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TESTING THE SIGNIFICANCE OF
THE DEPARTURES FROM UTILITY
MAXIMIZATION

PHILIPPE de PERETTI
Université Paris1 Panthéon-Sorbonne

This paper introduces a general procedure that tests the significance of the departures
from utility maximization, departures defined as violations of the general axiom of
revealed preference (GARP). This general procedure is based on (i) an adjustment
procedure that computes the minimal perturbation in order to satisfy GARP by using the
information content in the transitive closure matrix and (ii) a test procedure that checks
the significance of the necessary adjustment. This procedure can be easily implemented
and programmed, and we run Monte Carlo simulations to show that it is quite powerful.
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1. INTRODUCTION

Nonparametric tests of utility maximization, and especially the general axiom of
revealed preference (GARP) defined by Varian (1982), have been widely used on
both aggregated and disaggregated data. For instance, Famulari (1995) and Diaye
and Gardes (1997) used nonparametric tests on microeconomic data, whereas
Swofford and Whitney (1987), Belongia and Chrystal (1991), or Fisher and
Fleissig (1997) used the so-called NONPAR procedure on aggregated data.

Nevertheless, it is well known that GARP is not totally satisfactory, being
nonstochastic. Indeed, a single violation of the axiom leads to rejection of the
maximization hypothesis, even if this violation has purely stochastic causes, as
measurement error. To improve this binary decision rule, that is, to deal with
the significance of violations, two strategies have been proposed. The first one,
introduced by Afriat (1967) and Varian (1990), is clearly nonstochastic. It consists
of relaxing the perfect optimization hypothesis. The agents are then allowed to
waste a portion (1 − e) of their income, e ∈ [0, 1] being defined as the Afriat
efficiency index. Using this index, Varian (1990) redefined a weaker version of
GARP, written GARP (e): xiR(e)xj �⇒ e(pj · xj )≤ pj · xi , where R(e) is the
transitive closure of R0(e), and therefore e(pi · xi ) ≥ pi · xj . Typically, data will be
consistent with the maximization principle if, for an inefficiency index of 5%, no
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violation appears [Famulari (1995)]. Nevertheless, such a strategy leads to focus
on bundles that are far in constant terms. It then lowers the number of budget
hyperplane intersections, and thus the power of the test, as emphasized by Sippel
(1999). Moreover, the decision rule about the choice of a threshold for e is far
from clear.

The second strategy, advocated by Varian (1985), leads to statistically testing
the magnitude of the adjustment. Under the null, it is assumed that data behave
as if they were generated by an optimization behavior, but are unobservable.1

They are related to the observed one by multiplicative or additive i.i.d. error
terms, assumed to be normally distributed. Because the magnitude of error terms
are generally unknown, Varian (1985) has suggested searching for the minimal
adjustment in the data in order to satisfy the so-called Afriat inequalities. Testing
the adjustment for its significance is then achieved by computing a lower bound S

on the true statistic T , and by comparing it to a chi-squared statistic. Nevertheless,
the procedure is computationaly burdensome and requires the knowledge of the
second moment of true errors, which is generally unknown. Moreover, the true
measurement error and the computed adjustment are unlikely to match and are
generally not comparable. Thus, a test based on the computed adjustment that uses
assumptions about the moments of the true measurement error may be misleading,
especially under the alternative. Finally, the power of the procedure is totally
unknown.

The purpose of this paper is to introduce a new procedure that allows us to
test the departures from utility maximization for their significance, departures
defined as violations of GARP. This procedure is based on both a new efficient
algorithm that computes the minimal2 adjustment in order to satisfy GARP, and
a statistical test based on distributional assumptions about the computed adjust-
ment. Following Varian (1985), under the null, we assume that data behave as
if they were generated by an optimization behavior, but are actually measured
with errors. In particular, true quantities are unobservable and are related to
the observed ones by multiplicative error terms. If violations appear, we then
search for the minimal adjustment in the data in order to satisfy GARP. This
is achieved by iteratively minimizing a quadratic function and by taking ad-
vantage of the information in the transitive closure matrix R. Under the null,
the adjustment is assumed to inherit the i.i.d. property of true errors. Hence,
testing for the significance of the violations is simply achieved by implement-
ing i.i.d. tests, based on two auxiliary regressions. This procedure has several
advantages:

(i) Being based on the transitive closure matrix R, it leads to focus only on a few
bundles violating GARP. This dramatically reduces the number of constraints of the
program. Thus, with regard to the Varian’s one, the procedure is not time-consuming.

(ii) The test can be easily implemented and programmed.
(iii) It requires neither knowledge of the law of the adjustment nor knowledge of the

moments of the distribution.
(iv) The test appears to be quite powerful.
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This paper is structured as follows. Section 2 introduces the general axiom
of revealed preference. Section 3 discusses the problem associated with GARP
and introduces a procedure to test the violations of GARP for their significance.
Section 4 details how the procedure is solved and programmed. Section 5 presents
two applications. Section 6 focuses on the power of the procedure and presents
some results about the distribution of the adjustment.

2. TESTING FOR UTILITY MAXIMIZATION: GARP

This section focuses on GARP as defined by Varian (1982) within the Samuelson’s
(1947) revealed preference theory. Let xi = (xi1, xi2, . . . , xik)

′, i ∈ {1, . . . , T } be
a (k × 1) vector of observed real quantities, and let pi = (pi1, pi2, . . . , pik)

′, i ∈
{1, . . . , T } be the associated prices. Let the set D = {(xi , pi )∈ (R+)2k, i =
1, . . . , T } thus grouping a finite number of observations of the couples (xi , pi ).
Varian (1982), extending Afriat’s (1967, 1973) work, has suggested an opera-
tional procedure to test if a dataset D behaves as if it were generated by utility
maximization.

First, define the binary strict direct revealed preference relation P 0 by xiP
0xj

if pi · xi > pi · xj i ∈ {1, . . . , T }, j ∈ {1, . . . , T }, and the (T × T ) P0 matrix,
whose element p0

ij (ith row, j th column) is defined as follows:

p0
ij =

{
1, if pi · xi > pi · xj ,

0, otherwise.

Similarly, define the binary direct revealed preference relation R0 by xiR
0xj if

pi · xi ≥ pi · xj i ∈ {1, . . . , T }, j ∈ {1, . . . , T }, and the (T × T ) R0 matrix, whose
element r0

ij is defined as follows:

r0
ij =

{
1, if pi · xi ≥ pi · xj ,

0, otherwise.

At last, define the binary revealed preference relation R by xiRxj if there exists
a sequence between xi and xj such that pi · xi ≥ pi · xm, pm · xm ≥ pm · xn, . . . ,

pp · xp ≥ pp · xj , or xiR
0xm, xmR0xn, . . . , xpR0xj , where R is the transitive clo-

sure of R0. Define the (T × T ) R matrix, whose element rij is defined according
to the Warshall’s algorithm (see Appendix A).

Using the above definitions, GARP is defined as follows:

DEFINITION 1 [Varian (1982)]. The data satisfy the general axiom of revealed
preference if ∀ i ∈ {1, . . . , T } ∀ j ∈ {1, . . . , T } xiRxj implies not xjP

0xi (rij = 1
does not imply p0

ji = 1) or xiRxj �⇒ pj · xj ≤ pj · xi .

If xi is revealed preferred to xj , then xj cannot be strictly directly revealed
preferred to xi . Using GARP, Varian (1982) proved the following theorem.
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THEOREM 1 [Varian (1982)]. For a set D, the three following conditions are
equivalent:

(i) There exists a locally nonsatiated utility function U( · ) that rationalizes the data.
(ii) There exist strictly positive utility indices Ui and marginal income indices λi that

satisfy ∀ i ∈ {1, . . . , T } ∀ j ∈ {1, . . . , T } the Afriat inequalities (1),

Ui ≤ Uj + λj (pj · xi − pj · xj ). (1)

(iii) The data satisfy GARP.

Hence, since GARP is both necessary and sufficient for utility maximization,
the decision rule is

H0 : There is no violation of the axiom; that is, ∀ i ∈ {1, . . . , T } ∀ j ∈ {1, . . . , T } xiRxj

does not imply xjP
0xi and the data set D is rationalized by a utility function.

HA : There are at least a couple of indices (i, j), i ∈ {1, . . . , T }j ∈ {1, . . . , T } such that
xiRxj and xjP

0xi , and the data set D is not rationalized by a utility function.

Varian’s decision rule is rather stringent since a single violation of the axiom
leads to rejection of the maximization hypothesis. Nevertheless, violations of the
axiom may be caused by purely stochastic elements as measurement error, data be-
ing actually consistent with the maximization principle. Hence, when implement-
ing GARP, it is crucial that one should distinguish significant from nonsignificant
violations, that is, between violations caused by stochastic elements and violations
caused by some ruptures in the utility function or by a nonmaximization behavior.
We next introduce such a procedure.

3. TESTING THE VIOLATIONS OF GARP FOR THEIR SIGNIFICANCE

In Varian’s (1982) work, two strong assumptions are made: (i) data are measured
without error and (ii) agents are perfectly rational, adjusting quantities at once
following a movement in prices. In this paper, we deal only with the first point.3

Relaxing this assumption leads to consider that some violations of GARP may be
caused by purely stochastic elements. Hence the need for testing the violations for
their significance.

Assumption 1. Under the null hypothesis, data D = {(x∗
i , pi ) ∈ (R+)2k, i =

1, . . . , T } behave as if they were generated by an optimization behavior.

Assumption 2. Under the null hypothesis, prices are perfectly known and mea-
sured, but quantities x∗

i are unobservable. In particular, we consider the stochastic
generating mechanism4 (2) relating the “true” unobservable quantity x∗

ij to the
observed one xij .

x∗
ij = xij (1 + εij ) (2)

where εij is distributed as f (θ); f (θ) possesses finite absolute moments up to
fourth order, in particular, with E(εij ) = 0 and V (εij ) = σ 2.
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In (2), εij can be seen either as a measurement error or as an optimization error.
In this case, x∗

i appears to be a theoretical demand, whereas xi is the realized one.
In the following, we use the term measurement error to speak about those two
concepts.

Empirically, the magnitude of the measurement error as well as f (θ) are gen-
erally unknown. Thus, following Varian (1985), and given the multiplicative rela-
tionship (2), we compute the minimal perturbation in the data in order to satisfy
GARP. This is achieved by solving over zij the quadratic program (3):

obj = min
T∑

i=1

k∑
j=1

(
zij

xij

− 1

)2

(3)

subject to ∀ i ∈ {1, . . . , T } ∀ j ∈ {1, . . . , T } ziRzj implies not zjP
0zi .

Let ẑij be the solution of the above program, and define the realization ε̂ij as
ε̂ij = (ẑij /xij − 1).

Assumption 3. Given Assumptions 1 and 2, under the null, ε̂ij is distributed as
g(β), where g( · ) is not necessarily equal to f ( · ) and g(β) possesses finite ab-
solute moments up to fourth order, in particular with E(ε̂ij ) = 0 and V (ε̂ij ) = σ̂ 2.

Note that Assumption 3 emphasizes a clear distinction between the true and
unobservable measurement error εij and ε̂ij , which is the minimal adjustment, in
order to satisfy GARP. Since some measurement errors will cause violations, and
other will not, especially for bundles that are far in constant terms, there is no
reason why ε̂ij and εij will match and then have the same distribution. Thus, in
this work, the main assumption is that, under the null, the computed adjustment
inherit the i.i.d. property of the true errors.5

With the above comments in mind, at least three strategies can be used to test
the necessary adjustment for its significance. The first one consists of assuming
a particular form for g(β), and then testing if ε̂ij follows g(β). Second, by using
the central limit theorem as in Yatchew and Epstein (1985), one can derive a
statistic asymptotically distributed as N(0, 1). Nevertheless, this strategy requires
the knowledge of the first and second moments of the true errors, which is gen-
erally unknown in empirical work. At last, since Assumption 3 implies that the
adjustment is i.i.d., testing the adjustment for its significance can be achieved
simply by implementing i.i.d. tests. This is the strategy used in this paper.

To implement i.i.d. tests, two sets of residuals can be used: s1 and s2 (s2 being
a subset of s1). They are defined as follows. Let S1

ε̂ be a (T × k) matrix whose
element at the ith row and j th column is given by (ẑij /xij − 1), and let s1 be a
(T k × 1) vector defined as s1 = vec(S1

ε̂ ). The first T elements of s1 form a sam-
ple realization of the errors associated with good 1, the T + 1 to 2T elements
are the T realizations of the errors associated with good 2, and so on. As our
procedure leads to focus on only a few bundles, an alternative set of residuals can
also be used. Let S2

ε̂ be a (r × k) matrix whose element at the ith row and j th
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column is given by (ẑij /xij − 1) if and only if ẑij − xij 	= 0, r being the number
of bundles altered to ensure the compatibility with GARP. Let s2 = vec(S2

ε̂ ). The
first r elements of s2 are the r realizations of the errors associated with good 1,
the r + 1 to 2r elements are the r realizations of the errors associated with
good 2, and so on.

Given s1 or s2, following Spanos (1999), testing if residuals are i.i.d. is achieved
by estimating two auxiliary regressions and by testing restrictions. For first-order
dependence and trend heterogeneity, we estimate (4) and test the joint significance
of the coefficients α and γj , j = 1, . . . , τ1 by using an F -test, or a Wald test.
For second-order dependence and trend heterogeneity, we estimate (5) and test
the joint significance of the coefficients δ and βjk, j, k = 1, . . . , τ2 by using an
F -test, or a Wald test.6

sa
t = c1 + α · trend +

τ1∑
j=1

γj sa
t−j , a = 1 or 2. (4)

(
sa
t

)2 = c2 + δ · trend +
τ2∑

j=1

τ2∑
k=1

dβjksa
t−j sa

t−k, a = 1 or 2. (5)

where

d =
{

1, if k ≥ j,

0, otherwise.

Let P1 and P2 be the probabilities associated with the Fisher or the Wald test,
respectively, for (4) and (5). The decision rule at a threshold α is then

H ′
0 : min(P1, P2) ≥ α: Violations are caused by stochastic elements as measurement

error; the maximization hypothesis is not rejected.
H ′

A : min(P1, P2) < α: Violations are not caused by stochastic elements; the maximiza-
tion hypothesis is rejected. Data are not generated by a maximization behavior, or
there exists one or several ruptures in the utility function.

We next explain how the quadratic program is solved.

4. SOLVING THE PROCEDURE

In this section we explain how the quadratic program (3) is solved. Basi-
cally, if GARP is satisfied for a dataset D, then, by definition, there exist ∀ i ∈
{1, . . . , T } ∀ j ∈ {1, . . . , T } indices satisfying the Afriat inequalities (Theorem 1).
It is thus possible to order all the bundles (or observations) into a coherent sequence
according to either utility indices Ui satisfying (1) (cardinal) or by simply using the
transitive closure matrix R (ordinal). Indeed, this latter contains all the transitive
relations. We call this unique transitive sequence, in which all bundles are linked
by the binary relation � (standing for “preferred or indifferent to”), a preference
chain. We say that a bundle xi is located at the nth place in the preference chain
if it is revealed as preferred to T − n bundle(s) (excluding xi). For example, if
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n = 1, then xi is at the top of the preference chain, being revealed as preferred to
all the other bundles, implying U(xi ) ≥ U(xj ),∀j ∈ {1, . . . , T }; if n = T , then
xi is at the bottom of the preference chain, all the other bundles being revealed as
preferred to it, implying U(xi )≤ U(xj ),∀j ∈ {1, . . . , T }. If GARP is violated, it
is not possible to order all the bundles. Hence, solving (3) amounts to rebuilding
a preference chain, such that for this sequence the objective function is minimal.

We now explain how the violations of GARP affect the transitive closure matrix
and thus the preference chain. We first introduce some definitions.

DEFINITION 2. Two observations xi and xj satisfy the binary relation xiV Rxj

if xiRxj and xjP
0xi (i.e., if rij = 1 and p0

ji = 1), or if there exists a sequence
between xi and xj such that xiRxk and xkP

0xi , xkRxl and xlP
0xk, . . . , xmRxj

and xjP
0xm. We call such a sequence a violation chain.

DEFINITION 3. Two observations xi and xj satisfy the binary relation xiSRxj

if S(i)= S(j), where S(i)= (
∑T

j=1 rij )− 1 is a function returning the sum m of the
elements of the ith row of the transitive closure matrix, minus 1. With 0 ≤ m ≤ T −1
indicating to how many bundles xi is revealed preferred to (excluding itself ).

PROPOSITION 1. For two observations xi and xj , satisfying xiV Rxj implies
xiSRxj .

Proposition 1 follows directly from the Warshall’s algorithm. If xi is directly
revealed preferred to xk , xk is directly revealed preferred to xl , . . . , and this
latter is directly revealed as preferred to xj , then we will have, by using the
Warshall’s algorithm xiRxk , xiRxl , . . . , xiRxj and S(i)= m. If xiV Rxj , we
have rij = 1 and p0

ji = 1; that is, pj · xj > pj · xi , implying xjRxi . Hence, by
the Warshall’s algorithm, xj is going to be revealed preferred to xi , and to all
the bundles xi was revealed preferred to implying S(j)= m and thus xiSRxj .7

Proposition 1 implies that all the bundles xi and xj satisfying xiV Rxj and
hence xiSRxj are candidates to be at the same place in the preference chain,
that is, at the same (T − m) position, thus giving several possible preference
chains.

Let V ∈D, be a set grouping all the unique observations (xi , pi ), violating one
or several times GARP. For example, if we have the violations x1Rx3 and x3P

0x1,

x2Rx1 and x1P
0x2, x2Rx3 and x3P

0x2, and x3Rx2 and x2P
0x3, then V = {(x1, p1),

(x2, p2), (x3, p3)}.
PROPOSITION 2. There exist(s) Bl set(s), l = 1, . . . , n such that B1 ∪ B2 ∪

. . . ∪ Bn = V,B1 ∩ B2 ∩ . . . ∩ Bn = ∅ and such that every couple (xi , pi )∈ Bl,

(xj , pj )∈ Bl ∀ l ∈ {1, . . . , n} satisfy xiSRxj .

Proposition 2 follows directly from Proposition 1. It states that the bundles
violating GARP can be ordered in n, set(s) Bl, l = 1, . . . , n, and that each set
contains bundles that are potential candidates to be at the same position in the
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preference chain. In each set, all the bundles enter at least one violation chain. Let
Nl , be the number of bundles (or observations) in a set Bl . From Proposition 2, it
follows that we thus have a priori at least n ruptures in the preference chain, and
thus

∏n
l=1 Nl! possible preference chains.

To illustrate this, let the set D1 = {(xi , pi ) ∈ (R+)2k, i = 1, . . . , 5}, thus group-
ing five observations of the couple (xi , pi ), and let the matrices P0

1, R0
1 and R1,

represent the preferences.

P0
1 =




0 1 0 0 0
0 0 1 0 0
0 1 0 1 1
0 0 0 0 1
0 0 0 1 0


, R0

1 =




1 1 0 0 0
0 1 1 0 0
0 1 1 1 1
0 0 0 1 1
0 0 0 1 1


,

R1 =




1 1 1 1 1
0 1 1 1 1
0 1 1 1 1
0 0 0 1 1
0 0 0 1 1


.

Four violations appear, giving the set V = {(x2, p2), (x3, p3), (x4, p4), (x5, p5)}.
As x2V Rx3 (and x3V Rx2), x4V Rx5 (and x5V Rx4), S(2)= 3, S(3)= 3, S(4)= 1,
S(5)= 1, the set V can be broken up into two subsets B1 and B2 such that
B1 ∪ B2 = V and B1 ∩ B2 = ∅, where B1 = {(x2, p2), (x3, p3)} and B2 = {(x4, p4),

(x5, p5)}. The set B1 contains bundles that are all candidates to be located at the
second place in the preference chain, and the set B2 contains bundles that are
potentially at the fourth place in the chain, giving a priori

∏2
l=1 Nl! = 2! ∗ 2! = 4

possible preference chains. These latter are given by (6):

x1 �




x2 � x3

{
x4 � x5 : preference chain no. 1,
x5 � x4 : preference chain no. 2,

x3 � x2

{
x4 � x5 : preference chain no. 3,
x5 � x4 : preference chain no. 4.

(6)

It is thus apparent that solving the quadratic program (3) amounts to finding, in
each set Bl , the bundle that will be revealed preferred to the other bundle(s) of the
set, that is, to rebuild a coherent preference chain. We next explain how, in each
set, the unobserved bundles ẑi are computed, and then we introduce an iterative
procedure.

4.1. Computing the Bundles ẑi

Suppose that for a dataset D, GARP is violated, and let B1 be one of the
n set(s). For reasons that will become apparent later, define B1 such that for
(xi , pi ) ∈ B1 and (xj , pj ) /∈ B1, S(i) > S(j). Let for a couple {(xi , pi ), (xj , pj )}
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(xi , pi )∈ B1, (xj , pj )∈ B1 such that xiRxj and xjP
0xi , the quadratic program (7),

minimized over zij :

obji = min
k∑

j=1

(
zij

xij

− 1

)2

, (7)

subject to ∀h ∈ {1, . . . , T } ziRxh implies not xhP
0zi .

Empirically, the constraint of (7) is replaced by only two kinds of constraints,
which are defined as follows:

First kind: pi · xi = pi · zi and pj · xj ≤ pj · zi , and if N1 > 2, pm · xm ≤ pm · zi for all
xm related to xi by xiV Rxm, xm 	= xj .8 That is, for all other observations
(xm, pm) of the set B1, we add pm · xm ≤ pm · zi . For example if we have
x1V Rx2 and x1V Rx3, then we will have p1 · x1 = p1 · z1, p2 · x2 ≤ p2 · z1

and p3 · x3 ≤ p3 · z1.
Second kind: pk · xk ≤ pk · zi for all (xk, pk) /∈ B1 such that rik = 1.

The two kinds of constraints above ensure that (i) ∀ xj , ziV Rxj will not hold any
more, (ii) zi will not cause new violations with bundles it was revealed preferred
to (directly or indirectly), (iii) zi will be located at a given place in the preference
chain.9

Given (7), to rebuild a preference chain, that is, to choose the bundle zi which
will be revealed preferred to the other bundles of the set B1, we solve (7) for each
(xi , pi ) ∈ B1 violating GARP, and choose the one having the minimal objective
function obji . This bundle, ẑi , will be revealed preferred to the others of the set.

4.2. An Iterative Procedure

The above procedure, consisting of solving (7) for each bundle of a set B1, and
then choosing the one having the minimal objective function, can be implemented
to rebuild a preference chain, independently for all sets if and only if Nl = 2
∀ l ∈ {1, . . . , n}. The reason is that if ∃l ∈ {1, . . . , n} such that Nl > 2, then nothing
ensures that finding the bundle ẑi and replacing (xi , pi ) by (ẑi , pi ) in D, the other
bundles of the set Bl will not violate GARP, being now candidates to be at a lower
place in the preference chain. To deal with this problem, we propose the following
four-step iterative procedure:

Step 1. Test D for consistency with GARP, let nvio be the number of violations
[0 ≤ nvio ≤ T (T − 1)]

{
If nvio = 0, then stop the procedure,

otherwise go to step 2.
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Step 2. Build a set V and n set(s) Bl, l = 1, . . . , n. Go to step 3.

Step 3. Among the sets Bl, search for the one written B1, containing the bundles
being potentially at the same highest place in the preference chain, such that if
n > 2 for (xi , pi ) ∈ B1 and (xj , pj ) /∈ B1: S(i) > S(j). Go to step 4.

Step 4. In the set B1, search, by using (7), for the bundle that will be revealed as
preferred to the others, such that, for this bundle, among all objective functions, its
objective function is minimal. Let (ẑi , pi ) be the bundle solution of this procedure.
Replace, in D, (xi , pi ) with (ẑi , pi ) and go to step 1.

We now illustrate this procedure.

5. IMPLEMENTATIONS

In this section, we illustrate the iterative procedure by two examples. Let the
dataset D1 = {(xi , pi )∈ (R+)2k, i = 1, . . . , 5}, for which the preferences are given
by the above P0

1, R0
1 and R1 matrices. As we have seen, four violations give

the sets V = {(x2, p2), (x3, p3), (x4, p4), (x5, p5)}, B1 ={(x2, p2), (x3, p3)}, and
B2 = {(x4, p4), (x5, p5)}. As S(2)= 3, S(3)= 3, S(4)= 1, S(5)= 1, the procedure
consists in first finding which of the two bundles in B1 will be at the second
place in the preference chain. This is achieved by solving (7) over z2 subject to
p2 · z2 = p2 · x2, p3 · x3 ≤ p3 · z2, and p4 · x4 ≤ p4 · z2, p5 · x5 ≤ p5 · z2 (since r2 4 = 1
and r2 5 = 1), and then (7) over z3 subject to p3 · z3 = p3 · x3, p2 · x2 ≤ p2 · z3, and
p4 · x4 ≤ p4 · z3, p5 · x5 ≤ p5 · z3. Then, choose the bundle zi , i ∈ {2, 3} for which
the objective function obji is minimal. Assuming, for example, that obj2 < obj3,
replace x2 with the computed value ẑ2 in D1. Rerunning GARP gives now the
following preferences:

P0
1 =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1
0 0 0 1 0


 , R0

1 =




1 1 0 0 0
0 1 1 0 0
0 0 1 1 1
0 0 0 1 1
0 0 0 1 1


 ,

R1 =




1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 1 1


.

Only two violations appear giving the set V = B1 = {(x4, p4), (x5, p5)}, and
a priori 2! two possible preference chains:

x1 � ẑ2 � x3

{
x4 � x5 : preference chain no. 1,

x5 � x4 : preference chain no. 2.
(8)
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Similarly, solve (7) over z4 and z5, subject to, respectively, p4 · z4 = p4 · x4,

p5 · x5 ≤ p5 · z4 for the first program and p5 · z5 = p5 · x5, p4 · x4 ≤ p4 · z5 for the
second program. Then, choose zi , i ∈ {4, 5} such that the corresponding obji is
minimal. Suppose that obj4 > obj5; then, the final preferences are given by the
following P0

1, R0
1, and R matrices, and the coherent preference chain by (9):

P0
1 =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 0
0 0 0 1 0


 , R0

1 =




1 1 0 0 0
0 1 1 0 0
0 0 1 1 1
0 0 0 1 0
0 0 0 1 1


 ,

R1 =




1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 0
0 0 0 1 1


 ;

ẑ1(= x1) � ẑ2 � ẑ3(= x3) � ẑ5 � ẑ4(= x4). (9)

Consider now a numerical application. Let D2 = {(xi , pi )∈ (R+)20, i = 1, . . . ,

40} be a set of simulated data, where quantities x∗
ij , i = 1, . . . , 40, j = 1, . . . , 10,

are solution of a Cobb-Douglas maximization program (see next section), and xij

is related to x∗
ij by the relationship (2), where εij is distributed as N(0, 0.22) (see

Tables (B.1) and (C.1) in Appendixes B and C). Table 1 presents both the results
of GARP and of the iterative procedure.

Running GARP, 10 violations appear, giving the set V = {(x9, p9), (x11, p11),

(x14, p14), (x22, p22), (x27, p27), (x28, p28), (x29, p29), (x34, p34), (x39, p39)} and
4 sets: B1 = {(x9, p9), (x39, p39)}, B2 = {(x14, p14), (x27, p27), (x34, p34)}, B3 =
{(x11, p11), (x22, p22)}, and B4 = {(x28, p28), (x29, p29)}. As there are more than
two bundles in the set B2, we run the iterative procedure. The set B1 con-
tains two bundles that are revealed preferred to all the others in the other sets.
Thus, we first search (iteration 1 of the procedure) if z9Rx39 �⇒ p39 · x39 ≤ p39 · z9

or if z39Rx9 �⇒ p9 · x9 ≤ p9 · z39. The two objective functions associated with
these two hypotheses are, respectively, 0.0085656 and 0.0000604. Since
0.0000604 < 0.0085656, we conclude that z39Rx9 �⇒ p9 · x9 ≤ p9 · z39, that is,
z39 will be at the fifth place in the preference chain. Replacing in D2 x39 with
ẑ39 and rerunning GARP (iteration 2) now gives eight violations and the sets
V = {(x11, p11), (x14, p14), (x22, p22), (x27, p27), (x28, p28), (x29, p29), (x34, p34)},
B1 = {(x14, p14), (x27, p27), (x34, p34)}, B2 = {(x11, p11), (x22, p22)}, and B3 =
{(x28, p28), (x29, p29)}.

Focusing on the set B1, as previously, as for (xi , pi )∈ B1 and (xj , pj ) /∈ B1S(i)>

S(j), three hypotheses are tested: z14Rx27 �⇒ p27 · x27 ≤p27 · z14, z14Rx34 �⇒
p34 · x34 ≤ p34 · z14, z27Rx34 �⇒ p34 · x34 ≤ p34 · z27, and z34Rx14 �⇒ p14 · x14 ≤
p14 · z34. Since we have min (0.1565245, 0.0405495, 0.0001107) = 0.0001107,
we conclude that z34Rx14 �⇒ p14 · x14 ≤ p14 · z34 and of course that z34Rx27 �⇒

https://doi.org/10.1017/S1365100505040241 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100505040241


TESTING FOR UTILITY MAXIMIZATION 383

TABLE 1. Results of GARP and of the iterative procedure

(A) Nonstochastic GARP

Number of violations: 10
Bundles violating GARP: x9 and x39, x11 and x22, x14 and x27, x14 and x34, x22 and x11,

x27 and x34, x28 and x39, x29 and x28, x34 and x14, x39

and x9.

(B) Stochastic analysis

Analysis

Iteration ziRxj ⇒ pj · xj ≤ pj · zi S(i) = S(j) = m obji constraintsa

1 zi = z09, xj = x39 35 0.0085656 46
1 zi = z39, xj = x09 35 0.0000604 46
2 zi = z14, xj = x27, x34 33 0.1595245 44
2 zi = z27, xj = x34 33 0.0405495 44
2 zi = z34, xj = x14 33 0.0001107 44
3 zi = z11, xj = x22 26 0.0808943 37
3 zi = x22, xj = x11 26 0.0009758 37
4 zi = z28, xj = x29 10 0.0775270 21
4 zi = z29, xj = x28 10 0.0130716 21

Solution of the program

Iteration ẑi m obji constraints

1 ẑ39 35 0.0000604 46
2 ẑ34 33 0.0001107 44
3 ẑ22 26 0.0009758 37
4 ẑ29 10 0.0130716 21

Total adjustment: 0.0142185

a The number of constraints is defined as follows: 1 constraint for pi · xi = pi · zi plus 10 constraints for xij > 0
∀ j ∈ {1, . . . , 10} and m constraints for pj · xj ≤ pj · zi for all xj such that rij = 1. For example, for z39, we have
1 + 10 + 35 = 46.

p27 · x27 ≤ p27 · z34, z34 being located at the seventh place in the preference chain.
Replacing x34 by ẑ34 in D2 and rerunning GARP (iteration 3), now gives
four violations10 and the sets V = {(x11, p11), (x22, p22), (x28, p28), (x29, p29)},
B1 = {(x11, p11), (x22, p22)}, and B2 = {(x28, p28), (x29, p29)}. Given B1, we select
the bundle having the minimal objective function, here z22 (obj22 = 0.0009758).
Last, we replace in D2 x22 with ẑ22 and rerun GARP (iteration 4). Only two
violations appear giving the set V = B1 = {(x28, p28), (x29, p29)}. Since the ad-
justments associated with z28Rx29 �⇒ p29 · x29 ≤ p29 · z28 and z29Rx28 �⇒ p28 ·
x28 ≤ p28 · z29 are, respectively, 0.077527 and 0.0130716, we choose z29 as the
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FIGURE 1. s2, i.i.d. data.

solution of the iteration 4. Replacing x29 with ẑ29 in D2, and rerunning GARP
gives no more violation.11

Thus, 10 violations for 40 observations and 10 goods in each bundle are ruled
out only by altering 4 bundles, with a total adjustment of 0.0142185. Now, let’s
turn to some statistical inference. Figure 1 plots the vector s2, where ε̂22 1, ε̂29 1,

ε̂34 1, ε̂39 1 are the first four observations, ε̂22 2, ε̂29 2, ε̂34 2, ε̂39 2, are the observations
4 to 8, . . . ; ε̂22 10, ε̂29 10, ε̂34 10, ε̂39 10 are the observations 36 to 40. Tables 2 and 3
present the results of the i.i.d. tests (first and second order) for s1 and s2. In addition,
to test for independence, two statistics are also computed: the Ljung-Box Q-stat
and the McLeod-Li ML-stat. Both tables are structured as follows: The first part
is related to independence tests, whereas the second part is dedicated to i.i.d. tests.
Concerning the latter, we first select the order τ1 and τ2 for the auxiliary regressions
(4) and (5) by using F -tests (Wald tests are also presented). Second, given the
selected models, we present the i.i.d. tests. Here, for the set s1, we choose τ1 = 1
and τ2 = 1. For those models, the probabilities associated with the i.i.d. tests,
respectively, for the first and second order are 0.2088 (Wald 0.2075) and 0.3876
(Wald 0.3867) leading us to accept the i.i.d. hypothesis. Similar conclusions are
drown from Table 3, the probabilities being, respectively, 0.1321 (Wald 0.1174)
and 0.3434 (Wald 0.3324) for τ1 = 1 and τ2 = 1. Thus, in both cases, we accept
H

′
0. Violations are caused by measurement error, which is coherent with our data

generating process.

6. MONTE CARLO SIMULATIONS

In this section, we run Monte Carlo simulations to (i) estimate the power of GARP
under measurement error; (ii) estimate the type I and II errors of the procedure;
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TABLE 2. Statistical analysis, i.i.d. tests: s1

(A) Test for independence

First-order Second-order

Lag Ljung-Box Q-stat P -value McLeod-Li ML-stat P -value

1 0.0004 0.9837 0.0546 0.8151
2 0.0008 0.9995 0.1099 0.9465
3 0.0012 0.9999 0.1659 0.9828
4 0.0016 0.9999 0.2226 0.9942

(B) i.i.d. tests

First-order
Model selection

H0 HA F -test P -value Wald test P -value

τ1 = 3 τ1 = 4 0.0346 0.8524 0.0346 0.8523
τ1 = 2 τ1 = 3 0.0336 0.8545 0.0336 0.8544
τ1 = 1 τ1 = 2 0.0327 0.8565 0.0327 0.8564
i.i.d. test for τ1 = 1 1.5721 0.2088 3.1442 0.2075

Second-order
Model selection

H0 HA F -test P -value Wald test P -value

τ2 = 3 τ2 = 4 0.1179 0.7314 0.1179 0.7312
τ2 = 2 τ2 = 3 0.1136 0.7362 0.1136 0.7360
τ2 = 1 τ2 = 2 0.1095 0.7408 0.1095 0.7407
i.i.d. test for τ2 = 1 0.9498 0.3876 1.8997 0.3867

(iii) present, under the null, some key results about the distribution of the law of
residuals, since g( · ) and f ( · ) are unlikely to match. We first introduce our data
generating process.

To estimate the type I error, that is, the probability of rejecting maximization,
whereas there is maximization, we proceed as follows:

Step 1. We generate 10 series of prices, each series having 40 observations.
Each series is defined as a random walk. For instance, for a period i ∈ {1, . . . , 40}
and for a good j ∈ {1, . . . , 10}, pij is defined as

pij =
{

100, if i = 1,

p(i−1)j + νij , otherwise,

where νij is a normally distributed term with zero mean and unit variance.
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TABLE 3. Statistical analysis, i.i.d. tests: s2

(A) Test for independence

First-order Second-order

Lag Ljung-Box Q-stat P -value McLeod-Li ML-stat P -value

1 0.2829 0.5947 0.5798 0.4463
2 0.3250 0.8499 1.2749 0.5286
3 0.3282 0.9546 1.4371 0.6968
4 0.3472 0.9865 1.7418 0.7830

(B) i.i.d. tests

First-order
Model selection

H0 HA F -test P -value Wald test P -value

τ1 = 2 τ1 = 3 0.1706 0.6826 0.1726 0.6798
τ1 = 1 τ1 = 2 0.3919 0.5354 0.3919 0.5312
i.i.d. test for τ1 = 1 2.1422 0.1321 4.2844 0.1174

Second-order
Model selection

H0 HA F -test P -value Wald test P -value

τ2 = 2 τ2 = 3 0.4661 0.7081 1.3985 0.7058
τ2 = 1 τ2 = 2 1.0427 0.3638 2.0854 0.3524
i.i.d. test for τ2 = 1 1.1011 0.3434 2.2023 0.3324

Step 2. In a similar way, we generate a series of income I. For a period
i ∈ {1, . . . , 40}, the income Ii is defined as

Ii =
{

10,000, if i = 1,

Ii−1 + εi, otherwise,

where εi is a normally distributed term with zero mean and unit variance.

Step 3. Given the above prices and income, we solve a maximization
program for a Cobb-Douglas function. For a period i ∈ {1, . . . , 40}, the ve-
ctor x∗

i = (x∗
i1, x∗

i2, . . . , x
∗
i10)

′ is the solution of (10), where ∀ j ∈ {1, . . . , 10} ∀ i ∈
{1, . . . , 40}aij = 1

10 .

max
x∗

i1,...,x
∗
i10

U(x∗
i1, . . . , x

∗
i10) =

10∏
j=1

(x∗
ij )

aij , (10)

subject to pi · x∗
i = Ii

https://doi.org/10.1017/S1365100505040241 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100505040241


TESTING FOR UTILITY MAXIMIZATION 387

where

U(x∗
i1, . . . , x

∗
i10) =

10∏
j=1

(x∗
ij )

aij ,∀ j ∈ {1, . . . , 10}∀ i ∈ {1, . . . , 40}aij = 1

10
.

Step 4. We compute xi = (xi1, xi2, . . . , xi10)
′ related to x∗

i by the relationship

xij = x∗
ij

(1 + εij )
, (11)

where εij is a normally distributed term with zero mean and standard error σ .

Step 5. We build the set D = {(xi , pi ) ∈ (R+)20, i = 1, . . . , 40} and run the
procedure; that is, we find the minimal adjustment, compute τ1 and τ2 by using
F -tests or Wald tests, and test for i.i.d.-ness.

We repeat steps 1 to 5, 10,000 times for three different measurement errors:
σ = 5%, σ = 10%, and σ = 15%. We compute the type I error of GARP and of
the procedure (at a threshold α) defined respectively as (12) and (13).

Type I error of GARP :
Number of times GARP is violated

10,000
(12)

Type I error of the procedure :
Number of times min(P1, P2) < α

Number of times GARP is violated
(13)

To estimate the type II error, we first need a definition of a “random behavior.”
We will say that a dataset D is rationalized by a unique utility function if its
parameters are constant over the entire period. We will say that there is a random
behavior if the parameters aij change every periods. Thus, in our definition of
the random behavior, a utility function rationalizes the data each period, but
the weights change from one period to another.12 To estimate the type II error,
that is, the probability of accepting the null whereas data are generated at ran-
dom, we use the same sequence as before, except for steps 3 to 4 which are
replaced by:

Step 3. Given prices and income, we solve a maximization program, where
preferences are given by a Cobb-Douglas function. For a period i ∈ {1, . . . , 40},
the vector x∗

i = xi = (xi1, xi2, . . . , xi10)
′ is the solution of gram (14), where for

j = 1, . . . , 10,∀(i, t) ∈ {1, . . . , 40} and i 	= t : aij 	= atj ; aij = bij

/∑10
j=1 bij ,

and bij ∈ [0, 1] is a uniformly distributed term.

max
xi1,...,xi10

U(xi1, . . . , xi10) =
10∏

j=1

(xij )
aij , (14)

subject to pi · xi = Ii,
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where U(xi1, . . . , xi10) = ∏10
j=1(xij )

aij ,∀ j ∈ {1, . . . , 10}∀ (i, t) ∈ {1, . . . , 40}
and i 	= t : aij 	= atj ,

aij = bij∑10
j=1 bij

,

where bij ∈ [0, 1] is a uniformly distributed term.

Step 4. We build the set D = {(xi , pi ) ∈ (R+)20, i = 1, . . . , 40}, and run the
procedure; that is, we find the minimal adjustment, we compute τ1 and τ2 by using
F -tests or Wald tests, and test for i.i.d.-ness.

We repeat steps 1 to 4 10,000 times and compute the type II error of GARP and
of the procedure (at a threshold α), respectively, defined by (15) and (16):

Type II error of GARP:
Number of times GARP is not violated

10,000
(15)

Type II error of the procedure:
Number of times min(P1, P2) ≥ α

Number of times GARP is violated
(16)

Tables 4 and 5 give the results of the simulations for three different standard
errors and at four different thresholds. Table 4 focuses on the power of GARP
and presents some summary statistics about the iterative procedure. Concerning

TABLE 4. Results of Monte Carlo simulations and descriptive analysis
and power of GARPa

(A) H ′
0 true

σ = 0.05 σ = 0.10 σ = 0.15

Type I error 28.50% 67.73% 82.01%

obj
b

0.0010574 0.0047034 0.0145508
(0.0087265) (0.0089769) (0.0205932)

vioc 2.44 3.97 5.30
(1.03) (2.80) (3.77)

(B) H ′
A false

Type II error 0%

obj
b

10.406954
(6.249976)

vioc 589.94
(154.67)

a Standard errors are in parentheses.
b Average objective function.
c Average number of violations of GARP.
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TABLE 5. Results of Monte Carlo simulations, power of SGARP

(A) H ′
0 true, type I error (%)

set s1 set s2

α σ = 0.05 σ = 0.10 σ = 0.15 σ = 0.05 σ = 0.10 σ = 0.15

1 1.48 5.34 7.89 0.71 3.11 4.94
5 1.85 6.82 10.39 3.51 8.57 8.91

10 2.59 9.49 13.15 12.23 18.50 20.21
15 6.65 12.75 17.53 22.46 28.81 32.49

(B) type II error (%)

α set s1 set s2

1 17.13 11.12
5 8.54 5.06

10 5.65 4.12
15 4.15 3.02

GARP, it appears that, on the one hand, the test is extremely powerful against the
random behavior hypothesis, since the type II error is null. On the other hand,
when data are rationalized by a utility function, but are measured with errors,
GARP seems accurate only for a very small measurement error13 (σ = 5%). A
large measurement error, σ = 10% or σ = 15%, produces a high type I error, res-
pectively, 67.73% and 82.01%. Thus, GARP should not be used if data are suspec-
ted to incorporate some stochastic elements. One should also note that measure-
ment error generates very few violations, and that the adjustment required to satisfy
GARP appears to be very small, with average objective functions of 0.0010574,
0.0047034, and 0.0145508, respectively, for σ = 0.05, σ = 0.10, and σ = 0.15.

Table 5 presents the type I and II errors associated with the i.i.d. tests for s1

and s2. At the usual threshold of 5%, the procedure appears to be quite powerful.
Indeed, the type I error does not exceed 8.91% for a large measurement error for
s2 (10.39% for s1) and is less than 5% for a small measurement error for s1 and
s2. Concerning the type II error, it is about 5% for s2 (8.54% for s1), indicating
that the probability of accepting maximization whereas there is not maximization
is small. By way of comparison with Figure 1, we plot the necessary adjustment
when data are generated at random (non-i.i.d. set), Figure 2. One will also note
that s1 and s2 return approximately the same information. Nevertheless, using s2

in empirical work seems more accurate giving the type II error and the type I error
for a large measurement error.

At last, since Assumption 3 appears to be empirically justified, the question
arises about the distribution of the residuals. Basically, the minimization pro-
gram (3) may appear as some kind of regression under linear constraints. Then, the
question arises about whether the residuals are normally distributed. To investigate
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FIGURE 2. s2, non-i.i.d. data.

TABLE 6. Distribution of the residuals, s2a

Measurement error

σ = 0.05 σ = 0.10 σ = 0.15

N 34690 119050 181840
Mean 0.0001 0.0005 0.0014
Median 3.2E-05 0.0001 0.0005
Std dev 0.0074 0.0168 0.0263
Normalityb 0.1344 0.1287 0.1248

(<0.01) (<0.01) (<0.01)
Normalityc 302.91 928.95 1280.11

(<0.005) (<0.005) (<0.005)

a P-values between brackets.
b Kolmogorov-Smirnov.
c Cramer-Von Mises.

the distribution of the adjustment, we have collected, at each of the 10,000
iterations concerning the estimation of the type I error, the sets s2. We thus have
three sets corresponding to the three measurement errors: σ = 0.05, 0.10, and 0.15.
Table 6 presents some summary statistics about the three distributions as well as
two normality tests. In the Cobb-Douglas framework, for the three measurement
errors, the adjustment needed to satisfy maximization is clearly centered at
zero. Concerning the standard errors, for σ = 0.05, 0.10, and 0.15, the estimated
standard error σ̂ is, respectively, 0.0074, 0.0168, and 0.0263, which confirms that
the computed adjustment is much smaller than the true measurement error. Last,
the law of residuals is clearly nonnormal. Hence, even if the true measurement is
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FIGURE 3. Empirical cumulative distribution functions: σ = 0.05, σ = 0.10, and σ = 0.15,
for s2.

normally distributed, the iterative procedure will return i.i.d. but not normally dis-
tributed errors. Figure 3 plots the three empirical cumulative distribution functions.
Figures D.1 to D.3 plot the three kernel densities. It appears that the distributions
are likely to be approximately distributed as a power exponential law or Laplace
law.

7. CONCLUSION AND DISCUSSION

The purpose of this article was to introduce a procedure that allows us to test the
violations of GARP for their significance. We have first proposed an algorithm to
compute the minimal perturbation in the data that takes advantage of the infor-
mation contained in the transitive closure matrix R. Second, we have suggested
that testing the significance of the adjustment could be achieved by implementing
i.i.d. tests, and we have shown the empirical validity of such a procedure. There
are at least two directions for future research. First, concerning the procedure
itself, the i.i.d. tests are not the only way to test the significance of the adjustment,
and new statistical tests may be introduced. A second important direction would
be to develop a weak separability test based on the procedure introduced here,
answering then to Barnett and Choi (1989).

NOTES

1. See also Yatchew and Epstein (1985).
2. To avoid any confusion, the word “minimal” is used according to the iterative procedure in-

troduced in this paper. The adjustments returned by this procedure are not strictly comparable to the
adjustments returned by the Varian (1985) program.
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3. Dealing with incomplete adjustment can be done by smoothing prices, by using lagged prices,
or by using incomplete adjustment models [see, e.g., Swofford and Whitney (1994)].

4. Additive error terms can also be used, but a multiplicative error assumption is more realistic.
5. We don’t give a formal proof of this intuitive assumption, but rather implement Monte Carlo

simulations. See Sections 5 and 6. For a more formal proof in a closely related framework, see Yatchew
and Epstein (1985).

6. In this paper, we also test for independence by using moment-based tests, and especially the
Ljung and Box (1978) Q statistic (first-order independence) and the McLeod and Li (1983) ML
statistic (second-order independence). Note that auxiliary regressions are preferred because they are
more powerful, especially for second-order dependence and for small samples.

7. It is not because xiV Rxj implies xiSRxj that xiSRxj implies xiV Rxj , because GARP allows
for flat indifference curves.

8. If, in addition, we have xiP
0xj and xj P

0xi or xiP
0xm and xmP 0xi , then strict inequalities are

used. Note also that the first kind of constraints implies that a bundle violating GARP with more than
one bundle is adjusted once.

9. Note that a main difference between this procedure and an Afriat-inequalities-based procedure
is that we force total expenditure in period i to remain unchanged (pi · xi = pi · zi ). Thus, zi will
not become strictly directly revealed as preferred to bundles located higher in the preference chain,
possibly causing new violations. This ensures the convergence of the iterative procedure introduced
next and reduces the number of constraints, thus simplifying the program.

10. Concerning iteration 2, replacing only one bundle rules out four violations.
11. Note that, by way of comparison with Varian (1985), it took around 5 seconds with a PIV PC

to solve the quadratic program.
12. For other definitions of the random behavior, see Bronars (1987).
13. Similar results can be found in Fisher and Whitney (2003).
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APPENDIX A: WARSHALL’S ALGORITHM

Warshall’s algorithm, converted into SaS IML language, is
/*warshall’s algorithm*/
R=R0;
do k=1 to nrow(R);
do i=1 to nrow(R);
do j=1 to nrow(R);
if R[i, k] = 0 | R[k, j ] = 0 then R[i, j ] = R[i, j ];
else R[i, j ] = 1;
end;
end;
end;
where: ‘|’ stands for ‘or’, and R[i, k] = rik

testing GARP is then achieved by doing,
/*GARP*/
nvio=0;
do i=1 to nrow(R);
do j=1 to nrow(R);
if R[i, j ] = 1 & P0[j, i] = 1 then nvio=nvio+1;
end;
end;
where nvio returns the number of violations.
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APPENDIX B: GENERATED QUANTITIES
WITH MEASUREMENT ERROR

TABLE B.1. xij

i j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

1 1,051.19 1,074.25 1,219.36 779.09 1,020.24 1,083.85 799.40 780.79 1,044.71 807.80
2 1,111.04 1,187.33 1,047.52 1,113.10 1,008.32 929.33 1,069.75 854.89 897.11 948.62
3 1,289.39 720.01 829.47 1,131.90 1,158.28 760.92 1,019.09 1,042.78 1,188.16 1,248.87
4 870.34 1,043.86 1,014.21 1,147.15 1,216.05 1,062.52 1,060.94 904.65 1,082.05 1,011.23
5 768.44 858.23 769.60 817.35 861.41 1,026.74 1,396.92 881.50 1,217.87 1,124.14
6 1,306.03 1,190.34 755.69 894.07 998.02 1,367.84 1,437.21 981.40 1,003.81 721.46
7 1,029.20 816.99 1,298.67 913.25 1,160.81 973.80 1,399.84 1,693.63 870.61 873.05
8 1,271.48 1,081.74 879.89 800.73 836.29 756.63 1,301.38 885.04 1,188.67 634.67
9 1,434.77 917.64 1,030.37 1,366.64 1,369.02 1,130.39 1,063.06 1,154.59 859.70 1,143.40

10 1,209.33 1,089.84 813.60 944.49 1,385.78 775.46 1,141.74 794.03 1,206.06 1,092.74
11 1,196.29 813.94 806.29 1,035.12 1,219.43 727.84 1,254.34 1,185.93 943.57 1,502.74
12 637.53 1,044.63 980.66 1,669.37 1,072.29 893.96 838.23 1,048.33 1,126.15 1,484.25
13 927.76 1,501.83 809.89 762.63 931.91 972.20 761.98 1,226.05 1,218.15 892.19
14 849.31 1,588.75 692.79 756.30 924.30 678.11 1,204.30 1,266.53 1,178.38 1,962.52
15 844.20 965.80 1,131.80 913.66 1,401.70 868.22 1,133.19 1,222.41 761.47 853.71
16 1,135.43 806.51 782.20 773.93 864.72 1,200.72 964.65 988.77 1,087.81 872.12
17 823.64 1,192.03 872.58 1,240.86 1,419.19 825.25 1,257.89 1,134.35 1,054.74 780.78
18 767.93 1,225.61 1,063.41 1,395.41 775.12 894.19 906.75 915.76 755.42 973.48
19 1,094.85 657.16 1,011.54 1,130.49 788.83 1,044.60 728.08 1,384.52 996.42 1,684.18
20 1,602.50 814.48 980.96 932.74 1,134.03 931.82 1,229.67 1,239.40 778.91 965.55
21 1,199.85 758.65 759.24 968.55 798.67 1,025.87 1,088.74 940.97 755.19 909.85
22 756.67 1,319.38 1,045.04 1,311.45 1,193.38 955.21 828.33 870.07 1,274.04 1,090.39
23 1,121.46 820.84 966.04 1,170.90 672.19 978.11 1,046.49 976.56 678.68 1,008.15
24 1,570.62 1,044.86 894.05 1,246.75 1,170.91 1,257.48 2,133.34 1,007.60 689.68 858.82
25 1,439.52 914.73 1,234.18 893.62 829.65 1,093.83 1,015.07 1,140.45 942.32 1,235.17
26 1,290.49 1,160.74 1,323.85 1,333.95 1,165.65 1,224.95 801.62 1,186.04 1,028.05 1,126.04
27 996.00 695.35 746.82 1,738.48 1,140.16 1,044.22 1,178.31 1,637.08 890.79 1,054.19
28 926.26 1,067.68 747.52 1,032.77 1,105.63 769.10 868.98 1,139.94 1,072.29 1,296.53
29 1,109.70 928.47 1,022.34 842.87 908.82 1,126.02 1,760.73 946.56 790.63 1,595.07
30 1,091.72 1,203.88 880.92 995.34 775.05 928.14 892.10 1,271.23 1,413.85 889.23
31 1,092.63 761.83 815.45 1,031.36 872.42 1,159.10 1,154.33 1,946.44 732.91 759.12
32 1,295.34 831.65 805.45 1,064.63 910.91 793.74 1,194.54 1,362.59 937.56 937.31
33 1,152.45 1,189.70 1,280.04 819.68 1,022.64 772.63 763.54 1,142.42 1,309.10 1,033.31
34 1,121.29 886.11 1,215.61 1,128.75 1,074.21 872.14 1,056.08 1,161.72 1,463.15 1,087.70
35 1,622.51 1,061.27 864.40 1,978.31 696.31 1,120.79 1,153.60 1,257.57 1,068.03 1,227.88
36 1,289.73 768.68 873.53 780.17 934.00 1,034.96 1,085.57 1,009.06 709.39 1,055.28
37 862.02 1,016.23 809.29 1,012.19 1,657.36 1,024.15 895.96 945.47 1,002.69 1,287.68
38 788.96 1,245.77 889.70 613.62 1,920.40 907.74 1,386.41 1,397.42 692.36 886.73
39 1,205.09 1,379.78 1,038.69 1,322.44 801.90 1,044.37 1,874.81 799.91 1,032.62 984.34
40 957.64 3,158.81 875.31 1,251.17 1,163.25 817.52 1,466.90 974.67 784.88 936.16
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APPENDIX C: GENERATED PRICES

TABLE C.1. pij

i j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

1 1 1 1 1 1 1 1 1 1 1
2 0.98750 0.99432 0.99859 1.01431 0.98857 1.00769 0.99627 1.00414 0.99319 0.99656
3 0.98757 1.00322 0.99615 1.03650 1.00430 1.00168 0.98788 0.99970 0.98662 1.00829
4 0.99654 1.00536 0.99282 1.01447 0.99497 1.00675 0.98931 1.00643 0.98368 1.01546
5 1.00104 1.00469 1.00387 1.01668 1.01061 1.00669 0.96357 0.99378 0.98375 1.01866
6 0.98882 0.99088 0.99860 1.02176 1.00411 0.99642 0.96581 0.98386 0.98438 1.03167
7 0.98221 0.99912 0.99603 1.01651 1.01340 0.99613 0.96709 0.98249 0.99244 1.02249
8 0.96946 1.00664 0.99030 1.01581 1.00916 0.99932 0.97217 0.99486 0.96958 1.02880
9 0.98839 1.00272 1.01186 1.00113 0.98590 1.00689 0.97234 0.99461 0.98133 1.02040

10 0.99102 1.00761 1.01265 1.00981 0.98772 1.01732 0.97299 0.97294 0.97361 1.01252
11 0.99699 1.00624 1.02419 1.00586 1.00434 1.02340 0.97159 0.95006 0.98792 1.00731
12 1.00530 1.01395 1.03859 1.01257 1.00872 1.03081 0.97356 0.94639 0.99017 0.98970
13 0.99765 1.00807 1.04637 1.00314 1.00046 1.04554 0.97671 0.96259 0.99498 0.98737
14 0.98773 1.00920 1.04814 0.98185 0.99365 1.05023 0.96382 0.96812 1.00032 0.99214
15 0.97564 0.99327 1.05842 0.97937 1.00858 1.05164 0.98223 0.96075 1.00918 0.99769
16 0.97568 1.00215 1.05504 0.97857 0.99799 1.05096 0.96871 0.95500 1.01193 1.00043
17 0.97604 1.00540 1.03726 0.98098 1.02406 1.03469 0.95948 0.94553 1.01088 1.00489
18 0.95052 1.01129 1.04899 0.99675 1.02785 1.02409 0.97142 0.95781 1.02118 0.99284
19 0.95439 1.01509 1.04547 0.98035 1.02591 1.02410 0.99461 0.96649 1.02649 0.98852
20 0.94538 0.99676 1.04284 0.97183 1.01375 1.03368 0.99136 0.97255 1.04793 0.97850
21 0.93480 0.99579 1.04467 0.97481 1.00589 1.02512 0.99570 0.97492 1.05412 0.99791
22 0.94182 1.00661 1.03683 0.97812 1.00652 1.02340 1.00188 0.96217 1.06274 0.98804
23 0.93804 0.99298 1.03819 0.97143 0.99414 1.01664 0.99329 0.96496 1.06688 0.97891
24 0.94848 0.99847 1.03275 0.97773 0.98814 1.01195 1.00339 0.95437 1.06318 0.98298
25 0.95270 1.01469 1.02930 0.99170 1.00145 1.02030 1.00272 0.93339 1.06087 0.97024
26 0.94074 1.00965 1.04241 1.00355 1.00868 1.02681 0.99980 0.92298 1.06905 0.97056
27 0.93029 1.00981 1.05336 1.00496 1.01778 1.02307 1.02042 0.90425 1.04602 0.96587
28 0.93498 1.00093 1.05684 1.01727 1.00892 1.02683 1.01868 0.90759 1.06224 0.95253
29 0.93929 0.99338 1.05715 1.01919 1.00961 1.03967 1.00651 0.90558 1.06890 0.96881
30 0.95432 0.99252 1.04943 1.02750 0.99828 1.04633 1.00567 0.92071 1.06727 0.96706
31 0.94807 1.00299 1.04485 1.02118 1.00031 1.04924 0.99734 0.92960 1.07775 0.96578
32 0.94462 1.00135 1.05583 1.01684 0.99585 1.04992 1.01821 0.92393 1.08210 0.96938
33 0.95618 1.00878 1.05285 1.01593 1.00578 1.05097 1.01772 0.92815 1.07295 0.96469
34 0.95095 1.02013 1.05475 1.02793 0.99499 1.05075 1.00309 0.92943 1.06929 0.94854
35 0.96347 1.01559 1.05293 1.03206 1.00666 1.04447 0.98307 0.90165 1.07828 0.95765
36 0.95977 0.98884 1.04690 1.02712 0.99874 1.03621 0.96352 0.89036 1.08760 0.96321
37 0.97692 0.97717 1.04644 1.03323 1.01469 1.04512 0.95996 0.89623 1.07941 0.96481
38 0.96977 0.96483 1.03852 1.02594 1.00152 1.04982 0.96487 0.88891 1.06938 0.97382
39 0.96196 0.97194 1.03606 1.04303 1.00080 1.06238 0.95423 0.90169 1.06810 0.97504
40 0.96896 0.97250 1.04199 1.04171 1.01378 1.06477 0.97012 0.88114 1.07964 0.98556
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APPENDIX D: KERNEL DENSITIES

FIGURE D.1. Kernel density (s2), σ = 0.05.

FIGURE D.2. Kernel density (s2), σ = 0.10.
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FIGURE D.3. Kernel density (s2), σ = 0.15.
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