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SUMMARY
Redundant actuation for the parallel kinematic machine (PKM) is a well-known technique for
overcoming general drawbacks of the PKM by helping it to avoid singularity and enhance stiffness
characteristics, among others. Torque distribution plays a critical role in redundant actuation because
this actuation causes the PKM to consume too much energy or put a substantial amount of stress on
joints and links. This paper proposes a new torque distribution method for reducing the maximum
torque of the actuator of a planar PKM. Here the main idea behind the proposed method is the
use of superposition of a particular solution for a non-redundant case and an optimized null-space
solution for a redundant case with a constant coefficient. The optimal value of a null-space solution
can be easily determined by checking only the intersection points of the profile of the actuator’s
torque as the coefficient varies. We consider three cases of planar PKMs—2-, 3-, and 4-RRR
PKMs—and present a detailed procedure for deriving a kinematic solution for the 2-RRR PKM
based on Screw theory. We compare the proposed method with the minimum-norm pseudo-inverse
method and assess a limitation of the proposed method. The torque distribution algorithm can
be used to determine the number of actuators in an efficient manner and to reduce energy consumption.

KEYWORDS: Torque distribution; Optimization; Redundant actuation; Parallel mechanism;
Particular solution; Null-space solution.

1. Introduction
Redundant actuation is a technique for enhancing the characteristics of the parallel kinematic machine
(PKM).1,2 Many studies have reported that redundant actuation can help PKMs avoid a singularity
configuration3 or enhance stiffness characteristics.4 Because a redundantly actuated PKM has more
actuators than the degree of freedom (DOF) of the PKM, the controller can use redundant actuators
to change the characteristics of the PKM.

Redundant actuation has some drawbacks from the existence of internal torque. Several studies
have attempted to overcome a decrease in the PKM’s accuracy resulting from internal torque. Jeong
et al.5 present a calibration method by considering the joint indexing error from internal torque on
each joint. Jeon et al.6 calibrate the positioning error from the internal torque of a redundant PKM
by using a simple projection method. It is well known that internal torque can change stiffness
characteristics in an effective manner but that it can also cause a positioning error for the end-effector.

Another drawback of redundant actuation is a large amount of energy consumption arising from the
existence of additional actuators and internal torque. Here a torque distribution method can be very
useful for reducing energy and torque consumption. The pseudo-inverse method7 and the weighted
pseudo-inverse method8 are widely used to obtain minimum-norm torque distribution. Shim et al.9

propose a new torque distribution method for reducing the minmax value of actuator torque based on
the geometrical approach of Screw theory. Kim10 shows that energy can even be reduced by redundant
actuation through the use of negative work when the end-effector moves in the direction of gravity.
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There are several important researches on torque distribution of non-redundant actuations. Ma
and Hirose11 introduce two methods of damped squared-torque optimization and damped null-
space torque optimization to improve the local torque optimization techniques. They verified the
algorithm by simulation. Several local and global optimization algorithms on torque distribution have
been proposed by Suh and Hollerbach.12 Maciejewski13 presents torque minimization of redundant
manipulators by using singular value decomposition technique. Nokleby et al.14 introduce scaling
factors to examine force capabilities of non-redundant and redundant parallel manipulators.

This paper proposes a new torque distribution method that can help a redundantly actuated PKM to
minimize the maximum actuator torque. Based on the Jacobian relationship, we derive a solution by
combining a particular solution for a non-redundant case with a null-space solution for a redundant
case with a constant coefficient. We optimize the null-space solution by changing the coefficient
and determine an optimal solution by checking only the intersection points of actuator torque
according to the coefficient. For case studies, we analyze three redundant PKMs with the revolute (R)
joint—2-RRR,15 3-RRR,9,16 and 4-RRR17 PKMs—and derive a Jacobian matrix of the mechanisms
through Screw theory, which is a geometrically intuitive method for calculating the kinematics of
manipulators.18

Two main contributions of the research can be summarized as follows:

� Computation is very efficient. Since the algorithm finds optimal value by only vertex search on the
defined region, the computing takes very little time. We believe the algorithm can be very efficient
in real-time applications.

� Minmax value of the actuator torque is determined on pre-defined trajectories. By changing the
null-space solution, the maximum absolute values of actuator torques are minimized along a pre-
defined trajectory. In design process, the size of actuators can be optimally determined by the
proposed algorithm.

The rest of this paper is organized as follows: Section 2 describes the proposed torque distribution
algorithm. Section 3 examines the 2-RRR PKM, details the derivation of the Jacobian matrix through
Screw theory, and provides a singularity analysis based on the matrix. Section 4 considers 3- and
4-RRR PKMs and Section 5 concludes with a discussion on the limitation of the proposed algorithm.

2. Torque Distribution Algorithm
The torque distribution of a redundant PKM plays a critical role in reducing energy consumption
and internal torque. In general, there is no unique solution to the torque distribution problem of a
redundant PKM because the number of actuators exceeds that of the DOF of the PKM. Here, through
the use of the remaining DOF of actuators, various end-effector characteristics, such as stiffness, can
be changed. In addition, operating torque can be changed while the end-effector maintains constant
external force.

The wrench of the end-effector (ŵ) and actuator torque (λ) has the following relationship:

ŵ = jλ, (1)

where j denotes the Jacobian matrix of the mechanism. It should be noted that the number of columns
of j always exceeds that of rows of j in a redundant PKM. In a non-redundant case, the number of
columns equals that of rows.

This paper determines actuator torque while the wrench of the end-effector is maintained as a
constant. The paper’s optimization problem can be expressed as follows:

Find λ to minimize max(|λi |) along a predefined path, (2)

where λi indicates the components of the vector λ. The objective function of the problem can reduce
the maximum number of actuators, which means that actuators can be determined in an efficient
manner in the design process and can be operated with a small amount of energy.
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We start by calculating a general solution to Eq. (1). Using some linear algebra, we assume the
following general solution:

λ = λp + cλn. (3)

Here, λp and λn can be calculated as follows. λp is a particular solution to a reduced non-redundant
problem as follows:

ŵp = jsqλp, (4)

where jsq is the square Jacobian matrix by eliminating columns of redundant actuations, and λn is a
null-space solution to Eq. (1) as follows:

jλn = 0. (5)

In Eq. (3), λ can be calculated by using c which is a constant for a linear combination of these two
solutions. To calculate λp, we set the columns of redundancy from differences between the number
of actuators and that of the DOF of the end-effector to zero vectors until these two numbers are equal.
Any column of redundancy can be set to zero in this algorithm, and we set the last column to zero
vectors in the case studies. Note that we can easily calculate the null-space vector of λn of Eq. (5) by
the row echelon form of the Jacobian matrix.19

Here the main idea is changing c effectively to determine λ. In general, an optimal search requires
many iterations to determine the final solution. In this paper, we assume a general solution as a
linear combination of a particular solution and a null-space solution with a constant coefficient, and
therefore it is sufficient to search only for an intersected vertex to determine an optimal solution. Note
that in the multi-variable linear search method, an optimal solution is not in the middle of the line but
is always in the intersections. This method can sharply reduce the computation time and thus is very
effective in achieving real-time operations.

In sum, the proposed method is based on a general solution composed of a particular solution for
a non-redundant case and a null-space solution for a redundant case. By changing the coefficient for
the null-space solution, we determine an optimal solution for minimum actuator torque through the
use of a simple intersection-searching method. Here it needs to be emphasized that this simple and
fast method is very efficient in determining an optimal solution for real-time applications.

3. Case Study I: The 2-RRR PKM
In this section, we analyze the 2-RRR redundant PKM based on the proposed torque distribution
algorithm. We conduct a kinematic analysis based on Screw theory to calculate the Jacobian matrix
and use the matrix to determine torque distribution. We compare the results for the proposed algorithm
with those for the minimum-norm method and a non-redundant case.
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Fig. 1. (Colour online) Redundantly actuated 2-RRR PKM and the kinematic configuration: (a) the redundant
2-RRR PKM and (b) a kinematic configuration for the kinematic analysis. A, B, E, and F indicate the positions
of actuators, and C and D indicate the positions of passive joints. (Px , Py , ϕ) is the pose of the end-effector, li
is the length of the link, and θ is the angle between links. Other symbols are defined in the main text during
derivations.
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Fig. 2. (Colour online) Singularity configuration of the 2-RRR PKM: (a) p1 = p2 = 0 (the p4 = p5 = 0 case is
also singularity configuration, which is not shown in this figure.); (b) p1 = 0 (the p4 = 0 case is also singularity);
and (c) no singularity through redundant actuation.

Table I. Components of the Jacobian matrix in Eq. (6).

Sym. Value Sym. Value Sym. Value Sym. Value

α1 θ1 + θ2 pe
1 l3 sin θ3 p1 l1 sin θ2 llc

√
l2
1 + l2

2 + 2l1l2 cos θ2

α2 arctan l1s1+l2s12
l1c1+l2c12

pe
2 l3 sin(φ3 − α1) p2 l1l2 sin θ2/llc lrc

√
l2
4 + l2

5 + 2l4l5 cos θ5

α3 θ4 + θ5 pe
4 l6 sin θ6 p4 l4 sin θ5 φ3 θ1 + θ2 + θ3

α4 arctan l4s4+l5s45
l4c4+l5c45

pe
5 l6 sin(φ6 − α2)- p5 l4l5 sin θ5/lrc φ6 θ4 + θ5 + θ6

3.1. Mechanism description
Figure 1 shows the redundant 2-RRR PKM and its kinematic configuration. The mechanism has four
actuators to achieve three DOFs for the end-effector. We use the Jacobian matrix to examine the
relationship between actuator torque and the wrench of the end-effector. In addition, we determine
the matrix based on Screw theory18 and define a singularity configuration. Choi and Lee20 provide
a kinematic analysis of a 2-RRR PKM, and Spong et al.21 verify the results of this analysis by
comparing them with those of a conventional kinematic analysis.

3.2. Kinematic analysis
In general, the wrench of the end-effector is defined based on the screw vector and the linear force
because of actuators16:

ŵ = j̄ λ̄, (6)

where j̄ is a Jacobian matrix composed of the screw vector and expressed as
[

$1 $2 $4 $5
]

and λ̄ is

the linear force along the screw vector and expressed as
[
f1 f2 f3 f4

]T
. Each screw vector is defined

using cosine and sine functions and the perpendicular distance from the end-effector as follows:

$i = [
cαi sαi pe

i

]T
, (7)

where cαi and sαi are cosine and sine functions of αi , respectively, and pe
i is the perpendicular distance

between the screw vector and the end-effector.
Because the relationship between the force and torque is fi = τi/pi , where pi is the distance

between the screw and the actuator, we can determine j in Eq. (1) as follows:

j =

⎡
⎢⎢⎢⎢⎢⎢⎣

cα1

p1
sα1

p1

pe
1

p1

cα2

p2
sα2

p2

pe
2

p2

cα4

p4
sα4

p4

pe
4

p4

cα5

p5
sα5

p5
pe

5
p5

⎤
⎥⎥⎥⎥⎥⎥⎦
, (8)

where the components of j are arranged in Table I.
Two types of singularity occur in the redundant 2-RRR PKM. We can determine singularity

from the screw components of j . Figure 2(a) shows that the first type of singularity occurs when
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Fig. 3. (Colour online) Trajectory and external force for optimization—blue circles denote actuators and yellow
circles, passive joints. The red line is the test trajectory of the end-effector and the green arrow indicates the
application of an external force of [-1 -1] N. l1 = l2 = l4 = l5 = 200 mm and l3 = l6 = 75 mm are used in the
simulation. The distance between τ 1 and τ 2 is 150 mm.

p1 = p2 = 0. As shown in Eq. (8), the first two columns of j go to infinity when p1 = p2 = 0,
and therefore j is not well defined. Here p4 = p5 = 0 reflects the same singularity configuration.
Figure 2(b) shows that the second type of singularity occurs when p1 = 0. Note that these two types
of singularity are exactly coincident with the inverse kinematic singularity of the end-effector in ref.
[22]. The forward kinematic singularity, as in Fig. 2(c), can be avoided by using redundant actuation.

3.3. Torque distribution results
Based on the torque distribution algorithm in Section 2 and the Jacobian matrix in Section 3.2, we
simulate torque distribution for the 2-RRR PKM. To calculate optimal torque, we calculate λp from
a reduced 3 × 3 non-redundant problem in which the last column of j is set to zero. We calculate λn

by the row echelon form of a 3 × 4 Jacobian matrix. Figure 3 shows the geometric parameters and
notations of torque. When the end-effector follows the red circular line, the end-effector can maintain
an external force of [-1 -1] N.

In the proposed algorithm, we perform torque distribution by combining a particular solution and a
null-space solution as Eq. (3). The particular solution is determined by Eq. (4), where jsq is obtained
by eliminating the last column of the non-square Jacobian matrix as follows:

j =
⎡
⎣

j11 j21 j31 j41

j12 j22 j32 j42

j13 j23 j33 j43

⎤
⎦ and jsq =

⎡
⎣

j11 j21 j31

j12 j22 j32

j13 j23 j33

⎤
⎦ . (9)

Then, we can determine λpby adding zero to meet the dimension as follows:

λp =

⎡
⎢⎣

λ1

λ2

λ3

0

⎤
⎥⎦ . (10)

The null-space solution of the Jacobian matrix as calculated from the relation is as follows:

jλn = 0, λn =

⎡
⎢⎣

λn1

λn2

λn3

λn4

⎤
⎥⎦ . (11)
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Fig. 4. (Colour online) Null-space solution according to the coefficient: (a) torque and (b) the absolute value of
torque. Black dashed lines indicate the point of zero torque, and vertices denote the intersection point of torque
ranges searched.
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Fig. 5. (Colour online) Actuator torque while the PKM tracks the predefined circular trajectory: (a) torque of four
actuators for the minimum-norm method and the proposed method and b) minmax values of the actuator torque
(|λi |) for the non-redundant case, the minimum-norm method, and the proposed method. (Note: non-redundant
case in (b) is not included in (a).)

Note that we determine the particular solution uniquely and change the null-space solution by
using a constant co-efficient. Figure 4(a) shows null-space solutions based on changes in the constant
coefficient. As the objective of the optimization is to minimize the magnitude of the maximum
torque, we perform absolute operations for all torque ranges, as shown in Fig. 4(b). We then search
intersection vertices to identify an optimal solution that can minimize the maximum torque. It is
important to note that because the lines in Fig. 4(b) are linear, we can find intersection vertices easily
by calculating a series of algebraic equations.

Figure 5 shows the results for the proposed algorithm. Figure 5(a) shows the results for actuator
torque for the minimum-norm method and the proposed algorithm. The proposed algorithm reduces
peak torque values sharply. Figure 5(b) provides a comparison of the results for the non-redundant
case of the maximum torque, the minimum-norm method, and the proposed algorithm, and Table II
summarizes the values. The proposed algorithm reduced the maximum torque by 70.5% and 9.18%,
relative to the non-redundant case and the minimum-norm method, respectively. This suggests that
the proposed algorithm can reduce energy consumption and the number of actuators in the design
state.
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Table II. Comparison of the maximum torque for the 2-RRR PKM.

Non-redundant Minimum-norm Proposed

Max. torque (N·mm) 216.9 70.48 64.01
Rate (%) 339 110 100

(b)(a)

Fig. 6. Redundantly actuated (a) 3-RRR and (b) 4-RRR PKMs. Note the end-effector of 3-RRR PKM has zero
size.
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Fig. 7. (Colour online) 3-RRR redundant PKM: (a) the trajectory and external force, (b) absolute values of the
null-space solution according to the coefficient, (c) the torque of three actuators when the end-effector tracks
the pre-defined trajectory, and (d) the minmax value of actuator torque (|λi |). Lengths of links are 250 mm and
distances between actuators are 600 mm.
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Table III. Comparison of the maximum torque between 3-RRR and 4-RRR PKMs.

PKM Maximum torque (N·mm) Reduction rate (%)

3-RRR Minimum-norm 400.9 100
Proposed 368.7 92.0

4-RRR Minimum-norm 186.6 100
Proposed 164.7 88.3
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Fig. 8. (Colour online) 4-RRR redundant PKM: (a) the trajectory and external force, (b) absolute values of the
null-space solution according to the coefficient, (c) the torque of four actuators when the end-effector tracks the
pre-defined trajectory, and (d) the minmax value of actuator torque (|λi |). Lengths of links are 100 mm, edges
of the end-effector are 50 mm, and distances between actuators are 200 mm.

4. Case Studies II and III: 3-RRR and 4-RRR PKMs

4.1. Mechanism description
In this section, we analyze two additional cases of redundant PKMs: 3- and 4-RRR PKMs. Figure 6(a)
and 6(b) provide a mechanical description of these PKMs. Each leg of the mechanism is composed of
RRR chains. Note that the 3-RRR PKM uses three actuators to achieve a 2-DOF motion and 4-RRR
PKM uses four actuators to achieve a 3-DOF motion. We calculate the Jacobian matrix based on
Screw theory by using the same procedure as in Section 3.2 and thus omit the details of the procedure
in this section.
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4.2. Torque distribution results
We perform torque distribution by using the proposed algorithm in Section 2. Figures 7 and 8 show
the simulation results for 3- and 4-RRR PKMs, respectively. As shown in these figures, the proposed
algorithm reduces the resulting maximum torque. Table III compares the proposed algorithm with
the minimum-norm method, and the results indicate that the proposed algorithm reduces maximum
torque by 8% and 11.7% for 3- and 4-RRR PKMs, respectively.

5. Conclusions
This paper proposes a new torque distribution method for minimizing the peak value of actuator
torque for redundant PKMs. We use an optimized null-space solution based on a simple vertex search
method with a particular solution for a non-redundant case. We provide three case studies considering
2-, 3-, and 4-RRR redundant PKMs for the analysis and compare the resulting actuator torque with
minimum-norm solutions based on the pseudo-inverse of the redundant Jacobian matrix. The results
indicate that the proposed algorithm can reduce the minmax torque effectively for 2-, 3- and 4-RRR
redundant PKMs, while the reducing efficiency is dependent on the working trajectory.

The proposed algorithm has a limitation. Because it uses a particular solution for a non-redundant
case, there is no particular solution in a singular configuration for a non-redundant case. Therefore,
the proposed torque distribution method should be used only for non-singular regions. Despite this
limitation, this simple and fast algorithm can be used to control energy consumption by redundant
PKMs in an efficient manner. Future research should extend the proposed algorithm to spatially
redundant PKMs.
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