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This paper proposes a novel sensor fusion approach using Ultra Wide Band (UWB) wireless
radio and an Inertial Navigation System (INS), which aims to reduce the accumulated error
of low-cost Micro-Electromechanical Systems (MEMS) Inertial Navigation Systems used for
real-time navigation and tracking of mobile robots in a closed environment. A tightly-coupled
model of INS/UWB is established within the integrated positioning system. A two-dimensional
kinematic model of the mobile robot based on kinematics analysis is then established, and an
Auto-Regressive (AR) algorithm is used to establish third-order error equations of the gyroscope
and the accelerometer. An Improved Adaptive Kalman Filter (IAKF) algorithm is proposed. The
orthogonality judgment method of innovation is used to identify the “outliers”, and a covariance
matching technique is introduced to judge the filter state. The simulation results show that the
IAKF algorithm has a higher positioning accuracy than the KF algorithm and the UWB system.
Finally, static and dynamic experiments are performed using an indoor experimental platform.
The results show that the INS/UWB integrated navigation system can achieve a positioning
accuracy of within 0·24 m, which meets the requirements for practical conditions and is superior
to other independent subsystems.
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1. INTRODUCTION. Intelligent mobile robots play a key role in exploration, search
and rescue and transportation, and they are receiving more attention from major developed
countries (Yudanto and Petre, 2015). Autonomous navigation technology is the basis of
research into intelligent mobile robots, but also has difficulties. In the past few decades,
there have been many research studies on mobile robot localisation technology. There
are many positioning methods for the various types of sensor technologies, which can be
roughly classified into two categories: relative positioning techniques and absolute posi-
tioning technologies (Huang et al., 2015). Relative positioning determines the positioning
based on the condition that the robot is told its initial position. An Inertial Navigation
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System (INS) or odometer is usually used to provide relative positioning information to the
robot (Barshan and Durrant-Whyte, 1995; Mautz and Tilch, 2011; Borenstein et al., 2012).
This positioning method is not dependent on the external environment or the reference but
relies only on its positioning system. However, it cannot be used for navigation over a long
period, since the positioning error accumulates over time. Absolute positioning determines
the position without the robot being told its initial position. In theory, it requires multiple
reference points of known locations, such as trilateral localisation or triangulation locali-
sation. Common positioning technologies, including ultrasonic, Wireless Fidelity (WIFI),
ZigBee, Bluetooth and Radio Frequency Identification (RFID) technology (Liu et al., 2007;
Wang et al., 2015; Fu and Retscher, 2009), all belong to the absolute positioning category.
The drawback of these positioning technologies is that they are easily affected by the exter-
nal environment, such as the Non-Line of Sight (NLOS) factor and the multi-path effect,
which can result in large positioning errors.

To achieve high precision positioning in a closed environment, many scholars have used
a combined positioning method to address the shortcomings of each individual technology.
For example, Zhao et al. (2015) used the Federated Kalman Filter (FKF) to fuse INS and
laser technology and improved the fault tolerance. Ko and Kuc (2015) used an Unscented
Kalman Filter (UKF) algorithm to fuse ultrasonic technology and laser technology, and
adjusted the parameters to make full use of the advantages of these sensors. Du et al.
(2015) analysed robot kinematics and installed an inertial sensor and a position sensor
on the robot to realise self-tuning based on the EKF algorithm. Atia et al. (2015) proposed
a ground vehicle navigation system that integrates INS, a laser radar, a Wireless Local Area
Network (WLAN) and an odometer using both tight coupling and loose coupling. Wang
et al. (2015) designed a new adaptive algorithm to achieve real-time tracking of a mobile
robot by using visual odometry and inertial sensors. Most of these combined positioning
systems can be classed as a combination of both relative positioning and absolute posi-
tioning. These methods can address the shortcomings of both individual technologies to a
certain degree and can be used to realise self-calibration of robot navigation.

In absolute positioning systems, Ultra Wide Band (UWB) wireless radio systems have
a high positioning accuracy, strong anti-jamming performance as well as other advantages,
and have been the focus of much attention. Some scholars have undertaken research in com-
bination with an INS. For example, Hol et al. (2009) proposed a Six Degree Of Freedom
(6DOF) tracking system combining UWB measurements with low-cost MEMS inertial
measurements. However, this includes many quaternions and integral calculations. Fan et
al. (2014) designed a new method based on INS/UWB for the attitude angle and position
synchronous tracking of an indoor carrier, but their method involves many variables and
includes some coordinate transformation equations. Yudanto and Petre (2015) presented
a novel sensor fusion approach using UWB and INS for real-time indoor navigation and
tracking of Autonomous Ground Vehicles (AGVs) and mobile robots in factories and ware-
houses. However, the system model they propose is a nonlinear system, and needs a lot of
calculation to convert the nonlinear problem into a linear problem. The above researchers
have focused on modifying the system coupling model and improving the optimal filter-
ing algorithm. However, the calculation process of the above methods is too complex and
they fail to fully collect the motion information of the mobile robot. In view of the above
problems, this paper proposes a linear system model based on the kinematics of a mobile
robot. The model contains many zero variables and reduces the calculation cost.
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From the aspect of the filtering algorithm, the most commonly used algorithm for inte-
grated navigation is the Kalman Filter (KF). However, the conventional Kalman filtering
algorithm needs an accurate system model and the statistical characteristics of noise. It
also lacks immunity to error measurement data and tolerance of sudden failures of a sen-
sor, which can reduce the filtering accuracy and may even lead to divergence of the filter.
During the actual process of motion, it is not possible to determine the noise characteris-
tics of the positioning system as the measurement is easily affected by the complex closed
environment and there will be some outliers in the observation values. To solve these prob-
lems, adaptive filtering algorithms such as Fuzzy Adaptive Filtering (Yang et al., 2015),
Sage-Husa Adaptive Filtering (SHAF) (Guo et al., 2015) and Strong Tracking Filtering
(STF) (Zhou and Xiao, 2012), are always used in the actual system. The Sage-Husa adap-
tive filtering algorithm can estimate and correct the statistical characteristics of noise, but it
does not have the ability to perform online estimation of the system noise and the measure-
ment noise, which easily leads to divergence in high-order systems. It is widely accepted
that system noise in an integrated navigation system is stable, so it usually only estimates
the measurement noise. Guo et al. (2015) applied the Sage-Husa adaptive Kalman filter
with non-holonomic constraints and forward/backward filtering to an IMU/GPS integrated
system, but due to the high dimensions of the combined system state, filtering divergence
may still occur. Song and Liu (2015) introduced a weighted adaptive filtering algorithm for
autonomous radio, which solves the problem of the negative noise covariance matrix. How-
ever, Q and R have been estimated for each filter process, which will affect the real-time
performance. Li et al. (2015) proposed an interacting multiple model adaptive algorithm
based on the Sage-Husa Kalman filter and a strong tracking Kalman filter to solve the
problem of filtering divergence. However, the measuring outliers of the system were not
analysed, reducing the system fault tolerance. At present, many algorithms have been
proposed to deal with outliers. The least squares estimation and the difference technique
have problems such as missed detection, error detection and real-time problems (Zhu et
al., 2004). Wei and Wu (2003) proposed a wavelet de-noising technique based on thresh-
old processing, but it can only be used for post-processing. Zheng et al. (2005) used the
Kalman filter based on a fuzzy controller to deal with outliers. Simulation results show that
this method depends strongly on fuzzy rules. Liu et al. (2003) modified the orthogonality
of KF innovation to restrain outliers, but they did not take the multi-input and multi-output
system into account. In this paper, the corresponding theoretical derivation is carried out
and applied to the multi-input and multi-output positioning system of a mobile robot.

To realise high precision positioning of a mobile robot in a closed environment, we pro-
pose a mobile robot autonomous navigation system based on tightly coupled INS/UWB.
INS is used within the integrated positioning system to obtain the robot’s position, veloc-
ity and azimuth information. UWB is used to provide the robot’s position and velocity
measurements and correct the position and the velocity of the robot. A two-dimensional
kinematic model of the mobile robot is established based on kinematics analysis. An Auto-
Regressive (AR) algorithm is used to establish third-order error equations for the gyroscope
and the accelerometer. An Improved Adaptive Kalman Filter (IAKF) algorithm is also
proposed, based on a simplified Sage-Husa adaptive filtering algorithm. An orthogonality
judgment method of innovation values is used to identify outliers, and a covariance match-
ing technique is introduced to judge the filter state. The proposed IAKF algorithm improves
the robustness and fault tolerance of the integrated positioning system, and achieves high
precision real-time tracking of the two-dimensional plane. The experimental results show
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Figure 1. Principle framework of combined positioning system.

that the combined positioning system can achieve positioning accuracy of within 0·24 m,
which proves the validity of the combined system.

2. SYSTEM MODEL.
2.1. The Design of INS/UWB Tightly Coupled Model. The principle framework for

the combined positioning system based on INS and UWB is shown in Figure 1, which
displays the overall process for the combined positioning system from signal collection
through to attitude output. The INS obtains the acceleration and angular velocity informa-
tion through a MEMS sensor, proposes the recursive gyro data using the real-time attitude
angles of the system obtained using the quaternion method through initial calibration of
the magnetic compass, and uses the accelerometer data to obtain the speed and position
information of the carriers by integration.

The UWB wireless positioning system uses wireless positioning base stations to obtain
the signal of the positioning tag, and the Time Difference Of Arrival (TDOA) algorithm
is applied to obtain the position and velocity information of the carriers. Data fusion is
realised by establishing a system error equation, taking the difference between the velocity
and position values of the INS and the UWB wireless positioning system as the measure-
ment vector and the error value inside the system as the state vector, and estimating and
correcting the error within the system using a Kalman fusion filtering algorithm, which
improves the positioning accuracy.

2.2. Kinematic Analysis. The East-North-Up coordinates are selected as the reference
coordinates to establish a kinematics model of the mobile robot through kinematic analysis,
as shown in Figure 2.

A mobile robot shows very small height changes in indoor environments, so the motion
of the mobile robot can be simplified to motion in a 2D plane. The kinematics equation of
the mobile robot can be obtained from Figure 2.
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Figure 2. Kinematic model of the mobile robot.

where P = [Pe Pn]T is the position of the moving carrier in the reference coordinate sys-
tem, V = [Ve Vn]T is the velocity of the moving carrier in the reference coordinate system,
θ is the azimuth angle of the moving carrier, ae and an are the linear acceleration values of
the moving carrier in the reference coordinate system, ω is the angular velocity of the mov-
ing carrier in the reference coordinate system and wax, way and wω are the measurement
noise values for each of the inertial sensors.

The sampling period of the system is denoted by T and Equation (1) is processed using
first order linearization in the vicinity of the estimated state, as shown by Equation (2).
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where �Pe and �Pn are the position errors of the mobile robot in the east and north
direction, respectively, �Ve and �Vn are the velocity errors of the mobile robot in the
east and north direction, respectively, and �θ is the heading error of the mobile carrier.
After discretization of Equation (2), a linear discrete model can be obtained as shown by
Equation (3):
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2.3. Random Error Model of the Inertial Sensor. Random errors of the inertial sensor
are often time-variant and do not follow any specific change law. They are important fac-
tors that affect the positioning accuracy of the integrated navigation system. Therefore, it
is necessary to consider the random error characteristics of the inertial sensors in the mod-
elling process of the integrated navigation system. Third-order AR models of the random
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errors of the gyros and accelerometers are established, as shown in Equation (4):

ak = −m1ak−1 − m2ak−2 − m3ak−3 + wk (4)

where ak is the random error of the inertial sensors at time k, m1, m2 and m3 are the parame-
ters of the AR model, which can be calculated by the Yule-Walker equation and w is white
noise with a zero mean value. Equation (4) can be transformed into a state space model, as
shown by Equation (5):
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It can be seen from Equation (5) that the three states need to be increased to describe the
random error using the third-order AR model, and therefore the state of the fusion filter
will be increased.

3. OPTIMAL FILTERING STRATEGY.
3.1. System Equation. The errors of position, velocity, azimuth, acceleration and

angular velocity of the combined positioning system are set as state variables, which are
selected as follows:

X = [δPe, δPn, δVe, δVn, δθ , δae, δae−1, δae−2, δan, δan−1, δan−2, δωd, δωd−1, δωd−2]T

The random error state space models of the north and east accelerometers and the azimuth
angular velocity of the integrated navigation system are built based on the AR random error
model of the inertial sensor:
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From Equation (3) and Equations (6)–(8), the following can be obtained:

Xk = FXk−1 + Wk (9)
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where:

F =
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W =
[
wpe, wpn, wve, wvn, wθ , wae, 0, 0, wan, 0, 0, wω, 0, 0

]T (11)

where (δPe, δPn) and (δVe, δVn) are the position error and the velocity error of INS in the
north and east directions, respectively, δθ is the heading error of the moving-carrier, F is
the system state transition matrix, T is the system period, Wk is the system process noise
and the covariance matrix is Q.

Z is the observation vector of the system. The differences between the position and the
velocity that are output from INS and UWB are chosen as the measurements.

Zk = HXk + νk (12)

where

Z = [�Pe �Pn �Ve �Vn]T (13)

H =

⎡
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1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎦ (14)

�P = PINS − PUWB, �V = VINS − VUWB (15)

where �Pe and �Pn are the position differences in the north and east directions, �Ve and
�Vn are the velocity differences in the north and east directions, H is the observation matrix
of the filter, υk is the observation noise and the covariance matrix is R.

3.2. Simplified Sage-Husa Adaptive Filtering Algorithm. The adaptive Kalman fil-
tering algorithm is often used when the system noise is uncertain. Compared with
the traditional Kalman filter, a measurement noise estimator is added to the simplified
Sage-Husa adaptive filtering algorithm (Guo et al., 2015). The specific algorithm is as
follows:

X̂k = X̂k/k−1 + Kkvk (16)

X̂k/k−1 = Fk/k−1X̂k−1 (17)
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vk = Zk − HkX̂k/k−1 (18)

Kk = Pk/k−1H T
k [HkPk/k−1H T

k + Rk]−1 (19)

Pk/k−1 = Fk/k−1Pk−1FT
k/k−1 + Qk (20)

Pk = [I − KkHk]Pk/k−1[I − KkHk]T + KkRk−1KT
k (21)

Rk = (1 − dk)Rk−1 + dk{[I − HkKk−1]vkv
T
k [I − HkKk−1]T + HkPk−1H T

k } (22)

where dk = (1 − b)/(1 − bk+1), b is the forgetting factor, usually between 0·95 and 0·99.
The simplified Sage-Husa adaptive algorithm can estimate the state of the system while
performing the online calculation of the measurement noise R, and thus can achieve an
adaptive effect.

3.3. Improved Adaptive Filtering (IAKF) Algorithm. An integrated positioning sys-
tem has a high sensitivity to carrier movement. The real-time measurements will have
outliers because the UWB wireless positioning system is highly sensitive to environmental
changes, which may result in low accuracy of the adaptive filtering algorithm and filter
divergence. Therefore the measurements need to be first identified and corrected, so that
the state of the filter can be judged. Different filtering algorithms will be used for different
states to ensure that the filter is stable and convergent.

As can be seen from Equations (16) and (18), the measured information Zk influences
the linear combination of the state estimation values. These outliers will change the state
predictive values incorrectly over time Kk. The state estimate value will be offset from its
normal value, which will cause the filter results to appear to deviate or even diverge. To
solve this problem, the following equation is used which is based on the orthogonality of
innovation (Zhu et al., 2015):

E(ZkZT
k ) = HkPk/k−1H T

k + Rk + HkXk/k−1X T
k/k−1H T

k (23)

Assume that:
Dk = HkPk/k−1H T

k + Rk + HkXk/k−1X T
k/k−1H T

k (24)

Using the diagonal elements of the two matrices in Equation (24), it can be judged whether
component Zi in the measurement Zk is an outlier or not using the following equation:

Gi,k ∈ [Di,k − εi, Di,k + εi] (25)

where, Gi,k and Di,k are the ith elements on the diagonals of E(ZkZT
k ) and Dk, respectively

and ε is the disturbance factor, which is set depending on the actual demand. If Zi,k meets
the condition in Equation (25), Zi,k is considered to be normal. However, if it does not
meet this condition, it is recognised as the outlier, which should be limited by adjusting the
activation function to eliminate any adverse effects caused by this outlier. The activation
function is as follows:

λi =
√

(Di,k + εi)/Gi,k (26)

For each filter cycle, outlier identification is performed for each component of the measure-
ment Zk. When Zk is not an outlier, the weight factor is set to one and will not change the
innovation sequence; when Zk is an outlier, the activation function is set to less than one to
limit the measurement and to maintain orthogonality of innovation.
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It can be seen from Equation (26) that there will be missed outliers when ε is too large.
Therefore, ε should be set as small as possible. In fact, ε caused by the calculation error
would be very small. When ε is zero, Gi,k is very close to Di,k and the weighted value λi is 1.
This will give rise to a very small measurement correction function. In practical application,
ε is set depending on the application requirements and the measurement precision.

To prevent filter divergence, it is necessary to judge the state of the filter. The filter state
is closely related to covariance matching, so covariance matching technology (Wang et al.,
2013) can be used to determine whether the current filter is exhibiting divergence. The filter
divergence criterion is as follows:

vkv
T
k > γ Tr

[
HkPk/k−1H T

k + Rk
]

(27)

where γ is the reserve coefficient, γ > 1, Tr(·) are the matrix traces, vk is the innovation
of Kalman Filtering, Hk is the observation matrix of the system, Pk/k−1 is the predicted
covariance matrix of the filter and Rk is the measurement noise variance of the system.

If Equation (27) is met, this means that the actual error exceeds the theoretical expected
value of a factor of γ , and the filter will diverge. If Equation (27) is not met, this means that
the filter is normal and the simplified Sage-Husa adaptive filtering algorithm can be used.
The convergence condition is the most stringent when γ is equal to one. A robust filtering
strategy is used to judge the divergence of the filter, and a fading factor f is introduced to
change the prediction covariance:

Pk/k−1 = fFk/k−1PkFT
k/k−1 + Qk (28)

When the measured variance of innovation is larger than the theoretical value, this means
that there is an increase in the external disturbance. Thus the fading factor f can be defined
as follows:

f = max {1, Tr(Nk)/Tr(Mk)} (29)

Nk = vkv
T
k − HkQkH T

k − Rk (30)

Mk = HkFk/k−1Pk/k−1FT
k/k−1H T

k (31)

When the model error increases, vk will increase and Nk will also increase, which means
that f will be larger than one. This will increase the prediction covariance and change
the filter gain matrix. The innovation weight will increase after increasing the prediction
covariance and changing the filter gain matrix, which will improve the system’s tracking
ability. Figure 3 shows the flow chart of the IAKF algorithm.

3.4. Simulation Analysis. The proposed INS/UWB integrated navigation system has
been simulated by applying the improved adaptive filtering algorithm to the combined
system, and comparing this to the Kalman filtering algorithm that is widely used in engi-
neering. The East-North-Up coordinate system is selected as the navigation coordinates.
The initial position is set at a 120·3◦ eastern longitude, a 31·6◦ northern latitude and 10
metres high. The gyro constant error is 0·5◦/h with a random walk of 0·05◦/h1/2 and 10−3 g
with a random walk of 10−4g·s1/2. The initial position error of INS is 1 m and the initial
velocity error is 1 m/s. The initial position is P0 = (0, 0). The channels provided by the
IEEE 802.15.4a standard are used in UWB to perform the positioning algorithm simula-
tion. The Signal to Noise Ration (SNR) of the channel model is set at 30 dB. There are four
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Figure 3. Flow chart of the IAKF algorithm.

reference nodes used, located at (−5,5), (5,−5), (−5,5) and (5,5). The TDOA algorithm
is used in the UWB system. The simulation duration is 15 s and the sampling frequency
is 100 Hz. The simulation results are shown in Figure 4. This figure shows a comparison
of the simulation trajectories, and the UWB measurement values which contain some out-
liers. The INS/UWB combined positioning system is implemented using the IAKF filtering
algorithm.

Table 1 shows the position errors of the different trajectories. Since the simulation time
is short, the cumulative error of INS cannot be reflected and the INS will not be analyzed.
The results show that KF, STF, SHAF and IAKF can all reduce the Root Mean Square
Error (RMSE) and position error range of the INS/UWB system. It can be seen that: (1) the
RMSE of the proposed INS/UWB tight coupling system with the IAKF filter is 0·0257 m,
which is a reduction of approximately 62·59%, 55·30%, 50·67% and 54·43% compared
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Figure 4. Comparison of the simulation trajectories.

Table 1. The position errors of the different trajectories.

Position error
RMSR (m) range (m)

East North Mean East North

INS-only 0·1143 0·0026 0·0585
UWB 0·0650 0·0723 0·0687 −0·4081 ∼ 0·9496 −0·6767 ∼ 1·2111
KF 0·0595 0·0555 0·0575 −0·3707 ∼ 0·8351 −0·5819 ∼ 1·0688
STF 0·0514 0·0528 0·0521 −0·3012 ∼ 0·5319 −0·3373 ∼ 0·6791
SHAF 0·0576 0·0551 0·0564 −0·3251 ∼ 0·7217 −0·5089 ∼ 0·9297
IAKF 0·0267 0·0246 0·0257 −0·2167 ∼ 0·1777 −0·2095 ∼ 0·2347

with the UWB solution, the KF solution, the STF solution and the SHAF solution, respec-
tively. (2) The eastbound position error range of the proposed system with the IAKF filter
is a reduction of approximately 70·95%, 67·29%, 52·69% and 62·32% compared with the
UWB, the KF, the STF and the SHAF, respectively. The northbound position error range of
the proposed system with the IAKF filter is a reduction of approximately 76·47%, 73·09%,
56·30% and 69·12% compared with the UWB, the KF, the STF and the SHAF, respectively.

Figures 5 and 6 show the eastbound and northbound positioning errors, respectively. It
can be seen from the figures that the values of the KF, the STF and the SHAF algorithm
have outliers of at least 0·3 m at approximately 900, 1,100 and 1,300 sampling points. The
ability of the STF algorithm to deal with outliers is the best of the three filtering algorithms,
but it cannot completely eliminate the impact of outliers and can also produce some position
fluctuations. However, since the IAKF algorithm can adjust the measurement noise online,
it can detect the outliers and reduce their influence on the position accuracy. Figure 7 shows
the distance error range with different algorithms. It can be seen from the figure that the
distance error with IAKF is maintained within 0·3 m, while the maximum distance error
with KF, STF or SHAF is at least 0·6 m.
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Figure 5. The eastbound positioning error of the different methods.

Figure 6. The northbound positioning error of the different methods.

The simulation results show that the proposed INS/UWB tightly coupled system is bet-
ter than any of the independent subsystems, and the divergence problem does not exist.
The simulation results also show that the IAKF algorithm is better than the other filter
algorithms, and it is more suitable for the INS/UWB tightly coupled positioning system.

4. EXPERIMENT AND ANALYSIS.
4.1. Hardware Design. The inertial navigation system in this paper is using the

AH100B series navigation module developed by RION TECHNOLOGY in China. The
module is designed using a MEMS inertial sensing unit with a “micro 9” axis. This unit
adopts the latest MEMS technology which integrates a high-accuracy three-axis gyro sen-
sor, a three-axis acceleration sensor and a three-axis magnetic field sensor; and performs

https://doi.org/10.1017/S0373463317000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000194


NO. 5 DATA FUSION FOR INDOOR MOBILE ROBOT POSITIONING 1091

Figure 7. The distance error ratio diagram.

Table 2. Basic performance parameters of INS.

Parameter Gyro Accelerometer Magnetic compass

Range ±2000◦/sec ±2 g ±4 gauss
Resolution <0·1◦/sec <10 mg <2·5 mgauss
Bandwidth 40 Hz 37 Hz 50 Hz
Supply voltage 3·3 V 3·3 V 3·3 V
Interface I2C I2C I2C

high-speed calculation using a 32-bit ARM CortexM3 MCU, which can measure the posi-
tion and attitude information of the carriers in either a static or a dynamic state without
relying on any external signals in the three-dimensional space. The data refresh rate is
100 Hz, as shown in Table 2. The UWB wireless positioning system is a LINK UWB wire-
less positioning system developed by the ANGXUN Electronics Company in China. The
positioning system is designed using a high-accuracy UWB wireless positioning module
with four referenced base-stations, in conjunction with a network synchronous control unit
(with a 10 Hz refresh rate of the mobile nodes) and a TDOA measurement method.

The hardware of the combined positioning system is shown in Figure 8. The INS
communicates with the host computer through the RS232 connection, and the UWB com-
municates with the host computer through the RJ-45 connection. The final data acquisition,
fusion filtering and interface display are completed on the host computer.

4.2. Experimental Research. The experimental environment shown in Figure 9 was
set up to verify the performances of the combined positioning system based on UWB and
INS. The main devices in this test included one mobile robot (to simulate the moving tar-
get), four UWB positioning base-stations, one UWB wireless synchronous controller, one
INS module, one upper computer and one positional tag. The experimental configuration is
the same as the previous work (Fan et al., 2015). The main difference is in the system model
and data filtering algorithm. In the previous work, the position error and velocity error of
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Figure 8. Hardware structure of the combined positioning system.

Figure 9. Indoor positioning environment.

the inertial navigation system were selected as the state variables and the traditional KF was
used to fuse data. The outliers were measured by the UWB system before fusion had been
artificially removed, and did not have real-time characteristics. In this paper, the errors of
position, velocity, azimuth, acceleration and angular velocity of the combined positioning
system are set as state variables. The filter is improved by adding an outliers’ identification
and divergence judgment mechanism, which improves the real-time positioning accuracy
of the system.

The sampling frequency of the INS is 100 Hz, and the sampling frequency of the UWB
is 10 Hz. Therefore, the fused system frequency is 10 Hz, that is, the filter cycle is 0·1 s.
The reference nodes of the UWB system are installed at (0,0), (7,0), (5,0), (7,5) positions.

A large cumulative error of the INS positioning builds up over a longer period, which
does not occur for the UWB. Therefore, error analysis of INS is not undertaken in this
paper, and we only analyse the UWB system and the combined positioning system.

4.3. Static Positioning Test. In the static test, the mobile robot is placed at point (3,2).
The static data from the UWB system and the INS are used to calculate the static position
of the mobile robot by using each of the different solution strategies.

As shown in Figure 10, during the static positioning test, the eastbound error range
based only on the UWB measurements is between −0·02 m and 0·04 m, the RMSE is
0·0125 m, the residual rate is 0·003, and the confidence level is 99·7%. However, under
the same conditions, the eastbound error range using INS/UWB with the KF algorithm is
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Figure 10. The eastbound and northbound error of static tracking.

Figure 11. Framework of node deployment.

between −0·0095 m and 0·0002 m, the RMSE is 0·0043 m, the residual rate is 0·0012, and
the confidence level is 99·88%. The eastbound error range under the same conditions using
INS/UWB with the IAKF algorithm is between −0·0124 m and 0·0058 m, the RMSE is
0·008 m, the residual rate is 0·0024, and the confidence level is 99·76%.

The northbound error range using UWB is between −0·08 m and 0·04 m, the RMSE is
0·0389 m, the residual rate is 0·0166, and the confidence level is 98·34%. However, under
the same conditions, the northbound error range using INS/UWB with the KF algorithm
is between −0·0376 m and 0·0031 m, the RMSE is 0·0133 m, the residual rate is 0·0045,
and the confidence level is 99·55%. The northbound error range using INS/UWB with the
IAKF algorithm is between −0·0221 m and 0·0001 m, the RMSE is 0·0103 m, the residual
rate is 0·0044, and the confidence level is 99·56%.

4.4. Dynamic Positioning Test. For the dynamic experiment, the nodes and the robot
trajectory are as shown in Figure 11. The initial position of the mobile robot is P0 = (3,4),
and the initial speed is 0 m/s. The trajectory passes through points (2,2) and (4,1) and finally
reaches point (5,3). The dynamic experimental trajectory is shown in Figure 12.

The dynamic tracking results for the attitude angle and position for the dynamic exper-
iment are shown in Figure 12, Figure 13, and Figure 14. The error range using UWB is
between −0·4159 m and 0·5456 m, the RMSE is 0·1022 m, the residual rate is 0·0436,
and the confidence level is 95·64%. However, under the same conditions, the error range
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Figure 12. Dynamic tracking performance of position.

Figure 13. Dynamic tracking error of distance.

using INS/UWB with the KF algorithm is between −0·4117 m and 0·3457 m, the RMSE is
0·0886 m, the residual rate is 0·0241, and the confidence level is 97·59%. The error range
using INS/UWB with the IAKF algorithm is between −0·2313 m and 0·1183 m, the RMSE
is 0·0636 m, the residual rate is 0·0176, and the confidence level is 98·24%.

4.5. Analysis of Results. In the static experiment, the distance error range of the
INS/UWB tightly coupled system with either the KF or IAKF algorithms decreases and
the trajectory tends to be smooth, compared with the INS or the UWB positioning system.
The eastbound RMSE of KF and IAKF are reduced by approximately 65·6% and 36% com-
pared with the UWB solution, respectively. The northbound RMSE of KF and IAKF are
reduced by approximately 65·81% and 75·52% compared with the UWB solution, respec-
tively. Therefore, the KF and IAKF algorithms have a generally beneficial effect when the
carrier is in a static state.
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Figure 14. Dynamic tracking performance of attitude angle.

In the dynamic experiment, the distance error range of the INS/UWB tight coupling
positioning system with IAKF algorithm is significantly reduced. The RMSE is reduced
by approximately 28·22% and 37·77% compared with the KF solution and the UWB solu-
tions, respectively. At approximately 3 s and 8 s, the measurement values of UWB have
some outliers, which introduce some large errors to the KF method. However, the IAKF
algorithm can detect these outliers and eliminate their influence, thus improving the fault
tolerance and the robustness of the system.

The above analysis shows that the IAKF algorithm is more suitable for the INS/UWB
coupled system in achieving high precision tracking of the mobile robot.

5. CONCLUSIONS. The INS method produces diverging localisation errors after being
used for a long time. To compensate for this disadvantage, this paper has proposed a mobile
robot autonomous navigation system based on a tightly coupled INS/UWB. In the inte-
grated positioning system, the differences between the position and the velocity values that
are output from INS and UWB were chosen as the measurement values to establish a tightly
coupled model using INS/UWB. The kinematics of a robot have been analysed and the AR
algorithm was used to establish the third-order error equations of the gyroscope and the
accelerometer. The system filter equations were established based on the coupled model.
The IAKF algorithm was proposed for the coupled system. The simulation results have
shown that the IAKF algorithm has a higher positioning accuracy than the KF filter and
is more suitable for the INS/UWB coupled system. Static and dynamic experiments have
been undertaken and the results show that the INS/UWB integrated navigation system can
track the position and attitude angle of the mobile robot in real time and the positioning
accuracy satisfies the requirements of practical applications.
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