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The time-varying flow in which fluid is withdrawn from or added to a reservoir of infinite

or arbitrary finite depth through a point sink or source of variable strength beneath a free

surface is considered. Backed up by some analytic work, a numerical method is used, and

the results are compared with previous work on steady and unsteady flows. In the case of

withdrawal for an impulsively started flow, it is found that the critical flow rate increases

with reservoir depth, although it changes little as the depth increases beyond double the sink

submergence depth. The largest flow rate at which steady solutions can evolve in source flows

follows a similar pattern although at a considerably higher value. Simulations indicate that

some of the previously calculated steady state solutions at higher flow rates may be unstable,

if they exist at all.
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1 Introduction

Withdrawal of water from reservoirs for drinking and irrigation is a problem of particular

importance in dry climates or where fresh water is limited by saline intrusions or other

pollutants. Beginning as early as 1901 a series of papers such as [1, 7, 16–18, 20, 21, 24, 34]

addressed this issue by considering steady flows into outlets of various dimensions from

fluids with a range of stratification patterns. In most cases, the authors were seeking the

critical parameters at which the withdrawn fluid begins to include potentially undesirable

water, e.g. salty or polluted, from different layers. Later, steady solutions computed

numerically [2–6, 8, 10–13, 30, 31] found very accurate values for the limiting steady state

solutions, but were not always clear in determining the critical transition to two layer

flows, as in some cases, there appeared to be gaps between maximal steady flows and

cusped critical flows. In addition, experimental results [9] did not always agree well

with computations. Xue and Yue and others [19, 23, 33] computed unsteady solutions

numerically, but again had difficulty in computing solutions beyond a certain time and

hence in finding critical transition values.

More recently, Stokes et al. [26,28] performed a detailed analysis of unsteady flow into

a line sink in water of infinite depth and finite depth, respectively, and compared their
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results with the existing steady solutions. They found that there are at least two critical

values of the flow rate parameter at which drawdown (the transition to two layer flow)

can occur, depending on the flow history. For example, an impulsively started flow may

drawdown immediately and at a lower flow rate than if the flow is gradually increased.

In the infinite depth case, they showed that steady flows exist up to some critical value.

However, for finite depth, two-dimensional flows, such steady flows cannot strictly arise.

As observed in [19] and [28], there is a local shift in fluid depth (starting above the sink)

which propagates outward across the fluid domain at a fixed velocity. This adjustment is

well predicted by shallow water theory, but applies to some extent to fluids of any finite

depth. For this reason, the fluid never approaches a steady flow except near to the region

of the submerged sink, where the characteristic shape of a stagnation point steady flow

is discernible: see [19] and [28]. There are thus significant differences in the flow pattern

induced in fluids of finite and infinite depth.

These ideas were extended in [15, 27] to consider the case of a point sink in a fluid of

infinite depth. Again, the results showed that the critical drawdown parameters depended

on the history of the flow, and that past steady and experimental work needs to be

examined in this light. In general, the behaviour was found to be qualitatively very

similar to the infinite depth line sink case [26]. In [15], Hocking et al. showed that a

simple rational approximation could be obtained based on the solution to the linearised

equations and that this performed well in comparison with the full non-linear solution at

small values of the flow rate and if the variation in the flow rate was small. The question

arises, given the differences between finite and infinite depth in the two-dimensional flow,

whether a similar difference exists in the case of a point sink in axisymmetric flow. In

principle, there is less difference between them because as one moves away from the

outlet, the fluid speed must approach zero in both cases, unlike the two-dimensional case

in which the fluid in finite depth can approach a constant, non-zero speed.

Here, we consider this issue in addition to attempting to quantify the critical parameters

for a range of flow geometries for a point sink in a fluid of finite depth.

2 Problem formulation

The axisymmetric, unsteady, irrotational flow of an inviscid, incompressible, fluid of finite

depth into a point sink beneath a free surface is considered. The assumption of radial

symmetry means the problem can be reduced to finding the free surface profile as a

function of radial distance from the origin.

Consider a point sink at depth h beneath the undisturbed level of the free surface,

ẑ = 0, which has strength m = m(t̂), where t̂ is time. The channel has depth Ĥ .

We can define a velocity potential φ̂(r̂, ẑ) such that v̂ = ∇φ̂ is the velocity vector for

the flow and satisfies

∇2φ̂ = 0, ẑ < η̂(r̂, t̂)

throughout the fluid domain except at the point (r̂, ẑ) = (0,−h), the location of the

singularity representing the point sink, and where ẑ = η̂(r̂, t̂) is the equation of the free
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surface. As this point is approached, the velocity potential satisfies

φ̂ → m

4π

1√
(r̂)2 + (ẑ + h)2

as (r̂, ẑ) → (0,−h).

The requirement that there be a solid, horizontal boundary at depth ẑ = −Ĥ forces

φ̂z = 0 on ẑ = −Ĥ , which can in many cases be satisfied by demanding that an image

sink be placed symmetrically below the base of the channel.

The conditions on the free surface are the dynamic condition of atmospheric pressure

on the free surface, which comes from the Bernoulli equation, i.e.

φ̂t̂ +
1

2
(û2 + v̂2) + gη̂ = 0 on ẑ = η̂(r̂, t̂), (2.1)

and the kinematic condition

η̂t̂ + φ̂r̂η̂r̂ − φ̂ẑ = 0 on ẑ = η̂(r̂, t̂), (2.2)

stating that the fluid may not cross its own boundary.

To allow the sink strength m to be viewed as a function of time, we do not include it in

our non-dimensionalisation; this is the approach taken in [15] and [28]. As in [15], which

concerned linearised solutions to the axisymmetric infinite depth withdrawal problem in

which the sink strength was a function of time, we non-dimensionalise using the length

scale h, the time scale
√
h/g, and hence a velocity scale of

√
gh, and a velocity potential

scale of h
√
gh.

The dimensionless equations are then

∇2φ = 0, z < η(r, t), r� (0,−1), (2.3)

where v = ∇φ subject to

φt +
1

2
(u2 + v2) + η = 0 on z = η(r, t), (2.4)

and

ηt + φrηr − φz = 0 on y = η(r, t), (2.5)

with the extra conditions that

φ → F√
r2 + (z + 1)2

as (r, z) → (0,−1) (2.6)

near the sink, and

φz = 0 on z = −H (2.7)

at the bottom of the fluid.

Here, H is the dimensionless depth of the fluid and the Froude number is defined to be

the function of time

F(t) =
m(t)

4π
√
gh5

.
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The most important quantities are the Froude number F(t), whose variation over time

is caused only by variation in m, and the fluid depth H . In addition, there must be initial

conditions on the problem and the most common is that the flow is initiated from a

quiescent situation at time t = 0, so that

φ(r, z, 0) = 0 on z = η(r, 0) = 0. (2.8)

3 Asymptotics

Much information can be gleaned from finding asymptotic solutions for small or slowly

varying Froude number. For example, the change in local depth in the two-dimensional

finite depth case [28] is well described by a first-order linearised solution. Likewise, in the

infinite depth point sink problem [15], a Froude number expansion provided an excellent

representation of the development of the free surface as the flow rate was increased and a

rational approximation was obtained that performed very well in simulating a variety of

subcritical flows. It is therefore worthwhile to consider such solutions here, both for the

insight provided and also to verify the numerical scheme.

3.1 The linearised problem

In the finite-depth situation, the linearised problem is to find a solution to Laplace’s

equation for the velocity potential, subject to a sink present at (r, z) = (0,−1), that is,

φ → F(t)[
r2 + (z + 1)2

]1/2
as (r, z) → (0,−1),

where F(t) = F0f(t) is the time-dependent sink/source intensity. If we assume F0 to be

small and f(t) to be of order 1, then we can linearise in terms of F0 and the conditions

on the free surface become

ηt = φz and φt = −η on z = 0

⇒ φtt + φz = 0 on z = 0, (3.1)

with condition (2.7) being satisfied at the bottom z = −H . This problem is considered

in [32]; see Section 10 where expansion in a small parameter is considered. We observe

that a linearised solution of this type is only available in this unsteady flow, since at this

order of approximation, the steady free-surface conditions (3.1) would reduce simply to

a flat interface on the plane z = 0. Such an approach to linearisation is only possible in

unsteady flow and leads to our conditions (3.1).

In the steady case, linearisation is not available, and instead, asymptotic techniques are

needed; these show that the steady interface is proportional to F2
0 . One such approach is

outlined briefly in Section 3.2. For the case of a line source, such asymptotic approaches

are well-known; recently, a higher order method is given by Lustri et al. in [22].
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We choose a form that satisfies all of these conditions except (3.1), that is

φ(r, z, t) =
F(t)[

r2 + (z + 1)2
]1/2

+
F(t)[

r2 + (z − 1 + 2H)2
]1/2

+

∫ ∞

0

A(k, t)J0(kr) cosh k(z + H) dk. (3.2)

The first two terms satisfy the bottom condition (2.7), whilst the integral also satisfies this

by the choice of the cosh term. All terms satisfy Laplace’s equation (2.3), except at the

sink itself.

Although it is possible to work in greater generality, the analysis is more straightforward

if we restrict attention to a particular form for F(t). The one we consider is an exponential

that asymptotically approaches a final value, a case we use frequently in the numerical

simulations and which can also be used to model other flows by taking suitable limits.

Thus, we assume F(t) = F0(1 − e−αt) for some α > 0. Here, F(0) = 0, and F(t) → F0

as t → ∞. For large α, the flow approximates the impulsive flow F = F0 after a short

transient phase, whilst for small α, it approximates a linearly increased flow F ≈ F0αt for

small to moderate t. (By contrast, the case of a submerged source/sink considered in [32]

is that in which F(t) = F0 cos(σt).)

With this choice of F(t), substituting (3.2) into (3.1), we obtain the general solution for

A(k, t) as

A(k, t) = C1(k) cos λt + C2(k) sin λt

+ F0

(
G(k)

sinh kH
+

(α2 − k)G(k)e−αt

α2 cosh kH + k sinh kH

)
, (3.3)

where λ =
√
k tanh kH , and G(k) = e−k + e−(2H−1)k . The initial conditions must be used

to determine C1(k) and C2(k); these are

φ(r, 0, 0) = 0 and η(r, 0) = 0 on z = 0. (3.4)

After some further work, these conditions reveal that

C1(k) =
−2α2F0 cosh(k(H − 1))

sinh kH(α2 cosh kH + k sinh kH)
, (3.5)

C2(k) = − −2αkF0 cosh(k(H − 1))

λ cosh kH(α2 cosh kH + k sinh kH)
. (3.6)

Substituting (3.5) and (3.6) into (3.3), then (3.3) into (3.2), invoking (3.1) on z = 0, and

replacing the sink terms by integrals, we obtain the integral form

η(r, t) = −2αF0

∫ ∞

0

J0(kr) cosh k(H − 1)

(α2 cosh kH + k sinh kH)

×
(
ke−αt + αλ coth(kH) sin(λt) − k cos(λt)

)
dk. (3.7)

This can be evaluated to high precision using a numerical quadrature routine such as

those provided in the package MATLAB.
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Two further cases of interest for F(t) can be obtained from this one, for subsequent

comparison with the numerics. The impulsive case, in which F = F0 for all t, can be viewed

as the limit of the exponential ramp-up case in which α → ∞, so that the exponential

term decays away extremely rapidly. Similarly, the case of a linear ramp-up from zero

may be viewed as a limiting case in which α → 0 and F0 → ∞ in such a way that αF0 is

non-zero and finite: For small to moderate t, the resulting solution will then behave like

the linear ramp-up case F(t) = αF0t. These two analytic limits will not coincide precisely

with the formal solutions obtained by linearising using the corresponding choices of

F(t): In particular, the α → 0 case will not resemble the ramped-up case for sufficiently

large t, since f(t) in F(t) = F0f(t) will not remain order 1. However, they provide useful

benchmarks for comparison with the numerics, and in practice agreed well with the results

of numerical experiments if flow rates were low to moderate (with a partial exception in

the impulsive case, to be discussed shortly).

3.2 An approximate solution

In [15], a two-term rational approximation to η(t) in response to a small, slowly varying

flow rate F(t) was obtained in the case of a source or sink submerged in a fluid of

infinite depth. This was justified theoretically for cases where F(t) was a linear function,

and shown to apply in a wide variety of more general cases (at least following a short

transient period). The flow was a perturbation to a steady flow, in which the surface

profile η(t) consisted of a dip term proportional to F ′(t), and a stagnation point term,

proportional to F(t)2. The latter term was the asymptotic stagnation point steady flow (in

which the central point sits at the stagnation point level of z = 0) that would evolve at

the appropriate value of F . The dip term was found to remain stable for a considerable

time in the case of a linear increase in flow rate once the transient terms had passed.

The superposition of these two terms proved to be an extremely good predictor of the

flows generated numerically using the full non-linear equations for a surprisingly wide

range of possible flow functions F(t) – see [15]. Indeed the same thing is observed in the

current finite depth setting, although the rigorous analytic justification of this (even for

linear F(t)) is very complex. (Examples of this dip term are given for various choices of

H in Figure 6.)

Instead, we give a heuristic argument similar to that given initially in [15]. Assume that

the flow potential is given approximately using a separation of variables type approach

by φ(r, z, t) = F(t)φ(s)(r, z). Using equation (2.4), we obtain on z = 0,

η = −φt −
1

2
(u2 + v2)

≈ −F ′(t)φ(s)(r, 0) − 1

2
F(t)2φ(s)

r (r, 0)2

= −F ′(t)y1(r) − F(t)2y2(r), (3.8)

where

y1(r) = φ(s)(r, 0) and y2(r) =
1

2
φ(s)
r (r, 0)2. (3.9)
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Note that an asymptotic stagnation point steady solution may be obtained by assuming

F(t) is a small constant; then, the first term drops out and one is left with an order F2

asymptotic steady solution. In contrast to the infinite depth case covered in [15], neither

y1 nor y2 has a simple closed form, although it is clear from the simulations that the

term −F ′(t)y1(r) is a dip (or bulge if F ′(t) < 0) centred on r = 0 and proportional in

size to the rate of change of F(t), whilst the term −F(t)2y2(r) is the stagnation point

steady state surface that would evolve at the current value of F . In the infinite depth

case, these two terms are combined as in (3.8) to provide a simple simulation of a linearly

increased flow in which transient waves are ignored; comparison with the full simulations

was surprisingly good, even for non-linear slowly varying sub-critical flow functions F(t).

Note that the dip term −F ′(t)y1(r) is a solution to the linearised equations, although not

one satisfying the initial condition that η(r, 0) = 0 for all r.

Of course, this argument is not rigorous, but it is clear in the simulations that both

the dip term and the stagnation point steady state term play a significant role in the

behaviour of the free surface, for a wide range of possible choices of F(t) (but especially

when it is linear), and they provide convenient terms of reference for the discussion of

results that follows.

4 The numerical method

A numerical method based on that employed in [27] for the three-dimensional axisym-

metric point sink case is considered. These schemes are very similar to those described

in Scullen and Tuck [25], and Tuck [29]. It is a semi-Lagrangian approach in which we

follow the evolution of concentric rings centred above the sink on the free surface subject

to an evolving potential. Radial symmetry guarantees that all points on such a ring have

the same elevation. The surface is discretised into N rings and a recursive process is used

to update the global velocity potential and the heights of the N rings on the free surface

at each time step. We can specify the position of one such ring by giving its radius and

height, thereby reducing the description of the free surface to two parameters. A detailed

description is given in these earlier works and so what follows is a summary of the main

features of the method.

4.1 Equation formulation

Initially, we assume the sample rings are at rest and in some fixed positions (R(0)
i , Z

(0)
i ), i =

1, . . . , N on the free surface, for which we always assume Z
(0)
i = 0, i = 1, . . . , N. We

track the velocity potential function at points on the free surface. To reflect the initial

condition of quiescence, we assume it is zero everywhere on the free surface initially:

Φ
(0)
i = 0, i = 1, . . . , N is the flux at time t = 0 at the ith point on the surface.

The recursive step modifies each ring’s position and the coefficient of the associated

potential function everywhere in the fluid by solving a Dirichlet problem. Thus, if at time

step t, the ith ring has coordinates (R(t)
i , Z

(t)
i ) and the global velocity potential is φ(t)(r, z) at

all points (r, z) in the fluid, so that Φ(t)
i = φ(R(t)

i , Z
(t)
i ), i = 1, . . . , N is the velocity potential

function on the surface, then the time evolution of all points is given by (dropping the
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time superscript for simplicity):

dRi

dt
= ui (4.1)

dZi

dt
= vi (4.2)

dΦi

dt
=

1

2

[
(ui)

2 + (vi)
2
]
− Zi. (4.3)

Here, ui = φr(Ri, Zi) and vi = φz(Ri, Zi), where the derivatives are with respect to r

following the free surface. (We used finite differences to perform these slope calculations.)

Hence, the values of Ri, Zi and Φi can be evolved forward one time step. The task remains

to determine φ(t+1) from these Φ
(t+1)
i .

Assume radii and elevations Pi = (Ri, Zi), i = 1, . . . , N for the free surface rings at time

step t, and values Φi, i = 1, . . . , N for φ given at each. Choose the ring sink with radius

and elevation (ρi, ζi), i = 1, . . . , N outside the fluid domain and normal to the free surface

ring given by (Ri, Zi). The presence of the base forces requires that φz = 0 on z = −H ,

a condition that is satisfied by the introduction of an image ring sink for each such ring

sink, having the same radius but positioned as far below the base as the original was

above, namely at Z = −Zi − 2H .

The potential at a given point (r, z), due to the submerged sink one unit below the

origin (together with its needed image sink below the base) is

Φs(r, z) = F(t)
(
r2 + (z + 1)2

)−1/2
+ F(t)

(
r2 + (z − 1 + 2H)2

)−1/2
.

Additionally, for the ith ring sink, the contribution to the total potential at the point

(x, y, z) = (r cos α, r sin α, z) will be a multiple of Φi(r, z) = Φ1,i(r, z) + Φ2,i(r, z), where

Φ1,i(r, z) =

∫ 2π

0

ρi[
r2 + ρ2

i + (z − ζi)2 − 2rρi cos(θ − α)
]1/2

dθ

and

Φ2,i(r, z) =

∫ 2π

0

ρi[
r2 + ρ2

i + (z + 2H + ζi)2 − 2rρi cos(θ − α)
]1/2

dθ,

by a strength factor to be determined.

Each such sum of two integrals can be expressed as a linear combination of elliptic

integrals of the first and second kinds, and evaluated using standard series expansions.

Thus, we assume a series that satisfies Laplace’s equation everywhere within the fluid, of

the form

φ(r, z) = Φs +

N∑
i=1

qiΦi.
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The source strengths qi, i = 1, . . . , N are unknown constants that are determined once

the values of φ are given at N distinct points, from which we obtain N linear equations

in the qi and solve to give φ(r, z).

Differentiating under the integral signs in the previously obtained expression for φ

allows us to compute u = φr and v = φz , which again can be readily computed in terms

of elliptic integrals. This allows us to compute the fluid velocities (ui, vi), i = 1, . . . , N at

time t + 1.

4.2 Computational details

Following Scullen and Tuck [25], and Tuck [29], initially, discrete points along the free

surface were distributed with even spacing near r = 0 and a geometric increase in spacing

beyond a certain point, so that for i sufficiently large, δri = γδri−1, where γ is some

constant slightly greater than 1, with δi constant for smaller i. However, it was found that

for runs with many points and a small spatial increment, the point of transition from

even spacing to wider and wider spacing would lead to numerical instabilities (especially

with sink flows), and it became necessary to ensure that the horizontal spatial increment

changed smoothly. One solution to this was to allow the expansion of the spatial increment

to begin from i = 0.

For long runs in which steady states were sought, there were two main requirements:

high accuracy near r = 0, where the surface deflection was greatest, and a very wide

computational domain to avoid spurious numerical reflections. To fulfil these requirements

without the use of an unfeasibly large number of domain points, it was found that a

spatial increment that increased at a uniform rate from r = 0 was not satisfactory:

either accuracy would be too low around r = 1, or the computational domain would be

too narrow. Instead, the rate of increase was made small near r = 0, and then became

larger away from r = 0, but varied smoothly across the domain to avoid the instabilities

described above. We used the following formula:

δri = (1 + (γ − 1)(1 + i/200))δri−1.

The initial value of δr was chosen to be 0.005, with γ = 1.005, meaning a very slight

attenuation of domain points near r = 0, with the degree of stretching doubling by i = 200.

On the longest runs, 600 points were used, meaning a very small spatial increment of 0.005

very close to r = 0, around 0.012 near r = 1 and still only around 0.021 near r = 2, yet

also a computational domain going out to r ≈ 473. This proved sufficient to give stable,

converged solutions for runs lasting as long as t = 200, a far higher degree of accuracy

than that used in either [33] or [27].

The sink locations were chosen as in [26]. It was found that including a point sink

above the surface at r = 0 caused numerical instabilities, and so the smallest radius ring

sink was placed at r = δr/2, where δr was the local surface point separation distance

close to r = 0. It was found that reliable simulations could be obtained if the distance of

the ring sinks above the free surface was chosen to be three times the local grid spacing,

i.e. 3δr; this choice is consistent with earlier work, and has been found to give consistent

solutions by trial and error. Splines were used to re-position points along the free surface
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according to the original R-spacings, using an arclength type calculation as described

in [26].

For long runs in which steady states were sought (running to t = 200), a relatively

large time increment of δt = 0.025 was used. But for short runs involving impulsively

initiated flows and very rapid changes in surface profile (running for t ≈ 1 or less), a

much smaller time increment was needed to give sufficient accuracy: typically δt = 0.002

was used for impulsive constant strength flows, with even smaller values for the other

cases. Experimentation revealed when a sufficiently small value of δt was being used (so

that making the value even smaller made a negligible difference to results).

We used Fortran to perform the simulations and then viewed the results using Matlab.

The result was a series of “movies” of the evolution of the free surface in cross-section.

5 Results of numerical experiments

The approach in this work is very similar to that of earlier papers in this series. Again, it

turns out that there are different critical flows for different histories. In what follows we

compare the full simulations with the linear and approximate solutions described above

and then go on to determine the critical flow parameters.

5.1 Comparison with the linear solution: sub-critical flows

For large fluid depth H , the simulations at small flow rates, with constant, linearly

increased, and exponentially increased flow rate functions F(t), respectively, were closely

matched by the corresponding linearised solutions in all cases, in much the same manner

as in [15]. However, as the depth of the layer approached the sink from below, i.e. as

H approached unity, the linearised solution seemed to depart from the output of the

simulations as t increased.

This resulting discrepancy is shown in Figure 1 for the worst case H = 1 at four

different times, with sink strength having constant Froude number F = 10−3: The two

surfaces have the same basic shape but there is a clear difference in elevation which

peaks around t = 4 (at least at r = 0). Roughly, the same difference in elevation occurred

regardless of what shape function for F(t) was used, and seemed to be roughly of order

F for small F . The two solutions are in very close agreement during the initial drawdown

phase, but they drift away from each other subsequently in the early stages of the long

slow return-to-zero phase. However, this observed gap is not inconsistent with properties

of linearisations, since the linearised solution can return to zero at a different rate to the

full non-linear solution.

Overall then, these comparisons provide confidence in the numerical results and also

provide some solid insight into the flow evolution.

5.2 Impulsively initiated constant strength flows

We next consider the classic problem of an impulsively initiated flow, in which the Froude

number shifts discontinuously from 0 to some fixed value at time t = 0, remaining

constant thereafter.

https://doi.org/10.1017/S0956792516000310 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000310


Unsteady flows induced by a point source 367

−10 0 10−20

−10

0

x 10−4
Fr

ee
 su

rf
ac

e 
el

ev
at

io
n

Radial Distance
−10 0 10−20

−10

0

x 10−4

Fr
ee

 su
rf

ac
e 

el
ev

at
io

n

Radial Distance

−10 0 10−20

−10

0

x 10−4

Fr
ee

 su
rf

ac
e 

el
ev

at
io

n

Radial Distance
−10 0 10−20

−10

0

x 10−4

Fr
ee

 su
rf

ac
e 

el
ev

at
io

n

Radial Distance

Figure 1. Free surface profile for F = 10−3 and H = 1 (linearised solution dashed) at times

t = 0.5, 2, 4, 10.

As in earlier work, an impulsively started sink flow leads to an instantaneous downward

motion of the surface. If the Froude number is large enough, the free surface draws down

directly into the sink. This is illustrated in Figure 2 for a large Froude number of F = 1,

in the case of a sink positioned at mid-depth in the reservoir (so total depth H = 2).

If the Froude number is very small, the initial dip soon reverses, and the central point

returns to stagnation level, with a steady flow gradually evolving as described earlier: see

Figure 3.

In the case of a source flow, there is an upwards bulge initially (with instantaneous

upwards velocity). If the flow strength is great enough, the simulations will break down

after a fairly short period; if sufficiently small, convergence to a steady state occurs as for

sink flows.

Note that in the two-dimensional (line sink) finite depth case, there was a change in

local fluid depth upon initiation of the flow, with a wave emanating from above the line

sink travelling at constant velocity out to infinity and reducing (increasing in the case of a

source flow) the local reservoir depth. Predicted by shallow water theory and observed in

both [19] and [28] for planar flow, this change in depth is neither predicted nor observed

in the current axisymmetric case. However, there is a disturbance to the free surface that
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Figure 2. An imminent drawdown: H = 2, F = 1, at time t = 0.19. The dashed line is the

reservoir base.
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Figure 3. Depth of central point over time: H = 1, F = 0.01.

decreases in amplitude as it travels out to infinity. This disturbance is larger for smaller

values of total depth H .

There is relatively little difficulty in identifying the critical drawdown Froude number

for the case of an impulsive flow, and a plot of this against sink depth appears as the

dashed curve in Figure 4. It can be seen that there is a steady increase in critical Froude

number (representing the sink strength) as the depth of the fluid is increased. Note in

particular that the “mid-way” sink placement (H = 2) gives a critical value far closer to

the infinite depth case than to the bottom flux case.
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Figure 4. Smallest Froude number for which drawdown from an impulsive start is guaranteed.

The results agree well with those given in Xue and Yue [33] for large total depth H: they

obtained a value of 0.1931 for the onset of drawdown, whereas we observe a higher value

of 0.197. (Note that the accuracy was much higher in our case, with a spatial separation

of δr = 0.05 used in [33], although a boundary integral method was used there.)

Xue and Yue in [33] observed a “transcritical” regime in which the fluid spikes upwards

as drawdown looks imminent, for values just below the critical drawdown value, and we

see some evidence of this for F = 0.196. For smaller values still, it was claimed in [33] that

the flow was seen to transition to a steady flow. They examined the case F = 0.1 in some

detail. However, our simulations indicate that this situation is not typical for all F below

the “transcritical” regime. Instead, for all values of total depth H , it was evident that for

a reasonably large range of subcritical flows, breaking waves associated with the central

swell lead to the simulations breaking down, so it is impossible to determine whether

evolution to a steady state would follow. Indeed, in our case, the simulations broke down

soon after the lowest point was achieved, unless F was reduced well below the critical

drawdown value.

In Figure 5, we give the free surface profile at four moments for the infinite depth case

(strictly, H = 1000), for the subcritical value F = 0.18. The first figure is just prior to

the lowest point of descent of the central point and the second soon after the reversal

has begun. For lower Froude numbers, the ascent would continue smoothly up to the

stagnation height, but in this case already the third figure suggests this will not happen,

and indeed in the final figure, it can be seen that small breaking waves are forming, the

simulation breaking down very soon after. This seems to happen over a fairly wide range

of subcritical Froude numbers (either sooner or later). However, we were able to replicate

the results in [33] for the value F = 0.1, where a smooth transition to a stagnation point

steady flow was observed.
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Figure 5. Free surface profile in impulsive case with H = 1000 and F = 0.18 at times

t = 1.00, 1.40, 1.70, 1.87.

We return to the question of how large F can be for steady states to evolve spontaneously

given a suitable flow history.

5.3 Linearly increased sink strength

Of particular relevance to the situation in actual reservoirs is the case in which the Froude

number varies smoothly, perhaps asymptotically approaching some final value, or else

continuing to increase or decrease for a long period. Perhaps, the simplest case of this is a

linear ramp-up of the flow rate, such as a Froude number that is zero at t = 0 (at which

moment the fluid is quiescent) and which increases according to

F(t) = F0 t, t � 0.

Here, F0 is the value of F(t) at t = 1.

The numerical results we obtained in this case are qualitatively very similar to those

previously obtained for a point sink in an infinitely deep fluid. A dip (or bulge in the

source flow case) will develop that takes a form given by the first term in equation (3.8)

and maintains itself over a moderately long period, matching the linearised solution until

non-linear effects become evident. This pseudo-steady state arises regardless of the depth
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Figure 6. Free surface profile for moderately large time if F(t) = (2 × 10−5)t: (a) H = 1, (b)

H = 2, (c) H = ∞.

of the sink (its size depending linearly on F0). This dip (bulge) term shows up readily in

the simulations. In Figure 6, the dip can be seen for total depth H = 1, 2,∞ in the case

of a sink flow for which F0 = 2× 10−5: the dip spreads out quite far along the horizontal

domain for H = 1 and is generally deeper, but narrows considerably and is not as deep

at r = 0 as the bottom moves downward from the sink.

Of course, as the Froude number continues to ramp up without bound, non-linear

effects start to dominate, and eventually the simulation will break down. Typically, an

approximation of a stagnation point steady state flow (which depends on F2) superimposes

itself on the dip term, and ultimately the simulations break down because cusps form on

the surface at the two secondary dips. If the ramping up is sufficiently rapid, a drawdown

similar to the impulsive case may be observed in a sink flow.

In fact, as discussed in Section 3.2, the dip term appears to influence the behaviour of

the free surface for flows in which the Froude number varies non-linearly as well: The

free surface tends to be displaced from the horizontal in accord with the dip term by an

amount proportional to the derivative F ′(t) (which is of course constant in the case of a

constant ramp-up/down).
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Also of interest is the possibility of drawdown arising from the linearly increased flow.

For large enough values of F0 in F = F0t, the free surface draws down directly into the

sink, just as with sufficiently strong constant flows. However, for small enough F0, this

initial drawdown is averted and the dip term discussed above asserts itself for a period,

presumably prior to some form of subsequent drawdown, possibly at the sides of the dip

rather than the central point. However, in between these cases, the situation proved to be

quite unclear, and no meaningful critical values could be obtained: There was no obvious

threshold for any value of total depth H that could be considered a critical value.

5.4 Impulsive flows that rapidly decay to zero

Sometimes fluid can be extracted from a reservoir in a short sharp burst. There is interest

in whether the burst is sufficiently intense to induce a drawdown, even though it may be

very short-lived. We considered the case in which the flow is initiated impulsively at time

t = 0 according to F(t) = F0(k exp(−kt)), where k is assumed large. Such a flow has initial

value F0k but rapidly dies away to zero. The reason for this form for F(t) is that the total

flux drawn from the reservoir is then F0, most of it extracted a very short time after t = 0.

In this situation, a very much smaller time increment was used in the numerics (δt =

1/(1000k) proved sufficient), since the time to drawdown was generally very short (typically

t ≈ 0.015, compared to t > 1 in the impulsive case). The fluid would typically dip far

closer to the sink without drawdown being inevitable in this case. The central point drops

very rapidly towards the sink, and then either rebounds as F(t) drops rapidly towards

zero, or appears to drawdown into the sink before this can happen (although there is a

transitional phase in which the surface seems to spike, just below the critical drawdown

value, just as with the constant strength impulsive flow case). If drawdown is clearly

averted, the central point seems to rise up at a linear rate, through the stagnation level

and continuing upwards, to form a high spike, at which point the simulations fail. (For

small F0, this spike is not apparent, the free surface simply returning to the stagnation

level.)

Obtaining accurate drawdown values was rather delicate. In Figure 7, we show the

behaviour of the surface at r = 0 with total depth H = 4, for the subcritical value

F = 0.259 just prior to the simulation breaking down, and next to it the same for the

critical value of F = 0.260, where the slight turn-back and subsequent upwards spike is

absent. It is possible that the upward spike, which occurs over a single time increment

only, is some form of numerical instability, although the levelling off prior to it seems

real. Similar behaviour is observed in [33] in the case of an impulsive (constant strength)

flow, where a very small window of subcritical cases in which the surface spikes is noted

(their so-called transcritical cases).

We found that the critical value for F0 to guarantee drawdown depended very little on

the precise value of k providing k > 10 (only the time-scale of the problem varying with

k), suggesting that this is a meaningful critical value. Moreover, very similar results were

obtained by letting F(t) be a step function with some large finite value for a very short

time (so that the total flux withdrawn is one unit multiplied by some factor F0), followed

by a small positive value thereafter (necessarily non-zero since otherwise there is no sink

for the surface to draw into!).
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Figure 7. Behaviour of central point for slightly different values of F0 in F(t) = F0(k exp(−kt)),

with H = 2.5: on the left F0 = 0.259, and on the right F0 = 0.260.
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Figure 8. (a) Smallest F0 such that F(t) = F0(k exp(−kt)) draws down (impulsive case dashed), (b)

ratio of current critical value to impulsive, against total depth H .

In Figure 8(a), a plot of the critical F0 against total depth H is given, with the constant

impulsive critical flow rates shown dashed. It is not to be expected that the two sets

of data would be of roughly the same size, but it can be seen that the variation with

submergence depth is quite similar in both cases. Indeed, in Figure 8(b), the ratio of these

two critical values is given; evidently, the ratio between the two is almost constant.

5.5 Obtaining history-independent critical flow rates

As in earlier work ( [26–28]), there is considerable interest in answering the following

two related questions: of those flows which smoothly ramp up to some final value, what

is the smallest ultimate Froude number to guarantee drawdown, and what is the largest

ultimate Froude number at which steady flows can evolve?

For this purpose, we considered flow histories for which the rate asymptotically ap-

proached some final value, using an exponential shape function. We increased this limiting
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value in successive simulations. Again, the ramp-up function had the form

F(t) = F0(1 − exp(−t/K)), t � 0,

this time for some large positive constant K (typically K = 10 was sufficiently large in

the simulations). For small time, F(t) ≈ F0t/K , whilst for large time, F(t) → F0.

For small F0, the initial sink flow generated a dip (or swell, in the case of a source

flow) as discussed previously, with magnitude proportional to the rate of change of F

and which would therefore slowly reduce in size. This was backed up by the linearised

solution. In the simulations, this dip was overlaid by a stagnation point steady flow that

increasingly dominated (being proportional to F2).

Previous work on steady states in both the finite and infinite depth cases of the

axisymmetric problem considered here appeared to establish the existence of limiting

stagnation point steady flows in which a secondary stagnation ring is present; in the terms

used here, this occurs for F ≈ 0.5 in the infinite depth case (see [2]), and for F ≈ 0.26

in the bottom flux case H = 1 (see [13]). However, recent more accurate work presented

in [14] seems to show that the solutions with a stagnation ring are not actually steady

solutions, but an artefact of inaccuracies in the numerical scheme and limitations of the

computational power available at that time. This result is consistent with the work of [6]

where no such solutions were found. As reported in [27], no such steady states were

observed in the case of a point sink flow in a fluid of infinite depth. We were not able to

observe them in the current work either, even for source flows.

For both source and sink flows, it was found that there was a maximal value of F

above which steady solutions did not seem to evolve (instead, the simulations would

rather abruptly break as the critical value was surpassed). For a given sink depth, there

was a small difference between the critical values for sources and sinks, which seemed

to be due to the fact that for sources there was an inital upward movement of the

surface and for sink flows, an initial downward movement, and as time progressed, the

surface would slowly return to stagnation level. For near-critical Froude number values,

this would mean a slightly earlier breakdown in sink flows because the sink submergence

depth was effectively slightly lower than for source flows. For source flows converging to

the claimed critical value, the free surface always returned to the stagnation level well

prior to a breakdown, suggesting these values are quite reliable.

Thus, it became evident that for each value of total depth H , there was a maximal

Froude number at which steady flows could evolve. For example, in the infinite depth

case, this maximal Froude number was approximately F = 0.236, and for the bottom flux

case (H = 1), it was F = 0.098; these values compare quite well to the maximal F for

which steady states could be obtained, as found in [14] and [6] of F = 0.24 and F = 0.12,

respectively. For simulations that were ramped up to a final value slightly above the

critical Froude number, the surface would either begin to “jiggle” in a seemingly rapidly

oscillatory way (for smaller H), or else instabilities would form on the side of the central

swell leading to breakdown of the simulations (larger H).

Significantly, there were no secondary waves present in any converged steady solutions

we obtained (although these were present to varying degrees when less accuracy was

used). A plot of the evolved steady flow near the critical flow rate is given in Figure 9 for
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Figure 9. An evolved steady state in the infinite depth case, as F is ramped up in a source flow to

F = 0.236, t = 100. The dashed line is the asymptotic steady state.

the infinite depth case, with the asymptotic stagnation point steady solution of the form

−F2y2(r) as in equation (3.8) in Section 3.2 dashed.

Similar behaviour was observed for each finite choice of total depth H considered. The

critical values for the existence of steady states increased as the reservoir depth increased

from H = 1, though then only minimally after H = 2. A plot of critical Froude number

against H is given in Figure 10(a), which shows the largest F at which steady flows can

evolve from an unsteady source flow. In Figure 10(b), the ratio of the current critical value

to the impulsive one is plotted against H . It can be seen that the two critical values are

almost identical in the bottom flux case, with the steady critical value actually lower than

the impulsive one, but this quickly reverses, and a more or less constant ratio establishes

as H increases above 3.

5.6 Drawdowns for flows ramping to a final value

In practice, a flow often increases smoothly from zero up to some final value. To model

this, we used a shape function of the same general form as in the previous section:

F(t) = F0(1 − exp(−t/K)), t � 0, where K is some positive value.

For K close to zero, this flow is close to an impulsively initiated constant strength flow,

covered above, so there is no point considering this case again. On the other hand, if K

is very large, then the situation modelled is basically the one considered in the previous

section – a slow ramping up, initially effectively linear (F(t) ≈ F0t/K for t � K), and

levelling off to some final value – albeit over a different range of F-values. It is likely that

for such flow shapes, any observable drawdown will be in the approximately linear phase,
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Figure 10. (a) Largest Froude number for which steady flows can evolve (and drawdown be can

averted in a sink flow) against H . (Impulsive critical drawdown values are shown in the dashed

curve.), (b) ratio of the critical values plotted in (a).

and we are back to another case considered earlier, in which no convincing critical values

could be obtained.

So we (somewhat arbitrarily) chose K = 1, and so a shape function of F(t) = F0(1 −
exp(−t)), t � 0. This proved to give rather clear drawdown critical values, with drawdown

always coming at a stage in which the asymptotic (large time) value of F(t) was not far

off. For cases in which drawdown was only narrowly averted, the simulations often broke

down soon after that point, perhaps due to small breaking waves. It is possible that in

an actual physical flow, a delayed drawdown may subsequently occur as F was increased

towards its final value. So these critical values must be treated with some caution, but

they do indicate that there is more than one possible notion of “critical flow rate”, even

if one is interested only in drawdown.

In Figure 11(a), the smallest value that guarantees drawdown using this shape function is

given, with the impulsive and steady critical values the two dashed curves, for comparison.

In Figure 11(b), the ratio of the current critical value to the impulsive one is given: it can

be seen that the ratio is close to constant across the range of H-values.

Thus, for the bottom flux case H = 1, the critical value of F = 0.127 was not surprisingly

considerably higher than the critical flow rate guaranteeing drawdown in an impulsive

flow (F = 0.101), hence also higher than the largest F-value guaranteeing the existence of

steady flows below it (F = 0.098, since 0.101 > 0.098!). But even the H = 2 mid-depth

case, in which steady flows can exist well above the impuslive critical drawdown value,

this number went up to F = 0.226 (compared to 0.181 and 0.208, respectively). So in both

cases, there is a significant region of F-values in which drawdown will be averted yet

steady flows cannot evolve. This is not the case for impulsive flows. The same phenomenon

was repeated across the range of possible submergence depths.

6 Conclusions

In this work, we set out to discover if the inclusion of a rigid base in a reservoir made

a significant difference to the flow patterns generated by a point source or sink. The
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Figure 11. (a) Critical drawdown values F0 for F(t) = F0(1 − e−t) against H . (Impulsive critical

drawdown and critical steady values dashed.), (b) ratio of current critical value to impulsive,

against H .

evidence is clear that although there are some differences, they are more quantitative than

qualitative. The general behaviour is much the same, even quantitatively if the source/sink

is located at least half-way up the fluid.

Thus, as in previously considered cases of withdrawal problems, there are at least two

effective critical values of Froude number depending on the flow history. Drawdown from

an impulsive start depends largely on the initial dip formed in the surface, giving rise to

one critical value of F . We showed that this critical value increases with reservoir depth,

but does not increase much once the sink is at least half-way down the reservoir. It seemed

that for a wide range of subcritical flows, breaking waves would be generated soon after

the point at which the free surface avoided drawdown, with a smooth transition to a

steady flow only occurring for sufficiently small Froude number. The same things are

observed when a sudden impulsive flow is initiated which rapidly decays towards zero, or

when a moderately rapidly increasing flow approaches a final value.

If initial drawdown is avoided because the flow rate is increased gradually, then the

flow will progress for some time (up to a higher Froude number), possibly achieving a

steady state at some final Froude number value. For both source and sink flows, we were

able to find the largest Froude number at which steady flows could evolve and maintain

themselves. This critical value increased rapidly as the sink was moved off the reservoir

base, and was considerably higher than the impulsive drawdown value except near the

bottom flux case of H = 1.

No observed steady flows showed any signs of waves. Also, we were unable to observe

evolution to steady flows featuring secondary stagnation rings (or their pre-cursors) as

described in [2] and [13]. This, and the results of simulations in this range of Froude

numbers, suggest strongly that either such steady flows are unstable, or else are spurious

due to insufficient accuracy. Maximal steady state solutions obtained in the current work

are consistent with those of [14] and [6].

By ramping up to a final value of F with moderate speed, it was shown that drawdown

could be averted for F-values well above the range over which steady flows exist, across
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the range of sink submergence depths. This suggests that flows that are neither steady

nor involve any form of drawdown can exist, and may in practice involve breaking

waves.
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