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SUMMARY
Vision-based tracking of an object using perspective
projection inherently results in non-linear measurement
equations in the Cartesian coordinates. The underlying object
kinematics can be modelled by a linear system. In this paper
we introduce a measurement conversion technique that ana-
lytically transforms the non-linear measurement equations
obtained from a stereo-vision system into a system of linear
measurement equations. We then design a robust linear filter
around the converted measurement system. The state estim-
ation error of the proposed filter is bounded and we provide a
rigorous theoretical analysis of this result. The performance
of the robust filter developed in this paper is demonstrated
via computer simulation and via practical experimentation
using a robotic manipulator as a target. The proposed filter
is shown to outperform the extended Kalman filter (EKF).

KEYWORDS: Linear filtering; Set-estimation; Stereo
vision; Robust filtering; Target tracking.

1. Introduction
This paper investigates the problem of tracking the real-
world position and velocity coordinates of an object
using sequences of images provided by a stereo-vision-
based sensor system. Vision-based tracking systems permit
cost-effective and passive object tracking applications in
numerous areas. Particularly, vision-based state estimation
is an important tool in navigation of robots, missiles and
Unmanned Aerial Vehicles (UAVs).1–3 Increasing number
of applications take advantage of this form of technology
over traditional technologies such as radar or sonar due to
hardware limitations and associated complexities. Moreover,
with this more popular form of measurement, it is possible
to complement such tracking systems with higher level
event or object understanding paradigms that is simply not
possible with most alternative technologies. For example,
vision sensors can more readily permit target identification
and/or classification. As such, vision-based tracking systems
have found application in a number of diverse application
areas; e.g. see refs. [4–11]. Active stereo vision has also
been widely used in visual servo control.12 In implementing
the designed controller in these approaches, Kalman filter
is usually employed as a state estimator.13 Vision has also
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been employed as an effective means of calibrating robotic
manipulators for increased precision.14 This is due to the fact
that most robotic manipulators lack accuracy in comparison
to repeatability particulary in industrial settings.

Specifically, we are focused on estimating the real-world
trajectory of an object point in question. There are two
fundamentally distinct approaches to the problem of target
trajectory estimation using a sequence of image frames
generated by a vision sensor. The first approach is feature
based, where the target’s image plane position is measured on
each frame in the sequence (i.e. video) and subsequently used
as the basis for a recursive real-world coordinate tracking
filter. In ref. [15], for instance, a recursive target tracking filter
is developed that uses the non-linear perspective projection
measurements as the input to an iterated extended Kalman
filter (IEKF). A number of papers have examined the problem
along similar lines. Different camera models lead to different
measurement systems. The second approach is based on so-
called optical flow where the motion in the image plane is
represented by a sampled velocity field. Again, this approach
has been used in conjunction with dynamic modelling of the
targets motion for the purpose of parameter estimation.16 In
ref. [16] a target tracking filter is developed that includes
both a perspective projection measurement system and an
optical flow based measurement system. This essentially
results in more non-linear equations that include measures
of the targets velocity as well as position, hence the use of
the extended Kalman filter (EKF) in ref. [16]. In ref. [17],
a robust version of the EKF (REKF) is used to estimate the
heading of a vehicle in an automotive setting using fusion
ideas in vision and sonar sensing.

In this paper, we employ a perspective projection
measurement system and the corresponding time-derivative
measurements in a stereo-vision-based tracking system.
This modified version of the measurement conversion
method specifically aimed at stereo-vision-based target
tracking with both perspective projection and image-
velocity-based measurements. It is well known that under
the assumption of time independent image intensity, image
velocity corresponds to the flow field motion7,18,19 which can
be directly measured from the image sequence. Therefore
our measurement space essentially consists of not only
the projected locations on each image plane but also the
image velocities. The novelty of our approach comes in the
form of a measurement conversion based linear robust filter
(RF) algorithm that we derive. Essentially, we analytically

https://doi.org/10.1017/S0263574709005827 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005827


518 Method for stereo-vision-based tracking for robotic applications

convert the non-linear measurement equations into linear
measurement equations and apply an RF. Hence, we solve
the estimation problem strictly within the linear domain since
we also consider linear state equations.20 Traditionally, it
has been common to use non-linear estimators such as the
EKF which employ some form of numerical approximation
(e.g. Taylor-series). Thus, very few results exist which give
analytical analysis of convergence properties or estimation
errors bounds for some non-linear observers.21,22 It is well
known that initial conditions are critical to the stability and
convergence of the EKF. Furthermore, the errors introduced
during linearization result in bias and filter inconsistency23

often leading to divergence. In ref. [16] it is stated that after a
detailed comparison of the EKF, IEKF and an iterated linear
filter smoother in ref. [24] similar performances are observed
for the problem of vision-based target tracking.

Alternatively, measurement conversion methods have
been explored particularly for target tracking with radar
measurements.20 The basic idea of these techniques is to
transform non-linear measurement equations in to a linear
combination of the Cartesian coordinates, estimate the bias
and covariance of the converted measurement noise, and then
use the standard linear Kalman filter.25 The measurement
conversion methods have proved to be superior to the EKF
in performance.20,25

The measurement system considered in this paper is
similar to that proposed in ref. [16] where the EKF is
employed as the state estimator. However, due to the
measurement conversion based approach introduced in this
paper, we can actually employ a robust version of the standard
linear Kalman filter.26–28 This linear robust filtering approach
has proved to be an effective tool for many robust control and
state estimation problems; see e.g. refs. [26–30]. Unlike most
Taylor-series based algorithms, we can give a mathematically
rigorous proof that the state estimation error is bounded
with a certain probability while there is no mathematically
rigorous analysis results concerning the EKF-based visual
surveillance algorithms.

The remainder of this paper is organized as follows. In
Section 2 we introduce the state-space target dynamic model
considered in this paper. The approach considered in this
paper permits a large class of linear dynamic (uncertain)
system models. Section 3 contains the main results of this
paper where we introduce the measurement transformation
algorithm and the robust filtering algorithm. Moreover, in
Section 3 we prove the estimation error is bounded. In
Section 4 we present computer simulations as well as
practical experiments that demonstrate the performance of
the proposed algorithm. In the practical experiment we
consider a the problem of tracking the real-world coordinates
of an object being moved by a robot manipulator (arm). A
conclusion is given in Section 5.

2. Object-Camera Dynamic Model
In the kinematic modelling of an object (target) and a tracker
(camera) in a cartesian coordinate system the resulting
dynamic system equation is linear. A comprehensive survey
of dual body kinematic modelling is presented in ref. [20] and
a basic principal approach is given in ref. [31] where only the

Fig. 1. The principle of perspective projection.

translational kinematics were considered. Based on require-
ments of the specific application, rotational motion has been
considered and the resultant, non-linear dynamic models
have been used15 in the kinematic parameter estimation. For
the case of vision-based tracking, it is suffice to consider
only the translational effects and the subsequent linear
model20 as no camera motion is engaged. Let the position
of the target in each of the traditionally denoted x, y and z

directions, and with respect to the camera-based coordinate
system be [x1, x2, x3]′ ∈ R

3 with ′ denoting transposition.
Let the velocity component in each direction be given by
[x4, x5, x6]′ ∈ R

3 and let the acceleration in each traditionally
denoted x, y and z direction be given by [x7, x8, x9]′ ∈ R

3.
Hence, we can define x = [x1, x2, x3, x4, x5, x6, x7, x8, x9]′ ∈
R

9 such that the state evolves according to

x(k) = Ax(k − 1) + Bw(k), (1)

where A and B are suitably defined transition matrices20

given by

A =

⎡
⎢⎣

I3 ksI3
k2
s

2 I3

O3 I3 ksI3

O3 O3 I3

⎤
⎥⎦ B =

⎡
⎢⎣

k2
s

2 I3

ksI3

I3

⎤
⎥⎦ (2)

and w(k) ∈ R
3 is an uncertainty parameter that encompasses

the target’s maneuvers and ks is the sampling time. Our
filtering algorithm is derived quite generally and permits a
large class of linear dynamic models to be employed. If a
point target is considered, then the target’s position in R

3 is
projected onto the image plane of a suitably defined sensor
via the principle of perspective projection. In Fig. 1 we
can observe how a target’s position is mapped from real R

3

space onto the R
2 image plane.

The principle of perspective projection provides a system
of non-linear measurement equations that serve as the basis
for the work in this paper. We also work with measurements
of the velocity of those projected image plane points. Two
sensors are used in a stereo-vision-based system with sensor
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1 located at the origin of the global coordinate system and
sensor 2 located a distance d > 0 away on the positive x1-
axis of sensor 1. We require the two sensor’s image planes to
be orientated in the same direction such that the two local x3

directions (defined by each camera’s local coordinate system;
e.g. see Fig. 1) are parallel.

Remark 1. The choice of coordinate basis is determined
first by locating sensor 1 at the origin, second, by locating
sensor 2 a distance d > 0 away on the positive x1-axis of
sensor 1 and such that the two positive x3 directions of each
camera’s local coordinate basis are parallel. Then, we can
define the direction of the horizontal, or equivalently, we
choose orientations for the x1-axis and x2-axis, which are
only determined up to a rotation by sensors 1 and 2.

In traditional target tracking, the dynamics of a moving
target are typically modelled in Cartesian coordinates and
the resulting dynamic equations are linear; e.g. see ref. [20].
In refs. [15, 16] the targets are modelled via a dual
translational/rotational motion model. The translational and
rotational velocities are assumed to be constant. The resulting
model is non-linear and adds to the complexity of the filter
required. Here we consider a point target (or a number N

of point features) that obey a linear dynamic model such as
those described in ref. [20]. Any arbitrary number of point
targets can be included in this model and object rigidity is not
required since each point is tracked independently. However,
the data association problem (also known as the feature point
association problem)32 exists in practice for tracking multiple
point targets.

3. Linear Robust Filtering with Non-Linear Vision
Measurements
In this section we outline the measurement model and the
subsequent measurement conversion technique along with
the robust linear filter which we derive as the state estimator.
Throughout this paper we let f > 0 denote the focal length
of the two cameras which is assumed to be the same and we
let d > 0 denote the separation distance of the two cameras
on the positive x-axis.

Let [y1(k) y2(k)]′ and [y3(k) y4(k)]′ denote the true values
of the measured coordinates of the target point in the image
plane of camera 1 and camera 2, respectively. That is, we
have

y1(k) =

⎡
⎢⎢⎢⎣

y1(k)

y2(k)

y3(k)

y4(k)

⎤
⎥⎥⎥⎦ = f

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(k)

x3(k)
x2(k)

x3(k)
(x1(k) − d)

x3(k)
x2(k)

x3(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where y1 is simply the true values of the non-linear
perspective projection based coordinates in the image planes
of camera 1 and 2. Moreover, let ŷ1(k) = y1(k) + v1 denote
the noisy (actual) measured image coordinates of the

target point where v1 = [v1, v2, v3, v4]′ are the corresponding
measurement errors. Note that y2(k) = y4(k) but that in
general ŷ2(k) �= ŷ4(k). Hence, for notational simplicity let
us define a new (noisy) measurement vector

ψ̂1(k) =

⎡
⎢⎣

ψ̂1(k)

ψ̂2(k)

ψ̂3(k)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

ŷ1(k)

ŷ2(k) + ŷ4(k)

2
ŷ3(k)

⎤
⎥⎥⎥⎦ , (4)

where the true measured values of yi , ∀i ∈ {1, 2, 3, 4} are
defined as before, i.e. in Eq. (3). Note that the error in
ψ̂2(k) = ŷ2(k)+ŷ4(k)

2 is now given by v2+v4
2 .

Moreover, let [y5(k) y6(k)]′ and [y7(k) y8(k)]′ be the true
values of the image coordinate velocities (between successive
frames) in the planes of camera 1 and camera 2, respectively.
Then we get the following measurement model

y2(k) =

⎡
⎢⎢⎢⎣

y5(k)

y6(k)

y7(k)

y8(k)

⎤
⎥⎥⎥⎦ = f

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x4(k)

x3(k)
− x1(k)x6(k)

x3(k)2

x5(k)

x3(k)
− x2(k)x6(k)

x3(k)2

x4(k)

x3(k)
− x1(k)x6(k)

x3(k)2
+ dx6(k)

x3(k)2

x5(k)

x3(k)
− x2(k)x6(k)

x3(k)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5)

where y2 is thus the true values of the time derivatives of
the image plane coordinates given in Eq. (3) by y1. Again,
we let ŷ2(k) = y2(k) + v2 denote the noisy (actual) measured
values where v2 = [v5, v6, v7, v8]′ are the corresponding
measurement errors. Note that y6(k) = y8(k) but that in
general ŷ6(k) �= ŷ8(k). Hence, for notational simplicity let
us define a new (noisy) measurement vector

ψ̂2(k) =

⎡
⎢⎢⎣

ψ̂4(k)

ψ̂5(k)

ψ̂6(k)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ŷ5(k)

ŷ6(k) + ŷ8(k)

2
ŷ7(k)

⎤
⎥⎥⎥⎦ , (6)

where the true measured values of yi , ∀i ∈ {5, 6, 7, 8}
are defined as before, i.e. in Eq. (5) and the error in
ψ̂5(k) = ŷ6(k)+ŷ8(k)

2 is now given by v6+v8
2 .

Let ψ̂(k) = [ψ̂1(k), ψ̂2(k)]′ such that in a noiseless
environment it is clear that the true value of ψ̂(k) denoted
by ψ(k) is simply a re-organization of the independent
measurements in both Eqs. (3) and (5). This is because
y2(k) = y4(k) and y6(k) = y8(k) implies that one of the true
values from each pair offers no additional information when
the values are error-free. However, in a noisy environment
we find that ŷ2(k) �= ŷ4(k) and ŷ6(k) �= ŷ8(k) which means
that ψ̂(k) = [ψ̂1(k), ψ̂2(k)]′ provides a well-defined system
of measurement equations (i.e. an equal number of equations
as there is unknowns) with the added redundancy and noise
tolerance of the additional measurements. Now assume that
the target motion is described by (1) where the matrix A is
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non-singular. Let 0 < p0 ≤ 1 be a given constant and suppose
that the system initial condition x(0), noise w(k) and the
actual measurement noises vi(k), ∀i ∈ {1, . . . , 8} satisfy the
following assumption.

Assumption 1. The following inequalities with probability
p0 simultaneously hold:

|vi | ≤ ε|yi | ∀i ∈ {1, . . . , 4}, |vi | ≤ δ|yi | ∀i ∈ {5, . . . , 8},
(7)

(x(0) − x0)′N(x(0) − x0) +
T −1∑

0

w(k)′Q(k)w(k) ≤ τ. (8)

Here x0 is a given initial state estimate vector, N = N′ and
Q = Q′ are given positive definite weighting matrices, τ > 0
is a given constant associated with the system, and T > 0 is
a given time.

The weighting matrices N and Q can be adjusted in order
to compensate appropriately for the relative uncertainties.
For example, lesser the initial state uncertainty, smaller the
values of the weighting matrix N should be.

Using the preceding noisy measurement model ψ̂(k) =
[ψ̂1(k), ψ̂2(k)]′ we can define the converted measurement
system as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃1(k)

x̃2(k)

x̃3(k)

x̃4(k)

x̃5(k)

x̃6(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dψ̂1(k)

ψ̂1(k) − ψ̂3(k)

dψ̂2(k)

ψ̂1(k) − ψ̂3(k)
df

ψ̂1(k) − ψ̂3(k)

d(ψ̂6(k)ψ̂1(k) − ψ̂4(k)ψ̂3(k))

(ψ̂1(k) − ψ̂3(k))2

d(ψ̂2(k)(ψ̂6(k) − ψ̂4(k)) + ψ̂5(k)(ψ̂1(k)) − ψ̂3(k))

(ψ̂1(k) − ψ̂3(k))2

df (ψ̂6(k) − ψ̂4(k))

(ψ̂1(k) − ψ̂3(k))2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(9)

where the x̃i(k) are the converted noisy measurements of
the state components xi(k), ∀i ∈ {1, . . . , 6} which will be
applied to the linearly formulated estimation algorithm to
be derived. We denote the converted measurement vector as
m = [x̃1(k) x̃2(k) x̃3(k) x̃4(k) x̃5(k) x̃6(k)]. Immediately,
we notice that we have not employed any Taylor-series based
approximations in determining Eq. (9). We have in some

regards transformed the non-linearities into the measurement
errors that are ultimately associated with each of the x̃i(k).
Essentially, each of the x̃i(k) are found by solving the
equations in ψ̂(k) = [ψ̂1(k), ψ̂2(k)]′ for the xi as if they were
noiseless. Of course, since they are not noiseless we find that
x̃i(k) are corrupted by a non-additive and state-dependent
error which we will subsequently try and correct.

Note that ŷi = yi + vi with |vi | ≤ ε|yi | implies ψ̂i ≤ ψi +
ε|ψi | ∀i ∈ {1, . . . , 4} and |vi | ≤ δ|yi | implies ψ̂i ≤ ψi +
δ|ψi | for ∀i ∈ {5, . . . , 8}. Indeed, these relationships are
straightforward for ψ̂i with i ∈ {1, 3, 4, 6}. The error in
ψ̂2(k) = ŷ2(k)+ŷ4(k)

2 is given by v2+v4
2 which clearly obeys either

| v2+v4
2 | ≤ ε|y2| or | v2+v4

2 | ≤ ε|y4| since y2 = y4. Moreover,
the error in ψ̂5(k) = ŷ6(k)+ŷ8(k)

2 is given by v6+v8
2 which

clearly obeys either | v6+v8
2 | ≤ δ|y6| or | v6+v8

2 | ≤ δ|y8| since
y6 = y8. Finally, we can easily deduce that ŷi − ŷj for
any i, j ∈ {1, 2, 3, 4} implies that vi − vj ≤ ε|yi − yj | and,
similarly, ŷi − ŷj for any i, j ∈ {5, 6, 7, 8} implies that
vi − vj ≤ δ|yi − yj |.

Our solution to the state estimation problem involves the
following Riccati difference equation:

F(k + 1) = [
B̂′S(k)B̂ + I

]−1
B̂′S(k)Â,

S(k + 1) = ÂS(k)
[
Â − B̂F(k + 1)

] + CC′ − K′K, (10)

S(0) = N.

where Â
�= A−1 and B̂

�= A−1B. We also define

C
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1 0 0 0 0 0 0 0 0

0 β2 0 0 0 0 0 0 0

0 0 β3 0 0 0 0 0 0

0 0 0 β4 0 0 0 0 0

0 0 0 0 β5 0 0 0 0

0 0 0 0 0 β6 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

K
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α̃1 0 0 0 0 0 0 0 0

0 α̃2 0 0 0 0 0 0 0

0 0 α̃3 0 0 0 0 0 0

0 0 0 α̃4 0 0 0 0 0

0 0 0 0 α̃5 0 0 0 0

0 0 0 0 0 α̃6 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

where

β1 = 1 + ε

2(1 − ε)
+ 1 − ε

2(1 + ε)
, β3 = 1

2(1 + ε)
+ 1

2(1 − ε)
,

β2 = β1, β4 = (1 + δ)(1 + ε)

2(1 − ε)2
+ (1 − δ)(1 − ε)

2(1 + ε)2
,

β5 = β4, β6 = (1 + δ)

2(1 − ε)2
+ (1 − δ)

2(1 + ε)2
, (13)
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and

α̃1 = 1 + ε

2(1 − ε)
− 1 − ε

2(1 + ε)
, α̃3 = 1

2(1 + ε)
− 1

2(1 − ε)
,

α̃2 = α̃1, α̃4 = (1 + δ)(1 + ε)

2(1 − ε)2
− (1 − δ)(1 − ε)

2(1 + ε)2
,

α̃5 = α̃4, α̃6 = (1 + δ)

2(1 − ε)2
− (1 − δ)

2(1 + ε)2
. (14)

We now consider a set of state equations of the form

η(k + 1) = [
Â − F(k + 1)

]′
η(k) + C′m(k + 1),

η(0) = Nx0,

g(k + 1) = g(k) + m(k + 1)′m(k + 1) −
η(k)′B̂

[
B̂′S(k)B̂ + Q(k)

]−1
B̂′η(k),

g(0) = x′
0Nx0. (15)

The above state Eq. (15) and Riccati Eq. (11) can simply be
thought of as a robust implementation of the standard linear
Kalman Filter33 for uncertainties obeying Assumption 3.1,
e.g. see refs. [28,33,34]. Now we are in a position to present
the main result of this section.

Theorem 1. Let 0 <p0 ≤ 1 be given, and suppose that
Assumption 1 holds. Then the state x(T ) of the system (1)
with probability p0 belongs to the ellipsoid

ET
�=

⎧⎨
⎩

xT ∈ Rn :
‖(S(T )

1
2 xT − S(T )−

1
2 η(T ))‖2

≤ ρ + τ

⎫⎬
⎭ , (16)

where

ρ
�= η(T )′S(T )−1η(T ) − g(T ),

and η(T ) and g(T ) are defined by the Eq. (15). Also, we
require ρ + τ ≥ 0.

Proof 1. It follows from Eqs. (9) and (7) that

x̃i(k) = βixi(k) + ni(k), (17)

∀i ∈ {1, . . . , 6} and where xi(k) is the ith component of the
state vector x(k) of the system (1) and the inequalities

|ni(k)| ≤ α̃i |xi(k)|, (18)

hold together with Eq. (8) with probability p0. Therefore,
Eq.(18) implies that

m(k) = Cx(k) + n(k), (19)

where n(k)
�= [n1(k) n2(k) n3(k) n4(k) n5(k) n6(k)]′ and the

condition

‖n(k)‖2 ≤ ‖Kx‖2, (20)

holds together with Eq. (8) with probability p0. From
Eqs. (8) and (20) we obtain that the following sum quadratic
constraint is satisfied

(x(0) − x0)′N(x(0) − x0) +
T −1∑

0

(
w(k)′Q(k)w(k) + ‖n(k + 1)‖2

)

≤ τ +
T −1∑

0

‖Kx‖2, (21)

with probability p0. Now it follows from Theorem 5.3.1 of
ref. [28], p. 75 (see also ref. [34]) that the state x(T ) of
the system (1), Eq. (19) belongs to the ellipsoid (16) with
probability p0.

A point value state estimate can be obtained from
the bounded ellipsoidal set’s center and is given by
x̂ = S(k)−1η(k).

We have therefore proved our algorithm’s estimation
errors are bounded in a probabilistic sense when the
relevant uncertainties obey Assumption 1. The sum quadratic
constraint given in Assumption 1 accommodates a large
class of non-linear and dynamic process noise characteristics.
As the Gaussian noise is bounded within the first standard
deviation with a probability p0 ≈ 0.68 and within two
standard deviations with probability p0 ≈ 0.95 etc, we
lose no generality by considering uncertainties satisfying
Assumption 1. That is, Gaussian measurement, process and
initial condition errors form special cases of Assumption 1
which defines a larger class of uncertainties. We solve the
problem in the linear domain and our algorithm permits very
large initial errors. No similar proofs exist for the EKF or
the majority of other approaches that employ some form
of Taylor-series based approximation. Indeed, the fact that
we can prove bounded tracking performance with arbitrarily
large initial condition errors is a novel contribution.

4. Illustrative Examples
In this section a number of examples are examined using
both simulated data and real physical experiments.

4.1. Fictional simulation data
In the first case we consider fictitious simulation data of a
single mobile target. Consider a camera that is located at the
origin of the global coordinate system and a second camera
that is located a distance d on the positive x1-axis of the
first camera. We assume the background is stationary and
the target stays within both camera’s fields of view which
are determined by the focal length and frame size of both
cameras. In all cases the focal length f for both cameras is
assumed to be unitary. We consider a maneuverable target
that obeys the following dynamic model for simplicity

x(k) = Ax(k − 1) + Bw(k), (22)

where the transition matrices A and B are based on the
well-known Wiener-sequence acceleration model of ref. [20].
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Table I. Simulation parameters.

Input Value Comments

w σw = 0.001 Gaussian accel. Input
vi , i ∈ 1, 2, 3, 4 σvi = 0.005 Gaussian meas. Noise 1
vi , i ∈ 5, 6, 7, 8 σvi = 0.005 Gaussian meas. Noise 2
ε ε = 0.002 Assumed meas. Bound 1
δ δ = 0.002 Assumed meas. Bound 2
[NR, QR] [1, 1] · I Robust filter parameters
[RE, QE] [0.005, 0.0012] · I EKF uncertainty

weightings
T @ ts 120 s @ 1 s Track duration and

periodicity

The process noise w(k) is a white Gaussian random vector
representing the targets acceleration input.

For each simulation we analyse the results of 1000
simulation runs and compare the performance of the robust
filtering technique and the EKF. We plot the root mean
squared (RMS) position and velocity errors

RMSE =
√√√√ 1

M

M∑
i=1

[

T

i 
i

]
,

where M is the total number of simulation runs, i indicates
the ith run and 
 = [x1 − x̂1 x2 − x̂2 x3 − x̂3]′ or 
 = [x4 −
x̂4 x5 − x̂5 x6 − x̂6]′. The measurement noise in this paper
is consistent with the simulations and discussion in ref. [16].

The simulation parameters are given in Table I. Both
filter’s initializations are Gaussian distributed about the true
initial state with σ = 5% of the true initial values. The
EKF is known to be potentially unstable without correct
initialization. The true initial state is [−100 250 1 −
1 0.0001 0.0001]′.

The EKF parameters, i.e. QE and RE , were tuned fairly
accurately. The initial covariance of the EKF is also tuned
assuming the initial error statistics are known to the tracking
system. That is, for the EKF parameters we assumed perfect
knowledge of all the relevant error statistics and tuned around
these true values in order to get the best performance. On the
other hand, for the RF we simply used the identity matrix for
both the initial and process noise weighting. For the RF, α1

and α2 are taken as two times the first standard deviations of
the Gaussian measurement noise.

It may be reasonable to assume (at least partial) knowledge
of the video measurement’s uncertainty statistics due to the
routine sensor testing and calibration operations performed.
However, it is dangerous to assume knowledge of the target’s
uncertainty statistics which characterize it’s maneuvers.

We plot the surface of RMS position and velocity
errors over 1000 simulation runs and for camera separation
distances d ∈ [3, 10] units for both the robust linear filter and
the EKF. The RMS position error for the robust approach is
given in Fig. 2 and the EKF approach is given in Fig. 3.

From Fig. 2 and 3 it is clear that the robust filtering
approach outperforms the EKF significantly in tracking the
target position. The linear robust approach is potentially
sensitive to the separation distance d between the two

Fig. 2. The RMS position error surface for the RF.

Fig. 3. The RMS position error surface for the EKF.

cameras and we see from Fig. 2 that as the separation
distance increases, the RF’s performance improves slightly.
The EKF position estimate slowly diverges when tracking
the maneuverable target.

The RMS velocity error for the robust approach is given
in Fig. 4 and the EKF approach is given in Fig. 5.

From Figs. 4 and 5 it is similarly clear that the robust
filtering approach outperforms the EKF significantly in
tracking the target velocity as the separation distance d

increases. It can be seen that for the proposed robust linear
filter the estimation accuracy increases as the separation
distance increases. The EKF velocity estimate slowly
diverges when tracking the maneuverable target regardless
of the separation distance. The proposed linear RF uses
the measurement conversion technique which is, in fact,
computation of 3D coordinates of a target or a closed-form
solution. Then, our robust estimator improves the accuracy.
In contrast, the EKF does not contain any computation of
3D coordinates of a target and is based on linearization and
Taylor series approximations. It causes the accumulation of
errors resulting in divergence for large uncertainties.
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Fig. 4. The RMS velocity error surface for the RF.

Fig. 5. The RMS velocity error surface for the EKF.

4.2. Real Experimental Data
In this second simulation sub-section we examine a simple
practical vision-based tracking problem in order to illustrate
that our algorithm is feasible using real vision sensors and
real moving objects.

Figure 6 shows the actual locations of the end effector of
the robotic arm. Figure 7 shows the estimated path using
the stereo vision ideas. Using the object location in the
image plane([y1(k) y2(k)]′ and [y3(k) y4(k)]′ measurements)
of the two camera’s as recursive measurements, we deduce
the converted 3D locations(Eq. 9) as well as the estimated
position from RF and EKF. It is quite evident that the RF
out performs the extended Kalman filter. In fact the extended
Kalman filter diverges. Further the converted measurements
are improved due to the robustness of the filter. Figure 8
shows the error in comparison to the actual path data obtained
using robot co-ordinate readings. Although there seems a
noticeable inaccuracy due to alignments etc in the converted
measurements the RF improves this measurements. We have
used 20 pixel/mm and identical cameras with focal length of
50 mm. The distance between the two cameras, d = 360 mm

Fig. 6. End effector measured path from the video sequence.

Fig. 7. Estimated and actual paths.

Fig. 8. Errors in RF and EKF.
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and the duration of the experiment was 36 s with a frame rate
of 23.5.

5. Conclusions
In this paper we derived a linear state estimator with provable
performance limits for vision-based surveillance and object
tracking using non-linear perspective projection and image
velocity measurements. We use a novel measurement conver-
sion approach that does not use Taylor-series approximation
and allows us to derive a completely linear algorithm. A
significant contribution of this technique is the mathem-
atically rigorous proof of the boundedness of the filtering
error. No such results are known for the extended Kalman
filter.
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