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Abstract We consider meromorphic solutions of functional-differential equations

f (k)(z) = a(fn ◦ g)(z) + bf(z) + c,

where n, k are two positive integers. Firstly, using an elementary method, we describe the forms of f
and g when f is rational and a( �= 0), b, c are constants. In addition, by employing Nevanlinna theory, we
show that g must be linear when f is transcendental and a( �= 0), b, c are polynomials in C.
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1. Introduction and main results

The main purpose of this paper is to characterize meromorphic solutions of functional-
differential equation

f (k)(z) = a(fn ◦ g)(z) + bf(z) + c, (1.1)

where n, k are two positive integers and a(�= 0), b, c are constants, or more generally,
polynomials in C. The equation is a generalization of the following equation

f ′(z) = a(f ◦ g)(z) + bf(z) + c, (1.2)

which include the pantograph equations f ′(z) = af(αz) + bf(z) and the extensively
studied equation

f ′(z) = a(f ◦ g)(z). (1.3)

These differential equations with proportional delays are usually referred to as pantograph
ones, which have been studied for both real and complex variables by many authors both
numerically and analytically owing to numerous practical applications in various fields,
such as electrodynamics, astrophysics and cell growth. See, for example [12, 18] and the
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references cited therein. And the special case f ′(z) = af(z − k) is the well-known time
delay differential equation (DDE), see monograph [1]. The general form of the time DDE
is

f ′(z) = F (z, f(z), (f ◦ g)(z)), (1.4)

where F (z, u, w) and g(z) are given analytic functions and f(z) is an unknown function.
In [15], Utz proposed the problem of determining conditions for the existence of a real
function f (not identically zero) satisfying Equation (1.3). The problem was solved by
Siu in [13]. Actually, by applying elementary operator theory in Banach spaces, Siu
gave existence and uniqueness results for Equation (1.3) under certain conditions. The
problems of local existence and uniqueness for the general Equation (1.4) were studied by
Oberg in [10] for local real solutions and in [11] for local complex solutions. Corresponding
to the global solutions (entire solutions) of Equation (1.3), it was Gross in [5] who deduced
that g must be linear when entire functions f and g in C satisfy Equation (1.3) with a
being a constant. The follow-up work was due to van Brunt–Marshall–Wake in [16], who
generalized the above result to Equation (1.2) with the condition c = 0. For describing
meromorphic solutions of more general equations, Gross and Yang in [6] obtained that
the entire function g is a polynomial if f is meromorphic. But, the specific form of g is
not given there. In 2007, Li in [8] further studied this kind of equation by characterizing
entire functions g to Equation (1.2) when f is a meromorphic function in C and a, b, c
are constants or, more generally, polynomials. More precisely, Li proved the following
theorem.

Theorem A. Suppose that f is a non-constant meromorphic function in C and g is
an entire function satisfying the equation

f ′(z) = a(f ◦ g)(z) + bf(z) + c,

where a(�= 0), b, c are constants. Then,

(i) g must be linear, if f is transcendental;

(ii) g must be a polynomial of degree less than or equal to 2, if f is rational; furthermore,
the degree of g is 2 if and only if f = α

z−w0
+ β, g = w0 − a(z − w0)2 and b =

aβ + c = 0, where α(�= 0), β, w0 are complex numbers.

By studying (ii) of Theorem A, one wants to know whether the same conclusion holds
for the equation f (k)(z) = a(fn ◦ g)(z) + bf(z) + c if f is a rational function, where the
left side is the k-th derivative of f and the right side is nonlinear item. Unfortunately,
the answer is negative, which is shown by the following example.

Consider the functions g(z) = z2 and f = 1
z2 . Obviously, f and g satisfy the equation

f ′′(z) = 6(f ◦ g)(z). However, the form of f does not satisfy the conclusion of Theorem A.
Observe that the only zero of g and the only pole of f are coincident, which leads us to
ask whether this always happens or not when g is nonlinear. In this present paper, we
firstly pay attention to this question. More specifically, using an elementary method, we
completely characterize the rational solutions of the following Equation (1.5) when g is
nonlinear.
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Theorem 1. Suppose that f is a non-constant rational function in C and g is a
non-constant entire function satisfying the equation

f (k)(z) = a(fn ◦ g)(z) + bf(z) + c, (1.5)

where a(�= 0), b, c are constant. Then, g is a polynomial. If g is nonlinear, then

g(z) = A(z − a1)μ + a1, f(z) = A0 +
q∑

j=1

Aj

(z − a1)j
,

where a1, A, A0 and Aj are constants, μ ∈ {2, 3, . . . , [k+1
n ]}, q = k

nμ−1 is an integer.

In particular, if q = k
nμ−1 is not an integer for any μ ∈ {2, . . . , [k+1

n ]} or n > k + 1,
then Equation (1.5) does not admit any non-polynomial rational solution.

Remark 1. For the special case n = k = 1, from Theorem 1, it follows that μ =
k+1

n = 2 and q = k
nμ−1 = 1

2−1 = 1 if g is nonlinear. Further, g(z) = A(z − a1)2 + a1 and
f(z) = α

z−a1
+ β with two constants α(�= 0), β. This is the conclusion (ii) of Theorem A.

Therefore, Theorem 1 is an improvement of Theorem 1 when f is a rational function.

Remark 2. We point out that (1.5) may admit more than one rational solution when
g is nonlinear, as seen by the following example. Observe that the functions f(z) = 1

z5

and g(z) = z2 satisfy an equation of the form (1.5), namely f (15)(z) = a(f2 ◦ g)(z), where
a = −19!/24. Moreover, the functions f(z) = 1

z3 and g(z) = Az3 also satisfy f (15)(z) =
a(f2 ◦ g)(z), where A6 = 57

2 .

Remark 3. From Theorem 1, we observe that f just has one pole when g is nonlinear.
The observation is false if g is linear. We offer an example to show this point. Let t0 = 1

2 +
i
√

3
2 . Then t30 = −1. Consider the functions f(z) = −t0

2(t0+1) + t0
z+1 − 1

z−1 and g(z) = −z.
Then, a calculation yields the following equation

f ′(z) = −t0(f2 ◦ g)(z) +
[
− t0
t0 + 1

+ t0

]
f(z) − 3

4(t0 + 1)2
.

Remark 4. We emphasize that a(�= 0), b, c cannot be generalized to polynomials,
as seen by the following example. Consider f(z) = 1

z , g(z) = z3 and a(z) = −z. Then,
the equation f ′(z) = a(z)(f ◦ g)(z) holds. But f and g cannot satisfy the conclusion of
Theorem 1.

Next, we turn our attention to transcendental solutions of the following functional-
differential Equation (1.6) with polynomial coefficients. As a matter of fact, we generalize
the conclusion (i) of Theorem A to Equation (1.6) as follows.
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Theorem 2. Suppose that f is a transcendental meromorphic function in C and g is
a non-constant entire function satisfying the equation

f (k)(z) = a(fn ◦ g)(z) + bf(z) + c, (1.6)

where a(�= 0), b, c are polynomials in C. Then g must be linear. Further, Equation (1.6)
does not admit any transcendental meromorphic solution if n ≥ 2 and k

n−1 is not an
integer.

Remark 5. The conditions that n ≥ 2 and k
n−1 is not integer are needed in Theorem 2.

If one of them is invalid, then Equation (1.6) may admit transcendental meromorphic
solutions, which is shown by the following examples.

Consider the equation f (k)(z) = (fn ◦ g)(z), where k is a positive integer and g(z) =
z + 2πi. When n = 1, the equation admits the solution f(z) = ez. Consider the entire
functions f(z) = A(sin(az) + cos(az)) and f(z) = A cosh(az) +B sin(az)), which satisfy
the equations f ′(z) = a(f ◦ g)(z) and f ′′(z) = a2(f ◦ g)(z) respectively, where g(z) = −z
and A, B are arbitrary complex constants. These examples can be found in [15]. Con-
sider the equation f ′(z) = −(f2 ◦ g)(z) − f(z), where g(z) = z + 2πi. Clearly, n = 2 and

k
n−1 = 1. Moreover, the equation admits the solution f(z) = 1

ez−1 .
The same argument in Theorem 2 yields the following corollary. And we omit its proof

here.

Corollary 1. Suppose that f is a transcendental meromorphic function in C and g is
a non-constant entire function satisfying the equation

L(f) = (fn ◦ g)(z), (1.7)

where L(f) = akf
(k) + · · · + a1f

′ + a0 (ak �= 0) is a linear differential polynomial in f
with rational coefficients. Then g must be linear. Further, Equation (1.7) does not admit
any transcendental meromorphic solution if n ≥ 2 and k

n−1 is not integer.

Proof of Theorem 1. Clearly, g is a polynomial, since f is a rational function.
Firstly, suppose that f is a polynomial. Comparing the degrees of both sides of Equation
(1.5), one has n = 1 and deg g = 1, which means that g is linear. Next, we assume f
is a non-polynomial rational function, which means that f has at least one pole. We
below characterize the forms of f and g. Set f(z) = P1(z)

Q(z) , where P1, Q are two co-prime
polynomials. By decomposition of rational function, we then can set

f(z) = P (z) +R(z) = P (z) +
s∑

i=1

mi∑
j=1

Aij

(z − ai)j
(1.8)

where P (z) is a polynomial, s and mi are positive integers and Aij and ai (i = 1, . . . s)
are constant with Aimi

�= 0 for all i = 1, . . . , s. In addition, without loss of generality, we
suppose that ai and aj are distinct for any 1 ≤ i �= j ≤ s, and m1 ≤ m2 ≤ m3 ≤ . . . ≤ ms.
The above form of f implies that f has distinct poles a1, a2, . . . , as, with orders (or
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multiplicities)m1, m2, . . . , ms respectively. By differentiating the function f(z) k-times,
we obtain

f (k)(z) = P (k)(z) +
s∑

i=1

mi+k∑
j=k+1

Bij

(z − ai)j
, (1.9)

where Bij are constants and Bi(mi+k) �= 0 for i = 1, . . . , s. Combining (1.8) and (1.9)
yields

deg[f (k) − bf − c]

= deg
[
P (k)(z) − bP (z) − c+

s∑
i=1

mi+k∑
j=k+1

Bij

(z − ai)j
− b

s∑
i=1

mi∑
j=1

Aij

(z − ai)j

]

≤ deg f + ks.

(In fact, if b �= 0, then deg[f (k) − bf − c] = deg f + ks.) On the other hand, deg[(fn ◦
g)] = nmdeg f , where m = deg g. Plus s ≤ deg f − degP ≤ deg f , one has that

nmdeg f = deg[(fn ◦ g)] = deg[f (k) − bf − c]

≤ deg f + ks ≤ deg f + k deg f = (1 + k) deg f,
(1.10)

which implies that m ≤ 1+k
n . Clearly, if n > k + 1, the above inequality is invalid and

Equation (1.5) does not admit any rational function f . Below, we will prove the theorem
under the condition n ≤ k + 1.

From Equation (1.5), we see that all the zeros of g(z) − a1 must be the poles of f(z),
which implies that each zero of g(z) − a1 belongs to set {a1, a2, . . . , as}. Without loss
of generality, assume that g(at) = a1, where t is a fixed integer such that t ∈ {1, . . . , s}.
Suppose that at is a zero of g(z) − a1 with multiplicity μ. We consider the following cases.

Case 1. μ = 1. Then, we can assume that g(z) = a1 + h(z)(z − at), where h(z) is a
polynomial and h(at) �= 0. Further, substituting the forms of f and g into Equation
(1.5), one has

f (k)(z) − bf(z) − c

= P (k)(z) − bP (z) − c+
s∑

i=1

mi+k∑
j=k+1

Bij

(z − ai)j
− b

s∑
i=1

mi∑
j=1

Aij

(z − ai)j

= a(fn ◦ g)(z) = a

[
P (g(z)) +

s∑
i=1

mi∑
j=1

Aij

(g(z) − ai)j

]n

= a

[
P (g(z)) +

m1∑
j=1

A1j

(g(z) − a1)j
+

s∑
i=2

mi∑
j=1

Aij

(g(z) − ai)j

]n

= a

[
P (g(z)) +

m1∑
j=1

A1j

hj(z)(z − at)j
+

s∑
i=2

mi∑
j=1

Aij

[a1 − ai + h(z)(z − at)]j

]n

. (1.11)
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The first line of (1.11) implies that at is a pole of f (k)(z) − bf(z) − c with multiplicity
mt + k. And the last line of (1.11) yields that at is a pole of f (k)(z) − bf(z) − c = a(fn ◦
g)(z) with multiplicity nm1. Therefore, Equation (1.5) leads to

k +mt = nm1 ≥ k +m1.

The above equality does not hold for n = 1. So n ≥ 2 and m1 ≥ k
n−1 , which implies that

f has poles with multiplicity at least q, where

q =

⎧⎪⎪⎨
⎪⎪⎩

k

n− 1
, if

k

n− 1
is an integer

[
k

n− 1

]
+ 1, if

k

n− 1
is not an integer,

where [x] denotes the greatest integer less than or equal to x. Thus, s ≤ deg f−deg P
q ≤

deg f
q . By the first part of (1.10), we then have

nmdeg f = deg f + ks ≤ deg f + k
deg f
q

≤
(

1 +
k

q

)
deg f, (1.12)

Clearly, if k
n−1 is an integer, then (1 + k

q ) = n. Together with the above inequality
(1.12), one gets that deg g = m = 1. Further, the above inequalities in (1.12) become
equations. So, s = deg f

q , which implies that degP = 0 and P reduces a constant. If k
n−1

is not an integer, then (1 + k
q ) < n. Plus the above inequality (1.12), one gets that deg g =

m < 1, a contradiction.
Case 2. μ = 2. We then set

g(z) = a1 + h(z)(z − at)2, (1.13)

where h(z) is a polynomial and h(at) �= 0 (For the sake of simplicity, we still use this
notation h). Similarly as in Case 1, comparing the multiplicities of both sides of equation
f (k)(z) − bf(z) − c = a(fn ◦ g)(z) at the pole-point at we can get

k +mt = 2nm1 ≥ k +m1,

which implies that m1 ≥ k
2n−1 . The same argument as in Case 1 yields that f has poles

with multiplicity at least p, where

p =

⎧⎪⎪⎨
⎪⎪⎩

k

2n− 1
, if

k

2n− 1
is an integer;

[
k

2n− 1

]
+ 1, if

k

2n− 1
is not an integer.

Thus, s ≤ deg f−deg P
p ≤ deg f

p . Again by the first part of (1.10), we have

nmdeg f = deg f + ks ≤ deg f + k
deg f
p

≤
(

1 +
k

p

)
deg f. (1.14)

Obviously, if k
2n−1 is an integer, then (1 + k

p ) = 2n. Then, the above inequality (1.14)
yields that deg g = m ≤ 2. Together with the form of g in (1.13), we have that deg g = 2
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and

g(z) = h(z − at)2 + a1,

where h reduces to a constant. Further, degP = 0 and P reduces to a constant. We claim
that at = a1. Otherwise, suppose that at �= a1. Below we derive a contradiction. It is
pointed out that all the inequalities in (1.14) become equations. Thus, s = deg f

p . Plus
the fact f has poles with multiplicity at least p = k

2n−1 , we derive that any pole of f has
multiplicity p = k

2n−1 . This means m1 = m2 = · · · = ms = p. Observe that all the zeros
of g(z) − at must be the poles of f . Then, there exists an index ν ∈ {2, . . . , t} such that
g(aμ) = at. Clearly, aμ is a simple zero of g(z) − at. Then, Similarly as above discussion,
again comparing the multiplicities of both sides of the equation f (k)(z) − bf(z) − c =
a(fn ◦ g)(z) at the pole-point aμ, we have

k + p = k +mμ = nmt = np,

which implies that p = k
n−1 , a contradiction. Therefore, at = a1 and g(z) = h(z − a1)2 +

a1. Below, we will derive that f just has one pole. Without loss of generality, we assume
f has another pole a2 (�= a1). Then, Equation (1.5) leads to that g(a2) is also a pole of f .
Assume that g(a2) = aω. Obviously, a2 is a simple zero of g(z) − aω and ω ∈ {2, . . . , t}.
Again comparing the multiplicities of both sides of equation f (k)(z) − bf(z) − c = a(fn ◦
g)(z) at the pole-point a2, one has

k + p = k +m2 = nmω = np,

which implies that p = k
n−1 , a contradiction. Thus, f has just a pole a1 with multiplicity

p = k
2n−1 .

If k
2n−1 is not an integer, then (1 + k

p ) < 2n. Plus the above inequality (1.14), one has
that deg g < 2, which contradicts the fact μ = 2.

Case 3. μ ∈ {3, . . . , [k+1
n ]}. Then, the same argument as in Case 2 yields that g(z) =

h(z − a1)μ + a1, k
nμ−1 is an integer and Q is a constant. At the same time, f has just one

pole a1 with multiplicity k
nμ−1 . When k

nμ−1 is not an integer, we can get a contradiction.
Therefore, all the above discussions yield the desired result and the proof is finished. �

To prove Theorem 2, we will employ Nevanlinna theory. For the reader’s convenience,
we recall some notation and results in Nevanlinna theory. For a meromorphic function f ,
the Nevanlinna characteristic T (r, f) is defined as

T (r, f) = m(r, f) +N(r, f),

where

m(r, f) =
1
2π

∫ 2π

0

log+ |f(reiθ)|dθ, log+ x = max{log x, 0}

and

N(r, f) =
∫ r

0

n(t, f) − n(0, f)
t

dt+ n(0, f) log r,
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n(t, f) denotes the number of poles of f (counting multiplicity) in |z| ≤ t. We also need
the notation N(r, f), which is defined as

N(r, f) =
∫ r

0

n(t, f) − n(0, f)
t

dt+ n(0, f) log r,

n(t, f) denotes the number of poles of f (ignoring multiplicity) in |z| ≤ t. Obviously,
N(r, f) ≤ N(r, f). Further, for any positive integer k,

N(r, f (k)) ≤ N(r, f) + kN(r, f),

since n(t, f (k)) ≤ n(t, f) + kn(t, f) for any positive constant t. Further, we recall the
following known facts (see, e.g. [8, 14, 17].)

(1) If f (meromorphic) and g (entire) are transcendental, then

lim sup
r �∈E, r→∞

T (r, f ◦ g)
T (r, f)

= ∞,

where E is a set of finite Lebesgue measure (see [2, Theorem 2] and [6, p. 370]).

(2) The logarithmic derivative lemma m(r, f(k)

f ) = S(r, f) for any positive integer k,
where S(r, f) denotes any quantity satisfying that S(r, f) = o{T (r, f)} as r → ∞
outside a set of r of finite Lebesgue measure.

(3) If f is transcendental, then limr→∞
T (r, f)
log r = ∞; And if h is a rational function,

then T (r, h) = O(log r) = S(r, f).

(4) Suppose that g = amz
m + am1z

m−1 + . . .+ a1z + a0 is a non-constant polynomial,
then for any ε1 > 0 and ε2 > 0,

T (r, f ◦ g) ≥ (1 − ε2)T
( |am|

2
rm, f

)
,

T (r, f) ≤ 1
m

(1 + ε1)T
( |am|

2
rm, f

)
,

for large r outside possibly a set of finite Lebesgue measure. The above inequalities
can be seen in [6, (19)]) and [8, (2.7)]), respectively.

(5) Combining the above two inequalities yields that

T (r, f) ≤ 1
m

(
1 + ε1
1 − ε2

)
T (r, f ◦ g) =

1
m

(1 + ε)T (r, f ◦ g),

for large r outside possibly a set of finite Lebesgue measure, where ε = ε1+ε2
1−ε2

is
a positive constant. The form of ε implies that ε can be chosen for any arbitrary
positive number.

(6) T (r, f) = T (r, 1
f ) +O(1), T (r, fg) ≤ T (r, f) + T (r, g), T (r, f + g) ≤ T (r, f) +

T (r, g) +O(1). The last two inequalities also hold for m(r, ·).
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Proof of Theorem 2. Based on the idea in [8], we will prove the theorem. Assume
the functions f and g satisfy Equation (1.6). From Equation (1.6), the facts (2), (3) and
(6), one has that

nT (r, f ◦ g) = T (r, fn ◦ g) ≤ T (r, a(fn ◦ g)) + T

(
r,

1
a

)
= T (r, a(fn ◦ g)) +O(log r)

= T (r, f (k) − bf − c) +O(log r) ≤ T (r, f (k) − bf) +O(log r)

≤ m(r, f (k) − bf) +N(r, f (k)) +O(log r)

= m

(
r,
f (k) − bf

f

)
+m(r, f) +N(r, f (k)) +O(log r)

≤ m

(
r,
f (k)

f

)
+m(r, b) +m(r, f) +N(r, f (k)) +O(log r)

≤ m(r, f) +N(r, f) + kN(r, f) + o(T (r, f))

≤ T (r, f) + kN(r, f) + o(T (r, f))

≤ T (r, f) + kN(r, f) + o(T (r, f))

≤ (1 + k)T (r, f) + o(T (r, f)) = (1 + k)(1 + o(1))T (r, f),
(1.15)

outside possibly a set of finite Lebesgue measure. Notice that f is transcendental. We
then see that g must be a polynomial, since if g were transcendental, then it is easy to
get a contradiction from the fact (1) and (1.15). Suppose that g = amz

m + am1z
m−1 +

· · · + a1z + a0 with am �= 0. Combining the fact (5) and (1.15) yields

nT (r, f) ≤ 1
m

(1 + ε)nT (r, f ◦ g) ≤ 1 + k

m
(1 + ε)(1 + o(1))T (r, f),

outside possibly a set of finite Lebesgue measure. This implies that

m ≤ 1 + k

n
(1 + ε)(1 + o(1)).

If 1+k
n < 2, then we get that m = 1 and g is linear, since ε can be chosen small enough.

For the proof of Theorem 2, it suffices to consider the case 1+k
n ≥ 2. Below we consider

two cases.
Case 1. For any positive integer q, f just has finitely many poles with multiplicity q.
Then, for any fixed integer q, we can say that f has poles with multiplicity at least q

except finitely many points. Further,

N(r, f) ≤ 1
q
N(r, f) +O(log r) ≤ 1

q
T (r, f) + o(T (r, f)).
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Substituting the above inequality into (1.15) yields that

nT (r, f ◦ g) ≤ T (r, f) + kN(r, f) + o(T (r, f))

≤ T (r, f) +
k

q
N(r, f) + o(T (r, f))

≤
(

1 +
k

q

)
T (r, f) + o(T (r, f)) =

(
1 +

k

q

)
(1 + o(1))T (r, f),

(1.16)

outside possibly a set of finite Lebesgue measure. Furthermore, by the fact (5) again, one
has

nT (r, f) ≤ 1
m

(1 + ε)nT (r, f ◦ g) ≤
1 + k

q

m
((1 + ε))(1 + o(1))T (r, f),

outside possibly a set of finite Lebesgue measure. Let q → ∞, we can derive that m =
n = 1 and g is linear.

Case 2. There exists a positive integer q such that f has infinitely many poles with
multiplicity q.

Suppose that P is an integer such that f has finitely many poles with multiplicity < P
and infinitely many poles with multiplicity P . In fact, the number P is the minimum
integer which satisfies the assumption of Case 2. We define a set S as follows:

S = {z : z is a zero of a, b, c, g′ or z is a pole of f with multiplicity < P}.

Clearly, S is a finite set, since a, b, c and g′ are polynomials. Set L = max{|z| : z ∈ S}.
Assume that {zn}∞n=1 are the poles of f with multiplicity P such that |z1| ≤ |z2| ≤

. . . ≤ |zn| ≤ . . . and |zn| → ∞ as n→ ∞. Note that g is a polynomial. Without loss of
generality, we can assume that the modulus of any zero of g(z) − zn is bigger than L for
any n > N , where N is an fixed integer. Suppose that g(a0) = zn with n > N . Then, it
follows a0 �∈ S, which implies that a0 is neither the pole of f with multiplicity < P nor the
zeros of the coefficients a, b, c and g′. Moreover, a0 is a simple zero of g(z) − zn. Assume
that g(z) − zn = h(z)(z − a0), where h(z) is a polynomial with h(a0) �= 0. Equation (1.6)
implies that a0 is also a pole of f . Suppose that the multiplicity of f at a0 is s. The fact
a0 �∈ S yields that s ≥ P . Then, the Laurent series expansions of f(z) and f (k)(z) at a0

are as follows

f(z) =
αs

(z − a0)s
+

αs−1

(z − a0)s−1
+ · · · , (1.17)

f (k)(z) =
βs

(z − a0)s+k
+

βs−1

(z − a0)s+k−1
+ · · · , (1.18)

where αi (i = s, s− 1, · · · ) and βi (i = s, s− 1, · · · ) are finite complex numbers
with αs �= 0 and βs �= 0. In fact, βs = (−1)kαss(s+ 1) . . . (s+ k − 1). Suppose that the
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Laurent series expansion of f(z) at zn is

f(z) =
θP

(z − zn)P
+

θP−1

(z − zn)P−1
+ · · · , (1.19)

where θi (i = P, P − 1, · · · ) are finite complex numbers with θP �= 0. Furthermore, by
the form of g(z) and (1.19), one has

(fn ◦ g)(z) =
[

θP

(g(z) − zn)P
+

θP−1

(g(z) − zn)P−1
+ · · ·

]n

=
[

θP

h(z)P (z − a0)P
+

θP−1

h(z)P−1(z − a0)P−1
+ · · ·

]n

=
A1

(z − a0)nP
+

A2

(z − a0)nP−1
+ . . . ,

(1.20)

where A1, A2, . . . are constants and A1 �= 0. In fact, A1 =
[

θP

h(a0)

]n

. We rewrite Equation
(1.6) as

a(fn ◦ g)(z) = f (k)(z) − bf(z) − c. (1.21)

Substitute (1.17), (1.18) and (1.20) into (1.21). Then, by comparing the multiplicities of
both sides of Equation (1.21) at the pole-point a0, one has

nP = s+ k ≥ P + k,

which is impossible if n = 1. When n ≥ 2, it implies that

P ≥ t,

where

t =

⎧⎪⎪⎨
⎪⎪⎩

k

n− 1
, if

k

n− 1
is an integer;

[
k

n− 1

]
+ 1, if

k

n− 1
is not an integer.

The above discussion yields that f has poles with multiplicity at least t except for finitely
many points. Then, it follows that

N(r, f) ≤ 1
t
N(r, f) +O(log r) ≤ 1

t
N(r, f) + o(T (r, f)).

The similar argument as in (1.16) yields

nT (r, f ◦ g) ≤ T (r, f) + kN(r, f) + o(T (r, f))

≤ T (r, f) +
k

t
N(r, f) + o(T (r, f))

≤
(

1 +
k

t

)
T (r, f) + o(T (r, f)) =

(
1 +

k

t

)
(1 + o(1))T (r, f),

(1.22)
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outside possibly a set of finite Lebesgue measure. Furthermore, plus the fact (5) again,
one has

nT (r, f) ≤ 1 + k
t

m
(1 + ε)(1 + o(1))T (r, f),

outside possibly a set of finite Lebesgue measure. If k
n−1 is an integer, then 1 + k

t = n.
Together with the above inequality, we get that

mn ≤ n(1 + ε)(1 + o(1)),

which implies that m = 1 and g is linear, since ε can be taken small enough. Moreover, if
k

n−1 is not an integer, then t = [ k
n−1 ] + 1 and 1 + k

t = λn < n, where 0 < λ < 1 is a fixed
constant. Again plus the above inequality, one has

mn ≤ nλ(1 + ε)(1 + o(1)),

By choosing ε small enough such that λ(1 + ε)(1 + o(1)) < 1, then it follows m < 1,
which is impossible. Thus, when k

n−1 is not integer, the equation does not admit any
transcendental meromorphic function.

Therefore, the proof is finished. �

2. Growth of meromorphic solutions of FDE

In this section, we turn our attention to the growth of the meromorphic solutions of the
general functional-differential equations (FDE). This is motivated by a result of Gross
and Yang in [6]. In fact, they proved that

Theorem B. Let g be a given non-constant entire function and P (z, y′(z),
y′′(z), . . . , y(k)(z)) be a given polynomial in variables z, y(z), y′(z) . . . , y(k)(z). If f
is a transcendental meromorphic solutions of the equation

P (z, y′(z), y′′(z), . . . , y(k)(z)) = (y ◦ g)(z), (2.1)

then g must be polynomial. Furthermore, if g is nonlinear, then T (r, f) = O((log r)β) as
r → ∞ for some constant β > 1.

In Theorem B, we see that the characteristic function T (r, f) is estimated and a lower
bound for β is given. So, it is natural to ask whether one can give an upper bound for β.
In this section, we consider the problem by deriving an upper bound for β. In order to
state the main result, we need the following definitions.

Let f be a non-constant meromorphic function on C, and let n0, n1, . . . , nk be k + 1
non-negative integers. We call

M [f ] = fn0(f ′)n1 · · · (f (k))nk

a monomial in f of degree λM = n0 + n1 + · · · + nk and weight γM = n0 + 2n1 + . . .+
(k + 1)nk, respectively. Now, let M1[f ], M2[f ], . . . , Ml[f ] be l monomials in f of degree
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λMj
and weight γMj

j = 1, 2, . . . , l respectively; and let b1, b2, . . . , bl be l polynomials.
We call

Q[f ] = b1M1[f ] + · · · + blMl[f ]

is a differential polynomial in f of total degree λQ = max{λM1 , λM2 , . . . , λMl
} and total

weight γQ = max{γM1 , γM2 , . . . , γMl
}. More precisely, we get the following.

Theorem 3. Suppose that f is a transcendental meromorphic function in C and g is
a non-constant entire function satisfying the equation

Q[f ](z) = (fn ◦ g)(z), (2.2)

where n is a positive integer and Q[f ] is a differential polynomial of total degree Λ and
total weight Γ, respective. Let ω = max{Λ, Γ}. Then g must be a polynomial and the
following assertions hold.

(i) If ω < 2n, then g must be linear;

(ii) If g is a polynomial with degree m ≥ 2, then

T (r, f) = O((log r)β),

where β = log ω
n (1+ε)

log m and ε is any arbitrary positive number.

Unfortunately, we don’t know whether this upper bound is sharp or not.

Proof of Theorem 3. Note that f is transcendental. It is well known that

m(r,Q[f ]) ≤ Λm(r, f) + S(r, f), N(r,Q[f ]) ≤ ΓN(r, f) + S(r, f),

outside possibly a set of finite Lebesgue measure. The fact can be found in [3, Lemma 1]
and given by Doeringer. Further, from Equation (2.2), one has that

nT (r, f ◦ g) = T (r, fn ◦ g) = T (r,Q[f ])

≤ m(r,Q[f ]) +N(r,Q[f ])

≤ Λm(r, f) + ΓN(r, f) + S(r, f)

≤ ωT (r, f) + S(r, f),

(2.3)

outside possibly a set of finite Lebesgue measure. Then, together with the fact (1), we
then see that g must be a polynomial. Still set g = amz

m + am1z
m−1 + · · · + a1z + a0

with am �= 0. Then, combining the fact (5) and (2.3) yields

nT (r, f) ≤ 1
m

(1 + ε)nT (r, f ◦ g) ≤ ω

m
(1 + ε)(1 + o(1))T (r, f),

outside possibly a set of finite Lebesgue measure. It implies that

m ≤ ω

n
(1 + ε).

If ω
n < 2, then we see that m = 1 and g is linear by choosing ε small enough. Thus, the

proof of (i) is finished.
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Now, we prove the conclusion (ii) under the condition ω ≥ 2n. With the above
discussion and the fact (4), one has

T

( |am|
2
rm, f

)
≤ 1

1 − ε2
T (r, f ◦ g) =

1
1 − ε2

1
n
T (r, (fn ◦ g)(z))

≤ 1
1 − ε2

ω

n
(1 + o(1))T (r, f) ≤ 1

1 − ε2

ω

n
(1 + ε1)T (r, f)

=
ω

n
(1 + ε)T (r, f),

(2.4)

outside possibly a set of finite Lebesgue measure, where ε1 is an arbitrary positive constant
and ε = ε1+ε2

1−ε2
. The form of ε implies that ε is also a arbitrary positive number. Next, we

need the following result, which is Lemma 1.1.1 in [7].

Lemma 2.1. Let g(r), h(r) : (0, +∞) → R be monotone non-decreasing functions
such that g(r) ≤ h(r) outside possibly a set of finite Lebesgue measure. Then for any
real number α > 1, there exists r0 > 0 such that g(r) ≤ h(αr) for all r > r0.

Set g(r) = T ( |am|
2 rm, f) and ω

n (1 + ε)T (r, f) = h(r). Obviously, g(r) ≤ h(r) outside
possibly a set of finite Lebesgue measure. By Lemma 2.1, for any α > 1, there exists a
positive number r0 such that g(r) ≤ h(αr) for all r > r0. That is

T (
|am|

2
rm, f) ≤ ω

n
(1 + ε)T (αr, f). (2.5)

Set αr = R. Then, we rewrite (2.5) as

T

( |am|
2αm

Rm, f

)
≤ ω

n
(1 + ε)T (R, f), for R ≥ αr0. (2.6)

To end the proof, we will employ a result of Goldstein, which can be found in
[4, Lemma 3].

Lemma 2.2. Let ψ(r) be a function of r (r ≥ r0), positive and bounded in every finite
interval. Suppose that

ψ(μrm) ≤ Aψ(r) +B, r ≥ r0,

where μ(> 0), m(> 1), A(> 1), B are constants. Then

ψ(r) = O((log r)α),withα =
logA
logm

.

Applying Lemma 2.2 to the function T (R, f), plus the inequality (2.6), we have

T (R, f) = O((logR)α),

where α = log ω
n (1+ε)

log m .
Thus, the proof is finished. �
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To end this section, we give a simple application of Theorem 3 by considering a special
functional-differential equation as follows.

It is known that the Weierstrass ℘ function is constructed in the most obvious way. Let
ω1 and ω2 be two complex numbers such that Im(ω2/ω1) �= 0. The Weierstrass ℘ function
is defined by

℘ :=
1
z2

+
∑
m, n

{
1

(z + Ωmn)2
− 1

Ω2
mn

}
,

where Ωmn = mω1 + nω2 and
∑

m, n denotes the sum over all integer m and n excluding
(m, n) = (0, 0). The Weierstrass ℘ function is an even meromorphic function with periods
ω1 and ω2 and satisfies the ODE

(℘′(z))2 = 4℘3(z) − g2℘(z) − g3, (2.7)

where g2 = 60
∑

m, n Ω−4
mn and g3 = 140

∑
m, n Ω−6

mn. Naturally, one wants to know
whether Weierstrass ℘ function satisfies another functional-differential equation as
follows, which maybe different from Equation (2.7).

(℘′(z))2 = a(℘3 ◦ g)(z) + b℘(z) + c, (2.8)

where a(�= 0), b, c are three constants. Actually, we below prove that if Equation (2.8)
holds, then it reduces to (2.7).

Now, we give the proof. Suppose that Weierstrass ℘ function satisfies (2.8). We know
that the characteristic function of ℘ is T (r, ℘) = π

Ar
2(1 + o(1)) with a positive constant A.

Then, we can get that g is linear, no matter from the conclusions (i) or (ii) of Theorem 3.
Assume that g(z) = αz + β. Substitute the forms of g(z) and ℘ into Equation (2.8), we
can easily get that

α = ±1, β = m0ω1 + n0ω2,

where m0 and n0 are two fixed integers. Therefore, (℘ ◦ g)(z) = ℘(±z +m0ω1 + n0ω2) =
℘(z), since ℘ is an even meromorphic function with periods ω1 and ω2. Furthermore, we
have a = 4, b = g2 and c = g3.

Thus, the proof is finished.
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