
and Model F, as shown in Tables 6.1-6.4. Furthermore, we calculated the
residual cross-correlations for Model A, Model B, Model E and Model F.
The resulting indicator matrices are summarised in Table 6.6. There are still

Table 6.5. AIC� for different fitted models

Model ln�jR̂j�
Number of parameters

in the model (r) AIC�

(a) The original series
A ÿ18.7812 13 ÿ18.4298
E ÿ18.9140 15 ÿ18.5086
F ÿ17.9453 15 ÿ17.5399

(b) The outlier-adjusted series
B ÿ20.2569 13 ÿ19.9055
C ÿ20.4023 12 ÿ20.0780
D ÿ20.8196 15 ÿ20.4142
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some significant cross-correlations that cannot be explained by the models,
and they are left in the residuals. Model C also suffers a similar problem (see
Table 4.2).

6.6.4 Model D passed all the residual checking tests. Its residual cross-
correlation matrices are also `clean' (see part (a) of Table 4.4). It suggests
that Model D is an improved representation of the outlier-adjusted data.

6.6.5 For the original series (i.e., without adjusting the outliers), no
model passed all the residual checking tests. However, according to the AIC
analysis performed in Table 6.5, Model E is an improved representation
(over Models A and F) for the non-adjusted data.

6.6.6 Finally, Figure 6.8 shows histograms of 10,000 simulated values of
I�t�, ln Y �t�, K�t� and ln CR�t� from the two proposed models (Model D and
Model E), as well as from the benchmark Wilkie (1995) model (Model A).
We have arbitrarily chosen t � 10 for illustration. These histograms shed a
light on how much the model fitting has changed the probability distribution
of the underlying variables.

Table 6.6. Indicator matrices for the residual SCCM
lag (l)

1 2 3 4 5

(a) Model A

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
ÿ � � �

0BB@
1CCA

(b) Model B

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � ÿ
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

(c) Model E

� � � �
� � � �
� ÿ � �
� � � �

0BB@
1CCA

� � � ÿ
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

(d) Model F

� � � �
� � � �
� ÿ � �
� ÿ � �

0BB@
1CCA

� � � �
� � � �
� ÿ � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA

� � � �
� � � �
� � � �
� � � �

0BB@
1CCA
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Figure 6.8. Histograms of I�10�; ln Y �10�;K�10� and ln CR�10� from Model A (first row), Model D (second
row) and Model E (third row)
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æ. Impact of using the Proposed Models

7.1 The Maturity Guarantees Working Party (MGWP) proposed a
stochastic investment model (Ford et al., 1980) for simulating equity returns.
The model was suggested as the basis for determining valuation reserves for
maturity guarantees in the U.K.

7.2 The details of the MGWP methodology are summarised in
Appendix B. Some key points to note are:
ö the variable R�t� denotes the total annual rate of return in year t of the

projection (allowing for both capital gains and dividend income);
ö the variable G�t� denotes the annualised geometric rate of return over

the t-year period;
ö the Working Party assumed an income tax rate of 37.5% on dividends.

Tax rates have since changed, and Finkelstein (1997) re-worked their
numbers with the simplifying assumption of zero tax. For comparison
purposes, I have continued with this gross investor assumption;

ö the investment guarantee involved includes a return of premiums upon
maturity for a specified portfolio of insurance policies;

ö the total guarantee sum assured is, therefore, the total projected
premiums maturing; and

ö for a policy of term n years and premium »1 p.a., the guarantee claim
amount is GC�n� � max�nÿ S�n�; 0� where S�n� is the accumulated
amount of equity assets in which premiums are invested. This can be
recognised as the payoff of a call option with a strike of n and where S�n�
is the asset underlying the derivative option.

7.3 In addition to the original MGWP model and the Finkelstein-Stable
(FS) model (i.e., Model A of Finkelstein (1997)), the Models A-F studied in
{6.1 to {6.4 are also considered. Realisations of R�t� (both for long-term
bond investment and equity investment) are generated from each stochastic
model with 5,000 replications. It should be noted that the notation for R�t� in
this paper (see {B.4 of Appendix B) is different from that used by the
MGWP.

7.4 We first compare the impact that the alternative models have on
various statistics, such as mean annual investment return in the first year of
projection E�R�1��; median annual investment return in the first year of
projection MED�R�1��; standard deviation of the annual investment return in
the first year of projection SD�R�1��; inter-quartile range of the annual
investment return in the first year of projection IQR�R�1��; mean long-term
(20 years) average investment return E�G�20��; median long-term average
investment return MED�G�20��; standard deviation of the long-term average
investment return SD�G�20��; and inter-quartile range of the long-term
average investment return IQR�G�20��. The results are given in the first two
parts of Table 7.1.
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7.5 It should be noted that the population means and standard
deviations for the investment returns will be infinite under a stable
probability framework (Finkelstein, 1997, {4.2.3). Furthermore, it is shown
that the corresponding sample moments do not fluctuate within any band.
The results indicate that these two sample moments are not useful measures
of risk and reward under the stable distribution assumption. Therefore,
only sample medians and inter-quartile ranges for the FS model are
reported in part (b) of Table 7.1. Figures in this table are comparable with
those in columns M and A in Table 5.4(a) of Appendix 5 of Finkelstein
(1997).

7.6 For the first two parts of Table 7.1, the following observations are
made:
ö Model A appears to have the most volatile stochastic fluctuations in

short-term annual investment performance for bonds.
ö Models D, E and F are very similar, with Model F being the most

volatile. These three models have the same VARMA structure. The

Table 7.1. Simulation results for theMGWP standard liability portfolio with
different stochastic investmentmodels (gross investor, i.e. tax basis t � 0:0%)

Model

A B C D E F MGWP FS

(a) Bond investment
E�R�1�� 0.0990 0.1026 0.0965 0.0904 0.0910 0.0903 NA NA
SD�R�1�� 0.0754 0.0743 0.0698 0.0671 0.0680 0.0728 NA NA
E�G�20�� 0.0885 0.0904 0.0909 0.0889 0.0862 0.0887 NA NA
SD�G�20�� 0.0111 0.0118 0.0232 0.0131 0.0112 0.0130 NA NA

(b) Equity investment
E�R�1�� 0.0828 0.1022 0.0984 0.1489 0.1366 0.1445 0.1216 NA
MED�R�1�� 0.0577 0.0842 0.0900 0.1398 0.1200 0.1279 0.0919 0.0733
SD�R�1�� 0.2308 0.1885 0.1473 0.1554 0.1935 0.2114 0.2584 NA
IQR�R�1�� 0.2972 0.2460 0.1972 0.2117 0.2563 0.2811 0.3359 0.2346
E�G�20�� 0.1003 0.1240 0.1092 0.1096 0.1008 0.1105 0.0936 NA
MED�G�20�� 0.0999 0.1237 0.1088 0.1094 0.0996 0.1098 0.0936 0.1880
SD�G�20�� 0.0359 0.0255 0.0219 0.0204 0.0370 0.0432 0.0331 NA
IQR�G�20�� 0.0472 0.0341 0.0290 0.0271 0.0490 0.0572 0.0449 0.0329

(c) Undiscounted reserve for maturity guarantees
NZ 485 14 23 21 635 671 858 679

VL �1 : 5000� 33.2 1.1 2.2 0.7 16.7 17.3 16.0 NA
VL �5 : 5000� 12.6 0.6 0.4 0.2 12.6 15.6 9.1 28
VL �10 : 5000� 8.5 0.1 0.2 0.1 11.1 12.1 7.9 NA
VL �25 : 5000� 5.7 0.0 0.0 0.0 7.3 9.4 5.6 15
VL �50 : 5000� 3.2 0.0 0.0 0.0 4.0 5.7 4.3 9
VL �100 : 5000� 1.6 0.0 0.0 0.0 2.2 3.0 2.5 NA
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parameters of Model D are obtained from the outlier-adjusted data,
while the parameters of Model E are derived from the original series.
Model F retains exactly the same coefficient parameters as in Model D,
but estimates the residual standard deviations from the original data. The
differences shown in Table 7.1 reflect the effects of these model
parameter variations.

ö For equities, E�G�20�� under Model E is slightly greater than (or almost
the same as) E��G20�� under Model A, but E�R�1�� under Model E is much
greater than E�R�1�� under Model A. This observation indicates that
Model A (Wilkie's model) and Model E (VARMA model) could produce
very different average short-term projection statistics. However, it should
be noted that both Model A and Model E are linear stationary Gaussian
time-series processes. Long-range projections from these models tend to
only fluctuate around the historical means. Therefore, the long-term
average geometric investment statistics, say E�G�20��, from these two
models could be at similar level.

7.7 Next, we illustrate the impact of using alternative stochastic asset
models on the simulation results for undiscounted maturity guarantee
reserves. Following the MGWP report, reserve calculations are based on a
return of premium guarantee when the underlying assets are 100% equities
(i.e. no other asset classes are involved).

7.8 Let NZ denote the number of simulations out of 5,000 in which
guarantee claims occur (i.e., L > 0, see {B.8 in Appendix B). Let VL �k=5000�
be the kth largest guarantee claim out of the 5,000 realisations. The quantile
VL �k=5000� represents an estimate for the contingency reserve (undiscounted)
needed, as a percentage of total sum assured, to ensure that the probability
of ruin is limited to p � �k=5000�. The simulation results are summarised in
part (c) of Table 7.1. For comparison purpose, relevant figures in column A
of Table 5.4(a) of Finkelstein (1997) are also listed in part (c) of Table
7.1.

7.9 It should be noted that Models B, C and D were derived from the
outlier-adjusted data. As discussed in {5.2.1, these models should not be
used for applications for which extreme stochastic fluctuations are
important, such as computation of maturity guarantee reserves. They would
generate unreasonably small values of VL . The extent to which these
models could underestimate the required reserves is indicated in part (c) of
Table 7.1.

7.10 Similar reserve results were obtained by Model E, Model F and
Model MGWP. On the other hand, the original Wilkie model (Model A)
generated more extreme values of L . Model FS, assuming a stable non-
Gaussian distribution, allows even more extreme values of L as compared to
Model A. Further comparison of Model FS with other stochastic
investment models can be found in Finkelstein (1997).
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ð. Problem Areas and Further Work

8.1 A proper understanding of a model's characteristics and limitations
is needed in order to decide whether or not it is appropriate to apply the
model in a specific circumstance.

8.2 The VARMA(1,1) model (as described in {4.10) was proposed
for applications not involving extreme stochastic fluctuations. The model
was derived from the outlier-adjusted data. On the other hand, if outliers
in the data are likely to be repeated in the future, then this feature
needs to be incorporated in the model, especially when the application
involves very remote ruin probabilities. An alternative model was
proposed in {5.2.2 for those applications for which extreme fluctuations
are important.

8.3 Huber (1995, 1997) showed some concerns on the method of
construction of indices and sources of data used by Wilkie (1986, 1995). Since
the proposed models in this paper were based on Wilkie's data set, these
concerns are also applicable to our results.

8.4 There are only 74 annual observations over the interval 1923-96. It
should be noted that the number of parameters in a vector ARMA model
increases in a quadratic rate as the dimension of the model increases.
Therefore, it is almost impossible, without relying on theory, to extend the
proposed models to include the additional five variables (wage inflation,
short-term interest rate, property yield, property income and index-linked
yield) considered in Wilkie (1995).

8.5 Unlike univariate time-series analysis, the parameter constancy,
stationarity and identifiability of the proposed vector models are difficult to
examine empirically.

8.6 The proposed VARMA model could easily be extended to include
ARCH effects or vector outlier analysis. However, these moves might lead to
over parameterisation problems, but in further developments of our work
we aim to perform some investigations.

8.7 Multivariate time-series analysis of the term structure of interest
rates is another major problem and area for further work. Tiao et al. (1993)
attempted to study the pattern of Taiwan's interest-rate series for different-
term assets using VARMA models with linear transformations. Carri�ere
(2001) considered a Gaussian multivariate factor model of the term structure
of interest rates in the U.S.A. In addition to these approaches, other
multivariate time-series techniques, such as canonical analyses and co-
integration tests (Reinsel, 1997), might be useful in studying the term
structure of interest rates. Research in some of these topics is in process.

8.8 It should be noted that the Wilkie model is a mean-reverting process
(Kemp, 2000, {1.3.3 (c) and Hare et al., 2000, {3.3.6), so are the proposed
VARMA models in this paper. If an asset price follows a mean-reverting
process, then there exists a tendency for the price level to return to its trend
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path over time. This suggests that future returns are not totally
unpredictable, based on historical observations.

8.9 Hare et al. (2000, {3.3.6 and {3.6.4) cautioned the use of the Wilkie
model (a kind of autoregression with mean-reverting characteristics) for
stochastic projections. In the discussion of the paper, Mr A. C. Smith (Hare
et al., 2000, p205) commented:

ªProfessor Wilkie made his model autoregressive presumably because he believed that
that reflected investment markets, and, therefore, presumably, believed that an investment
strategy which switched each year out of the better performing asset class and into the
poorer performer would not only be a good strategy in terms of his model, but also in
reality.''

Hull (2000, p567) has also put forward strong arguments in favour of mean-
reverting models, which stated (in the context of modelling interest rates):

ªThere are compelling economic arguments in favour of mean reversion. When rates are
high, the economy tends to slow down and borrowers require less funds. As a result, rates
decline. When rates are low, there tends to be a high demand for funds on the part of
borrowers and rates tend to rise.''

Recent empirical evidence has lent strong support to the hypothesis of
mean-reversion in asset returns (see, for example, Fama & French (1988);
Lee (1995); Jorion & Sweeney (1996); Malliaropulos & Priestley (1999) and
Nam et al. (2001)). Balvers et al. (2000) found significant evidence of mean-
reversion in annual equity indices for a sample of 18 developed countries
(including the U.K.). Fama & French (1988) and Lee (1995) reported that
U.S. share prices are mean-reverting with temporary shock components. The
proposed models discussed in this paper are also mean-reverting with
temporary outlier (shock) components. Statistical testing of the hypothesis of
mean-reversion in the Wilkie data set would be an interesting topic for
further research.

8.10 Kemp (2000, {1.3.3(c)) discussed the applicability of the Wilkie
model (a mean-reverting process) to derivatives. The obvious effect of mean-
reversion on option values is through its impact on volatility. Here, we cite
Professor Fisher Black's famous comment on mean-reversion in share prices
and option pricing:

ªIf you have a good estimate of a stock's volatility, the stock's expected return won't
affect option values. Since the expected return won't affect values, neither will mean
reversion.'' (Black, 1990, p315)

8.11 One relatively easy way to obtain market consistent and arbitrage
free valuations of options and guarantees would be to make the models risk
neutral. It is known as the principle of risk neutral valuation. The principle of
risk neutral valuations says that it is valid to assume that the world of
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investors is risk neutral when valuing options and guarantees, and that the
resulting values are valid in all worlds, and not just in those where investors
are risk neutral (Hull, 2000, p205 and p249). In a world where investors are
risk neutral, the expected return on all securities is the risk free rate.
Therefore, to do a risk neutral valuation, the models in this paper would need
to be re-parameterised so that all the assets have the same expected returns,
that is the risk free rate. If the expected return on the asset classes is the risk
free rate, then the risk free rate can be used to obtain the present values of
the option and guarantee payoffs (cash flows). Otherwise, an alternative
discount rate (so called deflator) will need to be found. This is a non-trivial
task (see, e.g., Duffie, 1996, p103), and is put down as an area for further
research. Interpolation of the models to continuous time situations would be
another topic for further research. Interested readers may refer to Spahr &
Schwebach (1998) and Kemp (1997, 2000).

ñ. Summary and Conclusion

9.1 We have demonstrated that the multiple time-series modelling
approach has advantages over transfer function modelling, vector
autoregression and non-linear time-series analysis for studying U.K.
investment series. The method has the advantage of being direct and
transparent. The sequential and iterative steps of tentative specification,
estimation and diagnostic checking parallel those of the orthodox Box-
Jenkins approach for univariate time-series analysis.

9.2 There are some aberrant observations in the original U.K.
investment series. An approach for dealing with aberrant observations is to
perform a time-series outlier analysis (see Table 2.1).

9.3 For outlier-adjusted U.K. investment data, a VARMA(1,1) model
was proposed. It is denoted by Model D in this paper. The model passed all
the residual checking tests (see Tables 6.1-6.4), and it was also suggested by
the AIC analysis as an improved representation of the outlier-adjusted data
(see Table 6.5). The model is recommended for actuarial applications not
involving extreme stochastic fluctuations (see {5.2.1).

9.4 On the other hand, Model A (Wilkie's model) and Models E-F
(both with a VARMA(1,1) structure) were constructed using the raw (i.e.,
non-adjusted) series. None of these models passed all the residual checking
tests. These indicate that the models are not able to explain totally the
extreme observations in the data. However, some effects of outliers have
been incorporated in these models through the inflated residual standard
deviations. Among these three models, Model E was selected as an improved
representation for the original U.K. investment series by the AIC analysis.
This model might be useful for actuarial applications for which extreme
stochastic fluctuations are important (see {5.2.1). An alternative approach to
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dealing with extreme observations in the data involves using flat tailed or
infinite variance distributions, such as the stable distributions used by
Finkelstein (1997).
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APPENDIX A

DIAGNOSTIC TESTS OF RESIDUALS

A.1 Test for Normality
A.1.1 Let b1 and b2 be the sample coefficients of skewness and kurtosis,

respectively, calculated from n residuals.
A.1.2 Jarque & Bera (1981) proposed a composite test for normality.

The test statistic is:

J � n

�
b2
1

6
� �b2 ÿ 3�2

24

�
:

Under the null hypothesis of normality, J is distributed as w22.

A.2 Test for Serial Independence
A.2.1 Ljung & Box (1978) suggested a useful portmanteau lack of fit

test. If the fitted model is adequate for describing the behaviour of the time
series, there should not be any serial correlations left in the residuals. The test
uses m residual autocorrelations (r1; . . . ; rm) as a unit to check the joint null
hypothesis:

H0 : r1 � r2 � � � � � rm � 0:

A.2.2 The test statistic is:

Qm �
Xm

k�1

��n��nÿ 2�
nÿ k

�
r̂2

k

where r̂k is the lag-k sample residual autocorrelation function. Under the
null hypothesis, the Qm statistic approximately follows the w2

mÿs distribution,
where s is the number of parameters estimated in the model. We employed
m � 15 in this paper.

A.3 Test for ARCH Effects
A.3.1 Engle (1982) proposed a Lagrange multiplier (L M) test for

ARCH disturbances.
A.3.2 Let fê1; . . . ; êng be the residuals computed from the fitted model.

The L M test statistic for the first order ARCH process is written as:

L M � n

�
W0Z�Z0Z�ÿ1Z0W

W0W

�
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where

W �
�

ê21; ê
2
2; � � � ; ê2n

�0
and Z � 1; 1;� � � ; 1

ê20;ê
2
1;� � � ;ê2nÿ1

� �0
:

The pre-sample value ê20 has been set to zero.
A.3.3 The L M statistic has an approximate w2

1 distribution under the
white-noise null hypothesis.

A.4 Test for Linearity
A.4.1 McLeod & Li (1983) proposed a portmanteau test for linearity of

the residuals.
A.4.2 Let fê1; . . . ; êng be the fitted residuals from an ARMA model. Let

rk denote the sample autocorrelation of the squared residuals, that is:

rk �

Xnÿk

t�1
�ê2t ÿ ~s2��ê2t�k ÿ ~s2�
Xn

t�1
�ê2t ÿ ~s2�2

where:

~s2 � 1
n

Xn

t�1
ê2t :

A.4.3 Analogous to the Ljung-Box portmanteau statistic (see {A.2.2),
McLeod & Li (1983) derived a new portmanteau statistic:

Q�M �
XM
k�1

�n��nÿ 2�
nÿ k

r2k

to detect possible non-linearity in the residuals. Under the null hypothesis
(i.e., the residuals are linear white-noise), the Q�M statistic approximately
follows the w2

M distribution. We employed M � 12 in this paper.
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APPENDIX B

DETAILS OF THE MGWP METHODOLOGY

B.1 The MGWP model is defined as follows:

P�t� � D�t� 1�=Y �t�
ln D�t� � mD � ln D�tÿ 1� � eD�t�
ln Y �t� � ln mY � f�ln Y �tÿ 1� ÿ lnmY � � eY �t�
eD � i:i:d: N�0; s2

D� and eY � i:i:d: N�0; s2
Y �:

B.2 The recommended model parameters by the MGWP are:

f � 0:60 mY � 0:05 sY � 0:20 Y �0� � 0:05
mD � 0:04 sD � 0:13 P�0� � 1:00:

B.3 Let R�t� denote the rate of return in year t of the projection; and let
G�t� denote the geometric average return over the t-year period, i.e.:

G�t� �
"Yt

s�1

�
1� R�t�

�#1=t

ÿ 1:

B.4 It should be noted that:

R�t� �
�

1
C�t� � �1ÿ t�

�
C�tÿ 1� ÿ 1

for long-term bond investment, and

R�t� � P�t� � �1ÿ t�D�t� ÿ P�tÿ 1�
P�tÿ 1�

for equity investment, where the rate of tax is t. In the MGWP report, the
tax basis is fixed at t � 0:375. On the other hand, Wilkie (1986, 1995) and
Finkelstein (1997) considered a gross investor (i.e., t � 0) situation; but with
the recent U.K. tax changes, one is not sure what the right tax rate to use
is.

B.5 Let R�t� denote the equity return at time t generated by a stochastic
investment model; and let S�n� be the accumulated amount of the equity
investment of »1 p.a. from t � 0 to t � nÿ 1. It should be noted that:
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S�k� �
�
1� R�k�

��
1� S�kÿ 1�

�
for k � 1; . . . ; n and S�0� � 0.

B.6 Consider an insurance policy with premium 1 p.a. invested for a
term of n years. At maturity, the policyholder is promised that his benefit will
be the accumulated amount of his investments, subject to a guaranteed
minimum being a return of his total contributions. The guarantee claim
amount is, therefore, GC�n� � maxf0; nÿ S�n�g.

B.7 The standard reference liability model that was employed by the
MGWP will be used in this paper (Ford, et al., 1980, p188 and Finkelstein,
1997, p420). Let Prem�t� denote the premium payable for policies maturing
in year t. The standard liability model specifies the values of Prem�t�
for t � 10; . . . ; 30. It represents a standard cohort of policies written
simultaneously at time t � 0. It is assumed that there is no mortality (i.e., all
policies reach maturity).

B.8 The total sum assured is given by:

T SA �
X30
t�10

�
t� Prem�t�

�
the total guarantee claim is:

T GC �
X30
t�10

�
Prem�t� � GC�t�

�
and the claim ratio (expressed as a percentage of the total sum assured) is
defined as:

L � T GC

T SA
� 100%:
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