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Abstract We give a new proof of a result of Sullivan [Hyperbolic geometry and homeomorphisms, in
Geometric topology (ed. J. C. Cantrell), pp. 543–555 (Academic Press, New York, 1979)] establishing that
all finite volume hyperbolic n-manifolds have a finite cover admitting a spin structure. In addition, in all
dimensions greater than or equal to 5, we give the first examples of finite-volume hyperbolic n-manifolds
that do not admit a spin structure.
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1. Introduction

Let M be an orientable Riemannian manifold and let w2(M) denote its second Stiefel–
Whitney class. Then M admits a spin structure or is said to be spinnable if w2(M) = 0;
we refer the reader to §§ 2 and 3 for more details, definitions and background.

It is well known that all compact orientable surfaces and compact orientable 3-manifolds
are spinnable; however, the situation in higher dimensions is a good deal more subtle.
For example, a well-known consequence of the Hirzebruch signature theorem is that
the signature of any closed orientable hyperbolic 4-manifold is 0, and so, according to
Rochlin’s theorem (see [9]), there is no obstruction to having a spin structure. On the
other hand, whether a closed hyperbolic manifold of dimension 4 (or more) is spinnable
is much harder to establish.

However, on page 553 of his paper [19], Sullivan notes that his previous work with
Deligne [5] can be used to show that if Mn is a finite-volume hyperbolic n-manifold, then
Mn has a finite cover that is stably parallelizable and hence spinnable (see Remark 2.2
below).

The aim of this note is to give a simple proof of Sullivan’s virtually spinning result
that seems not to have been noticed previously. Furthermore, in the setting of arithmetic
hyperbolic manifolds of simplest type, we will provide a sharper version of Sullivan’s
result in many cases (see § 5 for definitions).
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Theorem 1.1. Assume that n ≥ 4 and let Mn = Hn/Γ be a well-located arithmetic
hyperbolic n-manifold of simplest type from the admissible quadratic form f defined over
the totally real field k. Then Mn admits a finite cover of degree C(k, f) that is spinnable.
The constant C(k, f) is an effectively computable constant depending on k and f .

The question of whether all orientable hyperbolic manifolds of finite volume in dimen-
sions greater than or equal to 4 are spinnable seems to be open. To that end, in § 8,
we point out that, in each dimension n ≥ 5, there are infinitely many finite-volume
(non-compact) orientable hyperbolic n-manifolds that are not spinnable.

Added in proof. It has recently been shown in [13] that, for all n ≥ 4, there exist
closed orientable hyperbolic n-manifolds that are not spinnable.

2. Spin groups and spin structures

We assume that n ≥ 4 throughout this section. General references for what follows are
[9,11]. We will restrict our discussion to spin structures associated with the tangent
bundle of a Riemannian manifold, rather than an arbitrary vector bundle. The spin
group in dimension n will be denoted by Spin(n). Since n ≥ 4, Spin(n) is the universal
2-fold covering group of the special orthogonal group SO(n) (with covering map j), and
it determines a short exact sequence

1 → {±1} → Spin(n) → SO(n) → 1.

Now let M be a connected orientable Riemannian manifold of dimension greater than
or equal to 4 with tangent bundle TM . Denote by SO(TM) →M the SO(n)-principal
bundle of oriented orthonormal frames on TM . M admits a spin structure or is spinnable
if there is a principal Spin(n)-bundle Spin(TM) →M together with a 2-fold covering
map η : Spin(TM) → SO(TM) such that η(pg) = η(p)j(g) for all p ∈ Spin(TM) and g ∈
Spin(n).

Not every orientable Riemannian manifold admits a spin structure; the obstruction to
this is the second Stiefel–Whitney class. With M as above, we let w2(M) ∈ H2(M,Z/2Z)
denote the second Stiefel–Whitney class of TM . We summarize what we need in the
following proposition.

Proposition 2.1. M admits a spin structure if and only if w2(M) = 0.

Remark 2.2. A smooth orientable manifold Mn is stably parallelizable if its tan-
gent bundle is stably trivial: i.e., TM ⊕ E1 = E2, where Ei are trivial vector bundles for
i = 1, 2. When this is the case, since Stiefel–Whitney classes are invariants of the sta-
ble equivalence class of a vector bundle, it follows that w2(M) = 0, and so this proves
Sullivan’s result mentioned in § 1.

Remark 2.3. If an oriented 4-manifold X is spinnable, then the intersection form of
X is even. The converse holds if H1(X,Z) has no 2-torsion (see [9, Chapter II.4]).
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3. Hyperbolic manifolds and spin structures

3.1. Some notation

Let Jn be the diagonal matrix associated to the quadratic form x2
0 + x2

1 + · · · +
x2

n−1 − x2
n. We identify hyperbolic space Hn with {x = (x0, x1, . . . , xn) ∈ Rn+1 : Jn(x) =

−1, xn > 0} and, by letting

O(n, 1) = {X ∈ GL(n+ 1,R) : XtJnX = Jn},

we can identify Isom(Hn) with the connected component of the identity of O(n, 1),
denoted by O0(n, 1). This is also the subgroup of O(n, 1) preserving the hyperboloid
{x ∈ Rn+1 : Jn = −1, xn+1 > 0}. Equivalently, O0(n, 1) = PO(n, 1) (the central quotient
of O(n, 1)). With this notation, Isom+(Hn) = SO0(n, 1), the index 2 subgroup in O0(n, 1)
which is the connected component of the identity of SO(n, 1).

Although we will not make explicit use of this, ifM = Hn/Γ is a finite-volume orientable
hyperbolic n-manifold, then it is a well-known consequence of Mostow–Prasad rigidity
that we can conjugate Γ to be a subgroup of SO0(n, 1), where the elements all have matrix
entries in a real number field k (which we can take to be minimal).

3.2. Spin structures on hyperbolic manifolds

The recent paper [18] contains a particularly useful discussion of spin structures on
hyperbolic manifolds, and we refer the reader there for a fuller discussion. We continue
to assume that n ≥ 4. As with SO(n), the group SO0(n, 1) has a universal 2-fold cover,
which, following [18], we denote by Spin+(n, 1) (with covering map φ) and, as above,
there is an exact sequence

1 → {±1} → Spin+(n, 1) → SO0(n, 1) → 1.

Now if M = Hn/Γ is an orientable finite-volume hyperbolic manifold, it is well known
that the SO(n)-principal bundle of oriented orthonormal frames on TM can be identified
with Γ\SO0(n, 1) (see, for example, [18, § 2]). Via the exact sequence given above, we
can construct an extension Γ < Spin+(n, 1) with φ(Γ) = Γ. Note that Γ\Spin+(n, 1) ∼=
Γ\SO0(n, 1) since

Γ\SO0(n, 1) ∼= ({±1}\Γ)\({±1}\Spin+(n, 1)) ∼= Γ\Spin+(n, 1).

The following is implicit in the proof of [18, Theorem 2.1]. We include a brief sketch.

Lemma 3.1. We follow the notation established above. Let M = Hn/Γ be an
orientable finite-volume hyperbolic manifold with n ≥ 4.

(1) Suppose that there is a subgroup H < Γ of index 2 so that φ maps H isomorphically
onto Γ (or, equivalently, H ∩ {±1} = 1). Then M is spinnable.

(2) Let D < Γ be of finite index containing an index 2 subgroup D0 such that D0 ∩
{±1} = 1. Let Δ = φ(D) < Γ. Then Hn/Δ is a finite cover of M that is spinnable.
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Proof. From above, we have an exact sequence

1 → {±1} → Γ → Γ → 1.

IfH is a subgroup of index 2, as claimed, thenH\Spin+(n, 1) is a principal Spin(n)-bundle
that double covers Γ\Spin+(n, 1), which, from the discussion above, is ∼= Γ\SO0(n, 1).
Moreover, as described in the proof of [18, Theorem 2.1], the right action of SO(n) lifts
to the right action of Spin(n): that is, M is spinnable. This proves the first part.

The second part follows from the first part on noting that Hn/Δ is a finite cover
of M . �

4. A proof of Sullivan’s theorem

We prove the following.

Theorem 4.1 (Sullivan). Let Mn = Hn/Γ be a finite-volume orientable hyperbolic
n-manifold. Then M is virtually spinnable.

The proof of Theorem 4.1 will follow from the next proposition (notation as in § 3.2).

Proposition 4.2. Let Mn = Hn/Γ be a finite-volume orientable hyperbolic n-
manifold and let Γ < Spin+(n, 1) with φ(Γ) = Γ. Then Γ is residually finite.

Given this, Theorem 4.1 is proved as follows. Residual finiteness implies that there
exists a finite quotient ψ : Γ → Q so that ψ is injective on {±1}. Let D < Γ be the
subgroup of finite index given by ψ−1(ψ(({±1}))). Then D contains a subgroup D0 of
index 2 such that D0 ∩ {±1} = 1. Let Δ = φ(D). Then Δ is a finite index subgroup of Γ
and Hn/Δ is spinnable by Lemma 3.1. �

The proof of Proposition 4.2 requires some additional material, which is described
below.
We follow [11, 18, § 3], which provides a very helpful detailed account of the general
framework that we describe below.

Let V be an m-dimensional vector space over R and let q be a non-degenerate quadratic
form on V . The Clifford algebra C�(V, q) associated to (V, q) is the associative algebra with
1 obtained from the free tensor algebra on V by adding relations v ⊗ v = −q(v)1 for each
v ∈ V . Note that V embeds naturally into C�(V, q), and C�(V, q) has the structure of a
real vector space of dimension 2m with a basis B constructed naturally from V (we will
not dwell on this). Following [18], let P (V, q) denote the multiplicative group of C�(V, q)
generated by all v ∈ V such that q(v) 	= 0. Then the spin group of (V, q) is the subgroup
of P (V, q) defined as

Spin(V, q) = {v1. . . . vk : vi ∈ V, q(vi) = ±1 for each i, and k even}.
In the case when q = Jn (from § 2), C�(V, q) is denoted by C�(n, 1), the group P (V, q) is
denoted by P (n, 1) and Spin(V, q) = Spin(n, 1). The group Spin+(n, 1) is the connected
component of the identity in Spin(n, 1).

Now the group Spin(n, 1) acts on the vector space C�(n, 1) by left multiplication
(on the basis B) thereby determining a faithful linear representation of L : Spin(n, 1) →
GL(2n+1,R).
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The proof of Proposition 4.2 is now complete since L(Γ) is a finitely generated subgroup
of GL(2n+1,R) and hence is residually finite by Malcev’s theorem. �

Remark 4.3. Note that what is really important in Proposition 4.2 is that Γ is finitely
generated. However, it is important that the extensions considered above are of arithmetic
groups in SO0(n, 1) since [15] constructs arithmetic groups in SL(n,R) × SL(n,R) that
have extensions by Z/2Z that are not residually finite.

5. Arithmetic hyperbolic manifolds of simplest type

5.1. Quadratic forms and arithmetic lattices

Let k be a totally real number field of degree d over Q equipped with a fixed embedding
into R, which we refer to as the identity embedding, and denote the ring of integers of
k by Rk. Let V be an (n+ 1)-dimensional vector space over k equipped with a non-
degenerate quadratic form f , defined over k, which has signature (n, 1) at the identity
embedding and signature (n+ 1, 0) at the remaining d− 1 embeddings. Given this, the
quadratic form f is equivalent over R to the quadratic form x2

0 + x2
1 + · · · + x2

n−1 − x2
n,

and, for any Galois embedding σ : k → R, the quadratic form fσ (obtained by applying
σ to each entry of f) is equivalent over R to x2

0 + x2
1 + · · · + x2

n−1 + x2
n. We call such a

quadratic form admissable.
Let F be the symmetric matrix associated to the quadratic form f and let O(f)

(respectively, SO(f)) denote the linear algebraic groups defined over k described as

O(f) = {X ∈ GL(n+ 1,C) : XtFX = F} and

SO(f) = {X ∈ SL(n+ 1,C) : XtFX = F}.
For a subring L ⊂ C, we denote the L-points of O(f) (respectively, SO(f)) by O(f, L)
(respectively, SO(f, L)). An arithmetic subgroup of O(f) (respectively, SO(f)) is a sub-
group Γ < O(f) commensurable with O(f,Rk) (respectively, SO(f,Rk)). Note that an
arithmetic subgroup of SO(f) is an arithmetic subgroup of O(f), and an arithmetic
subgroup Γ < O(f) determines an arithmetic subgroup Γ ∩ SO(f) in SO(f).

5.2. Constructing arithmetic groups

To pass to arithmetic subgroups of O0(n, 1) and SO0(n, 1), we first note, from § 5.1,
that, given an admissable quadratic form defined over k of signature (n, 1), there exists
T ∈ GL(n+ 1,R) such that TO(f,R)T−1 = O(n, 1).

A subgroup Γ < O0(n, 1) is called arithmetic of simplest type if Γ is commensurable
with the image in O0(n, 1) of an arithmetic subgroup of O(f) (under the conjugation
map described above). An arithmetic hyperbolic n-manifold M = Hn/Γ is called arith-
metic of simplest type if Γ is. The same set-up using special orthogonal groups constructs
orientation-preserving arithmetic groups of simplest type (and orientable arithmetic
hyperbolic n-manifolds of simplest type).

It is known (see [20]) that, when n is even, all arithmetic hyperbolic manifolds are
of simplest type. Furthermore, when n is even, the algebraic groups SO(f) are centre-
less, and it follows from a result of Borel [2] that any arithmetic subgroup of SO(f,R)
commensurable with SO(f,Rk) is contained in SO(f, k).
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In addition, we will say that an arithmetic hyperbolic manifold M = Hn/Γ of simplest
type is well located if Γ is conjugate to a subgroup of some SO(f,Rk) for some admissible
quadratic form f , as above.

5.3. Arithmetic subgroups of Spin+(n, 1)

Now we can repeat much of the discussion in § 4 after replacing R by a totally real
field k and taking for q an admissible quadratic from f . In particular, following the
construction of § 4, we can construct a Clifford algebra C�(V, k, q) with a basis B and
we define an algebraic group Spin(f) over k with k-points Spin(f, k) and an arithmetic
subgroup Spin(f,Rk). Note that Spin(f, k) → SO(f, k) with kernel {±1} and, similarly,
Spin(f,Rk) → SO(f,Rk).

In addition, on taking the vector space VR = V ⊗k R, we can construct arithmetic
subgroups of Spin(n, 1) since, by admissibility of f , we have that Spin(f,R) is conjugate
to Spin(n, 1), and so Spin(f,Rk) can be conjugated into Spin(n, 1).

Again, referring to the construction in § 4, via the basis B the following proposition
can be proved.

Proposition 5.1. Let f be an admissible quadratic form of signature (n, 1) defined
over the totally real field k. The group Spin(f,Rk) admits a faithful representation into
GL(2n+1, Rk).

6. Proof of Theorem 1.1

We assume throughout that n ≥ 4, and f will be an admissible quadratic form of signature
(n, 1) defined over the totally real field k. For I ⊂ Rk an ideal, we denote the norm
of I by NI. We denote the principal ideal 4Rk by I4 and define the constant Nk =
min{NP, NI4}, where P runs over all prime ideals P with odd residue class degree. Note
that if [k : Q] = d, then NI4 ≤ 4d. Let I denote the ideal of norm Nk.

The key proposition is the following (using the notation established).

Proposition 6.1. Let M = Hn/Γ be an arithmetic hyperbolic manifold of simplest
type that is well located. Then M has a finite cover of degree ≤ |GL(2n+1, Rk/I)|/2 that
is spinnable.

Proof. We can assume that M is not spinnable; otherwise, the proof is complete.
Following the notation above, we have an extension Γ of Γ by {±1}. By Proposition 4.2
and the sharper version, Proposition 5.1, we have the following. Let I denote the ideal of
norm Nk, as in the statement, and consider the homomorphism ψ : Γ → GL(2n+1, Rk/I)
given by restricting the reduction homomorphism GL(2n+1, Rk) → GL(2n+1, Rk/I). By
choice of ideal I (i.e., either it is prime of odd residue class degree or the principal ideal
generated by 4), we see that {±1} injects under ψ. Hence, K = kerψ excludes −1 and
has index bounded, as claimed.

Let D denote the preimage of {±1} under ψ, so that [D : K] = 2. Let Δ = φ(D),
and let N denote the cover of M given by Hn/Δ. Then N is a cover of degree
≤ |GL(2n+1, Rk/I)|/2 and, by construction, is spinnable by Lemma 3.1. �

https://doi.org/10.1017/S0013091519000324 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000324


Virtually spinning hyperbolic manifolds 311

Remark 6.2. By definition, any arithmetic subgroup Γ < SO(f,R) contains a well-
located subgroup of finite index. As discussed in § 5.2, when n is even, all arithmetic
subgroups commensurable with SO(f,Rk) are contained in SO(f, k), and when n is odd,
the group Γ(2) is contained in SO(f, k) (see the proof of [6, Lemma 10]). Now [Γ : Γ(2)] =
|H1(Γ,Z/2Z)|, and getting a sharper version of Sullivan’s result (i.e., bounding the index)
in the general arithmetic setting reduces to consideration of Γ < SO(f, k) and getting an
effectively computable constant bounding [Γ : Γ ∩ SO(f,Rk)].

7. Some examples

Example 1. As is shown in [7], the Davis manifold D [4] is a well-located arithmetic
hyperbolic 4-manifold. This was proved to be spinnable in [17] by showing that the
intersection form of D is even (c.f. Remark 2.3).

Example 2. The closed orientable hyperbolic 4-manifold X of Euler characteristic 16
obtained by Conder and Maclachlan in [3] is not known to be spinnable. Although the
homology groups are computed in [3], its intersection form is not known at present.

It is known to be arithmetic and well located (see [3,8]) with quadratic form defined
over the field Q(

√
5). Since 2 and 3 are inert in Q(

√
5), the ideal I of Proposi-

tion 6.1 is the ideal <
√

5 >. Hence Proposition 6.1 provides a spinnable cover of X
of degree at most |GL(25,F5)|/2 = 1

2 (532 − 1)(532 − 5) · · · (532 − 531). Note that 532 =
23283064365386962890625.

As is evident in this example, the method given by Proposition 6.1 for producing a
spinnable cover gives a gigantic bound for the degree of a spinnable cover!

On the other hand, since D (of Example 1) and X are commensurable [8], it seems
likely that a smaller degree spinnable cover of X can be constructed using the fact that
the Davis manifold is spinnable, and this can be seen to pass to finite sheeted covering
spaces.

Remark 7.1. It follows from [1, Theorem 1] that if a closed hyperbolic 4-manifold X
has even intersection form, then there is a finite cyclic cover that is spinnable. This finite
cover is a power of 2 controlled by the size of the two-torsion in H1(X,Z).

8. Non-spinnable hyperbolic manifolds

As advertised in § 1, we now produce non-spinnable examples of finite volume-orientable
hyperbolic manifolds in all dimensions greater than or equal to 5.

Theorem 8.1. For every n ≥ 5, there exists infinitely many non-spinnable orientable
finite-volume hyperbolic n-manifolds.

Proof. As shown in [10] (see also [16]), there exist non-spinnable orientable flat 4-
manifolds (although only 3 of the 27 orientable flat, 4-manifolds are not spinnable). Let Y
be one of these non-spinnable orientable flat 4-manifolds. By [12] and the improvement
in [14], every flat 4-manifold occurs as some cusp cross-section of a possibly (indeed,
likely) multi-cusped arithmetic hyperbolic 5-manifold. Hence Y can be arranged as a
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cusp cross-section of an arithmetic hyperbolic 5-manifold X. X cannot be spin, since it
is well known that a spin structure induces a spin structure on a boundary component
(see [11, Chapter II, Proposition 2.15]).

To get higher-dimensional examples, the manifold Yn = Y × S1 × S1 × · · · × S1 (with
n− 4 copies of S1) is a flat n-manifold. Hence we can repeat the above construction to
produce a multi-cusped arithmetic hyperbolic n+ 1-manifold Xn for which Yn is a cusp
cross-section. To see that Yn is not spinnable, note that Y ⊂ Y5 as a codimension one
orientable submanifold of an orientable manifold, and so an application of [11, Chapter
II, Proposition 2.15] implies that Y5 is not spinnable since Y is not spinnable. Repeating
this argument and proceeding by induction shows that Yn is not spinnable for all n ≥ 4.
Hence, it follows, as above, that Xn is not spinnable.

To get infinitely many in each dimension, we note that the fundamental groups π1(Yn)
are separable subgroups of π1(Xn) (see, for example, [12]), and hence, for each n,
we can construct infinitely many finite sheeted covers for which Yn occurs as a cusp
cross-section. �

Acknowledgements. Both authors were partially supported by the NSF. The sec-
ond author wishes to thank his former colleagues Dan Freed and Tim Perutz for helpful
correspondence on material related to this paper. We also thank Bruno Martelli, for valu-
able discussions on the topics of this paper, and Mike Davis for pointing out Sullivan’s
result [19].

References

1. C. Bohr, On the signatures of even 4-manifolds, Math. Proc. Cambridge Philos. Soc. 132
(2002), 453–469.

2. A. Borel, Density and maximality of arithmetic subgroups, J. Reine Angew Math. 224
(1966), 78–89.

3. M. D. E. Conder and C. Maclachlan, Compact hyperbolic 4-manifolds of small
volume, Proc. Amer. Math. Soc. 133 (2005), 2469–2476.

4. M. Davis, A hyperbolic 4-manifold, Proc. Amer. Math. Soc. 93 (1985), 325–328.

5. P. Deligne and D. Sullivan, Fibrés vectorials complexes à groupe structural discrete,
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