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Fractures provide pathways for fluids and solutes through crystalline rocks and low
permeability materials, thus playing a key role in many subsurface processes and
applications. In small aperture fractures, solute transport is strongly impacted by the
coupling of electrical double layers at mineral–fluid interfaces to bulk ion transport.
Yet, most models of flow and transport in fractures ignore these effects. Solving such
coupled electrohydrodynamics in realistic three-dimensional (3-D) fracture geometries
poses computational challenges which have so far limited our understanding of those
electro-osmotic effects’ impact. Starting from the Poisson–Nernst–Planck–Navier–Stokes
(PNPNS) equations and using a combination of rescaling, asymptotic analysis and the
Leibniz rule, we derive a set of nonlinearly coupled conservation equations for the
local fluxes of fluid mass, solute mass and electrical charges. Their solution yields the
fluid pressure, solute concentration and electrical potential fields. The model is validated
by comparing its predictions to the solutions of the PNPNS equations in 3-D rough
fractures. Application of the model to realistic rough fracture geometries evidences several
phenomena hitherto not reported in the literature, including: (i) a dependence of the
permeability and electrical conductivity on the fracture walls’ charge density, (ii) local
(sometimes global) flow reversal, and (iii) spatial heterogeneities in the concentration
field without any imposed concentration gradient. This new theoretical framework will
allow systematically addressing large statistics of fracture geometry realizations of given
stochastic parameters, to infer the impact of the geometry and various hydrodynamic and
electrical parameters on the coupled transport of fluid and ions in rough fractures.
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1. Introduction

Due to their formation history and to later tectonic constraints, the igneous rocks of
the Earth’s crust are heavily fractured (Bour & Davy 1997; Renard & Allard 2013).
The resulting networks of interconnected fractures exhibit dimensions of fractures/cracks
ranging from a few μm to several km for large-scale faults (Brown 1987; Brown &
Bruhn 1998; Bonnet et al. 2001; Berkowitz 2002). Due to the very low permeability
of the surrounding rock matrix, these fracture networks play a key role in the transport
of water through the Earth’s crust, with important implications on transport processes
in the subsurface (Brantley, Goldhaber & Ragnarsdottir 2007). The hydraulic transport
characteristics of fractured rocks are thus of great importance for a broad range of
environmental processes and subsurface applications, ranging from the petroleum industry
to hydrogeology (Brown 1987; Javadi, Sharifzadeh & Shahriar 2010; Bense et al.
2013) through contaminant transport in the subsurface (Grisak & Pickens 1980; Roux,
Plouraboué & Hulin 1998; Detwiler, Rajaram & Glass 2000; MacQuarrie & Mayer 2005),
geothermal energy (Ledésert et al. 2010) and the storage of radioactive waste in subsurface
repositories (Bredehoeft et al. 1978; de La Vaissière, Armand & Talandier 2015), among
other important applications.

The hydraulic behaviour of fractured rocks is controlled both by the topology of the
networks of interconnected fractures (Long, Gilmour & Witherspoon 1985; de Dreuzy,
Davy & Bour 2001, 2002; Painter & Cvetkovic 2005) and by the roughness of fracture
walls, which impacts the hydraulic response of each individual fracture (Brown 1987)
in the network. Under particular conditions, considering fracture wall roughness in
the flow description results in changing the connectivity of flow at the network scale
(de Dreuzy, Méheust & Pichot 2012), which indicates a coupling between fracture-scale
flow complexity and network-scale flow connectivity. However, in most cases, and in
particular when considering flow domains of sufficiently large scale in natural fractured
porous media, these two contributions to the medium permeability are mutiplicative
(de Dreuzy et al. 2012), and can be studied separately. Many studies have thus addressed
the fracture-scale contribution, i.e. the hydraulic behaviour of individual rough fractures.
Such studies, which include laboratory-scale experiments (Yeo, De Freitas & Zimmerman
1998; Méheust & Schmittbuhl 2000; Wendland & Himmelsbach 2002; Konzuk &
Kueper 2004; Molinero & Samper 2006; Watanabe, Hirano & Tsuchiya 2008) and
theoretical/numerical investigations (Neuzil & Tracy 1981; Wong, Koplik & Tomanic
1984; Brown & Scholz 1985; Brown 1987, 1989; Tanksley & Koplik 1994; Brown
1995; Brown & Bruhn 1998; Rojas & Koplik 1998; Drazer & Koplik 2000; Méheust &
Schmittbuhl 2001; Drazer & Koplik 2002; Bogdanov et al. 2003; Méheust & Schmittbuhl
2003; Yan & Koplik 2008), have characterized the flow heterogeneity within rough walled
fractures as a function of closure, and how that heterogeneity alters the transmissivity at
the fracture scale.

Almost all of these studies have focused on pressure-driven flows, i.e. flows imposed
by an externally maintained pressure drop along a given direction while the fracture
is assumed to be closed in the transverse direction, with no consideration of solute
transport (Brown 1987; Zimmerman & Bodvarsson 1996; Nicholl et al. 1999; Méheust
& Schmittbuhl 2001, 2003; Basha & El-Asmar 2003; Brush & Thomson 2003; Koyama,
Neretnieks & Jing 2008; Wang et al. 2015b). Others have also investigated solute transport,
but without any feedback on the flow itself from the transport of ions (Drazer & Koplik
2002; Cardenas et al. 2007). However, fluid flow and the transport of ions (electrical
charges) in solution are in fact expected to be coupled when their spatial distribution
becomes heterogeneous (which can be enforced externally) due to the existence of
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electrical double layers (EDLs), which are essentially regions in the fluid containing
net positive or negative charges (in the form of an ion) and located in the immediate
vicinity (∼O(1–100 nm)) of mineral–water interfaces. Electrical double layers (Saville
1977; Teutli-León et al. 2005; Hunter 2013) exist because rock surfaces, generally
composed of minerals such as quartz (Pettijohn 1957; O’Connor et al. 1965) or kaolinite
(López et al. 2005), usually posses a net electrical charge, which is either structural or
results from chemical reactions with aqueous electrolytic solutions. For instance, silica,
depending on the pH of the solution may undergo protonation or, de-protonation (Wang
& Revil 2010), which results in either positively or negatively charged mineral surfaces.
Moreover, since natural pressure-driven flows can be very weak in fractures (Méheust
& Schmittbuhl 2000; Konzuk & Kueper 2004), the motion actuated by the interactions
between EDLs and externally applied electric fields are expected to significantly alter
the flow patterns therein. Consequently, analysis of the role of EDLs in subsurface
porous media has far-ranging applications in geo-electrical measurements aiming at
characterizing the shallow subsurface transport processes occurring in it (Revil et al. 1999;
Revil & Florsch 2010; Jougnot & Linde 2013). More generally, interactions between EDLs
and external electric fields, known as electrokinetic phenomena, also entail important
applications in various systems of practical interest such as electrophoresis, particle
separation, mixing of reagents, etc. (Squires & Quake 2005; Hunter 2013). Furthermore, if
a fracture is connecting two reservoirs with different concentrations of dissolved salts,
the natural concentration gradient would then drive its own flow through the EDLs.
This component of the flow, often termed diffuso-osmotic flow, might oppose or aid any
existing mechanical (i.e. pressure-induced) flow, as well as any electrokinetic flow (Khair
& Squires 2008; Ghosh, Mandal & Chakraborty 2017), and, hence, might also play a key
role in altering the net throughput in the fracture. In addition, concentration gradients are
expected to dictate the fluxes of charged solute species (and, thus, of electrical charges)
through the fracture, thus triggering changes in the electrical current and, hence, in
the overall electrical conductivity of the fracture. In this study we address the entire
complexity of electrohydrodynamic couplings associated to rough fracture flow.

An approach commonly used to model rough fracture flow without
electrohydrodynamical couplings is to use the lubrication approximation (Brown 1987;
Thompson 1991; Zimmerman, Kumar & Bodvarsson 1991), which assumes slow spatial
variations of the aperture field and allows deriving the Reynolds equation for the pressure
field. In this depth-averaged formalism, pressure only varies along the two-dimensional
(2-D) fracture’s mean plane, while the fluid mass flux (also independent of the out-of-plane
coordinate) depends on the local pressure gradient in a way akin to Darcy’s law. Despite
the constraint imposed on the geometry by the lubrication approximation, Brown and
coworkers (Brown 1987; Brown, Stockman & Reeves 1995) have shown that high spatial
frequency modes of the aperture field only play a minor role in dictating the fracture’s
transmissivity, which makes the Reynolds equation a reasonable approach to investigate
the global features of flow through fractures, as evident from the good agreement between
fracture hydraulic apertures (Brown 1989; Méheust & Schmittbuhl 2001) computed from
the Reynolds equation and measured from laboratory experiments (Mourzenko, Thovert
& Adler 1995; Nicholl et al. 1999; Méheust & Schmittbuhl 2000; Konzuk & Kueper
2004). On the other hand, several researchers have investigated flow through fractures by
solving the three-dimensional (3-D) Stokes equation using various computational tools
(Mourzenko et al. 1995; Rojas & Koplik 1998; Cardenas et al. 2007) and concluded
that the lubrication theory-based analysis remains reasonably accurate provided that the
surface roughness’ standard deviation is sufficiently small, but that solving the 3-D flow
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is more accurate. Note, however, that solving the flow from the 2-D Reynolds equation is
considerably faster and allows for Monte-Carlo studies over a large statistics of fractures
with identical geometric parameters but possibly significantly different transmissivities,
due to the intrinsically stochastic nature of these objects (Méheust & Schmittbuhl 2001).
Be that as it may, all aforementioned studies only consider purely pressure-driven flows,
and only a handful of them have investigated electrical transport through fractures
(Tsang 1984; Brown 1989; Thompson & Brown 1991); they have done so by treating
hydrodynamics and electromechanics as independent phenomena.

Although the electrokinetic effects discussed above are likely to be negligible in
fractures with mean apertures in the millimetre range (Hamzehpour et al. 2014), the
effect of the EDL can become significant (Marino et al. 2000; Hamzehpour et al. 2014)
when the mean aperture is in the range 10–100 μm or less (the upper value of which
being very common in subsurface fractured media, in particular). Such microfractures
play key roles in oil and gas recovery (Gamson, Beamish & Johnson 1993), dictating
the physical properties of rocks, and playing a particular role in rock failure and the
development of fault zones (Anders, Laubach & Scholz 2014). More generally, EDLs
and the associated ionic gradients play important roles in dictating various properties
of the subsurface such as direct current and complex conductivity (also called induced
polarization) (Marshall & Madden 1959; Kessouri et al. 2019) and streaming potential
(Linde et al. 2007; Revil et al. 2007), which may be used to map the structure of
underground porous media, the saturation of fluid phases in them, the spatial distribution
of a contaminant plume in the subsurface, or the activity of bacteria therein. Despite
this, the impacts of concentration gradients and of the presence of EDLs on overall
transport phenomena in rough fractures have remained largely unexplored, to the best
of our knowledge. In particular, detailed exploration of electro-osmotic flow triggered
by EDLs are so far lacking in the literature, with the notable exception of the studies
by Marino et al. (2000), who have developed 3-D numerical simulations for coupled
mechanical and electro-osmotic flow in rough fractures based on first principle equations.
They investigated in particular the influence of the self-affinity of the fracture wall
roughness and its amplitude on the coupling between the two phenomena, albeit in
the limit of small deviations from equilibrium conditions. To theoretically describe
the first principles of electrohydrodynamics, the Poisson–Nernst–Planck–Navier–Stokes
(PNPNS) equations are a well-established formulation (Saville 1977; Kilic, Bazant &
Ajdari 2007; Schnitzer & Yariv 2012; Schmuck & Bazant 2015; Ghosh, Chaudhury &
Chakraborty 2016; Ghosh et al. 2017), although more advanced models exist (Bazant
et al. 2009) to address configurations for which either the potentials are very large, the
ion concentrations are very large or the dimensions of the confining space are very small;
such configurations however, are outside the scope of this study. Resorting to numerical
modelling of the PNPNS equations in the 3-D space of the fracture nevertheless has
several drawbacks. Firstly, it is computationally very expensive, and, hence, would not
allow studying a large number of fracture realizations for a given set of geometrical
parameters. Studies of Stokes flow in geological rough fractures have shown that large
fluctuations can exist within such statistics, and that any conclusion that claims a certain
level of universality must be obtained from a sufficient statistics of fractures with identical
statistical geometrical parameters (Méheust & Schmittbuhl 2001, 2003). Secondly and
more fundamentally, a full 3-D model requires the EDL to be finely resolved for accurate
computations. This is very difficult from a practical point of view, as the EDL size is
typically of a few nms to a few hundreds of nm, and the fracture aperture can be as large
as 1 mm.
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We propose here a general theoretical model to address fully coupled
electrohydrodynamical transport through rough fractures in the two dimensions of a
fracture plane, based on the lubrication approximation. Although a handful of previous
studies (Park et al. 2006; Ghosal 2002, 2003; Datta & Ghosal 2009) have extended
the lubrication theory to electrokinetic flows, most of them only concentrate on the
consequences of the electrical effects on the Navier–Stokes equations. While these
approaches conserve the fluid mass flow rate, they do not conserve the electrical current
and salt fluxes; to ensure their conservation, additional constraints are required to
complement the Reynolds equation. In the present study we thus derive a generalization
of the Reynolds equation accounting for the coupled transport of fluid mass, electrolytes
and electrical charges in the space between two rough walls which possess a surfacic
spatial distribution of charges. Our generalized framework brings out the intricate
coupling between liquid motion, current and salt flux in a rough narrow fracture, a
physical paradigm that currently remains mostly unexplored in the literature. The flow is
actuated using a combination of externally prescribed electrical potential, concentration
difference and pressure difference. This generalized lubrication theory is thoroughly
validated by comparing its predictions with the results of 3-D numerical resolutions of the
PNPNS equations in small-size realizations of synthetic geological (rough) fractures. We
subsequently apply the generalized theory to investigate coupled flow and ion transport
through large-size geological fractures whose walls bear surface charge and which are
subjected to prescribed pressure, potential and concentration differences between their
inlet and outlet.

The geometry considered and the assumptions of the model are presented in § 2,
and the first principle equations in § 3. Section 4 is dedicated to the development of
the equations describing the general lubrication theory. The significance of our general
formalism with respect to the existing literature, linking the lubrication theory and
electrohydrodynamics is also outlined in that section. The validation of the model and the
results obtained from applying the model to synthetic geological fractures are presented
and discussed in § 5. Section 6 is the conclusion. Appendix A presents details on the
derivation of the coupled conservation equations, while Appendix B shows additional
comparative tests for the model. Analytical solutions to the generalized equations for
special cases of fracture aperture geometries that are invariant along one direction, as
well as additional validations of the lubrication-based model predicated on comparisons
with those analytical solutions and with numerical simulations of the PNPNS equations
in 3-D and 2-D test (non-stochastic) geometries are presented in §§ S2, S5 and S6 of
the supplementary material available at https://doi.org/10.1017/jfm.2022.306, while § S3
therein compares results from our general lubrication theory to those from an earlier
theoretical model with a lesser level of generality.

2. Geometry considered and assumptions of the model

2.1. Geometry of the fracture
Measurements of fracture surface topographies demonstrate that they exhibit a roughness
possessing long-range spatial correlations and a scale invariance characteristic of
self-affinity (Schmittbuhl, Schmitt & Scholz 1995). This means that the height distribution
h′(x′, y′) of an isotropic fracture surface, such as the fracture walls shown in figure 1, has
the following scale invariance property:

λHf (λH�h′, λr′) = f (�h′, r′). (2.1)
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Figure 1. A synthetic single fracture with self-affine walls of Hurst exponent 0.8 connects two reservoirs along
the x′-axis. The aperture field a′(x′, y′) has a mean a′

m = 100 μm and standard deviation σ ′ = 0.9 a′
m. The

correlation length is Lc = L′
x/2 = 103a′

m = 10 cm. The fracture is closed along its lateral boundaries (defined
by y′ = 0 and y′ = L′

y). The walls carry a surface charge distribution, represented by an equivalent zeta potential
ζ ′(x′, y′). The outlet and the inlet are subjected to different levels of pressure, concentration and electrical
potential.

Here f (�h′, r′) is the probability density function (p.d.f.) of having a height difference�h′
between two points belonging to the topography and separated by a horizontal distance
r′ =

√
(�x′)2 + (�y′)2, and H denotes the Hurst exponent (Bouchaud, Lapasset & Planès

1990). Except for materials such as sandstone for which fracturing occurs in-between
mineral grains (Boffa, Allain & Hulin 1998), the value of the Hurst exponent has been
measured to 0.8 for a large range of different materials and length scales (Bouchaud et al.
1990); this value shall be used here. In addition, the p.d.f. in (2.1) has been measured to be
Gaussian (Brown 1995). Self-affinity imparts long-range correlations to the topography,
which means that if the topography is isotropic, its autocorrelation function

C(�x′,�y′) = 1
L′

xL′
y

∫ L′x

0
dx′

∫ L′
y

0
dy′h′ (x′, y′) h′ (x′ +�x′, z′ +�y′) (2.2)

is a function of r′ alone, and C(0)− C(r′) scales as a power law r′2H (Schmittbuhl et al.
1995). Consequently, the power spectral density (PSD) G(k′), which is defined for an
isotropic fracture as (Wang, Narasimhan & Scholz 1988; Brown 1995; Schmittbuhl et al.
1995)

G(k′) = 1
2π

∫ ∞

−∞
C(r′)e−ik′r′

dr′, (2.3)

scales as k′−2(H+1).
The two walls constituting a fracture possess the same self-affinity property, with

identical Hurst exponent and standard deviation of h′(x′, z′). The aperture field is defined
as

a′(x′, y′) = max
(
h′

t(x
′, y′)− h′

b(x
′, y′)+ a′

m, 0
)

if h′
t(x

′, y′)+ a′
m > h′

b(x
′, y′),

a′(x′, y′) = 0 otherwise,

}

(2.4)

where the topographies for the upper and the lower walls, h′
t and h′

b, are defined with a
zero arithmetic mean and a′

m is the fracture’s mechanical aperture, which is the distance
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between the mean planes of the walls and is also the arithmetic mean of the aperture
field a′ when the two fracture walls are not touching each other. At (x, y) positions where
h′

t(x
′, y′)− h′

b(x
′, y′)+ a′

m is negative, meaning that the two original wall topographies
intersect each other, the aperture is set to zero, which is equivalent to considering perfect
plastic closure of the fracture. Fracture walls pertaining to a freshly made fracture are
identical down to very small scales, yielding h′

t = h′
b and a constant aperture a′(x, y) =

a′
m ∀(x, y). But the walls of a geological fracture are only identical at scales larger

than a characteristic correlation scale Lc. Below that scale they are both self-affine but
uncorrelated to each other, so the aperture field is also self-affine (since self-affinity is a
linear property). The PSD of the aperture field is then of the form

G(k′) ∝ (k′
x

2 + k′
y

2
)−(H+1) if

√
k′

x
2 + k′

y
2 ≤ k′

c = π

Lc
,

G(k′) = G(k′
c) otherwise.

⎫⎬
⎭ (2.5)

Consequently, the aperture field of a geological fracture is well modelled as a stationary
2-D random process (Brown 1995) defined by (i) the functional form of the p.d.f. for
a′ – this includes specification of the mean a′

m and standard deviation σ ; (ii) the Hurst
exponent H; (iii) the correlation length Lc; and (iv) the horizontal dimensions L′

x (length)
and L′

y (width) of the fracture (Méheust & Schmittbuhl 2003). The synthetic fractures of
§ 5.2 have been generated using a spectral method previously employed by Méheust &
Schmittbuhl (2001, 2003). The perfect plastic closure in contact zones, expressed by the
notation max(·, 0) in (2.4), is the strongest approximation made in this model of geological
fracture.

2.2. Boundary conditions and assumptions of the model
We consider steady coupled Stokes flow and ion/charge transport through a synthetic
fracture as shown in figure 1. The x′ and y′ axes run along the mean fracture plane,
while the z′-axis is normal to that plane, hence running along the fracture’s aperture.
The top (respectively, bottom) surface has a surface charge density q′

t(x
′, y′) (respectively,

q′
b(x

′, y′)), which for the moment is considered to be an arbitrary function of x′ and y′. We
assume that the fracture connects two reservoirs along the x-axis which contain solutions
of the same 1 : 1 symmetrical electrolyte, of respective concentrations c′

in and c′
ex.

A solution of the same electrolyte also saturates the fracture. The pressures at the inlet and
outlet are maintained at p′

in and p′
ex, respectively, while the electrical potential difference

imposed between the two reservoirs is �V . We further assume that there is no externally
imposed electrical potential difference between the two fracture walls, as such a potential
difference would not impact the flow and ion transport in the fracture. We further assume
that the faces of the fracture lying perpendicular to the y′-axis, at y′ = 0 and y′ = L′

y, are
closed. The presence of surface charge on the fracture walls and electrolyte solution inside
the fracture leads to the formation of EDLs in the vicinity of the walls. We assume that
the EDLs are non-overlapping, so that for any (x0, y0) position along the mean fracture
plane, the region away from either of the walls lying on the line segment (x = x0, y = y0)
remains electroneutral. The fluid viscosity is denoted η, its density ρf and the liquid’s
electrical permittivity γ . All these properties are assumed to remain constant throughout.

We present in the following a formulation for coupled fluid and charge transport in a
fracture geometry based on the lubrication approximation. This model makes the following
several assumptions.
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(i) The topography varies slowly as a function of the horizontal coordinates,
i.e. ∀(x, y), ‖∇a‖ 	 1. Note that the aperture field’s self-affinity implies that
the aperture gradient goes to infinity when computed over a vanishingly small
horizontal length scale (see Méheust & Schmittbuhl 2001); therefore, depending
on the size of the computing mesh, the aperture topography may have to be
smoothed below a length scale �c such that ε = �a0/�c 	 1, where �a0 is the
typical vertical variation in the aperture field over �c, so as to ensure that the
lubrication approximation be valid. However, Brown (Brown 1987; Brown et al.
1995) has shown that small wavelength features of the surface roughness only play
a secondary role in controlling the flow heterogeneity at the fracture scale, so, if
�c 	 Lc, transport processes at the fracture scale will not be significantly impacted
by this small-scale smoothing of the aperture field. The validity of the lubrication
approximation will be verified by comparing the results of the lubrication-based
model to the numerical solutions of the first principle equations in identical
geometrical and electrical configurations in § 5.1.

(ii) For the sake of generality, we assume the surface charge to be variable as well, but
its gradient is also much smaller than 1, which means that the characteristic length
scales of variation l0 (say) of the surface charges are of same order as those of the
topography (l0 ∼ Lc).

(iii) The Reynolds number is assumed to be small (Re 	 1), which is a reasonable
assumption for most configurations of fracture flow in the subsurface.

(iv) We assume that the magnitude of the surface charge and potential gradient imposed
across the fracture are not asymptotically large (see details in § 4.1).

(v) Finally, since the theory is derived from the Poisson–Nernst–Planck equations, the
usual assumptions are made for these equations (for example, point charges, no
non-Coulombic interactions between ions, etc.). Although several modifications
to the Nernst–Planck equations have been proposed (Bazant et al. 2009), the
Nernst–Planck equations are capable of capturing the essential physics with a
reasonable accuracy, especially when investigating effective transport characteristics
in subsurface permeable media (see § 5.2).

Since we are applying the lubrication theory, conditions for primitive variables
(e.g. velocity) are not required at the flow domain boundaries. However, boundary
conditions for the externally imposed potential (φ′), concentrations and pressure are
required to close the system of governing equations, as we show later. These conditions
are given by

At x′ = 0, p′ = p′
in; c′

i = cin; φ′ = 0, (2.6a)

At x′ = L′
x, p′ = p′

ex; c′
i = cex; φ′ = −�V, (2.6b)

At y′ = 0 and L′
y ∂p′/∂y′ = ∂c′

±/∂y′ = ∂φ′/∂y′ = 0. (2.6c)

The last condition expresses the constraint that the diffusive fluxes of pressure, solute
concentration and electrical potential, have no component along the y′-axis at the lateral
boundaries of the fracture.

Note that the generalized lubrication equations derived in the following assume no
specific relation between h′

b and h′
t; thus, they remain valid for symmetric fractures

(i.e. with wall topographies that mirror each other) as well as non-symmetric fractures.
As we shall show below, the only required geometrical input to the generalized lubrication
equations is the aperture field.
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Coupled electrohydrodynamics through rough fractures

3. The first principle governing equations

The PNPNS equations govern the flow and charge transport in the fracture. These
equations may be written as (Saville 1977)

v′ · ∇′c′
+ = D∇′2c′

+ + eD
kbT

∇′ · {c′
+∇′ψ ′}, (3.1a)

v′ · ∇′c′
− = D∇′2c′

− − eD
kbT

∇′ · {c′
−∇′ψ ′}, (3.1b)

∇′2ψ ′ = −(c′
+ − c′

−)/γ, (3.1c)

0 = −∇′p′ + η∇′2v′ + γ∇′2ψ ′∇′ψ ′; ∇′ · v′ = 0. (3.1d)

In these equations ψ ′ is the total electrostatic potential field, c′+ and c′− are respectively the
concentration fields for the positively and negatively charged ions, v′ is the fluid velocity
field and p′ is the pressure field. The parameters D, e, kb � 1.38 × 10−23 J K−1 and T
are respectively the molecular diffusion coefficient, the protonic charge, the Boltzmann
constant and the absolute temperature. The boundary conditions at the inlet and outlet of
the fracture have already been presented in (2.6a)–(2.6c), whereas the conditions on the
fracture walls read as

j′± · nk = v′ = 0; ∇′ψ ′ · nk = −q′
k(x

′, y′)
γ

, (3.2a,b)

where, j± = v′c′± − D∇′c′± ∓ (kbT)−1eDc′±∇′ψ ′ is the flux of the positively (respectively
negatively)-charged ions; k ≡ {t, b} indicates either the top or the bottom wall and n is
the unit vector normal to the wall. The boundary conditions in (3.2a,b) basically indicate
that the fracture walls are impermeable to ions, while the fluid satisfies the no-slip and
no-penetration boundary conditions. For readers who are familiar with fracture flow in the
subsurface but not with electrohydrodynamics, we present in § S1 of the supplementary
material a brief derivation of (3.1) from the Stokes (flow) equation, Nernst–Planck
(transport) equation and Poisson equation (link between electrical field and volumetric
charge density).

It is convenient to work with the dimensionless versions of the above equations. To this
end, we represent the non-dimensional version of any variable (say, ξ ′) as follows: ξ∗ =
ξ ′/ξc, where the generic variable ξ ′ represents a quantity such as u′, v′, p′, φ′, . . ., etc.,
and ξc is the characteristic scale for that quantity. Table 1 provides these scale definitions,
wherein the characteristic velocity uc has been defined assuming that pressure gradients
are the dominant actuating force.

We further express the Nernst–Planck equations in terms of total non-dimensional salt
concentration (c∗) and charge density (ρ∗), defined as follows: c∗ = c+,∗ + c−,∗ and
ρ∗ = c+,∗ − c−,∗. The corresponding non-dimensional charge and salt fluxes are then
i∗ = j+,∗ − j−,∗ and j∗ = j+,∗ + j−,∗, respectively. Finally, to render the implementation
of the relevant boundary conditions easier, we split the electrostatic potential (ψ∗) into
two contributions: (i) the one from the externally imposed potential difference, φ∗, and (ii)
the potential resulting from the presence of the EDL, ϕ∗; therefore, ψ∗ = φ∗ + ϕ∗. The
non-dimensional fluxes are then related to the primitive variables as follows:

i∗ = ρ∗v∗ − Pe−1∇∗ρ∗ − Pe−1c∗∇∗(ϕ∗ + φ∗), (3.3a)

j∗ = c∗v∗ − Pe−1∇∗c∗ − Pe−1ρ∗∇∗(ϕ∗ + φ∗). (3.3b)
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Quantity Char. scale Remarks

Length l0 —

Ionic concentration c′
in —

Electrical potential ψc = kT/e Thermal potential

Velocity uc = h2
0
η

(
p′

in − p′
ex

L′
x

)
h0 is the characteristic fracture aperture

Ionic flux ucc′
in —

Surface charge qc = γψcκ
′ κ ′−1 is the Debye length (see below)

Pressure pc = ηuc/l0 —

Char. electrokinetic velocity uek = γψ2
c

ηl0
We also define α = uek/uc

Table 1. Characteristic (Char.) scales chosen to non-dimensionalize the PNPNS equations and the equations
expressing the associated boundary conditions.

Here Pe = ucl0/D is the ionic Péclet number, which is usually O(1) for field driven flows
(Saville 1977), although it can be larger when flows are externally imposed. After enforcing
the aforementioned non-dimensionalization scheme, the PNPNS equations take the form

∇∗ · i∗ = ∇∗ · j∗ = 0, (3.4a)

∇2
∗ϕ∗ = −1

2
κ2
∗ρ∗ and ∇2

∗φ∗ = 0, (3.4b)

0 = −∇∗p∗ + ∇2
∗v∗ + α∇2

∗ϕ∗∇∗(ϕ∗ + φ∗) and ∇∗ · v∗ = 0, (3.4c)

where additional non-dimensional parameters are defined as (i) the ratio of the
characteristic length scale to the Debye screening length, κ2∗ = 2c′

ine2l20/(γ kbT), and (ii)
α = uek/uc. Note also that the Reynolds number, Re = ρf ucl0/η, does not appear in
the non-dimensional equations due to the assumption of creeping flow (Re 	 1). The
boundary conditions for the above equations at the kth wall are given by

j∗ · nk = i∗ · nk = 0; ∇∗ϕ∗ · nk = −qk,∗(x∗, y∗) and v∗ = 0, (3.5a–c)

qk,∗ being the non-dimensional surfacic charge density field. Note that the velocity satisfies
the no-slip condition at the fracture walls, because the continuum hypothesis remains valid
everywhere in the fracture. Indeed, the typical mean aperture of most fractures (Gamson
et al. 1993) is significantly larger than 1 μm, so that the Knudsen number = λmfp/a′

m,
where λmfp ∼ 10−8 m is the molecular mean free path (Karniadakis, Beskok & Aluru
2006), remains well below 0.01. It could exceed this value locally in regions of very low
aperture (< 10 nm) close to the contact zones, but the in-plane extent of such regions
around the contact zones can be estimated to approximately 10 nm as well. Thus, their
size is small in comparison to the fracture size, so that these regions hardly impact the
coupled flow and transport process; in addition, they are too small to be resolved by any
mesh which may be used on fractures of even centimetric in-plane dimensions. Hence,
implementing the Navier slip condition (Karniadakis et al. 2006) in such regions is not
necessary.

The boundary conditions for pressure, concentration and potential (φ) at the two ends of
the fracture (refer to conditions (2.6a)–(2.6c)) can be rewritten non-dimensionally in the
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Coupled electrohydrodynamics through rough fractures

following way, with Lx,∗ = L′
x/l0, Ly,∗ = L′

y/l0, and β = e(�V ′/L′
x)l0/(kbT):

At x∗ = 0, p∗ = pin,∗; c∗ = 1; φ∗ = 0, (3.6a)

At x∗ = Lx,∗, p∗ = pex,∗, c∗ = cex,∗; φ∗ = −βLx,∗, (3.6b)

This constant, which is used to express the boundary condition for the potential
(i.e. (3.6b)), is popularly known as the applied field strength, considered in comparison
to the thermal potential (Saville 1977). It can have a wide range of values. Usually, β 	 1
is referred to as the weak field limit (Saville 1977), while β � 1 is the strong field limit
(Schnitzer & Yariv 2012).

4. Lubrication theory for the coupled transport problem

4.1. The rescaled equations
As already discussed, the essence of the theory states that (Brown 1987; Leal 2007):
the typical length scale of variation of the relevant quantities (such as pressure, velocity,
concentration, etc.) along the fracture plane is much larger than that across the fracture
thickness. This may be summarized here as ε = h0/l0 	 1 (Leal 2007), where here l0
can be the correlation length (Lc) and h0 can be the mean aperture (am). Such a physical
paradigm necessitates the following rescaling of the relevant variables and fluxes (Leal
2007): p∗ = ε−2p; w∗ = εw; z∗ = εz and κ∗ = ε−1κ , while the rest of the variables remain
the same and their rescaled versions are also expressed without the subscript ‘∗.’ The
purpose of the rescaling is essentially to make all the variables O(1) quantities.

Now, following the principles of the lubrication theory (Batchelor 2000; Leal 2007), we
expand all the rescaled variables in a regular asymptotic series in ε as

Θ = Θ0 + εΘ1 + ε2Θ2 + · · · , (4.1)

where the Θ can represent quantities such as u, v, etc. We substitute the above asymptotic
series into the rescaled governing equations and retain the leading-order terms in ε to
deduce the following:

∂2ϕ

∂z2 + 1
2
κ2ρ = 0 and

∂2φ

∂z2 = 0, (4.2a)

∂2c
∂z2 + ∂

∂z

(
ρ
∂ϕ

∂z

)
= 0 and

∂2ρ

∂z2 + ∂

∂z

(
c
∂ϕ

∂z

)
= 0, (4.2b)

−∂p
∂z

+ α
∂2ϕ

∂z2
∂ϕ

∂z
= 0 and −∇Hp + ∂2vH

∂z2 + α
∂2ϕ

∂z2 ∇H (ϕ + φ) = 0, (4.2c)

∇H · vH + ∂w
∂z

= 0. (4.2d)

Here ∇H ≡ êx(∂/∂x)+ êy(∂/∂y) and vH = uêx + vêz are respectively the projection of
the gradient operator onto the fracture plane and the velocity along that plane. In (4.2) we
have made use of the fact that to leading order, φ is only a function of x and y (φ = φ(x, y)),
as we shortly demonstrate. The equations are subject to the following boundary conditions,
after application of the lubrication approximation. At z = zt(x, y) = −1/2 + hb(x, y) and
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z = zb(x, y) = 1/2 + ht(x, y),[
∂c
∂z

+ ρ
∂ϕ

∂z

]
z=zt|b

=
[
∂ρ

∂z
+ c

∂ϕ

∂z

]
z=ztb

= 0, (4.3a)

ϕ = ζt(x, y) or ζb(x, y);
(
∂φ

∂z

)
z=ztb

= 0; and vz=zt|b = 0. (4.3b)

Note that in (4.3b) the specified surface charge density condition from (3.5a–c) has been
replaced by a Diritchlet boundary condition with a known potential (the zeta potential
(Hunter 2013)) that defines the potential drop across the diffuse part of the EDL. It can be
easily verified that these two forms are largely equivalent, since at leading order the EDL
can effectively be considered at equilibrium (Hunter 2013; Ghosh et al. 2016). We assume
that max{ζ } ∼ O(1), i.e. the surface potential is not asymptotically large as compared with
the thermal potential. The boundary conditions at x = 0 and x = Lx remain the same as
given in (3.6).

The governing equations (4.2) can be solved semi-analytically. Based on (3.4b) and
(4.3b), it is straightforward to establish that φ does not depend on z (φ = φ(x, y)).
However, the functional form of φ(x, y) is not yet known and we elaborate on how
to find this functional dependence in the next subsection. Solving the leading-order
Nernst–Planck equations (4.2b) yields ionic concentrations that satisfy the Boltzmann
distribution, which leads to (Kilic et al. 2007)

c = 2c̃(x, y) cosh(ϕ) and ρ = −2c̃(x, y) sinh(ϕ), (4.4a,b)

where c̃(x, y) is the bulk concentration of salt, assumed to remain neutral owing to
non-overlapping EDLs; in general it will be a function of x and y. This remains true even if
there is no externally imposed concentration gradient along the fracture, as we demonstrate
later on. Note that, just as φ(x, y), c̃(x, y) is also an unknown and will be determined in
the next subsection. The EDL potential (ϕ) then satisfies the Poisson–Boltzmann equation,
given by

∂2ϕ

∂z2 = κ2c̃(x, y) sinhϕ. (4.5)

Note that this equation can be computed using a local vertical coordinate z̃ obtained
from z through a translation such that z̃ = 0 at the bottom wall, and thus z̃ ∈ [0, a(x, y)].
The equations expressing the associated boundary conditions, (4.3a) and (4.3b), are not
impacted by this variable change, but the walls are located at z̃ = 0 and z̃ = a(x, y) instead
of zt|b. Therefore, the distribution of ϕ across the fracture only depends on the local
aperture a(x, y) and not on the particular pair of topographies zt|b that result in the aperture
a(x, y).

The z-momentum equation in (4.2c) can then be solved for pressure to deduce

p = ακ2c̃(x, y) cosh(ϕ)+ p0(x, y), (4.6)

in which the first term, called the osmotic pressure, comes from the salt concentration
in the fracture (Brunet & Ajdari 2004), and the second term (p0(x, y)) denotes the
contributions from the induced pressure as well as the externally imposed pressure
gradient. Similar to φ(x, y) and c̃(x, y), p0(x, y) is yet to be determined and forms part
of a closure problem. Inserting the pressure from (4.6) into the right-hand side equation in
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Coupled electrohydrodynamics through rough fractures

(4.2c), we obtain the following simplified form:

−∇Hp0 − ακ2 cosh(ϕ)∇Hc̃ + α
∂2ϕ

∂z2 ∇Hφ + ∂2vH

∂z2 = 0. (4.7)

From the linearity of this equation, we deduce that the velocity components along the
mean fracture plane, u(x, y, z) and v(x, y, z), can be written in the following forms:

vH = ūp∇Hp0 + ūc∇Hc̃ + ūe∇Hφ, where, (4.8a)

ūp = 1
2

{
z2 − (hb(x, y)+ ht(x, y)) z −

(
1
2 + ht(x, y)

) (
1
2 − hb(x, y)

)}
, (4.8b)

ūe = α {g(x, y)+ f (x, y)z − ϕ} and (4.8c)

ūc = ακ2
∫ 1/2+ht

−1/2+hb

dZ

[
(Z> − 1

2 − ht)(Z< + 1
2 − hb)

a(x, y)

]
cosh [ϕ(Z)] . (4.8d)

In (4.8), Z> = max(Z, z), Z< = min(Z, z), and the functions g(x, y) and f (x, y) have
the following expressions: f (x, y) = α(ζt − ζb)/a(x, y) and g(x, y) = α{ζt(1/2 − hb)+
ζb(1/2 + ht)}/a(x, y). We can use the velocity profiles in (4.8) to obtain the expressions
for the three main fluxes in the fracture, namely, the cross-sectional volumetric flux (Q),
current flux (I) and salt flux (J). The central idea of the lubrication theory is that these
three quantities are conservative; we elaborate more on this aspect in § 4.2. The volume
flux is given by

QH = Qxêx + Qyêy = Qp(x, y)∇Hp0 + Qc(x, y)∇Hc̃ + Qe(x, y)∇Hφ, (4.9)

where the functions Qp, Qc and Qe are given by

Qp(x, y) =
∫ 1/2+ht(x,y)

−1/2+hb(x,y)
ūp dz = − 1

12
a3(x, y); Qc(x, y) =

∫ 1/2+ht(x,y)

−1/2+hb(x,y)
ūc dz,

Qe(x, y) =
∫ 1/2+ht(x,y)

−1/2+hb(x,y)
ūe dz.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(4.10)

The three components in the expression of the volume flux are contributions resulting
respectively from the pressure, concentration and the potential gradients. Note that
the volume flux QH is a vector with components along x and y only. Likewise the
cross-sectional current and salt fluxes along the fracture plane can be expressed as

IH = Ixêx + Iyêy = Ip(x, y)∇Hp0 + Ic(x, y)∇Hc̃ + Ie(x, y)∇Hφ, (4.11)

J H = Jxêx + Jyêy = Jp(x, y)∇Hp0 + Jc(x, y)∇Hc̃ + Je(x, y)∇Hφ. (4.12)

The different subscripts in the flux components bear the same meaning as those in the
expression of volume flow rate components in (4.10). The prefactors in the components of
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(4.11) and (4.12) have the following expressions (taking hint from (3.3)):

Ip =
∫ 1/2+ht

−1/2+hb

ρūp dz; Ic =
∫ 1/2+ht

−1/2+hb

(ρūc + 2Pe−1 sinhϕ) dz; (4.13a)

Ie =
∫ 1/2+ht

−1/2+hb

(ρūe − 2Pe−1c̃ coshϕ) dz; Jp =
∫ 1/2+ht

−1/2+hb

cūp dz, (4.13b)

Jc =
∫ 1/2+ht

−1/2+hb

(cūc − 2Pe−1 coshϕ) dz; Je =
∫ 1/2+ht

−1/2+hb

(cūe + 2Pe−1c̃ sinhϕ) dz.

(4.13c)

Note that the concentration c and density ρ are obtained from c̃ and ϕ through (4.4a,b). The
final step is to write the equations enforcing that the fluxes QH , IH and J H are conservative.

4.2. Closure: conservation of fluxes
In the classical lubrication theory of hydrodynamics (Batchelor 2000; Leal 2007)
(i.e. without any electrical body forces), the volume flow rate conservation is a
consequence of the continuity equation (Leal 2007) for velocity, which implies that QH –
in that case, defined by the sole first term on the right-hand side of (4.9) – is conservative
(∇H · QH = 0), which yields the Reynolds equation for pressure. In the present case
the fluxes for fluid mass (QH), electrical charge (IH) and solute mass (J H), defined
respectively by (4.9), (4.11) and (4.12), are all conservative (i.e. divergence free), as we
show in detail in Appendix A. The conservation of these three fluxes, combined with
the expressions (4.9), (4.11) and (4.12), yields a set of three independent conservation
equations for the fluid mass, electrical charge and salt mass, which constitute a generalized
lubrication theory,

∇H · (
Qp∇Hp0

) + ∇H · (Qc∇Hc̃)+ ∇H · (Qe∇Hφ) = 0, (4.14a)

∇H · (
Ip∇Hp0

) + ∇H · (Ic∇Hc̃)+ ∇H · (Ie∇Hφ) = 0, (4.14b)

∇H · (
Jp∇Hp0

) + ∇H · (Jc∇Hc̃)+ ∇H · (Je∇Hφ) = 0. (4.14c)

The three unknowns to these three coupled equations are the functional dependences
of p0, c̃ and φ on x and y. The expressions for the coefficients Qp, Qc, Ic, Je . . . , etc.,
which effectively act as diffusion coefficients in the equations, may be evaluated using
(4.10) and (4.13), except for ūe, whose definition includes the EDL potential ϕ. Note that
the quantities ϕ, c and ρ explicitly depend on c̃, which indicates that the coefficients
Qc, Ip, Ic, . . . , etc. all depend on c̃ as well. This makes the coupling between the (4.14)
strongly nonlinear. Based on the conditions stated at the end of § 2.2, i.e. equations (2.6),
we infer that the (4.14) are subject to the following boundary conditions for the said
unknown functions:

At x = 0, ∀y, p0 = pin − ακ2; c̃ = 1; φ = 0, (4.15a)

At x = Lx, ∀y, p0 = pex − ακ2c̃ex; c̃ = cex; φ = −βL, (4.15b)

At y = 0 and y = Ly, ∀x,
∂p0

∂y
= ∂ c̃
∂y

= ∂φ

∂y
= 0. (4.15c)
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In the absence of any electrical charge and concentration gradients in the dissolved salt,
(4.14) trivially simplify to the Reynolds equation (Brown 1987)

∇H · (
Qp∇Hp0

) = ∇H · (a3(x, y)∇Hp0) = 0, (4.16)

where a(x, z) = 1 − hb + ht is the fracture’s aperture field. It may be verified that the
above flux coefficients (such as Qc, Qe, Ip, . . . , etc.), when expressed in respective
dimensional forms, satisfy the Onsager reciprocal relations (Brunet & Ajdari 2004) (see
the seminal work of Onsager (1931a,b) for the meaning of these relations in the general
framework of non-equilibrium thermodynamic systems). Note that to satisfy the Onsager
relation, one has to consider the chemical potential gradient, ∇Hμ̃ = c̃−1∇Hc̃, rather than
the bulk concentration gradients ∇Hc̃. The validity of the Onsager relation herein stems
from the fact that the EDL essentially remains in equilibrium, to leading order (Brunet &
Ajdari 2004).

In summary, (4.14) are a generalization of the Reynolds equation to the conditions of
electrohydrodynamic coupling. Instead of only solving one linear equation for pressure, as
is the case for the Reynolds equation, we have to solve three coupled nonlinear equations
for three unknowns: p0, φ and c̃. This formalism, which extend the Reynolds equations
to electrokinetic and diffuso-osmotic flows, has not been reported in the literature so far
(see related discussion in paragraph 4.3 below). It can be applied to a wide range of
flow pathways and surface potential distributions, provided that the assumptions of the
lubrication theory (see § 2.2) are valid.

Note that detailed analytical solutions to the generalized lubrication equations in case
of weakly charged 2-D geometries are included in § S2 of the supplementary material
document.

4.3. The generalized lubrication equations as compared with the previous
lubrication-based models of electrohydrodynamics

4.3.1. Novel contributions of the present formulation
Confluence of electrohydrodynamics and the lubrication theory, which is expressed
mathematically in a general sense in (4.14), has been partially addressed by a few earlier
studies. Some of them (Ajdari 2001; Park et al. 2006; Tripathi, Narla & Aboelkassem
2020) focused on electrokinetic flows in converging–diverging conduits with cylindrical
cross-sections using a modified lubrication theory. Others, such as Ghosal (2002),
considered the modified Reynolds equations in the thin EDL limit inside a channel of
arbitrary but slowly varying cross-section and derived a constraint equivalent to current
conservation ((4.14b) in the present study) using solvability conditions. These studies only
concentrate on the alteration of the classical Reynolds equation resulting from inclusion of
the electrokinetic force in the Navier–Stokes equations. While such an approach ensures
that the fluid mass is conserved, the Reynolds equation alone, even modified to account
for an electrokinetic force, cannot ensure that the current flux (or charge flux) and salt flux
are also conservative in order to avoid accumulation of ions; two additional conservation
equations are thus required to enforce the conservation of electrical charge and that of
solute mass. This is exactly what is expressed by the equation set (4.14), which shows
that an electrohydrodynamic flow in a geometry for which the lubrication approximation
can be assumed to be valid, is governed by a set of three coupled equations with three
preliminary unknowns, namely, the pressure, the bulk electrical potential and the bulk
salt concentration, rather than by a single modified Reynolds equation. This formulation,
which, to the best of our knowledge, has not been reported in the literature before,
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constitutes a greater generalization of the Reynolds equation than those presented by, for
example, Ghosal (2002) and Park et al. (2006).

4.3.2. Analytic comparison to previous lubrication based models
We now proceed to show that the aforementioned approaches (Brown 1989; Ghosal 2002;
Park et al. 2006) may be derived as special cases of the formulation carried out herein,
when one ignores either one or both of the two additional conservation laws.

Brown (1989) considers electroneutral fractures. In § 5.2.4 we have established that our
generalized lubrication equations boil down to those used by Brown in the special case of
electroneutral fractures and in the absence of any imposed concentration gradients.

Park et al. (2006) consider a very specific case of flow through a cylindrical bottleneck.
Hence, their configuration is not directly applicable to a fracture geometry as ours is.
In addition, Park et al. (2006) disregard concentration variations, while their model is
valid in the low surface charge (ζ 	 1) and weak field limits (β 	 1). The low surface
charge limit for 2-D conduits is also analysed in detail in the supplementary material
(see § S2 therein). We shall therefore omit the details and simply note that, for ζ(x) 	 1,
disregarding concentration variations (c̃(x) = 1), integrating (4.14) leads to the following
asymptotic forms for the induced pressure (p0) and the potential (φ) in a 2-D confinement:

dp0

dx
= K1

a3(x)
+ ζ0

[ K2

a(x)
+ K3ζ̄ (x)

a3(x)

(
1 − tanhω

ω

)]
+ O(ζ 2

0 ), (4.17a)

dφ
dx

= K4

a(x)
+ O(ζ0). (4.17b)

Here ζt = ζb = ζ0ζ̄ (x) with ζ0 	 1 and ζ ∼ O(1). Additionally, ω = κa(x)/2 and K1 −
K4 are constants. For further details, see equations (S10)–(S13) in the supplementary
material. Although the above equations cannot be directly compared with those reported
in Park et al.’s (2006) work because of the critical difference in geometry (planar vs
cylindrical), it is nevertheless apparent that the pressure and the potential gradients have
similar forms in terms of their dependence on the geometry. However, the fact that the
model by Park et al. (2006) cannot consider a spatially varying concentration is a strong
limitation in comparison to our model’s capability.

Ghosal (2002) assumes the EDL to be very thin (Debye length κ � 1, see §§ 3 and
4.1 for its definition) and derives a modified Reynolds’ equation for the flow along a
channel whose cross-section is of arbitrary shape and where flow occurs predominantly
along the channel’s axis. No variations in the solute (salt) concentration are considered by
Ghosal. Introducing these additional limitations on the flow geometry, solute concentration
field and EDL size, our generalized lubrication equations do reduce to those proposed by
Ghosal (2002). Indeed, let us first recall that for a 2-D conduit (we disregard any flow
along the y-direction, hence ∇H ≡ êx d/dx), the local cross-sectional area per unit width
may be written as A = a(x). Then the coefficients appearing in (4.14) take the following
form: Qp = −a3(x)/12 = ∫

A ūp dA. For thin EDLs (Ajdari 1996), ϕ = 0 in the channel
(except in a very thin region of size O(κ−1) close to the walls) and hence ρ = 0 and
c(x) = 2c̃(x). This yields Qe = αζ(x)a(x) = ∫

A ūe dA, wherein ue = αζ(x) and ζb = ζt =
ζ(x), whereas Qc = ακ2Qp. Therefore, the electro-osmotic flow is essentially driven by
the slip velocity at the edge of the EDL (Ajdari 1996). The current and the salt fluxes
(see (4.13)) take the following forms (Brunet & Ajdari 2004): Ip, Ic ∼ O(κ−1) 	 1, Ie =
−2Pe−1c̃(x)a(x)+ O(κ−1), Jp = 2c̃Qp + O(κ−1), Jc = −2Pe−1a(x)+ ακ2c̃(x)Qp(x)+
942 A11-16
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O(κ−1) and Je = 2αc̃(x)a(x)ζ(x)+ O(κ−1). Substituting the above expressions for the
various coefficients in (4.14), we deduce the following simplified version of the general
lubrication equations:

d
dx

[
Qp(x)

dp
dx

+ Qe(x)
dφ
dx

]
= 0, (4.18a)

d
dx

[
c̃(x)a(x)

dφ
dx

]
= 0, (4.18b)

d
dx

[
c̃(x)Qp(x)

dp
dx

+ c̃(x)Qe(x)
dφ
dx

+ Pe−1a(x)
dc̃
dx

]
= 0. (4.18c)

Note that in (4.18a) and (4.18c), we have used the total pressure p = p0 + ακ2c̃. In the
absence of any concentration gradient, c̃(x) = 1 and dc̃/dx = 0, so it follows that (4.18c)
becomes identical to (4.18a) and, hence, the above equations further simplify to

d
dx

[
Qp(x)

dp
dx

+ Qe(x)
dφ
dx

]
= 0 and

d
dx

[
a(x)

dφ
dx

]
= 0, (4.19a,b)

which are identical to (3.54) and (3.43) in Ghosal (2002). Hence, the model of Ghosal
becomes a special case of the configurations that our model can address, namely those
for which (i) there is a single dominant direction of flow, (ii) the solute concentration
is homogeneous, and (iii) the EDL is very thin. In the configurations investigated in the
results section below, assumptions (i) and (ii) are not valid while assumption (iii) is only
valid to a limited extent.

However, (4.19a,b) can be extended to configurations for which the fracture geometry,
concentrations, pressure and electrical potential depend both on the longitudinal
coordinate x and on the transverse in-plane coordinate y. It is thus possible to apply
this model to one of the configurations otherwise addressed with our model in § 5
below, and compare their outputs. Such a comparison is presented in § S3 of the
supplementary material, where we show that ignoring the equations for solute mass and
charge conservations may lead to local relative errors larger than 90 % on the pressure field
and larger than 70 % on the magnitude of the solute flux.

4.4. Numerical solutions to the generalized lubrication equations
We solve (4.14) numerically, using an iterative finite volume scheme (Patankar 1980). The
algorithm is briefly discussed in what follows. We start with an initial guess for p, c̃ and
φ (linear variation with x) and subsequently evaluate ϕ, ūp, ūc and ūe, from which c and
ρ are evaluated at every vertical section in the fracture. Thereafter, we compute the axial
flux coefficients, Qp, Qe, Ip, Ic, Je, . . . , etc. at every node of the horizontal mesh. These
coefficients are first inserted in the (4.14a) to compute an updated p0, while the older
guesses for c̃ and φ are used to compute the last two terms therein. Subsequently, the
fluxes and the updated p0 are inserted in (4.14b) to update φ and finally, following the
same procedure c̃ is updated from (4.14c). We then compute the relative errors in all the
quantities as follows: for any variable ξ (this may represent p0, c̃, etc.), the relative error is
defined as E = max(|ξ − ξ0|)/max(|ξ0|), where ξ0 is the value of the relevant quantity in
the previous iteration. If the maximum error falls below 10−5, the iterations are assumed to
have converged. Otherwise, the above steps are repeated to compute the next corrections,
until convergence occurs.
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At every position (x, y) in the mean fracture plane, the aperture has been discretized into
500 grid points to solve (4.5) for the EDL potential (ϕ), using a central finite difference
scheme, and then compute ūc. The cross-sectional fluxes are subsequently computed by
numerically integrating the corresponding flux densities across these 500 grid points. The
fracture plane was divided into a 100 × 100 equally spaced grid, to solve the generalized
equations; it has been verified that further refinement of the mesh does not alter the
transport characteristics. For ease of computation, in places where the fracture is closed,
i.e. a = 1 + ht − hb = 0, the non-dimensional aperture has been assigned a very small
value (here a = 10−6) to avoid having singular matrices after discretization. We have
verified that lowering the limiting value below its current magnitude does not alter the final
results. It is also important to note that below a certain value of the aperture, alim = 10−2,
the effect of surface charge has been neglected, for two main reasons: (i) below a certain
value of a, the EDLs start to overlap and the assumption of zero centreline potential
becomes invalid, which would call for special treatment of these parts in the fracture
space; and (ii) since the aperture field in these areas have very small values (1 % of the
average aperture), they would contribute very little to the overall transport anyway, so
neglecting their contribution is a reasonably accurate approximation. We have also verified
that lowering the limiting value (alim) does not change the transport characteristics in the
fracture.

Note that Qc, Qp, Ie, . . . , etc. can be negative (contrary to actual molecular diffusitivies)
and, hence, in order to avoid a singular coefficient matrix, we evaluate these coefficients
at all the faces of the control volumes, using a staggered grid (Patankar 1980). Once the
solutions for p0, c̃ and φ are known, the fluxes QH , J H and IH can be easily deduced from
(4.9), (4.11) and (4.12).

5. Results and discussions

In this section we first thoroughly validate the generalized lubrication equations by
comparing them to 3-D numerical simulations of the PNPNS equations (§ 5.1). We then
apply them to explore coupled electrically and mechanically driven flows through 3-D
rough fractures (§ 5.2). This is the second main contribution of this study. Although,
as mentioned above, the lubrication theory has been widely applied in studying flows
through rough fractures, analysis of coupled flow through fractures in the presence of
surface charge is scarce, despite EDLs being prevalent in such pathways.

5.1. Validation of the general lubrication equations

5.1.1. Three-dimensional numerical simulations of the governing equations
The generalized lubrication equations are validated by comparing their predictions to
those obtained from the complete 3-D numerical simulations of the governing (PNPNS)
equations. To this end, we solve (3.4) numerically, subjected to boundary conditions
(3.5a–c) and (3.6) in a symmetrical and small synthetic rough fracture, whose schematic is
shown in figure 2. By small fracture, we mean that the ratio of the mean fracture aperture
to the size of the EDL is of order one (i.e. κ∗ am,∗ = O(1)) and that the lateral size of the
fracture is sufficiently small so that the PNPNS equations be amenable to simulation in the
3-D geometry. Such limitations are not present when solving the generalized lubrication
equations, which is why we will be able to address cases with much larger lateral sizes
and larger κ values (no limitation is imposed on the κ in the generalized lubrication
equations) in the next subsections. On the other hand, the symmetry of the walls greatly
simplifies the task of creating the computational domain, without influencing the validity

942 A11-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

30
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.306


Coupled electrohydrodynamics through rough fractures

0

0.5

1.0

1.5Ly

Lx

2.0

x

z
y

No slip

Solve for: u, v, c, ψ, ρ, p
0 ,

Inlet No slip

cin
, pin
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Figure 2. (a) Schematic of a synthetic rough fracture used to validate the lubrication theory against 3-D
numerical simulations. The fracture has a correlation length Lc = l0 = 1, spatial dimensions Lx = Ly = 2,
a mean aperture am,∗ = ε = 0.1 and a standard deviation σ∗ = 0.2am,∗. The fracture walls are symmetrical,
defined by ht,∗ = (1/2)a∗(x∗, y∗) and ht,∗ = −hb,∗(x∗, y∗). The surface potential is given by ζb = ζt =
ζ0 sin(2πx∗). Inlet and outlet conditions remain the same as in (4.15). (b) Aperture field a∗(x∗, y∗) of the
fracture.

of the lubrication equations. The fracture, generated using the method outlined in § 2.1,
has a mean aperture am,∗ = ε, with a standard deviation σ∗ = 0.2am,∗, a correlation
length Lc = l0 = 1 and in-plane dimensions of Lx,∗ = Ly,∗ = 2. The fracture surfaces are
assumed to be smooth below the length scale �xf ,∗ = Lx,∗/41 (see the supplementary
material for details about the mesh size). This somewhat low resolution is not an issue
for the validation since high-frequency features of the aperture field do not significantly
impact the hydraulic behaviour of such rough fractures (Brown 1987; Brown et al. 1995)
(see also § 1). As stated earlier, the flow passage is symmetrical in nature and, hence,
the top and the bottom surfaces are located at, ht,∗(x∗, y∗) = (1/2)a∗(x∗, y∗) and hb,∗ =
−ht,∗, respectively. Recall that the variables with the superscript ‘∗’ were introduced
in § 3 to denote the dimensionless quantities prior to rescaling. For this validation, we
have considered a symmetrical surface potential of the form: ζt(x∗) = ζb(x∗) = ζ(x∗) =
ζ0 sin(2πx∗) – this particular choice of surface charge results in better convergence of the
3-D numerical simulations, without loss of generality.

We shall directly compare the following computed quantities between the two types
of numerical simulations: (i) the longitudinal pressure profile p0(x∗, y∗) (recall that
x∗ = x and y∗ = y), (ii) the bulk concentration profile c̃(x∗, y∗) and (iii) the bulk
potential profile ψ(x∗, y∗, 0). Recall that p∗ of the 3-D numerical simulations is
related to p from the lubrication theory as p∗ = ε−2p. Because of the presence of an
imposed potential and pressure gradient along the geometry, we shall define the induced
pressure, expressed as pind,∗ = p0,∗ − G∗x∗, where G∗ = ( pin,∗ − pex,∗)/Lx is the average
imposed pressure gradient. Similarly, the induced potential may be written as ψ∗,ind =
ψ∗ − βx∗, where ψ∗ = ψ = φ(x∗, y∗, 0)+ ϕ(x∗, y∗, 0) (see § 3). These quantities are
expected to capture the fluctuations caused by the topological variations as well as the
electrokinetic effects. The 3-D numerical simulations have been performed in the finite
element-based commercial software package COMSOL Multiphysics 5.3. Further details
on the simulation environment, various aspects of geometry construction, etc. . ., are
provided in the supplementary material document. Note finally that we have taken ε = 0.1
throughout the lubrication-based model validation.
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Figure 3. Comparison of the spatial variations in c̃ (a,b), ψind (c,d) and pind,∗ (e, f ) between the generalized
lubrication theory (lines) and the 3-D numerical simulations (symbols), for three values of ζ0: 0.5 (red circles),
1.0 (blue diamonds) and 1.2 (black squares); (a,c,e) as a function of x at y = 1 (or, y∗ = 1); (b,d, f ) as a function
of y at x = 0.4 (or x∗ = 0.4). The other relevant variables are as follows: κ∗ = 25, β = 1.5, α = 0.02, cin =1,
cex = 0.75, pin = 0, pex = −2 and Pe = 3.

In addition to testing the accuracy of (4.14) in synthetic fractures, we have also compared
their solutions with the numerical simulation of the governing equations (3.4), subjected to
boundary conditions (3.5a–c) and (3.6), in regular (deterministic) test geometries. To this
end, we have considered both 3-D and 2-D test geometries with periodically undulated
surfaces/walls. These comparisons have been included in the supplementary material
document.

5.1.2. Comparison of results from the 3-D simulations and generalized lubrication
theory

We begin with figure 3, where bulk concentration, induced pressure and the induced
potential from the generalized lubrication theory are compared with 3-D numerical
simulations. In panels (a,c,e), c̃, ψind = ψ − βx and pind,∗ = ε−2( p0 − Gx) (where G =
ε2G∗) are plotted as functions of x at y = 1 and for three choices of ζ0: 0.5, 1.0, and 1.2. In
panels (b,d, f ), respectively c̃, ψ and p∗ (= ε−2p) have been depicted as functions of y at
x = 0.4, under identical conditions. The symbols represent results from 3-D numerical
simulations and the lines correspond to predictions from the generalized lubrication
theory, while values of all other relevant parameters are mentioned in the caption. Note that
the flow here is driven by a combination of imposed pressure, concentration and potential
gradients.

Several important conclusions can be drawn from figure 3. First, the solutions derived
from the generalized lubrication theory demonstrate reasonably good agreement with the
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Figure 4. Spatial variations of the bulk concentration c̃ (a,b), bulk induced potential ψind (d,e) and induced
pressure pind = ε2pind,∗ (g,h) in the central plane z∗ = 0 of the fracture. Figures (a,d,g) show the results from
the generalized lubrication theory, whereas figures (b,e,h) show the results from the 3-D numerical simulations
under identical conditions. Figures (c, f,i) respectively illustrate the relative differences between the results
from the lubrication theory and 3-D numerical simulations in c̃, ψ and p. Other relevant parameters are:
α = 0.05, κ∗ = 25, ζ0 = 1, Pe = 3, pin = 0, pex = −2 and β = 1. Results are shown for (a) c̃, lubrication;
(b) c̃, 3-D numerics; (c) c̃, relative difference; (d) ψind , lubrication; (e) ψind , 3-D numerics; ( f ) ψind , relative
difference; (g) pind , lubrication; (h) pind , 3-D numerics; (i) pind , relative difference.

3-D numerical solutions of the first principle (PNPNS) equations, which validates the
application of the former to compute the flow dynamics. Second, influence of the imposed
concentration gradient becomes evident in the bulk concentration variations along the
flow passage, as depicted in panel (a). Note that the bulk concentration does not vary
linearly, with undulations originating from the combined influence of non-uniform surface
potential and topology. On the other hand, from panel (b), we observe that despite there
being no imposed concentration gradient along the y-direction, the bulk concentration
shows appreciable variations and they tend to increase with ζ0 along both the directions.
The influence of the stochastic nature of the surfaces on concentration becomes evident
from this panel, wherein it is observed that the lubrication theory is indeed capable
of capturing the subtle variations in c̃. For larger values of ζ0 (i.e. strongly charged
surfaces), small errors (∼O(10−2)) may be noted, which may be attributed to the fact that
the lubrication equations essentially convey the leading-order theory, as will be further
discussed in relation to figure 4 below. The non-uniform bulk concentration stems from
the variable geometry as well as the surface potential distribution, because of which the
salt fluxes across a section at any given x and y (see (4.11) and (4.12)) fluctuate strongly.
As a result, the bulk salt concentration gets redistributed along the fracture so that the salt
flux across transverse cross-sections are conserved, and salt accumulation is avoided. As
we shall see later, a stochastic surface topology with uniform ζt and ζb can also result in
very similar variations in c̃.

942 A11-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

30
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.306


M.K. Dewangan, U. Ghosh, T. Le Borgne and Y. Méheust

Figure 3(c,d) illustrates the combined influence of varying topology and surface charge
on the bulk potential, as rendered visible by subtracting the imposed linearly varying
component of ψ (i.e. the −βx part). Note that, similarly to c̃, ψ also varies along y, despite
there being no applied potential gradient along that direction. On the other hand, a greater
surface charge (i.e. larger ζ0) tends to augment the induced bulk potential. These variations
in ψ (or, equivalently in ψind) originate from the cross-sectional variations in the current
(IH) due to changes in topology as well as the local charge distribution. Redistribution
of the bulk potential ensures that the current is divergence free, thus eliminating the
possibility of charge accumulation. Finally, panels (e, f ) outline the variations in pressure
along the x and y axes. Note that the induced pressure is essentially independent of the
surface charge density (i.e. ζ0) and, therefore, only depends on the geometry of the fracture.
Hence, the variations in p along y in panel ( f ) also stem from the spatial variations of
aperture, despite no net pressure gradient being active in that direction. Remember that
the induced pressure ensures that the volume flow rate and, thus, the mass of the fluid is
conserved across the entire conduit.

A more complete picture of the accuracy of our generalized lubrication theory may be
obtained by examining the spatial variations of the quantities of interest along the plane
z = z∗ = 0; figure 4 compares the contour plots of c̃(x, y), ψind(x, y, 0) and pind,∗(x, y, 0)
computed from the lubrication theory to those obtained from the 3-D numerical
simulations. Panels (a,d,g) illustrate the results computed using the generalized lubrication
theory, whereas panels (b,e,h) are plotted based on the 3-D numerical simulations. The
relative errors between the lubrication theory and the numerical simulations for c̃, ψ and p
are demonstrated respectively in panels (c, f,i). The values of all other relevant parameters
are mentioned in the caption. The strong heterogeneities in these quantities across the
entire plane, as induced by the varying topology and surface charge density, are notable.
Focusing on the panels depicting the relative errors, we can infer that the lubrication
theory offers a reasonably accurate description of the flow and transport problem in the
entire conduit, since the errors remain less than 5 % everywhere. In fact, except for a
bounded region, the relative errors for all the quantities (ψ, c̃ and pind,∗) hover around
1–2 % everywhere, while it is below 1 % in most places across the fracture plane for the
induced pressure. It is important to note that the generalized equations derived in § 4.2 only
yield the leading-order description and, hence, errors of O(ε) are expected, as far as the
local description is concerned. From figure 4 it is evident that, in practice, the average error
in the local description actually remains well below O(ε), at least for the parameter ranges
considered herein. It is to be further noted that the key features of interest in flow through
fractures are effective quantities such as the electrical and hydraulic apertures (defined
later) and other related properties, which directly depend on the net cross-sectional flow
rates. However, the first corrections to the flow rate and, hence, the aforesaid effective
quantities only occur at O(ε2) because of ‘in-plane’ variations in the surface properties
(such as the geometry) (Ghosal 2002) and, hence, it is clear that the lubrication theory will
offer even more accurate predictions, as far as those effective properties are concerned.

Comparisons between the lubrication theory and complete numerical simulations for
larger values of ε have been included in the Appendix B. Comparisons between the results
of the generalized lubrication theory and those provided by numerical simulations of the
governing equations in deterministic (wavy) 2-D and 3-D test geometries are included in
§§ S4 and S5 of the supplementary material. Note that we have also compared the results
from the general lubrication theory with those obtained from 3-D numerical simulations
for non-symmetrical rough fractures (i.e. fractures whose walls do not mirror each other).
These comparisons are not shown here, but they provide very similar trends, with a good
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Coupled electrohydrodynamics through rough fractures

agreement between the two sets of results as in figures 3 and 4. This is expected, since, if
the assumptions of our model are valid, all pairs of rough walls yielding the same aperture
field will correspond to the same single lubrication configuration, and will result in the
same flow and transport features. Accordingly, the applicability of our model is by no
means restricted to symmetrical fractures.

We investigate the influence of the stochastic topology of the fracture on macroscopic
flow features in the next subsection.

5.2. Results for synthetic rough fractures

5.2.1. Impact of electrohydrodynamic coupling on the overall transport processes
Three-dimensional synthetic rough fractures are generated following the methodology
presented in § 2.1. In this subsection we assign a uniform surface potential ζt(x, y) =
ζb(x, y) = ζ0 on the fracture walls and only show solutions to the generalized lubrication
equations, computed using the methodology presented in § 4.4. Keeping in mind that
we only deal with non-dimensional results and parameters, it is also important to
mention the real-world dimensions, which translate into the non-dimensional regimes
considered herein. We note that for Lc ∼ 0.1–5 cm, am ∼ 10–100 μm (reasonable value
for mean fracture aperture), uc ∼ 10−6–10−5 m s−1, ζ0 ∼ 25–35 mV and E0 ∼ �V/L ∼
1–10 V m−1, one finds ζ0 ∼ 1–1.5, β ∼ 0.1–20, Pe ∼ 1–50, while ε ∼ 10−4 – 10−2 and
α ∼ O(10−4) – O(10−1). Such values are consistent with measurements from field-scale
applications (Ishido & Mizutani 1981; Revil & Pessel 2002; Rosanne et al. 2004; Mondal
& Sleep 2012; Hamzehpour et al. 2014; Wang et al. 2015a).

Figures 5–7 present colour maps depicting the distribution of the bulk concentration
c̃ in (b), pressure p0,ind in (c) and electrical potential φind in (d) for two different
realizations (named realization 1 and 2, respectively) of fracture aperture with the same
geometrical parameters. On these figures we have also superimposed the vector plots
for the related fluxes, i.e. J H in (b), QH in (c) and IH in (d). Figure 5 shows the flux
patterns and variations in p0, c̃ and φ for realization 1 with ζ0 = −1.5. Figure 6 thus
highlights the influence of changing the realization on the coupled transport, by showing
the same quantities as in figure 5 for realization 2, all parameters remaining unchanged
otherwise (see table 2). Figure 7 subsequently illustrates the influence of changing ζ0
on the transport process for the same realization (i.e. realization 2), all other parameters
remaining unchanged. Finally, figure 8 shows colour-coded streamline patterns for fluid
flux in the fracture plane for realization 2, for three different values of ζ0: −1.5 in (b), 0
in (c) and 1.5 in (d). The colour coding has been done according to the overall direction
of Qx; the blue (dark) parts of the streamlines indicate flow in the positive x-direction,
while the orange (lighter) part encode backward local flows. A summary of the relevant
parameter values and the choice of realization for the aforesaid figures is given in table 2.
Parameter values are also given in the figure captions.

Figures 5–7 reveal a number of common interesting features of coupled flow through
rough fractures. First, most of the flow occurs through a relatively narrow region,
which consists of interconnected pathways of large aperture. This phenomenon of flow
channeling has been well known since the seminal work of Brown (1987). The same effect
is also visible in figures 8(b,d), where streamlines become dense in the zones of strong
forward flow. Flow channeling becomes increasingly important as the fracture becomes
more closed, having larger regions with small local aperture, which appear in the figure
as regions with no flux of any kind. It is particularly marked here because the correlation
length of the fracture is half of the total length, which allows connected large aperture
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Figure 5. (a) Aperture field a(x, y) of a self-affine fracture (realization 1) with mean am = 1, standard
deviation σ = 0.6 and correlation length Lc = 1; the light blue colour denotes the regions where the fracture
is closed. (b) Map of the bulk concentration field c̃ over the fracture plane (in grey level) and vector plot of the
solute (salt) flux J H . (c) Map of the fluid pressure field p0,ind and vector plot of the volumetric flow rate of the
liquid, QH . (d) Maps of the induced electrical potential field φind and vector plot of the current (charge) flux
IH . We have chosen ζ0 = −1.5 and values of all other parameters are given in table 2. Results are shown for
realization 1 (a) a(x, y); (b) c̃ & J H ; (c) p0,ind & QH ; (d) φind & IH .

Simulation Realization ζ0 Value Figure no.

1 1 −1.5 5
2 2 −1.5 6 and 8(b)
3 2 1.5 7 and 8(d)
4 2 0 8(c)

Table 2. Values of other parameters for the different realizations shown in figures 5–8 are as follows:
pin = 0, pex = −2, cex = 1, κ = 10, α = 0.03, β = 1.5, Pe = 3.0, σ = 0.6, Lx = Ly = 2; λ = 0.8 and
L′

c/L
′
x = 1/2.

pathways to exist along the main flow directions and across the entire fracture plane
(Méheust & Schmittbuhl 2003). Note that this channeling phenomenon is by no means
specific to the coupled transport of liquid mass and electrical charges. Here we further
observe that the direction of fluid flow and the direction of current and salt fluxes are
not the same, and that the latter fluxes are more uniformly distributed over the fracture
plane than the volume fluxes of the fluid. In other words, fluid flow is far more focused
onto preferential flow paths than that of electrical charges. This is because the local
hydraulic transmissivity is proportional to the cube of the local aperture (a3), while the
local electrical conductance is proportional to a, as previously observed by Brown (1989).
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Figure 6. (a) Aperture field map a(x, z) for a self-affine fracture (realization 2) with the same properties as
the fracture considered in figure 5; the light blue colour denotes the regions where the fracture is closed.
(b) Map of the bulk concentration c̃ and vector plot of the solute (salt) flux J H . (c) Map of the fluid pressure
p0,ind and vector plot of the volumetric flow rate QH . (d) Map of the induced electrical potential φind and vector
plot of the current (charge) flux IH . Here, ζ0 = −1.5, while all other parameters remain the same as in figure 5.
Results are shown for realization 2 (a) a(x, y); (b) c̃ & J H ; (c) p0,ind & QH ; (d) φind & IH .

This leads to a local mismatch between the direction of flow and that of the other fluxes,
which is also impacted by the ionic Péclet number (Pe) that implicitly introduces the effect
of advection through some of the coefficients of the coupled lubrication equations such as
Ie, Ic, Jc, and Jp. Note however that Brown did not take into account the coupling between
fluid flow and ion (in this case, also solute) transport. Therefore, the coupled dynamics
addressed here offers a more general framework for investigating flow through fractures,
which hitherto has remained poorly explored. We later show that Brown’s (Brown 1989)
analysis can be represented as a special case of the present general framework.

Focusing now on figures 6 and 7, we can observe the profound influence of the surface
charge/potential on the overall transport in the fracture. This same influence on the mass
flux of the fluid also appears clearly in figure 8 through the streamline patterns. First, we
note that despite the uniformity of the surface potential and the absence of any imposed
concentration gradient, strong non-uniformities in the in-plane concentration are observed
over the fracture plane, mainly due to aperture field heterogeneities. Second, we recall that
ζ0 < 0 indicates that the fracture fluid is positively charged, which implies that electrical
body forces actually enhance the pressure-driven flow. Thus, in figure 6(c) the volume flux
is on average in the forward x-direction everywhere, since here the pressure gradient and
the electrical forces aid each other. This observation is confirmed by figure 8(b), where the
colour coding indicates flow in the positive x-direction across the entire fracture. On the
contrary, for ζ0 > 0, electrical body forces oppose the pressure-driven flow, and, hence,
the direction of the local volume flux (integral of the velocity over the local aperture)
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Figure 7. (a) Aperture field map for the same realization (realization 2) of a self-affine fracture as shown in
figure 6; the light blue colour denotes the regions where the fracture is closed. (b) Map of bulk concentration c̃
and vector plot of solute (salt) flux J H . (c) Map of fluid pressure p0,ind along the fracture plane and vector plot
of volumetric flow rate of the liquid, QH . (d) Map of the induced potential φind and vector plot of the current
(charge) flux IH . Here ζ0 = 1.5, while all other parameters are identical to those corresponding to figure 5.
Results are shown for realization 2 (a) a(x, y); (b) c̃ & J H ; (c) p0,ind & QH ; (d) φind & IH .

depends on the relative strengths of the pressure-driven and the electro-osmotic flows,
which itself depends on the local aperture. The electrical body force dominates over
the acting pressure gradient in regions of low aperture, so backward flow (i.e. flow in a
direction opposite to the overall direction of the applied pressure drop) is observed in such
regions in figure 7(c); reversely, forward flow is observed in regions of larger apertures.
This intriguing influence of the electrical forces on the flow dynamics is also captured
through the streamline patterns in figure 8(d). The colour coding indicates the presence of
forward flow only through a very small pocket of connected high aperture region (see the
aperture field in figure 8a), whereas most of the fracture plane with lower aperture values
witness backward flow, mainly driven by electro-osmotic forces. As we show below, in
many cases, such local backflows might even be sufficiently strong to reverse the direction
of the overall mass throughput in a small fracture.

Note from figure 7(b) that for ζ0 > 0, the salt flux is from right to left, i.e. in the opposite
direction to the imposed electric field. This is because for ζ0 > 0 the fluid in the fracture
has an excess of negative ions, which are driven from right to left when subjected to a
potential gradient from left to right (β > 0). Since potential gradient driven migration is
the key factor in driving the salt flux, the direction of this flux becomes opposite to that
of the liquid flow for ζ0 > 0. The reverse is true for ζ0 < 0 (see figure 6b), for which the
fluid in the fracture carries a net positive charge leading to a salt flux along the positive
x-direction. On the other hand, panels 6(d) and 7(d) demonstrate that, for both ζ0 < 0 and
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Figure 8. (a) Aperture field of realization 2 (same as that in figure 7). (b–d) Colour-coded streamlines of
fluid motion for ζ0 = −1.5 (b), ζ0 = 0 (c) and ζ0 = 1.5 (d). The colour indicates the direction of Qx: the blue
(darker) colour indicates Qx > 0 (forward flow) and orange-brown (lighter) colour indicates Qx < 0 (backward
flow). All parameters other than ζ0 remain the same as in figure 5. Results are shown for realization 2 (a) a(x, y);
(b) streamlines, ζ̄0 = −1.5; (c) streamlines, ζ̄0 = 0; (d) streamlines, ζ̄0 = 1.5.

ζ0 > 0, the electrical current flux is from left to right, since this flux heavily depends on
the electro-migration of the ions.

The streamline patterns of figure 8 uncover a number of additional interesting features.
The patterns shown in panels (b,c) are very similar, and both exhibit forward flow
everywhere throughout the fracture. However, the streamlines in figure 8(c) are slightly
more localized in regions of large apertures, while those in (b) are more evenly distributed
across the fracture. This is because figure 8(c) shows the streamlines for ζ0 = 0, i.e. for
a purely pressure-driven flow, which naturally tends to channelize the flow through
regions of large aperture, whereas for ζ0 = −1.5 (figure 8c), electro-osmotic forces aid
the pressure gradient, including in low aperture regions where they help establish stronger
fluxes. Figure 8(d) represents an example of backward flow in the majority of the fracture
plane, wherein the streamlines show a far more uniform distribution as compared with
panels (b,c). Only in the central part of the fracture do we observe some forward flow,
owing to the presence of connected regions of large aperture leading to flow channeling.
The resulting flow pattern is intriguing because of the presence of recirculation zones at
boundaries between the forward and the backward flow regions. Such a flow geometry
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will strongly impact solute transport through the fracture. Indeed, the wildly changing
flow directions can have a profound influence on local stretching rates (Ghosh et al. 2018)
and, hence, on the dispersion of solutes within the fracture, and the recirculation zones
may act as trapping regions for solute/particles dissolved in the fracture fluid.

5.2.2. Influence of fracture geometry and surface potential on the effective transport
properties

In an effort to characterize the impact of aperture heterogeneity on fluid flow through
fractures, we investigate the effective hydraulic aperture, defined as the aperture of a
smooth (parallel plate) fracture that would have the same transmissivity as that of the
considered rough fracture (Brown 1987). Once non-dimensionalized with a′

m, it can be
computed according to

ah =
(

12Q
Ly

)1/3

, (5.1)

where Q = ∫ Ly
0 Qx dy is the total volumetric flow rate. Similarly, an electrical aperture of

the fracture ae may be defined as (Brown 1989) (non-dimensionalized by a′
m)

ae = 1
2

Pe
∣∣∣∣ I
Lyβ

∣∣∣∣ , (5.2)

where I = ∫ Ly
0 Ix dz is the total electrical current through the fracture. In deriving (5.2)

we have used the following expression for bulk conductivity (Ghosh et al. 2018), Sb =
2c′

0e2/f , where f is the friction factor for the ions and is related to the diffusion
coefficient by the Nernst–Einstein relation (Kilic et al. 2007) f −1 = D(kb T)−1. The
effective apertures ah and ae are essentially measures of how easily liquid and electrical
charges, respectively, are transported through the fracture. One expects the hydraulic and
electrical apertures to be strong functions of the aperture field’s heterogeneity and, hence,
of the standard deviation σ . One can also expect the aperture heterogeneities to result in
substantial variations in the salt fluxes (J H), and, thus, in concentrations, over the fracture
plane, even when there are no externally imposed concentration gradients. In a similar
way, figures 5–6 show that the axial local mass flux Qx also exhibits large variations over
the fracture plane. To quantify these spatial heterogeneities of c̃ and Qx, we shall consider
their standard deviations σC and σQx (respectively) over the fracture plane.

In the absence of surface potential (ζ0 = 0) and for cin = cex, the flow and transport
of electrical charges are decoupled, which results in ah = ae = 1 for σ = 0 in such
cases. As σ increases, i.e. as the fracture becomes more closed, both ah and ae decrease
monotonically from 1 as a consequence of increased flow channeling. This behaviour for
ζ0 = 0 and cin = cex is well known from a number of earlier studies and is exactly what we
observe in the red star plots of figure 9(a,b), wherein we show the influence of the aperture
field’s variations, characterized by its standard deviation σ , on ah (in figure 9a) and ae (in
figure 9b), for cin = cex and ζ0 = −1.5, 0 or 1.5. Panel 9(c), on the other hand, illustrates
the dependence of σC on σ , while panel (d) displays that of σQx/Qx,m (the relative standard
deviation in Qx, with Qx,m the mean of Qx computed over the fracture plane), for the same
choices of parameters. The plotted values of ah, ae, σC and σQx have been obtained by
averaging the results over fifteen different realizations, for each value of σ .

From panels (a,b) we observe that ae shows a stronger dependence on σ than ah. It
is further noted that for σ > 0.3, both ae and ah show a relatively sharper drop with
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Figure 9. (a) Dependence of the hydraulic aperture ah (non-dimensionalized by the fracture’s mechanical
aperture am) on the standard deviation of the aperture field (σ ) (also non-dimensionalized by am), for three
different choices of ζ0 = −1.5, 0, 1.5. (b) Dependence of the effective electrical aperture ae on σ for the same
values of ζ0. (c) Standard deviation in the bulk concentration distribution (c̃) over the entire fracture (σC) as a
function of σ , for the same values of ζ0. (d) Standard deviation of Qx (σQx normalized by the planar-averaged
Qx, denoted as Qx,m) for three different values of ζ0, as a function of σ . Each value of ah, ae, σC and σQx
represent an average over fifteen different realizations of the fractures with same parameters. Values of all
other relevant parameters are given in table 2. (a) Hydraulic aperture. (b) Electrical aperture. (c) Standard
deviation of c̃. (d) Standard deviation of Qx.

further increments in σ . This can be attributed to the fact that for σ > 0.3, the two
fracture surfaces start touching each other, which enhances the flow and electrical current
heterogeneity through channeling. Further increments in σ increase the contact area
between the two walls, making the closed regions more and more prominent, which results
in a sharper decrease in the volumetric and current flow rates, for given pressure drops and
electrical potential differences. However, without the presence of surfacic charge (i.e. for
ζ0 = 0), the bulk concentration remains uniform throughout the fracture, as evident from
panel (c), wherein σC is 0 for all values of σ when ζ0 = 0. On the contrary, the (relative)
variance in mass flux (or, equivalently, in velocity) shows a steady increase with spatial
fluctuations of the aperture field, which, in the absence of electrical forces, is caused by
flow channeling, which becomes all the stronger when σ becomes larger.

The data for ζ0 = −1.5 and ζ0 = 1.5 in figure 9 underline the impact of electro-osmotic
flow on the hydraulic and electrical apertures, as well as on the concentration distribution
in the fracture. As discussed above in connection to figures 7 and 6, negatively charged
surfaces result in electrical forces and the pressure gradient aiding each other, which
ultimately leads to the largest ah for ζ0 = −1.5 and the smallest ah when ζ0 = 1.5, as
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evident from panel (a). In fact, ah even becomes negative for σ > 0.6 and ζ0 = 1.5, which
indicates a reversal of the global mass flux under the influence of electrical forces. The
reason may be understood from the flow fields in figure 7(c) and 8(d). Indeed, for ζ0 > 0,
increasing the value of σ expands the region of locally backward flow in the fracture
plane, with locally forward flow being restricted to regions of large apertures. Above a
critical value of σ , the contribution of locally backward flow to the global volumetric flow
rate becomes larger than that of forward flow, which drives the overall flow in the negative
x-direction, resulting in a negative value of ah. Note, however, that since the strength of
the electro-osmotic flow is governed by the magnitude of ζ0, such global flow reversal is
only expected above a critical value of ζ0. Positive values of ζ0 which remain below that
threshold will cause the global volumetric flow rate to diminish (with respect to that for
a purely pressure-driven flow), but may not cause global flow reversal as seen here. Note
that localized regions of flow reversal in low aperture regions are still expected to occur for
any positive value of ζ0 if the surface roughness amplitude σ is sufficiently large. Similar
arguments may be given regarding the effects of magnitudes of β and α, which also control
the strength of the electrically driven flow.

Figure 9(b) on the other hand, proves that the impact of ζ0 on ae is different from its
impact on ah. Indeed, ae is the lowest for ζ0 = 0, i.e. when there are no net charges present
in the fracture. The presence of surface charges (either positive or negative) leads to the
formation of EDLs, which naturally enhance the electrical conductivity in the fracture,
irrespective of the sign of ζ0. This results in a larger electrical current and, hence, in a
larger electrical aperture ae (figure 9b). Note also that ae is slightly larger for ζ0 = −1.5
than for ζ0 = 1.5, for a given normalized amplitude of σ . This is because, for ζ0 < 0, the
electromigration of ions and their advection driven by the fluid motion aid each other, thus
leading to larger electrical currents (with respect to the case ζ0 = 0), while for ζ0 > 0, the
electrical current results from antagonistic electromigration and advection of ions, which
diminishes its value.

5.2.3. Heterogeneity in concentration and mass fluxes in a rough fracture
In contrast to the variations in ae and ah, the amplitude σC of the heterogeneities in
concentrations generally increases with increased aperture fluctuations (i.e. larger σ ), in
the presence of a surfacic potential (see panel 9c). This indicates that the presence of
surface charge is absolutely necessary, along with the non-uniform aperture distribution,
for concentration (c̃) heterogeneities to exist (see also figure 4(a) in this respect). Note
that the sign of the surface charges hardly alters the concentration heterogeneity, since the
curves corresponding to ζ0 = ±1.5 are almost identical.

The spatial variations in σQx/Qx,m, however, show different trends as compared with
σC. Their relative variance is the smallest for ζ0 < 0, i.e. when the electrical forces aid
the imposed pressure gradients. Part of the reason, as already discussed in connection to
figure 8(b,d), is that negatively charged walls help establish flows in regions with small
aperture, which are otherwise non-existent in purely pressure-driven flows. This results in
a reduction of the difference between the fluxes through large and small aperture regions
and, hence, leads to a smaller spatial heterogeneity of the mass flux (and, hence, a smaller
flux variance σQx) than in the case ζ0 = 0. The flux variance is the largest for ζ0 > 0,
as indicated by the curve for ζ0 = 1.5 (blue circles). Indeed, for ζ0 > 0, the electrical
forces and the pressure gradient oppose each other, with, as discussed above and shown
in figures 7(c) and 8(d), mostly forward flow in regions with large aperture and mostly
backward flow in other regions, dominated by electro-osmotic effects. As a result, the
mass flux assumes both negative and positive values over the fracture plane, which leads
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to larger fluctuations around the mean. Note, however, that σQx/Qx,m tapers off for large
values of σ . This can be linked to the fact that as we increase σ , we close the fracture to
larger extents, thus removing regions of low but non-zero apertures and creating smaller
preferential flow channels. This causes the increase (with σ ) in the overall variability of
the mass flux to be somewhat diminished when σ exceeds the threshold value for which
fully closed regions appear in the fracture plane.

5.2.4. Special case of an electroneutral fracture
Considering the particular case ζ0 = 0 and cin = cex (stars in figure 9), which applies to
electroneutral fractures, we note from (4.4a,b), (4.5), (4.10) and (4.13), the following: Qp =
a3/12 (a is the local aperture); ϕ = 0, c = 2c̃, Qc = ακ2Qp, Qe = Ip = Ic = Je = 0, Jc =
ακ2Jp − 2Pe−1a and Jp = −c̃a3/6. Consequently, the generalized lubrication equations
simplify to

∇H · [a3∇H( p0 + ακ2c̃)] = 0, (5.3a)

∇H · (c̃a∇Hφ) = 0, (5.3b)

∇H · [c̃a3∇H( p0 + ακ2c̃)] + 12
Pe

∇H · (a∇Hc̃) = 0. (5.3c)

In the absence of any imposed concentration gradient, c̃ = 1 satisfies the salt conservation
criteria everywhere and would also imply σC = 0. Therefore, now (1/2)Jp = Qp =
−a3/12 and the above equations further simplify to

∇H · (a3∇Hp0) = 0, (5.4a)

∇H · (a∇Hφ) = 0, (5.4b)

where only two independent conservation equations are left since the global salt flux
conservation equation (5.3c) becomes identical to the volume flux conservation (5.3a).
Theses equations show that electroneutrality, in conjunction with a constraint of uniform
concentration (cin = cex = 1), decouples the electrical and hydrodynamic transport in the
fracture. These are the equations used by Brown (1989) in his investigation of flow and
electrical current through a single fracture. Therefore, for ζ0 = 0 in figures 9(a) and 9(b),
we have computed ah(σ ) and ae(σ ) by essentially solving the system (5.4).

6. Conclusions

We have developed a general framework to address coupled electro-mechanical flows
in rough fractures subjected to macroscopic gradients of external pressure, potential
and ion concentrations. The fracture walls bear specified surface charge, which leads
to the formation of EDLs. Using the lubrication theory, we generalize the Reynolds
equations and derive the generalized lubrication equations, a set of three nonlinearly
coupled equations for the pressure p0, the concentration of bulk charged species c̃ and
the electrical potential φ. For electroneutral fractures not subjected to a macroscopic
concentration gradient, the Reynolds lubrication equation (5.4a) is recovered, along
with an analogous equation governing the distribution of electric potential (5.4b).
The generalized equations are subsequently solved numerically using a finite volume
scheme.

The accuracy of our generalized lubrication theory for coupled electrohydrodynamic
transport was extensively validated by comparing its results with 3-D numerical solutions
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of the complete set of governing equations in small synthetic rough fractures. Very good
agreement was obtained for a wide range of parameters. Comparisons between results from
the lubrication theory and complete numerical simulations in 3-D and 2-D deterministic
test geometries were also performed, the results of which have been included in §§ S4
and S5 of the supplementary material. These comparisons were also successful.

The model was subsequently applied to investigate flows in realistic geometries of
geological fractures. Several important conclusions can be drawn from these analyses.
First, we demonstrate that the presence of surface charge coupled with non-uniform fluxes
leads to significant heterogeneities in concentration, pressure and bulk potential, which
profoundly impacts the flow and transport in the flow domain. Shifting attention to flow in
fractures, positively charged surfaces hinder fluid flow and decrease the hydraulic aperture,
whereas the reverse is true for negative surface charges. On the other hand, the presence
of surface charge always augments the total electrical current, leading to an increase in
the electrical aperture of the fracture. Both the electrical and hydraulic apertures show
deviations from the parallel plate model when the aperture field heterogeneity σ increases,
which occurs when the fracture is closed. This deviation becomes sharper beyond a
critical value of σ , which facilitates contact between the walls and has also been observed
previously. When the surface charge is sufficiently large and positive, local flow reversals
are observed in low aperture regions of the fracture plane, due to electro-osmotic flow.
This will result in strong shear at the boundary between forward and backward flow
regions, leading to enhanced solute dispersion. Above a critical closure of the fracture,
the electro-osmosis mediated backward flow in the low aperture regions may also lead to
global flow reversal. Our results further reveal that increased aperture field heterogeneity
in the presence of non-zero surface charge leads to augmented heterogeneity in the bulk
concentration distribution in a 3-D fracture. This means that, due to the coupling between
flow, charged species transport and electrical transport, the stationary concentration field
is not a uniform one, as would be expected in situations with no coupling to electrical
transport.

The theoretical framework presented here may have a wide range of applications, since
it remains valid for any arbitrary geometrical shape of the fracture/flow domain, and it can
address transport actuated by a wide variety of forces in a theoretically consistent manner.
Our generalized lubrication theory has the obvious advantage that it provides extremely
valuable insights into the transport dynamics while requiring far less computational efforts
than a complete 3-D numerical simulation of the governing equations. A natural future
extension of the analysis calls for detailed investigations into the influence of the various
model parameters (in particular, fracture closure, correlation length and surface charge
density) on the hydraulic and electrical apertures of geological rough fractures. Given the
stochastic nature of these geometries, large fluctuations in flow behaviour are observed in
populations of fractures with geometries characterized by the same statistical parameters
(Méheust & Schmittbuhl 2001, 2003). Therefore, for coupled electrohydrodynamics as
well, any general finding must be based on the study of a sufficiently large statistics of
fractures, wherein the framework developed here can be helpful.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.306.
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Appendix A. Conservation of the fluxes of fluid mass, solute mass and electrical
charge

In this appendix we show that the fluxes QH , IH and J H , defined with respect to the
unknowns p0, c̃ and φ by (4.9), (4.11) and (4.12), respectively, are all conservative
(i.e. divergence free). As already mentioned at the end of § 3, all conservation equations
can be expressed in the general form ∇∗ · Ξ∗ = 0, where Ξ∗ represents the fluxes i∗, j∗ or
the fluid velocity v∗. All these fluxes satisfy the common boundary conditions Ξ∗ · nk = 0
at the wall (see the boundary conditions in (3.5a–c)), where nk is the unit vector outward
normal to the bottom (k = b) and top (k = t) walls.

Based on the expressions of the fluxes i∗ and j∗ as given in (3.3), the different
components of non-dimensional fluxes (except velocity) scale as iH,∗, jH,∗ ∼ O(1),
whereas, iz,∗, jz,∗ ∼ O(ε−1). As such, we note that the lubrication theory suggests that
the aforesaid conservation equation has the following form after the rescaling z∗ = εz,
Ξz,∗ = ε−1Ξz, Ξx,∗ = Ξx, Ξy,∗ = Ξy (also note that ΞH = Ξxêx +Ξyêy):

∂Ξz

∂z
+ ε2∇H · ΞH = 0. (A1)

We now integrate the above equation across the fracture aperture, at any arbitrary
cross-section. Now, by applying the Leibniz rule (Leal 2007) for differentiation under
integration, we arrive at the following:

ε2∇H ·
∫ 1/2+ht

−1/2+hb

ΞH dz + {Ξz − ε2ΞH · ∇Hz}1/2+ht − {Ξz − ε2ΞH · ∇Hz}−1/2+hb = 0.

(A2)

Now, recall that the equation of the kth wall of the fracture is given by F′(x′, y′, h′
j) =

z′ − (±am/2 + h′
k(x

′, y′)) = 0. The unit normal to this surface thus has the following
expression (Leal 2007), after implementing the lubrication theory scaling:

nk = ± êz − ε∇Hhk√
1 + ε2(∇Hhk)2

. (A3)

Therefore, it follows that the boundary condition Ξ · nk = 0 may be expanded as

Ξ · nk = 1√
1 + ε2(∇Hhk)2

[Ξz − ε2ΞH · ∇Hh]±1/2+hk = 0. (A4)

In view of (A4), the final two terms on the left-hand side in (A2) vanish and, hence, that
equation simplifies to

∇H ·
∫ 1/2+ht

−1/2+hb

ΞH dy = 0. (A5)

Taking Ξ = i, and noting that
∫ 1/2+ht
−1/2+hb

iH dy = IH , the conservation of current requires
that IH satisfy

∇H · IH = 0. (A6)
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Figure 10. Comparison of the generalized lubrication theory with 3-D numerical simulations for different
choices of ε = 0.1, 0.2 and 0.3. Results are shown for (a) ψind vs x, (b) c̃ vs x and (c) pind,∗ vs x, all along
the line y = 1. The other relevant parameters have the following values: β = 1.0, ζ0 = 1, pin = 0, pex = −2,
cex = 0.75, κ∗ = 25, α = 0.05 and Pe = 3.0.

Similarly, by taking Ξ = j, we can deduce that

∇H · J H = 0. (A7)

Finally, although for volume fluxes the rescaling applied before (A1) is not valid, the
condition Ξ = v = 0 at the walls, combined with the Leibniz rule, directly implies that
mass conservation of the fluid requires that QH be conservative (Leal 2007),

∇H · QH = 0. (A8)

Using the expressions for QH , IH and J H , as given in (4.9), (4.11) and (4.12), the
generalized lubrication equations as indicated in (4.14) may be directly derived from
(A6)–(A8).

Appendix B. Comparison between results from the lubrication theory and 3-D
numerical simulations for larger ε’s

One of the key parameters dictating the validity of the lubrication theory here is the
length scale ratio ε = h0/l0, where l0 has been chosen as the correlation length (Lc)
of the aperture field and h0 = am is the mean aperture shown in figure 2. Ideally, the
lubrication-based model is only valid for ε 	 1 (Leal 2007). In figure 10 we therefore
test its applicability by varying the ratio ε from 0.1 to 0.3 and comparing its predictions
(lines) with those obtained from the 3-D numerical simulations (marker) in the rough
fracture shown in figure 2. Panel (a) illustrates the comparison for ψind, panel (b) exhibits
the comparison for c̃ and panel (c) depicts the comparison for pind,∗, all along the line
y∗ = 1 (see § 5.1 for definitions), while other relevant parameters are given in the figure
caption. We first note that for all choices of ε, the generalized lubrication theory matches
reasonably well with 3-D numerical solutions. We observe that the bulk potential and
the concentration are essentially insensitive to ε and, although for ε = 0.3, the condition
ε 	 1 is not strictly satisfied, the generalized lubrication model still remains reasonably
accurate. Further note that the variations displayed in figure 10 are very similar in nature
to those seen in § 5.1.
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