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Abstract

We give a sharp estimate for the first eigenvalue of the Schrödinger operator L := −Δ − σ which is defined
on the closed minimal submanifold Mn in the unit sphere Sn+m, where σ is the square norm of the second
fundamental form.
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1. Introduction

The study of rigidity theorems plays an important role in the theory of minimal
submanifolds. There has been extensive research on rigidity theorems for minimal
submanifolds in spheres since the pioneering results obtained by Simons [9], Lawson
[3] and Chern et al. [2]. Let σ denote the square norm of the second fundamental
form and let Mn be a compact minimal submanifold in a unit sphere Sn+m. From
this work, if 0 ≤ σ ≤ n/(2 − 1/m), then either σ = 0 or σ = n/(2 − 1/m), and M is
the Clifford hypersurface or the Veronese surface in S4. Later, Li [4] and Chen and
Xu [1] improved the pinching number n/(2 − 1/m) to 2n/3. They showed that if
0 ≤ σ ≤ 2n/3, then either σ = 0 or σ = 2n/3, and M is the Veronese surface in S4.
Recently, Lu generalised this result and proved the following rigidity theorem. Here, λ2
denotes the second largest eigenvalue of the fundamental matrix (see Definition 2.5).

THEOREM 1.1 (Lu [5]). Let 0 ≤ σ + λ2 ≤ n. Then either M is totally geodesic or is one
of the Clifford hypersurfaces Mr,n−r (1 ≤ r ≤ n) in Sn+m, m ≥ 1, or a Veronese surface
in S2+m, m ≥ 2.

REMARK 1.2. Lu suggests that the quantity σ + λ2 might be the right object for
studying pinching theorems.

Using Lu’s inequality [5, Lemma 2] (see Lemma 2.4), we investigate the first
eigenvalue of the Schrödinger operator L := −Δ + q, where q is a continuous function
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2 P. Wu [2]

on M. If there is a nonzero f ∈ C∞(M) satisfying L f = μ f , we call μ an eigenvalue
of L. Since Δ is elliptic, so is L and the set of eigenvalues can be written as

Spec(L) = {μi : μ1 < μ2 ≤ μ3 ≤ · · · }.
We call μ1 the first eigenvalue of L.

The pinching theorems cited above give a characterisation of Clifford hypersurfaces
and Veronese surfaces. The proofs make use of Simons’ identity. Similar argu-
ments lead to estimates of the first eigenvalue of the Schrödinger operator, which
gives another way of characterising Clifford hypersurfaces and Veronese surfaces.
Simons [9] studied the Schrödinger operator LI := −Δ − σ of minimal hypersurfaces
Mn → Sn+1 and proved that its first eigenvalue μI

1 ≤ −n if M is not totally geodesic.
Later, Wu [10] and Perdomo [7] independently proved that if μI

1 ≥ −n, then M is either
totally geodesic or a Clifford hypersurface. Define LII := −Δ − (2 − 1/m)σ on the
minimal submanifold Mn → Sn+m and LIII := −Δ − 3

2σ on the minimal submanifold
Mn → Sn+m, m ≥ 2, and denote by μII

1 and μIII
1 their respective first eigenvalues. For

LII , Wu [10] proved that μII
1 ≤ −n if M is not totally geodesic, and if μII

1 ≥ −n, then
M is either totally geodesic, or μII

1 = −n and M is either a Clifford hypersurface or a
Veronese surface. Also, for LIII , μIII

1 ≤ −n if M is not totally geodesic, and if μIII
1 ≥ −n,

then M is either totally geodesic, or μIII
1 = −n and M is a Veronese surface. Similar

results hold in the Legendrian case. Using a pinching rigidity result in [6], Yin and
Qi [11] gave a sharp estimate for the first eigenvalue of the Schrödinger operator
defined on a minimal Legendrian submanifold M3 → S7.

Based on the correspondence between pinching theorems and estimates of the first
eigenvalue of certain Schrödinger operators, one expects to find the same phenomenon
for Lu’s rigidity Theorem 1.1. That observation leads to our main theorem. Define the
Schrödinger operator L := −Δ − σ and denote the first eigenvalue of L by μ1.

THEOREM 1.3 (Main Theorem). Let Mn be a closed minimal submanifold in Sn+m(1).
If M is not totally geodesic, then

μ1 ≤ −n +max
p∈M
λ2.

Moreover, if μ1 ≥ −n +maxp∈M λ2, then either μ1 = 0 and M is totally geodesic, or
μ1 = −n +maxp∈M λ2 and M is the Clifford hypersurface in Sn+m(1) or the Veronese
surface in S2+m(1).

2. Preliminaries and Lu’s inequality

Let Mn be a compact minimal submanifold in a unit sphere Sn+m. We shall make
use of the following convention on the range of indices:

1 ≤ A, B, C, . . . ≤ n + m; 1 ≤ i, j, k, . . . ≤ n; n + 1 ≤ α, β, γ, . . . ≤ n + m.

We choose a local field of orthonormal frames {e1, e2, . . . , en+m} in Sn+m such that when
restricted to M, {e1, e2, . . . , en} are tangent to M and {en+1, en+2, . . . , en+m} are normal
to M. Also, {ω1, . . . ,ωn+m} is the corresponding dual frame. It is well known that
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[3] First eigenvalue characterisation 3

ωαi =
∑

j

hαijωj, hαij = hαji, h =
∑
α,i,j

hαijωi ⊗ ωj ⊗ eα, H =
1
n

∑
α,i

hαiieα,

Rijkl = δikδjl − δilδjk +
∑
α

(hαikhαjl − hαilh
α
jk), (2.1)

Rαβkl =
∑

i

(hαikhβil − hαilh
β
ik), (2.2)

hαijk = hαikj, (2.3)

where h, H, Rijkl, Rαβkl, are respectively the second fundamental form, the mean
curvature vector, the curvature tensor and the normal curvature tensor of M. We define

σ = |h|2, Aα = (hαij)n×n.

Denote by hαijk the component of the covariant derivative of hαij , defined by

hαijkωk = dhαij −
∑

l

hαilωlj −
∑

l

hαljωli +
∑
β

hβijωαβ. (2.4)

From the Gauss–Codazzi–Ricci equations (2.1)–(2.3), the well-known Simons identity
follows: ∑

i,j

hαijΔhαij = n |Aα|2 +
∑
β

Tr(AαAβ − AβAα)2 −
∑
β

(Tr AαAβ)2. (2.5)

Now, we introduce Lu’s inequality [5, Lemma 2] (see Lemma 2.4), which is the
main tool in the proof of Theorems 1.1 and 1.3. The proof of Lu’s inequality relies
on an algebraic inequality [5, Lemma 1]. We use the Lagrange multiplier method
to give another proof and find that there are more cases when the equality holds.
Consequently, we restate Lu’s lemma [5, Lemma 1] as the following lemma.

LEMMA 2.1. Suppose η1, . . . , ηn are real numbers, η1 + · · · + ηn = 0 and η2
1 + · · · +

η2
n = 1. Let rij ≥ 0 be nonnegative numbers for i < j. Then∑

i<j

(ηi − ηj)2rij ≤
∑
i<j

rij +max(rij). (2.6)

If η1 ≥ · · · ≥ ηn and rij are not simultaneously zero, then equality holds in (2.6) only in
one of the following cases. Fix an integer k with k ∈ {1, . . . , n − 1}.

(1) rij = 0 if 2 ≤ i < j, r12 = · · · = r1k = 0, r1 k+1 = · · · = r1n > 0,

η1 =

√
n − k

√
n − k + 1

, η2 = · · · = ηk = 0, ηk+1 = · · · = ηn =
−1

√
(n − k + 1)(n − k)

.

(2) rij = 0 if i < j < n, rn−1 n = · · · = rn−k+1 n = 0, rn−k n = · · · = r1n > 0

ηn =
−
√

n − k
√

n − k + 1
, ηn−1 = ηn−2 · · · = ηn−k+1 = 0,

ηn−k = · · · = η1 =
1

√
(n − k + 1)(n − k)

.
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4 P. Wu [4]

REMARK 2.2. We prove the lemma in two steps. The first step is the same as Lu’s
original proof of [5, Lemma 1] which reduces the problem to proving the inequality∑

1<j

(η1 − ηj)2r1j ≤
∑
1<j

r1j +max
1<j

(r1j).

Then, we apply the Lagrange multiplier method to prove this inequality.

PROOF. First step. Assume η1 ≥ · · · ≥ ηn. If η1 − ηn ≤ 1 or n = 2, then (2.6) is trivial.
So assume n > 2 and η1 − ηn > 1. Observe that ηi − ηj < 1 for 2 ≤ i < j ≤ n − 1.
Otherwise,

1 ≥ η2
1 + η

2
n + η

2
i + η

2
j ≥ 1

2 ((η1 − ηn)2 + (ηi − ηj)2) > 1,

which is a contradiction.
Using the same reasoning, if η1 − ηn−1 > 1, then η2 − ηn ≤ 1; and if η2 − ηn > 1,

then η1 − ηn−1 ≤ 1. Replacing η1, . . . , ηn by −ηn, . . . ,−η1 if necessary, we can always
assume that η2 − ηn ≤ 1. Thus, ηi − ηj ≤ 1 if 2 ≤ i < j, and (2.6) is implied by the
inequality ∑

1<j

(η1 − ηj)2r1j ≤
∑
1<j

r1j +max
1<j

(r1j). (2.7)

Before proving (2.7), we observe that if equality holds in (2.6), we must have
η1 − ηn > 1. Otherwise,∑

i<j

(ηi − ηj)2rij ≤
∑
i<j

rij <
∑
i<j

rij +max(rij),

which is a contradiction.
Notice that when η1 − ηn > 1, by the discussion above, ηi − ηj < 1 for 2 ≤ i < j < n.

So, rij = 0 for 2 ≤ i < j < n. Otherwise, by (2.7), equality cannot hold in (2.6). Thus,
when discussing equality in (2.6), we only need to analyse the inequality (2.7).

Second step. Let sj = r1j, where j = 2, . . . , n. We write (2.7) as∑
1<j

(η1 − ηj)2sj ≤
∑
1<j

sj +max
1<j

(sj).

Write

f (η1, η2, . . . , ηn−1, ηn) =
∑
1<j

(η1 − ηj)2sj.

We apply the Lagrange multiplier method to f with constraints

η1 + · · · + ηn = 0, η2
1 + · · · + η

2
n − 1 = 0.

Consider the function

Φ(η1, η2, . . . , ηn−1, ηn) =
∑
1<j

(η1 − ηj)2sj + λ (η1 + · · · + ηn) + μ (η2
1 + · · · + η

2
n − 1),
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[5] First eigenvalue characterisation 5

where λ and μ are the Lagrange multipliers. Setting the partial derivatives with respect
to each variable to zero gives the equations

∂Φ

∂η1
=
∑
1<j

2(η1 − ηj)sj + λ + 2μ η1 = 0,

∂Φ

∂ηj
= −2(η1 − ηj)sj + λ + 2μ ηj = 0 for j = 2, . . . , n − 1, n. (2.8)

Now
n∑

i=1

∂Φ

∂ηi
= nλ = 0,

n∑
i=1

ηi
∂Φ

∂ηi
= 2
∑
1<j

(η1 − ηj)2sj + 2μ = 0,

and so

λ = 0,
∑
1<j

(η1 − ηj)2sj = −μ.

Hence, the critical values of f are given by −μ.
Assume −μ � 0. We can also assume that μ +max1<j(sj) < 0. Otherwise,

−μ =
∑
1<j

(η1 − ηj)2sj ≤ max
1<j

(sj) <
∑
1<j

sj +max
1<j

(sj).

Then by (2.8),

ηj =
η1 sj

μ + sj
, j = 2, . . . , n − 1, n. (2.9)

Substituting (2.9) into η1 + · · · + ηn = 0 gives

1 +
∑
1<j

sj

μ + sj
= 0.

Hence,

0 = 1 +
∑
1<j

sj

μ + sj
≥ 1 +

∑
1<j

sj

μ +max1<i(si)
. (2.10)

Multiplying both sides of (2.10) by μ +max1<i(si) gives

−μ =
∑
1<j

(η1 − ηj)2sj ≤
∑
1<j

sj +max
1<i

(si). (2.11)

Notice that if sj > 0 for any j, then

0 >
sj

μ + sj
≥

sj

μ +max1<i(si)

and that equality in (2.11) is equivalent to equality in (2.10). If equality holds in (2.10),
then for each j > 1,
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6 P. Wu [6]

sj

μ + sj
=

sj

μ +max1<i(si)
,

which means that either sj = 0 or the nonzero sj = max1<i(si) and so all nonzero sj are
equal.

Thus, from (2.9) and the assumption above, there are n − 1 cases, one for each k
with k ∈ {1, . . . , n − 1}, namely,

η1 =

√
n − k

√
n − k + 1

, η2 = · · · = ηk = 0, ηk+1 = · · · = ηn = −
1

√
(n − k + 1)(n − k)

.

Case (2) in the statement of the lemma is just a permutation of Case (1) under a
different assumption at the beginning. This completes the proof. �

REMARK 2.3. The values k = n − 1 and k = 1 in Lemma 2.1(1) correspond to
[5, Cases (1) and (2) in Lemma 1], respectively.

The new version of [5, Lemma 1] changes [5, Lemma 2], but Lu’s rigidity theorem
still holds, as we discuss later.

Define the inner product of two n × n matrices A, B by 〈A, B〉 = Tr AB� and let
||A||2 = 〈A, A〉 = ∑i,j a2

ij, where (aij) are the entries of A. The next lemma gives the
revised version of Lu’s inequality [5, Lemma 2].

LEMMA 2.4. Let A1 be an n × n diagonal matrix of norm 1. Let A2, . . . , Am be
symmetric matrices such that:

(1) 〈Aα, Aβ〉 = 0 if α � β;
(2) ||A2|| ≥ · · · ≥ ||Am||.

Then,

m∑
α=2

||[A1, Aα]||2 ≤
m∑
α=2

||Aα||2 + ||A2||2. (2.12)

Equality holds in (2.12) if and only if, after an orthonormal base change and up to a
sign, and for each integer k with k ∈ {1, . . . , n − 1}, A1 is the diagonal matrix

A1 = diag
( √k
√

k + 1
,− 1
√

k(k + 1)
,− 1
√

k(k + 1)
, . . . ,− 1

√
k(k + 1)

, 0, . . . , 0
)
, (2.13)

with k entries −1/
√

k(k + 1) and n − k − 1 entries 0, and Ai is μ times the matrix whose
only nonzero entries are 1 at the (1, i) and (i, 1) places, where i = 2, . . . , k + 1 and
Ak+2 = · · · = Am = 0.

Next, we briefly review the proof of Lu’s rigidity theorem to set up the notation and
state some formulae for later use.
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[7] First eigenvalue characterisation 7

DEFINITION 2.5. The fundamental matrix S of M is an m × m matrix-valued function
defined by S = (aαβ), where

aαβ = 〈Aα, Aβ〉.

We denote the eigenvalues of the fundamental matrix S by λ1 ≥ · · · ≥ λm. In particular,
λ1 is the largest eigenvalue and λ2 is the second largest eigenvalue of the matrix S, and
r is defined by

λ1 = · · · = λr > λr+1 ≥ · · · ≥ λm.

Using this notation, the trace of the fundamental matrix is σ = λ1 + · · · + λm. For a
positive integer p ≥ 2, we define

fp := Tr (Sp) =
∑
α1,...,αp

aα1α2 aα2α3 · · · aαpα1

and gp := ( fp)1/p. Using the Simons identity (2.5) and Lemma 2.4, Lu derived the
following inequalities.

PROPOSITION 2.6 (Lu [5]). With the notation as above,

|∇ fp|2 ≤ p2 fp

∑
k,α

λ
p−2
α (∇∂/∂xk aαα)

2, (2.14)

Δgp =
1
p

f 1/p−1
p Δ fp +

1
p

( 1
p
− 1
)

f 1/p−2
p |∇ fp|2

≥ 2 f 1/p−1
p

∑
α

(
λ

p−1
α

∑
i,j,k

(hαijk)2
)

+ 2 f 1/p−1
p

(
r||A1||2p

(
n − ||A1||2 −

m∑
α=2

||Aα||2 − λ2

)
− 3mnλp

r+1

)
. (2.15)

By integrating both sides of (2.15) and letting p→ ∞, since λp
r+1/ fp → 0 as p tends

to∞, Lu derived∫
M

∑
i,j,k

∑
α≤r

(hαijk)2 + ||A1||2
(
n − ||A1||2 −

m∑
α=2

||Aα||2 − λ2

)
≤ 0. (2.16)

If equality holds in (2.16), then equality holds in (2.12), so Aα takes the form in
Lemma 2.4. Using the structure equation case by case, Lu proved Theorem 1.1.

REMARK 2.7. Although we have found more cases when equality holds in (2.12), we
can rule out the new cases using similar arguments to those in the original proof. To
be precise, if n > k + 1, j ≥ k + 2, then from 0 = dhn+1

1j = hn+1
11 ω1j, we concludeω1j = 0.

Similarly, by computing dhn+1
ij for i = 2, . . . , k + 1, we also have ω2j = · · · = ωk+1 j = 0

for j ≥ k + 2. By the structure equations, 0 = dω1j = ω1 ∧ ωj, which is a contradiction
if n > k + 1. Thus, Theorem 1.1 is still correct.
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8 P. Wu [8]

3. Proof of the main theorem

Let gε = (gp + ε)1/2, where ε > 0 is a constant. We first prove the inequality in the
main theorem.

PROPOSITION 3.1. If Mn is a closed nontotally geodesic minimal submanifold in
S

n+m(1), then

μ1 ≤ −n +max
p∈M
λ2 −

2
n + 2

∫
M[ 1

r
∑

i,j,k
∑
α≤n+r(hαijk)2]∫

M λ1
.

PROOF. By direct computation, using (2.15),

Δgε =
1
2

(gp + ε)−1/2 Δgp −
1
4
|∇gp|2 (gp + ε)−3/2

=
1
2

(gp + ε)−1/2
( 1

p
f 1/p−1
p Δ fp +

1
p

( 1
p
− 1
)

f 1/p−2
p |∇ fp|2

)
− 1

4
|∇gp|2 (gp + ε)−3/2

≥ 1
2

(gp + ε)−1/2
(
2 f 1/p−1

p

∑
α

(
λ

p−1
α

∑
i,j,k

(hαijk)2
)

+ 2 f 1/p−1
p

(
r||A1||2p

(
n + 1 − ||A1||2 −

m∑
α=2

||Aα||2 − λ2

))
− 6nm f 1/p−1

p λ
p
r+1

)

− 1
4
|∇gp|2 (gp + ε)−3/2

≥ (gp + ε)−3/2
[
(gp + ε) f 1/p−1

p

∑
α

(
λ

p−1
α

∑
i,j,k

(hαijk)2
)
− 1

4
|∇gp|2

]
︸�������������������������������������������������������������������������︷︷�������������������������������������������������������������������������︸

I

+ (gp + ε)−1/2
[

f 1/p−1
p

(
r||A1||2p

(
n − ||A1||2 −

m∑
α=2

||Aα||2 − λ2

))
− 3nm f 1/p−1

p λ
p
r+1

]
︸������������������������������������������������������������������������������������������������︷︷������������������������������������������������������������������������������������������������︸

II

.

To deal with I, we use the next lemma which follows from [8, (1.9) and (1.11) in
Proposition 1].

LEMMA 3.2 (Shen [8]). If Mn is a closed minimal submanifold in Sn+m(1), then

|∇(|Aα|2)|2 ≤ 4n
n + 2

|Aα|2
[∑

i,j,k

(hαijk)2
]
.

Applying Lemma 3.2 to (2.14) yields

|∇gp|2 =
1
p2 f 2/p−2

p |∇ fp|2 ≤ f 2/p−1
p

∑
α

λ
p−2
α |∇λα|2 ≤ f 2/p−1

p

∑
α

4n
n + 2

(
λ

p−1
α

∑
i,j,k

(hαijk)2
)
.
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[9] First eigenvalue characterisation 9

Thus,

I ≥ (gp + ε)−3/2
[
(gp + ε) f 1/p−1

p

∑
α

(
λ

p−1
α

∑
i,j,k

(hαijk)2
)
− 1

4
1
p2 f 2/p−2

p |∇ fp|2
]

≥ (gp + ε)−3/2
[
(gp + ε) f 1/p−1

p

∑
α

(
λ

p−1
α

∑
i,j,k

(hαijk)2
)

− 1
4

f 2/p−1
p

4n
n + 2

∑
α

(
λ

p−1
α

∑
i,j,k

(hαijk)2
)]

≥ 2
n + 2

(gp + ε)−1/2 f 1/p−1
p

[∑
α

(
λ

p−1
α

∑
i,j,k

(hαijk)2
)]

≥ 0.

Inserting the definition of gε into μ1 = inf f∈C∞(M)
∫

M L( f ) f /
∫

M f 2, yields

μ1

∫
M

g2
ε ≤
∫

M
L(gε)gε =

∫
M
−gεΔ gε − σ g2

ε =

∫
M
−gε(I + II) − σ g2

ε

≤
∫

M
− 2

n + 2
f 1/p−1
p

[∑
α

(
λ

p−1
α

∑
i,j,k

(hαijk)2
)]

+

∫
M
−
[

f 1/p−1
p

(
r||A1||2p

(
n − ||A1||2 −

m∑
α=2

||Aα||2 − λ2

))
− 3nm f 1/p−1

p λ
p
r+1

]

−
∫

M
σ g2
ε .

Then, letting p→ ∞ and ε → 0, and using the fact that λp
r+1/ fp → 0 almost every-

where when p→ ∞ completes the proof. �

PROOF OF THEOREM 1.3. From the proof of Proposition 3.1, if

μ1 ≥ −n +max
p∈M
λ2,

then either M is totally geodesic so μ1 = 0 or μ1 = −n +maxp∈M λ2 and

1
r

∑
i,j,k

∑
α≤n+r

(hαijk)2 = 0.

We claim that σ is a constant. By Lemma 2.4, there are two cases.

Case 1. A1 � 0 and A2 = A3 = · · · = Am = 0. By Lemma 3.2, σ = ||A1||2 = λ1 is a
constant.

Case 2. There is a positive integer k with 1 ≤ k ≤ n − 1 such that A1 is λ times the
diagonal matrix in (2.13), Ai is μ/

√
k(k + 1) times the matrix whose only nonzero

entries are 1 at the (1, i) and (i, 1) places for 2 ≤ i ≤ k + 1, and Ak+2 = · · · = Am = 0.
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Since
∑

i,j,k(hn+1
ijk )2 = 0, by (2.4), it follows that λ is constant. Also, μ is constant since

λ2 = maxp∈M λ2. Thus, σ is constant.
Since σ is constant when μ1 = −n +maxp∈M λ2 and the first eigenvalue of L is

−σ, it follows that σ + λ2 = n. Then, by Theorem 1.1, M is either one of the Clifford
hypersurfaces or the Veronese surface. �
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