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Effect of curvature on transient natural
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Natural convection adjacent to a curved vertical wall is widely present. Unfortunately, the
effect of curvature on the transient thermal boundary layer (TBL) adjacent to the concave
vertical wall has been neglected. In this study, dynamical evolution and thermal process of
transient natural convection in a vertical circular pipe are discussed using scaling analysis,
a boundary flow regime for the thin TBL without merging and a duct flow regime for the
TBL with merging at the axis of the pipe are distinguished. The scaling laws quantifying
the dependence of thickness, velocity and flow rate of the TBL of the fluid with the fixed
Prandtl number in the vertical pipe on the Rayleigh number (RaT and Raq) and the ratio of
height to radius of the pipe (A) are first reported for the isothermal and isoflux conditions.
The curvature effect becomes stronger with the increase of the thickness of the TBL.
Under the duct flow regime, the non-dimensional flow rate is scaled with Ra1/2

T A−1 for the
isothermal condition and with Ra1/2

q A−3/2 for the isoflux condition. The scaling laws of
the thickness, velocity and the flow rate of the TBL in the vertical pipe are validated based
on the numerical results from direct numerical simulation (DNS) with good precision.
The scaling coefficient is also presented under different regimes and conditions, which
can serve as a design guide to determine natural convection in the vertical circular pipe.

Key words: buoyant boundary layers

1. Introduction

Natural convection on a vertical wall is widely present in nature and industry. In particular,
the thermal boundary layer (TBL) flow adjacent to the vertical wall plays an important
role in mixing and heat and mass transportation of fluids. Accordingly, natural convection
on a flat vertical wall or a sidewall of a cavity has been investigated extensively in the
past few decades. The analytical studies of laminar (Ostrach 1952), transitional (Dring
& Gebhart 1968; Armfield & Patterson 1992; Ke et al. 2019) and turbulent vertical
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boundary layer flows (Wei 2020) have been reported. Further, discussion on transient
behaviours (Patterson & Imberger 1980; Xu, Patterson & Lei 2009), three-dimensional
effects (McBain 1999), heating conditions (Sparrow & Gregg 1956; Nie & Xu 2019) and
governing parameters (Lin & Armfield 2012) has been presented.

Apart from a flat vertical wall, natural convection on a curved vertical wall (e.g. a wall
of a circular pipe) is also common in realistic situations. Owing to the effect of curvature,
dynamical evolution and thermal process of natural convection on a curved vertical wall
may be significantly different from those on a flat vertical wall. The differences can be
observed both in a thermal vertical pipe and around a thermal vertical cylinder, and thus
natural convection in a pipe is investigated in this study.

The early studies had focused on the heat transfer of natural convection in a vertical
pipe. Elenbaas (1942) suggested that GrPr and Gr1/4Pr1/4 may be used to estimate Nusselt
numbers at small and large GrPr, respectively, where Gr is the Grashof number and Pr is
the Prandtl number. The above scaling laws were verified by the numerical results based
on a finite difference method by Davis & Perona (1971). In these studies, the wall of the
vertical pipe is isothermally heated. Further, Dyer (1975) investigated natural convection
in the pipe with the isoflux wall, and obtained the scaling laws Nu ∼ Ra1/2

q for Raq < 1 but
Nu ∼ Ra1/5

q for Raq > 103 where Raq is the Rayleigh number defined by the heat flux.
The spatial variation of the flow and heat transfer in the pipe draws considerable

attention. The study by Takhar (1968) describes the profiles of the velocity and temperature
of natural convection in the vertical pipe and shows that the reversing flow increases the
velocity in the core of the pipe. The entry flow into the pipe was also characterised by, e.g.
Davis & Perona (1971) and Kagerama & Izumi (1970). The study by Al-Arabi, Khamis &
Abd-ul-Aziz (1991) shows that the inclination is an important factor to determine the flow
and heat transfer of natural convection in the pipe and the heat transfer rate decreases with
the increase of the inclination. The flow in the inclined pipe was also visualised by Bae,
Kim & Chung (2018).

Transient natural convection in a vertical circular container was investigated owing to
its extensive engineering applications such as in thermal storage or solar thermal systems.
Lin & Armfield (1999, 2001) performed a scaling analysis for transient natural convection
in initial and fully developed stages induced by the cold sidewall of a vertical circular
container. Their studies indicate that since the TBL adjacent to the sidewall of the circular
container is thin, the scaling laws are the same as those adjacent to a flat vertical sidewall.
The numerical study by Papanicolaou & Belessiotis (2002) further characterises natural
convection for 2.5 × 1010 ≤ RaT ≤ 1 × 1015 and indicates that there exist the secondary
flow and the transition from laminar to turbulent flows for 1 × 1013 ≤ RaT ≤ 5 × 1013.
Moreover, the analytical solution of one-dimensional transient natural convection in the
circular pipe subjected to the sinusoidal thermal boundary condition was presented by
Abro (2020).

Natural convection in a closed annulus with concave and convex curvatures has been
investigated by many investigators (e.g. Pécheux, Le Quéré & Abcha 1994; Mokheimer
& El-Shaarawi 2007; Hosseini et al. 2012; Alipour, Hosseini & Rezania 2013). Natural
convection around a thick vertical cylinder was also simulated recently by Dash & Dash
(2020). These studies mainly focused on the effect of the Rayleigh number and radius
ratio on the Nusselt number and flow rate. In addition, mixed convection in a vertical
pipe has also been investigated extensively, in which the influences of the Reynold
number and Rayleigh number on natural convection were the main concerns (Su & Chung
2000).
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Effect of curvature on transient natural convection

The literature review shows that the curvature effect on dynamical evolution and the
thermal process of natural convection remains untreated. In previous studies by, e.g.
Lin & Armfield (1999, 2001), the scaling laws of natural convection adjacent to a flat
vertical wall were usually applied for those adjacent to a curved vertical wall without
consideration of the curvature effect. However, the study by Ohk & Chung (2017) has
indicated that the heat transfer rate of the vertical pipe is similar to that of the vertical
flat wall for a large diameter of the pipe or a large Prandtl number, and the heat transfer
rate decreases for a small diameter of the pipe or small Prandtl number. Recently,
Zhao, Lei & Patterson (2021) also investigated the heat transfer of the fully developed
natural convection around a thermal vertical cylinder of radius R and height H, and they
reported the Nusselt number scales with ζ 1/5Ra1/4

T , where ζ is the ratio of the cylinder
radius to the thickness of the flat TBL. As understanding of the curvature effect on
natural convection is of significance owing to the application in nature and industry, the
investigation of transient natural convection adjacent to the wall of a circular vertical pipe
was motivated in this study. Dynamical evolution and the thermal process of transient
natural convection in the vertical pipe with the isothermal and isoflux conditions are
analysed, and the curvature effect is discussed. The regimes of the natural convection
flow in the vertical pipe are identified, which are the boundary layer flow regime and
the duct flow regime. The boundary layer flow regime occurs mainly in the initial stage
after sudden heating of the wall or for a large Rayleigh number with a thin thickness of
the TBL, but the duct flow regime in the fully developed stage or for a relatively small
Rayleigh number in which the TBL merges at the centre of the vertical pipe. Moreover,
the scaling laws under different regimes are obtained and validated by the numerical
results.

The rest of this paper is organised as follows: § 2 describes the physical problem for
natural convection in the vertical pipe; scaling analysis is presented for the isothermal
and isoflux pipe in § 3, and § 4 discusses the curvature effect in comparison with the flat
vertical wall; the comprehensive validation of the selected scaling laws by the numerical
results is performed in § 5, and § 6 summarises conclusions.

2. Problem description

The physical model we considered is a circular vertical pipe heated from outside
containing a Newtonian fluid. The heat transfer and buoyancy-driven natural convection
flow are governed by the mass, momentum and energy conservation equations. Under the
incompressible flow assumption, they are expressed in cylindrical coordinate system as

1
r
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Figure 1. Sketch of the natural convection flow in the circular vertical pipe.
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∂φ

+ uz
∂T
∂z

= κ

[
1
r

∂

∂r

(
r
∂T
∂r

)
+ 1

r2
∂2T
∂φ2 + ∂2T
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, (2.5)

where r, φ, z are the dimensional cylindrical coordinates as sketched in figure 1; ur, uφ , uz
are the corresponding velocity components; T, p and t are the temperature, pressure and
time, respectively; ν, κ , β and g are the kinematic viscosity, diffusivity, thermal expansion
coefficient and gravity acceleration, respectively.

The fluid in the pipe initially remains at uniform temperature and motionless, expressed
as

ur(r, φ, z, 0) = uφ(r, φ, z, 0) = uz(r, φ, z, 0) = 0, (2.6)

T(r, φ, z, 0) = T0, (2.7)

where T0 is the temperature at the initial time.
The non-slip boundary condition is assumed for the wall, which gives

ur(R, φ, z, t) = uφ(R, φ, z, t) = uz(R, φ, z, t) = 0, (2.8)

where R is the radius of the pipe.
The isothermal or isoflux boundary condition is imposed on the wall of the pipe, which

can be written as
T(R, φ, z, t) = Tw, (2.9)

and
k∂T(R, φ, z, t)/∂r = q. (2.10)

Here, Tw is the temperature of the wall and q is the heat flux through the wall.
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Effect of curvature on transient natural convection

The convection system is determined by the Rayleigh number (RaT and Raq), Prandtl
number (Pr) and the ratio of height to radius of the pipe (A). They are expressed as

RaT = gβ	TH3

κν
or Raq = gβqH4

λκν
, (2.11)

Pr = ν

κ
, (2.12)

A = H
R

, (2.13)

Here, RaT is defined by the temperature difference and Raq by the heat flux, which are
related to the isothermal and isoflux conditions, respectively; 	T is the difference between
the temperature of the wall (Tw) and the initial temperature (T0); H is the height of the
pipe; λ is the fluid conductivity. Note that the fixed Prandtl number was considered in the
scaling analysis and validation in this study.

3. Analysis of TBL

3.1. Isothermally heated pipe

3.1.1. Initial stage
As the flow domain and boundary and initial conditions are axisymmetric, the natural
convection flow is axisymmetric before the transition occurs for high Rayleigh numbers.
This implies that the heat conduction in the circumferential direction is negligible. In
addition, t is small at the very early stage, and thus ∂T/∂z can be assumed to be negligible.
Further, the flow is so weak initially that the heat transfer by convection is neglected
(Patterson & Imberger 1980). Accordingly, the energy equation (2.5) can be simplified
as

∂T
∂t

∼ κ
1
r

∂

∂r

(
r
∂T
∂r

)
. (3.1)

It is noteworthy that the analytical solution based on Bessel function has also been derived
for the pure conduction in the fleeting early stage by, e.g. Bergman et al. (2011).

Integrating (3.1) over the radial direction, we have∫ R

R−δT

∂T
∂t

r dr ∼ κ

∫ R

R−δT

∂

∂r

(
r
∂T
∂r

)
dr, (3.2)

where δT is the thickness of the TBL and the subscript T represents the isothermal
condition hereafter.

The left-hand side of (3.2) can be estimated by 	T(R2 − (R − dT)2)/(2t). Considering
∂T/∂r = 0 at r = R − δT , the right-hand side can be estimated by κR	T/δT . Therefore, an
implicit relation about δT can be given by(

δT

R

)2

∼ κt
R2 + 1

2

(
δT

R

)3

, (3.3)

which is dealt with in the following section.
The streamwise velocity of the boundary layer flow is always much stronger than the

radial and circumferential velocity. Moreover, the order of the unsteady term in (2.4) is
O(uT /t), and those of the advection, viscous and buoyancy terms are O(u2

T/h), O(νuT/δ2
T)

and O(gβ	T), respectively (Xu et al. 2009; Lin & Armfield 2012). Therefore, the balance
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is mainly among the unsteady term, viscous term and buoyancy term owing to the weak
advection for a small time, which gives

∂uT

∂t
∼ ν

1
r

∂

∂r

(
r
∂uT

∂r

)
+ gβ	T, (3.4)

where uT is the characteristic velocity of the TBL.
Integrating (3.4) over the radial direction, we have

∫ R

R−δT

∂uT

∂t
r dr ∼ ν

∫ R

R−δT

∂

∂r

(
r
∂uT

∂r

)
dr +

∫ R

R−δT

gβ	Tr dr. (3.5)

In (3.5), the first term may scale with uT(R2 − (R − δT)2)/(2t), the second term
with νuTR/δT because ∂uT /∂r = 0 at r = R − δT , and the third term with gβ	T(R2 −
(R − δT)2)/2. Further, because the fixed Prandtl number is assumed in this study, (3.5)
may be simplified and, thus, a scaling law of a typical streamwise velocity may be
expressed as

uT ∼ RaT
κ2t
H3 . (3.6)

The fluid in the TBL heated by the pipe wall rises owing to the buoyancy effect. That
is, the flow rate at the outlet of the pipe in the initial stage QTo may be described by
uT(R2 − (R − δT)2) where R2 − (R − δT)2 may be described by 2Rκt/δT based on the
discussion of (3.3). Further, considering (3.6), QTo in the initial stage can be expressed as

QTo ∼ RaT
κ3t2

H3

(
δT

R

)−1

. (3.7)

Note that the subscript o represents the quantity at the outlet of the pipe hereafter.

3.1.2. Fully developed stage
With the passage of time, the heat convected away increases and reaches that conducted in
from the pipe wall. As a result, the development of the TBL enters a fully developed stage.
Considering the energy equation, we may obtain

uTs
∂T
∂z

∼ κ
1
r

∂

∂r

(
r
∂T
∂r

)
, (3.8)

where uTs is the velocity of the TBL in the fully developed stage and the subscript s
represents the fully developed stage hereafter.

Integrating (3.8) over the radial direction, we have

∫ R

R−δTs

uTs
∂T
∂z

r dr ∼ κ

∫ R

R−δTs

∂

∂r

(
r
∂T
∂r

)
dr, (3.9)

where, the left-hand side term can be estimated by uTs	T(R2 − (R − δTs)
2)/(2z), the

right-hand side term by κzR	T/δTs, and δTs is the thickness of the TBL in the fully
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developed stage. Thus, we have

uTs ∼ κzR

(2RδTs − δTs
2)δTs

. (3.10)

Assume that the TBL reaches the fully developed stage at the time tTs. Inserting tTs into
(3.3) and (3.6), respectively, we have(

δTs

R

)2

∼ κtTs

R2 + 1
2

(
δTs

R

)3

. (3.11)

uTs ∼ RaT
κ2tTs

H3 . (3.12)

In addition, we also have uTs ∼ z/tTs based on (3.10) and (3.11). Thus, inserting uTs ∼ z/tTs
into (3.12), we can obtain

tTs ∼ Ra−1/2
T

( z
H

)1/2 H2

κ
. (3.13)

Further, inserting (3.13) into (3.11) and (3.12), we can obtain the relations for the
thickness and velocity of the TBL in the fully developed stage,(

δTs

R

)2

∼ A2

Ra1/2
T

( z
H

)1/2 + 1
2

(
δTs

R

)3

, (3.14)

uTs ∼ Ra1/2
T

κ

H

( z
H

)1/2
. (3.15)

In addition, the flow rate QTso at the outlet of the pipe in the fully developed stage can
be described by uTso(R2 − (R − δTso)

2), expressed as

QTso ∼ κH2

δTsoA
. (3.16)

In the previous discussion, the thickness of the TBL is assumed to be so thin
(particularly initially) that the curved TBL does not merge at the centre of the pipe.
However, the curved TBL may merge at the centre of the pipe when δT ∼ R. Here, if
merging occurs, the flow rate of the TBL at the outlet of the pipe in the fully developed
stage (QTsom ∼ uTsπR2) can be expressed as

QTsom ∼ Ra1/2
T

κ

H
R2, (3.17)

where, the subscript m represents the merging TBL hereafter.

3.1.3. Heat transfer
In the initial stage, the rate of the heat conducted into the fluid from the pipe wall can be
estimated by 2πRH · λ	T/δT , the part of which is stored by the fluid in the pipe and the
other part is convected away by convection. The rate of the heat convected away by the
boundary layer flow can be estimated by ρcpQTo	T . In the fully developed stage, the heat
stored by the fluid in the pipe cannot increase; that is, the rate of the heat convected away
ρcpQTso	T (or ρcpQTsom	T when merging occurs) balances that conducted in 2πRH ·
λ	T/δTs from the pipe wall. Further, based on (3.16) without merging and (3.17) with
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merging of the TBL, respectively, we may obtain the Nusselt number of the whole pipe
wall in the fully developed stage, which is the rate of the heat convected away ρcpQTso	T
(or ρcpQTsom	T) normalised by 2πRH · λ	T/R, expressed as

NuT ∼

⎧⎪⎪⎨
⎪⎪⎩

R
δTs

δTs < R

Ra1/2
T

A2 δTs = R

. (3.18)

3.2. Isoflux heated pipe

3.2.1. Initial stage
Initially, the balance of the energy equation (2.5) is between the unsteady term and radial
conduction term. Similar to the discussion of (3.3), the thickness of the TBL may be given
by (

δq

R

)2

∼ κt
R2 + 1

2

(
δq

R

)3

, (3.19)

where δq is the thickness of the TBL in the initial stage and the subscript q represents the
isoflux condition hereafter.

Further, we have a scaling relation between the heat flux q and temperature difference
	T for the isoflux TBL (also see Ma, Nie & Xu 2018),

q ∼ λ	T
δq

. (3.20)

When the buoyancy-driven convection becomes non-negligible, we need to consider the
balance among the unsteady term, viscous term and buoyancy term in (2.4) (similar to the
discussion of (3.4)). The unsteady term may be described by uq(R2 − (R − δq)

2)/(2t), the
viscous term by νuqR/δq, and the buoyancy term by gβqδq(R2 − (R − δq)

2)/(2λ) based
on (3.20). The balance gives the scale of the velocity for the fixed Prandtl number based
on (3.19),

uq ∼ Raq

A4
κ2t
R3

δq

R
. (3.21)

Clearly, uq is proportional to δq, but uT is not dependent on δT based on (3.6). This is
because the buoyancy-driven flow is determined by the temperature difference between
the fluids in and out of the TBL, which is a constant value for the isothermal condition but
is influenced by δq for the isoflux condition.

In addition, the flow rate in the initial stage Qqo can be described by uq(R2 − (R − δq)
2)

in which R2 − (R − δq)
2 can be rewritten as 2Rκt/δT using (3.19). Further, based on (3.21),

Qqo can be expressed as

Qqo ∼ Raq

A
κ3t2

H3 . (3.22)

3.2.2. Fully developed stage
With the passage of time, the heat convected away increases and balances that conducted
in, resulting in the fully developed stage. Considering the balance between advection and
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Effect of curvature on transient natural convection

diffusion terms in (2.5) and repeating the discussion of (3.8)–(3.10), we may obtain the
velocity of the isoflux TBL in the fully developed stage,

uqs ∼ κzR

(2Rδqs − δqs
2)δqs

. (3.23)

Here, δqs is the thickness of the TBL in the fully developed stage.
Assume that the development of the isoflux TBL enters the fully developed stage at time

tqs. Inserting tqs into (3.19) and (3.21), respectively, we have the relations

(
δqs

R

)2

∼ κtqs

R2 + 1
2

(
δqs

R

)3

, (3.24)

uqs ∼ Raqs

A4
κ2tqs

R3
δqs

R
. (3.25)

Similar to the discussion of (3.13), based on (3.23), (3.24) and (3.25), the time scale tqs
may be obtained, expressed as

tqs ∼
(

A
Raq

)1/2( z
H

)1/2
(

δqs

R

)−1/2 H2

κ
. (3.26)

Inserting (3.26) into (3.24) and (3.25), respectively, the thickness of the isoflux TBL in
the fully developed stage can be expressed as(

δqs

R

)5/2

∼ A5/2Ra−1/2
q

( z
H

)1/2 + 1
2

(
δqs

R

)7/2

, (3.27)

and the velocity as

uqs ∼ Ra1/2
q

A1/2

( z
H

)1/2
(

δqs

R

)1/2
κ

H
. (3.28)

In addition, the flow rate at the outlet of the pipe in the fully developed stage can be
expressed as

Qqso ∼ κH
δqs/R

, (3.29)

based on Qqso ∼ uqs(R2 − (R − δqs)
2), (3.27) and (3.28) for the scenario without merging,

but

Qqsom ∼ Ra1/2
q

A1/2
κ

H
R2, (3.30)

based on uqsπR2 and (3.28) for the scenario with merging of the TBL.

3.2.3. Temperature difference
Clearly, the rate of the heat convected away balances that conducted from the pipe
wall q once the isoflux TBL is fully developed; that is, ρcpQqso	T ∼ 2πRHq or
ρcpQqsom	T ∼ 2πRHq, which is dependent on whether the isoflux TBL merges.
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The temperature difference (Ω) between the fluids convected away from and into the pipe
can be normalised by qR/λ, and Ωo can be written as

Ωo ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δqs

R
δqs < R

A5/2

Ra1/2
q

δqs = R
. (3.31)

4. Discussion of curvature effect

4.1. Comparison of scaling laws for flat and curved TBL
In § 3, natural convection in the pipe with the isothermal wall has been analysed. The
thickness, velocity and flow rate of the curved TBL are given by (3.3), (3.6) and (3.7) in
the initial stage and by (3.14), (3.15) and (3.16) in the fully developed stage; the time of
the transition to the fully developed stage may be scaled by (3.13); the flow rate can be
expressed as (3.17) if the TBL merges at the centre of the pipe; and the Nusselt number
of the pipe may be quantified by (3.18) in the fully developed stage. On the other hand,
natural convection in the pipe with the isoflux wall has also been studied. The thickness,
velocity and flow rate of the curved TBL are given by (3.19), (3.21) and (3.22) in the initial
stage and by (3.27), (3.28) and (3.29) in the fully developed stage; the time scale to reach
the fully developed stage is described by (3.26); the flow rate can be expressed as (3.30)
once the merging of the TBL occurs; the non-dimensional temperature difference between
the fluids convected away and at the initial time is expressed as (3.31).

Note that the thicknesses of the TBL δT in (3.3), δTs in (3.14), δq in (3.19) and δqs
in (3.27) are implicit. According to the previous studies (e.g. Lin & Armfield 2012; Ma
et al. 2018), the first term at the right-hand side of (3.3), (3.14), (3.19) and (3.27) is the
corresponding thickness of the TBL adjacent to a flat vertical wall; that is, the first term
represents the basic solution of the thickness of the TBL adjacent to the flat vertical wall,
but the second term describes the curvature effect.

The aforementioned scaling laws may be further rewritten based on the non-dimensional
parameters RaT (or Raq), A, Z and CTR, as listed in table 1. Here, Z and CTR equal
to z/H representing the spatial feature and κ1/2t1/2/R representing the temporal feature,
respectively; RaT (or Raq) and A are for the global behaviour of the TBL in the pipe. For
comparison, the scales of the TBL of the fluid with the fixed Prandtl number adjacent to
a flat vertical wall of height H and width 2πR flattened from the pipe are shown in the
non-dimensional form with subscript p in table 1 based on the studies by Lin & Armfield
(2012) and Ma et al. (2018). Further, δT , δTs, δq and δqs are written as the product of the
basic solution for the flat vertical wall and the corresponding curvature coefficients ηT , ηq,
ηTs and ηqs obtained by solving (3.3), (3.14), (3.19) and (3.27), respectively

4.2. Effects of curvature
(1) Initial stage

The effect of curvature on the thickness, velocity and flow rate of the TBL varies with
time in the initial stage, which is also related to the thermal boundary condition.

(i) Thickness. The scaling laws of the thickness in table 1 indicate that the effects of
curvature on the thicknesses of the TBL δT and δq may be described by ηT and ηq for the
isothermal and isoflux conditions, respectively. Note that ηT and ηq are the same based
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E
ffectofcurvature

on
transientnaturalconvection

Isothermal condition Isoflux condition

Stages Quantity Flat wall Pipe Flat wall Pipe

Initial stage Thickness
δT,p

R
∼ CTR

δT

R
∼ CTR · ηT

δq,p

R
∼ CTR

δq

R
∼ CTR · ηq

Velocity
uT,p

κ/R
∼ RaT

A3 C2
TR

uT

κ/R
∼ RaT

A3 C2
TR

uq,p

κ/R
∼ Raq

A4 C3
TR

uq

κ/R
∼ Raq

A4 C3
TR · ηq

Flow rate
QTo,p

κR
∼ RaT

A3 C3
TR

QTo

κR
∼ RaT

A3 C3
TR · 1

ηT

Qqo,p

κR
∼ Raq

A4 C4
TR

Qqo

κR
∼ Raq

A4 C4
TR

Time scale to reach fully developed stage
tTs,p

R2/κ
∼ Ra−1/2

T Z1/2A2 tTs

R2/κ
∼ Ra−1/2

T Z1/2A2 tqs,p

R2/κ
∼ Ra−2/5

q Z2/5A2 tqs

R2/κ
∼ Ra−2/5

q Z2/5A2 · η
−1/2
qs

Fully developed stage Thickness
δTs,p

R
∼ Ra−1/4

T Z1/4A
δTs

R
∼ Ra−1/4

T Z1/4A · ηTs
δqs,p

R
∼ Ra−1/5

q Z1/5A
δqs

R
∼ Ra−1/5

q Z1/5A · ηqs

Velocity
uTs,p

κ/R
∼ Ra1/2

T
Z1/2

A
uTs

κ/R
∼ Ra1/2

T
Z1/2

A
uqs,p

κ/R
∼ Ra2/5

q
Z3/5

A
uqs

κ/R
∼ Ra2/5

q
Z3/5

A · ηqs

Flow rate
QTso,p

κR
∼ Ra1/4

T
QTso

κR
∼ Ra1/4

T · 1
ηTs

Qqso,p

κR
∼ Ra1/5

q
Qqso

κR
∼ Ra1/5

q · 1
ηqs

Flow rate with merging No merging
QTsmo

κR
∼ Ra1/2

T A−1 No merging
Qqsmo

κR
∼ Ra1/2

q A−3/2

Table 1. Scales of the TBL induced by flat and curved vertical walls heated isothermally or isoflux.
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10010–1

CTR

10–2

0.6

1/ηT

ηT (or ηq)

ηT (or ηq)

η
T

, 1
/η

T
, η

q

1/ηT

0.8

1.0

1.2

1.4

1.6

Figure 2. Dependence on CTR of the curvature effect in the initial stage. Here ηT and ηq are obtained by
solving (3.3) and (3.19), respectively.

on (3.3) and (3.19). This is because the heat transfer by conduction in the initial stage is
dependent on only whether a temperature difference exists between the wall and fluid.

(ii) Velocity. The effect of curvature on the velocity is absent for the isothermal
condition. This is because the curvature does not change the temperature difference and in
turn the buoyancy force. Thus, the characteristic velocity of the TBL will not be affected by
the geometric curvature. However, the curvature may influence on the velocity for isoflux
condition, which is described by ηq. This is because the temperature difference between
the fluids in and out of the TBL is related to the thickness of the TBL for a fixed heat flux
and the thickness of the TBL is influenced by the geometric curvature.

(iii) Flow rate. The effect of curvature on the flow rate may be described by 1/ηT for the
isothermal condition but does not work for the isoflux condition.

We can conclude that the effect of curvature in the initial stage can be described by ηT ,
1/ηT and ηq, which will collapse to unity when the effect of curvature is neglected. As
ηT and ηq are the same, only ηT is discussed hereafter. ηT estimated by (3.3) is plotted
in figure 2. It is seen from this figure that ηT increases with CTR monotonically. This
means that the effect of curvature becomes more significant when the thickness of the TBL
increases with time. In addition, the thickness of the TBL for the isothermal condition and
the velocity for the isoflux condition are underestimated and the flow rate for the isothermal
condition is overestimated if the effect of curvature is neglected.

(2) Time scale to reach fully developed stage
Table 1 indicates that the time scale during which the initial stage lasts for the isothermal

condition, tTs, is equal to that for the flat wall situation, tTs,p. This implies that the effect
of curvature does not work on the time scale for the isothermal condition. However,
the effect of curvature works for the isoflux condition. The effect of curvature may be
described by η

−1/2
qs by comparing tqs with tqs,p in table 1. Here, η

−1/2
qs is only the function

of Ra−1/5
q Z1/5A by (3.27), and decreases with the increase of Ra−1/5

q Z1/5A, as shown
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10010–1

Raq
–1/5Z1/5 A

10–2

0.6

ηqs

ηT
–1/2

0.8

1.0

1.2

1.4

1.6

1/ηqs

1/ηqs

ηqs

η
qs

, η
qs

  ,
 1

/
η

qs
–1

/2

ηqs
–1/2

Figure 3. Curvature effect in the fully developed stage for the isoflux condition. Here ηqs is obtained by
solving (3.27).

in figure 3. That is, natural convection in the pipe reaches the fully developed stage within
a shorter time in comparison with the flat vertical wall situation.

(3) Fully developed stage
(i) Thickness. The effect of curvature on the thicknesses of the TBL δTs and δqs is

described by ηTs and ηqs for the isothermal and isoflux conditions, respectively (also see
table 1). However, (3.14) and (3.27) indicate that ηTs and ηqs in the fully developed stage
are not the same, but ηT = ηq in the initial stage. This is because the time scales for the
isothermal and isoflux conditions are not the same, as discussed in § 4.2.

(ii) Velocity. The effect of curvature on the velocity uTs is still absent for the isothermal
condition but works for the isoflux condition, as described by ηqs.

(iii) Flow rate. As listed in table 1, the effect of curvature on the flow rate at the outlet
without merging is dependent on 1/ηTs and 1/ηqs at Z = 1 for the isothermal and isoflux
conditions. Merging of the TBL will affect the heat and mass transfer in the pipe. It is
noteworthy that merging of the TBL is actually a result of the curvature effect of the
pipe; that is, the TBL does not merge in the case with the vertical flat wall. Here QTsom
can be rewritten as QTso,p/ηTsm, which means the effect of curvature may be described by
1/ηTsm. Based on the flow rate in the pipe QTsom and that adjacent to the flat vertical wall
QTso,p/(κR) in table 1, ηTsm is expressed as ARa−1/4

T . As for the isoflux condition, the effect
of curvature on the flow rate with merging of the TBL may be described by 1/ηqsm. Based
on QTsom and Qqso,p/(κR) in table 1, ηqsm can be further expressed as A3/2Ra−3/10

T .
The effect of curvature in the fully developed stage is mainly represented by ηTs, 1/ηTs,

1/ηTsm, ηqs, 1/ηqs and 1/ηqsm. ηTs and 1/ηTs are only the function of Ra−1/4Z1/4A and
plotted in figure 4. ηqs and 1/ηqs are only the function of Ra−1/5

q Z1/5A, and shown in
figure 3. 1/ηTsm is function of ARa−1/4 and 1/ηqsm is function of Ra−1/5

q A since we
focus on the outlet only. In fact, Ra−1/4Z1/4A and Ra−1/5

q Z1/5A equal to δTs,p/R and
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10010–1

RaT
–1/4Z1/4 A

10–2
0.6

ηTs

0.8

1.0

1.2

1.4

1.6

1/ηTs

1/ηTs

ηTs

η
Ts

, 1
/
η

Ts

Figure 4. Curvature effects in the fully developed stage for the isothermal condition. Here ηqs is obtained by
solving (3.14).

δqs,p/R, respectively. That is, the effect of curvature is determined by the corresponding
ratio of the thicknesses to the radius of the pipe in the fully developed stage.

5. Validation

5.1. Numerical cases and calculation method
Natural convection as sketched in figure 1 was investigated using three-dimensional
simulation. The natural convection flow is governed by (2.1)–(2.5), which were
solved using the finite-volume method with the SIMPLE (semi-implicit method for
pressure-linked equations) scheme. The second derivatives and linear first derivatives
were approximated by a second-order centre-differencing scheme. The advection terms
were discretised using a QUICK (quadratic upwind interpolation for convective kinetics)
scheme. The time integration was by the implicit second-order scheme. The discretised
equations were iterated with specified under-relaxation factors. The numerical procedure
was performed using ANSYS Fluent 15, which was also validated and verified for natural
convection adjacent to walls in the previous studies by, e.g. Xu et al. (2009), Ma et al.
(2018) and Qiao et al. (2018).

The non-slip boundary condition (2.8) and the isothermal condition (2.9) or the isoflux
condition (2.10) were applied for the wall. In addition, the Bernoulli boundary condition
of the pressure and the zero gradient velocity condition were adopted for the lower inlet
boundary of the pipe (also see Kogawa et al. 2016); and the zero gradient of the pressure
and velocity were applied for the upper outlet boundary of the pipe. The temperature of
the inflow at the inlet and backflow was constant at T0. The direction of the backflow was
the same as the flow direction of the neighbouring cell interior.

The mesh and time step have been also checked carefully. Mesh independent tests were
carried out for the largest RaT and Raq for each A (also see, e.g. Zhao et al. 2021).
The meshes involving 167 200, 172 608, 174 570, 180 682 and 215 586 hexahedron
elements were used for A = 0.5, 1.0, 2.0, 3.0 and 5.0, respectively. In the meshes, finer
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Boundary condition Ratio of height to radius Rayleigh number Prandtl number

Isothermal condition A = 0.5 RaT = 103–106 Pr = 0.7
A = 1.0 RaT = 103–106

A = 2.0 RaT = 103–106

A = 3.0 RaT = 103–106

A = 5.0 RaT = 103–106

Isoflux condition A = 0.5 Raq = 104–107 Pr = 0.7
A = 1.0 Raq = 104–107

A = 2.0 Raq = 104–107

A = 3.0 Raq = 104–107

A = 5.0 Raq = 104–107

Table 2. Parameters of numerical cases.

grids were used in the proximity of the wall with the stretching ratio across the boundary
layer equal to 1.1 and the size of the first layer grids adjacent to the wall less than 0.5 % of
the radius, which is much thinner than the TBL. Finer grids were also used in the region
near the inlet or outlet boundary with the stretching ratio of 1.05 and about 160 elements in
the axial direction. This is because physical quantities vary significantly in the boundary
layer adjacent to the wall and near the inlet or outlet boundary. Note that the same mesh
system above was also used in the numerical cases for different Rayleigh numbers with the
same A. In addition, the adaptive time stepping was used; that is, the maximal time step was
bounded for which the maximal non-dimensional time step was 0.014(	t/(h2/(κRa1/2

T ))

for the isothermal condition, but 0.016(	t/(h2/(κRa2/5
q )) for the isoflux condition based

on the time step independent tests in the previous studies by e.g. Xu et al. (2009) and Ma
et al. (2018).

Further, the computational domain test was also performed based on two domains, one
of which is only within the pipe and the other of which is in the pipe with the extension
at the inlet and outlet of the pipe. The domain test shows that the numerical results are
insensitive to whether the computational domain involves the extension at the inlet and
outlet, see Appendix A. Accordingly, only the region in the pipe was selected as the
computational domain in this study.

Numerical cases of natural convection of air in the pipe were carried out to validate the
aforementioned scaling laws for the fixed Prandtl number, in which different RaT (or Raq),
A, Z and CTR were considered as listed in table 2. Here, RaT and Raq vary from 103 to
106 and from 104 to 107, respectively, which implies that the natural convection flow is
laminar. Five ratios of height to radius of the pipe range from 0.5 to 5.0. Temperature and
velocity profiles at three heights Z = 0.25, 0.5 and 0.75 were monitored and thus the effect
of the height may be analysed.

5.2. Isothermal condition

5.2.1. Regimes
Natural convection in the pipe is axisymmetric, and thus only the profiles of the
temperature and velocity adjacent to the wall are presented in figure 5 for A = 0.5 and
RaT = 106. The fluid in the core of the pipe is not heated as shown in figure 5(a) and
even is motionless as shown in figure 5(b). This implies that the flow rate of the pipe
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Figure 5. Temperature and velocity in the fully developed stage for A = 0.5 and RaT = 106. (a) Temperature
distribution in the computational domain and (b) temperature (upper) and velocity (lower) distributions at
slice A.
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Figure 6. (a) Temperature and (b) velocity in the fully developed stage for A = 5 and RaT = 103.

mainly originates from the thin thermal layer adjacent to the wall. Figure 5(a) also shows
that the velocity does have the maximum in the TBL but may be negative outside the
TBL at the downstream heights (Z = 0.75 and 0.1) owing to the existence of the backflow.
The examination of numerical results shows that the axial symmetry may remain and the
transition and turbulence do not occur in all isothermal and isoflux cases.

Figure 6 further plots half of the temperature and velocity for A = 5 and RaT = 103

owing to symmetry. The examination of numerical results shows that the TBL is thick and
merges at the centre of the pipe. Further, figure 6(a) shows that the temperature profiles
are different at the upstream and downstream heights. The non-dimensional temperature
of the fluid in the core is much larger than zero. In addition, figure 6(b) shows that the
velocity profiles rarely vary at different heights with the maximum in the core, which are
different from those in figure 5(c). This is because the fluid in the core at the upstream is
also driven upward owing to the suction effect caused by the downstream flow once the
TBL merges.

Repeating the observations in figures 5 and 6 for the other numerical cases, numerical
cases with and without merging of the TBL were distinguished and are shown in the
parameter space of RaT and A in figure 7. That is, regime IT is dominated by the boundary
layer flow for which the TBL is so thin that the flow rate is contributed by the boundary
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106

105

104

103

100 101

A

RaT
IT IIT

Figure 7. Numerical cases for the isothermal condition for different A and RaT . The boundary layer flow
regime (IT ) is shown by the open squares: the TBL without merging; the duct flow regime (IIT ) is shown by the
solid squares: the TBL with merging. Here, the TBL is regarded as the layer with (T − T0)/(Tw − T0) > 1 %.
Note that the white border stripe is only a schematic separating the open and solid squares.

layer flow; regime IIT is dominated by the duct flow in which the TBL merges in the core,
resulting in the conservation of the flow rate at each cross-section.

5.2.2. Initial stage
Figure 8(a) shows the thicknesses identified by using the different temperature contours
as the edge of the TBL. Significant discrepancy can be observed among δT 99, δT 95 and
δT 90, which correspond to the thicknesses identified by using the temperature contour
(T − T0)/(Tw − T0) = 0.99, 0.95 and 0.90 as the edge of the TBL, respectively. To avoid
the discrepancy by artificial truncation thresholds, an equivalent thickness of the TBL δTE,
defined as

δTE =
∫ R

0 (T − T0) dr
Tw − T0

, (5.1)

is introduced and plotted in figure 8(a). Further, δT 99, δT 95, δT 90 and δTE versus the scale
CTRηT are further plotted in figure 8(b). Linear relations between the thicknesses and
CTRηT can be observed. Thus, the growth law of the TBL may be validated using the
definition (5.1). As a result, the equivalent thickness of the TBL δTE was used, which is
also abbreviated to δT hereafter.

We choose the maximal velocity in the streamwise as the characteristic velocity of the
TBL. The time histories of uT /(κ/R) at three heights, i.e. Z = 0.25, 0.50 and 0.75, are
shown in figures 9(a) and 9(b) for A = 0.5 and RaT = 103 and 106 under regime IT , but in
figures 9(c) and 9(d) for A = 5.0 and RaT = 103 and 106 under regime IIT .

Figures 9(a) and 9(b) show that when the TBL is smaller than the radius of the pipe, the
maximal velocities at heights Z = 0.25, 0.50 and 0.75 can grow freely, and overshoots can
be observed if the Rayleigh number is sufficiently large. In figures 9(c) and 9(d), the TBL
merges at the centre of the pipe. Figure 9(d) shows that the TBL grows synchronously
at heights Z = 0.25, 0.50 and 0.75 when CTR < 0.2. Then, the overshoot of the maximal
velocity at Z = 0.25 appears, which means that the upstream flow has entered a fully
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Figure 8. Thicknesses of the TBL at the height of Z = 0.5 for RaT = 105 and A = 1.0 identified by different
definitions. (a) Dependence of the thickness on time. (b) Thickness δT /R versus the scale CTRηT .
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Figure 9. Maximal velocities of the TBL versus time under regimes IT and IIT . (a) and (b) Two typical cases
under regime IT , and (c) and (d) two typical cases under regime IIT .

developed stage. However, the TBL at downstream continues to grow and the fluid in the
core area may be entrained into the TBL. Once the TBL merges at the centre, the upstream
flow may suffer the suction effect from the downstream; that is, the fluid at the upstream
accelerates again, and in turn a distinct secondary growth appears in the velocity curve of
Z = 0.25, as shown in figure 9(d).
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Figure 10. Thicknesses of the TBL under regimes IT and IIT . (a) Under the boundary layer flow regime IT ,
and (b) under the duct flow regime IIT (also see figure 7).

For validation of the scaling law of δT (table 1), the numerical results of the thicknesses
of the TBL under regime IT were obtained and are shown in figure 10(a). Here, six
numerical cases under regime IT were chosen, i.e. the three cases in the corners, the one
at the centre and the two near the separatrix in figure 7. In each case, the thickness of the
TBL is presented at heights Z = 0.25, 0.5 and 0.75. Figure 10(a) shows that the thicknesses
of the TBL from the numerical results fall in a line with the slope equal to 1.1. This means
that the thickness of the TBL grows as CTRηT . A good linear relation also suggests that
the thickness along the pipe is almost uniform, i.e. the growth of the thicknesses is not
dependent on the height. It is consistent with the fact that conduction is dominant but
convection is weak in the initial stage.

The thicknesses of the TBL for six numerical cases under regime IIT are also plotted
in figure 10(b). It shows that in the early stage in which the TBL does not merge, the
numerical results follow the same scaling relation under regime IT . However, the deviation
can occur when CTRηT > 0.2. This is because the boundary layer is too thick and, in turn,
the assumption of the boundary layer is invalid. Further, the numerical results fall upon
the solid line when CTRηT > 0.2. This means that the growth rate of the thickness of the
TBL speeds up when the TBL merges at the centre.

The maximal velocities of the TBL at three heights Z = 0.25, 0.50 and 0.75 were
monitored for six numerical cases under regime IT . The velocities in the initial stage are
plotted versus the scaling law of uT (see table 1) in figure 11(a). It is clear that the velocity
of the TBL can be described by the scaling law of uT . The scaling coefficient can also
be obtained using a linear fitting, which is 0.32. In addition, the maximal velocity for
six numerical cases under regime IIT is shown in figure 11(b). It is seen from this figure
that the small difference between the numerical results and the scaling law of uT exists
when the TBL merges at the centre. However, when merging becomes strong, the maximal
velocities from the numerical results deviate slightly from the scaling law. A typical case is
for A = 5.0 and RaT = 1 × 103. That is, the maximal velocity is consistent with the scaling
law of uT at the early period in the initial stage. However, as time increases further for
which the TBL merges, the maximal velocity exceeds the prediction by the scaling law.

The scaling law of the flow rate at the outlet in the initial stage is also validated. All
23 cases in figure 7 are plotted in figure 12 under regimes IT and IIT . Here, only the flow
rate at the outlet was monitored because of mass conservation. Clearly, the numerical flow
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Figure 11. Maximal velocities under regimes IT and IIT . (a) Under the boundary layer flow regime IT (also
see figure 7), and (b) under the duct flow regime IIT .
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Figure 12. Flow rates at the outlet under regimes IT and IIT .

rates versus that predicted by the scaling law of QTo (see table 1) follow the linear relation
under regime IT , and the scaling coefficient is equal to 3.8. In addition, the difference
between the flow rates under regimes IT and IIT is small.

In general, the thickness, maximal velocity and flow rate of the TBL in the initial stage
can be predicted by their scaling laws with good precisions. Moreover, they can be used
in the cases with the weak merging of the TBL. The dependence on RaT and A of the
thickness, maximal velocity and flow rate have been validated.

5.2.3. Fully developed stage
Figure 13 shows the numerical results of δTs under regimes IT and IIT . Clearly, the
numerical results fall on the linear relation predicted by the scaling law of δTs, as listed in
table 1, except for the largest three scatters for RaT = 103 and A = 5.0. This discrepancy is
because δTs is close to the upper limit δTs/R = 1.0 at which the assumption of the boundary
layer may fail in the scaling analysis, which, in turn, results in the invalid prediction of the
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Figure 13. Thicknesses of the TBL in the fully developed stage under regimes IT and IIT . The dashed line
corresponds to the upper limit of δTs.
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Figure 14. Maximal velocities of the TBL in the fully developed stage under regimes IT and IIT . The solid line
corresponds to regime IT , and the dashed line corresponds to the numerical results at Z = 0.25 under regime
IIT .

scaling law. Merging of the TBL makes the temperature of the fluid in the pipe uniform,
which is close to the wall temperature. In general, the scaling law δTs/R ∼ Ra−1/4

T Z1/4AηTs
is consistent with the numerical results. Further, figure 13 suggests that the criterion for
which the TBL merges is ARa−1/4

T hTs > 0.1.
Figure 14 shows uTs under regime IT for the validation of the scale Ra1/2

T Z1/2A−1. The
numerical results under regime IT illustrated by red marks in figure 14 are consistent with
the scaling law of uTs with a scaling coefficient of 0.46. However, the scaling coefficient
changes once the TBL merges. As shown in figure 14, the scaling coefficient increases to
0.9 for the numerical results at Z = 0.25 under regime IIT . Moreover, the examination of
the numerical results indicates that the increase of the scaling coefficient with the decrease
of Z is not linear. In addition, uTs for RaT = 103 and A = 5.0 is also away from the scaling
law because the thickness of the TBL is close to 1.0 with strong merging of the TBL under
regime IIT (also see figure 13).
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Figure 15. Flow rates at the outlet in the fully developed stage under regimes IT and IIT . (a) Numerical results
versus the scaling law of QTso under regime IT . (b) Numerical results versus the scaling law of QTsom under
regime IIT .

Figure 15(a) shows the flow rates from the numerical results and the scaling law of QTso
(see table 1). A good linear relation is clear between the numerical results and the scaling
prediction under regime IT , as illustrated by red marks in figure 15(a). That is, the scaling
law Ra1/4

T h−1
Ts with a scaling coefficient of 6.4 can perfectly capture the flow rate in the

fully developed stage under regime IT . However, merging of the TBL may significantly
affect the flow rate in the fully developed stage, as shown by some blue marks far from the
solid line in figure 15(a). Further, we also show the flow rates under regime IIT versus the
scale Ra1/2

T A−1 in figure 15(b). The approximately linear relation confirms that the scaling
law of QTsom in table 1 with a scaling coefficient of 0.83 is capable of predicting the flow
rate in the fully developed stage under regime IIT for which the TBL merges.

Figures 15 also shows that the scaling law of the flow rate is different under the regimes
with and without merging of the TBL in the fully developed stage but the same with
different scaling coefficients in the initial stage. In fact, the overshoot of the thickness and
velocity in figures 8 and 9 can be responsible for the difference.

5.3. Isoflux condition
Twenty-three numerical cases were investigated for the isoflux condition. The TBL in the
fully developed stage may be classified into the two regimes: the duct flow regime (IIq) for
which the TBL merges and the boundary layer flow regime (Iq) for which the TBL freely
grows, as illustrated in the parameter plane of A−Raq in figure 16.

The maximal velocities of the TBL in six numerical cases under regime Iq are shown
in figure 17(a). The numerical results show that there is a linear relation between
RaqA−4C3

TRηq and uq/(κ/R). However, Z has a significant effect on the scaling coefficient
ξ . That is, ξ decreases when Z increases, which is 6.6, 3.3 and 3.1 at Z = 0.25, 0.50
and 0.75, respectively. This implies that the suction effect caused by the downstream can
increase the velocity at the upstream, resulting in a larger scaling coefficient. Figure 17(b)
shows uq/(κ/R) in seven numerical cases under regime IIq. It is clear that the numerical
results can slightly deviate from the scaling law only for strong merging of the TBL for,
e.g. A = 5.0 and Raq = 1 × 104. That is, the suction effect becomes more significant when
the TBL merges.
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Figure 16. Numerical cases for the isoflux condition for different A and Raq. Here, the TBL can grow
freely under the boundary layer flow regime (Iq) but the TBL merges under the duct flow regime (IIq),
which are marked by the open and solid squares, respectively. The TBL is defined as the layer with
(T − T0)/(Tw − T0) > 1 %. Note that the white border stripe is only a schematic separating the open and solid
squares.
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Figure 17. Maximum velocities of the TBL at three heights under regimes Iq and IIq. (a) Under regime Iq,
and (b) under regime IIq.

The non-dimensional flow rates at the outlet under regimes Iq and IIq versus the scale
RaqA−4C4

TR are shown in figure 18. Clearly, the numerical results under regimes Iq and IIq
are consistent with the scaling law with different scaling coefficients. The smaller scaling
coefficient 0.95 under regime IIq indicates that merging of the TBL tends to decrease the
flow rate owing to the suction effect. Further, merging of the TBL less impacts on the
transient flow rate for the isothermal condition, as seen in figure 12. This implies that
the suction effect is more significant for the isoflux condition than for the isothermal
condition, because the fluid may be continuously heated along the streamwise by the
isoflux boundary.

Figure 19 presents the thicknesses of the TBL in the fully developed stage. The linear
relation shows that δqs/R can be described by the scaling law ARa−1/5

q Z1/5hqs. In general,
the scaling law has a better precision under regime Iq than under regime IIq.

Figure 20 shows the maximal velocities recorded in all numerical cases at three heights
Z = 0.25, 0.50 and 0.75. The numerical results at different heights with and without
merging of the TBL fall into six lines. Clearly, all the solid lines satisfy the scaling
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Figure 18. Flow rates at the outlet in the initial stage in 23 numerical cases under regimes Iq and IIq. The red
and blue solid lines correspond to regimes Iq and IIq, respectively.
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Figure 19. Thicknesses of the TBL in the fully developed stage at heights of 0.25H, 0.5H and 0.75H under
regimes Iq and IIq.

law uqs/(κ/R) ∼ Ra2/5
T Z3/5A−1ηqs. Similar to those in figure 17, the scaling coefficient

ξ decreases with the increase of Z under both regimes Iq and IIq owing to the suction
effect caused by the downstream. Further, comparing the scaling coefficient in figure 20
for the isoflux condition with that in figure 14 for the isothermal condition, we can find that
the suction effect under the boundary layer flow regime still exist for the isoflux condition
but is absent for the isothermal condition. Again, this is because the temperature of the
fluid increases along with the pipe for the isoflux condition but remains constant for the
isothermal condition.

Figure 21(a) shows the flow rates at the outlet in all numerical cases under regimes Iq
and IIq. Clearly, the numerical results under regime Iq satisfy the scaling law of Qqso (see
table 1) with a scaling coefficient of 5.9. Due to the drag effect by the upstream flow, the
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Figure 20. Maximum velocities of the TBL at different heights in the fully developed stage under regimes Iq
and IIq. All the solid lines follow the scaling law of uqs but with different scaling coefficients. Z = 0.25 and
0.75 are marked with the other for Z = 0.5.
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Figure 21. Flow rates at the outlet in the fully developed stage under regimes Iq and IIq. (a) Scaling law
(4.19) under regimes Iq and IIq. (b) Scaling law (4.20) under regime IIq.

flow rate under regime IIq is smaller than that under regime Iq. Further, the numerical
results under regime IIq normalised by the scaling law of Qqsom (also see table 1) are
shown in figure 21(b). It is clear that an approximately linear relation may be obtained
with a scaling coefficient of 0.64.

6. Summary and conclusions

The axially symmetric TBL of natural convection inside the vertical pipe has distinctive
dynamical evolution and thermal process in comparison with those adjacent to a flat
surface. The curved TBL is determined by the nondimensional parameters including the
Rayleigh number, i.e. RaT for the isothermal condition or Raq for the isoflux condition,
aspect ratio A and Prandtl number Pr.

937 A29-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.134


B. Nie and F. Xu

Dynamical evolution and thermal process of transient natural convection in the fluid
with the fixed Prandtl number in a vertical circular pipe are firstly studied using scaling
analysis, and the scaling laws of the curved TBL in the vertical pipe are obtained for
the isothermal and isoflux conditions. A boundary flow regime and a duct flow regime
can be distinguished, which correspond to the thin TBL without merging and the TBL
with emerging at the axis of the pipe, respectively. The non-dimensional thickness,
maximal velocity and flow rate of the curved TBL in the isothermally heated pipe may be
scaled with CTRηT , RaTA−3C2

TR and RaTA−3C3
TRη−1

T , respectively, in the initial stage but
with Ra−1/4

T Z1/4AηTs, Ra1/2
T Z1/2A−1 and Ra1/4

T η−1
Ts , respectively, in the fully developed

stage. In addition, the non-dimensional thickness, velocity and flow rate of the curved
TBL in the isoflux heated pipe may also be scaled with CTRηq, RaqA−4C3

TRηq and
RaqA−4C4

TR, respectively, in the initial stage but with Ra−1/5
q Z1/5Aηqs, Ra2/5

T Z3/5A−1ηqs

and Ra1/5
T η−1

qs , respectively, in the fully developed stage. Once the TBL merges in the pipe,

the flow rates in the fully developed stage may be scaled with Ra1/2
T A−1 and Ra1/2

q A−3/2

for the isothermal and isoflux conditions, respectively.
The scaling laws are compared with those adjacent to the flat vertical wall. It indicates

that the effect of curvature on the thickness, velocity and flow rate varies between the
isothermal and isoflux conditions. The curvature effects can be described by ηT and ηTs
for the isothermal condition and by ηq and ηqs for the isoflux conditions. Here ηT , ηTs, ηq
and ηqs are larger than unity and increase with the ratio of the corresponding thicknesses
to the pipe radius. In addition, the curvature effect increases the thickness of the TBL
and decreases the flow rate in both initial and fully developed stages for the isothermal
condition; however, for the isoflux condition, the curvature effect increases the thickness
and velocity of the TBL in both initial and fully developed stages and decreases the flow
rate only for the fully developed stage.

The numerical results of transient natural convection of air with Pr = 0.7 in the vertical
pipe are obtained using numerical simulation for RaT from 103 to 106, Raq from 104

to 107 and A from 0.5 to 5.0. The aforementioned scaling laws are validated with
satisfactory precisions based on these numerical results. Moreover, the scaling coefficients
are presented, which can serve as a design guide to determine transient natural convection
in the vertical pipe in the range of governing parameters. As for higher Rayleigh numbers
in which transition and turbulence may occur, a new scaling analysis with both the
molecular and turbulent viscosity and the numerical algorithm of high efficiency such
as large eddy simulation are expected.
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Appendix A. Independent test of the computational domain size

To test the influence of the computational domain size on the flow and heat transfer, the
computational domain test was also performed based on two domains for both A = 0.5
and 5. A domain only within the pipe, and a large domain in the pipe with the extension
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Figure 22. Independent test of the computational domain size for A = 0.5 and RaT = 106: (a) contours of
temperature and velocity in the computational domain with the extension outside the pipe; (b) and (c) the
temperature and velocity profiles calculated using differential computational domains (also see figure 22);
(d) flow rates calculated using differential computational domains.

at the inlet and outlet of the pipe were carried out. The height (radius) of the outlet and
inlet extension is 0.4H (1.25R) with the element number of 456 800 for A = 0.5 but with
the element number of 439 887 for A = 5.

Numerical results show that the flow and heat transfer are axisymmetric for A = 0.5 and
RaT = 106, as shown by the contours of the temperature and velocity in the computational
domain with the extension outside the pipe in figure 22(a). Figure 22(b) shows that the
consistent temperature profiles are clear for the computational domain in the pipe and
that with the extension. This means that the temperature distribution is insensitive to
the extension of the computational domain. In addition, figure 22(c) also shows that the
velocity profiles are not influenced by the computational domain except for the entrainment
velocity at the outlet boundary. That is, the velocity slightly decreases in the entrainment
region outside the TBL adjacent to the pipe wall for the computational domain with the
extension, as seen in figure 22(c). To quantify the influence of the computational domain,
the flow rates were calculated using different computational domains and are shown in
figure 22(d). It is clear that the influence of the computational domain on the flow rate is
small in the early developing and fully developed stages with the relative error less than
1.5 %. It is worth noting that the difference between the flow rates in the transitional stage
induced by the leading-edge effect (also see Nie & Xu 2019) is clear, which is however out
of the scope of the scaling analysis and corresponding validation.
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Figure 23. Independent test of the computational domain for A = 5 and RaT = 106. (a) and (b) are the
temperature and velocity profiles calculated using different computational domains, respectively.

Further, the temperature and velocity profiles for A = 5 and RaT = 106 are also shown
in figure 23. As a duct flow without entrainment from the outlet of the pipe is formed, the
profiles remain almost the same for different computational domains.
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