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SUMMARY
The manipulation in singular regions promotes an instantaneous reduction in mechanism mobility,
which can result in some disturbances in the trajectory tracking. The application of the quaternionic
elements for motion representation not only guarantees an orthonormal transformation but also
results in the smallest variance and minimizes the acceleration peaks. The use of a unit quaternion
avoids these phenomena, but there are dimensional limitations that make it impossible to translate
the representation. This work presents a methodology for using dual quaternions in the analysis of
robot kinematics using the Davies method, which avoids kinematic singularities and ensures the
optimal torque profiles.

KEYWORDS: Mechanism mobility; Kinematic singularities; Davies method; Dual quaternions;
Optimal torque profiles.

1. Introduction
In robotics, the kinematics perform the conversion between the joint and operational spaces. Some
restrictions, which are directly related to the mechanism structure, define a nonlinear mapping between
these spaces. A temporary phenomenon (i.e., a limited period of time) exists that is directly related to
mechanism pose and introduces nonlinearities in this transformation; this phenomenon is called the
singularity.

Singularities represent configurations where the structure mobility is reduced, i.e., as in ref. [1],
and it is not possible to impose an arbitrary motion to an end effector. The singularities can be divided
into two types: boundary singularities (also called as geometric singularities), which occur near the
extension or contraction limits, and internal singularities (also called kinematic singularities), which
occur within the reachable space of the manipulator and are usually caused by the alignment of two
or more axes or by particular configurations of the end effector. The consequence of this effect is that
in an internal singularity, there are infinite solutions for the inverse kinematics. In proximity to the
singularities, small velocities of the end effectors generate high speeds in the joints due to the gradual
reduction of the mobility.

The occurrence of singularities frequently happens on mobile base systems where it is possible
to accomplish the reorientation of the whole structure. In manipulator-vehicle systems where a
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serial kinematic chain is fixed on a vehicle, this vehicle may have three degrees of re-orientation,
e.g., spacecraft and underwater. In this case, the quaternion is frequently used to avoid kinematic
singularity and the phenomenon of rotational axis alignment, i.e., the “gimbal-lock,” as seen in ref. [2].

The kinematic singularity is one focus of current robotic research where different methodologies
are applied. Several studies employ quaternions to represent the orientation due to its uniqueness in
orientation angle extraction and to avoid this phenomenon. For example, Xu et al.3 present a path
planning system for a spatial vehicle manipulator where the use of unit quaternions guarantees that
singularities of orientation will not occur. Bai et al.4 discuss a method of workspace modeling for
spherical parallel manipulators where the Euler angles are expressed by unit quaternions.

Other approaches employ the quaternions to correct the orientation error, e.g., Erdong and
Zhaowei5 discuss an application of unit quaternions for orientation error stabilization in spacecraft
pose control. Castillo-Cruces and Wahrburg6 present a control strategy for surgical interventions
applied to a human–robot cooperative system that uses unit quaternions to determine the orientation
error. Tabandeh et al.7 present a modified genetic algorithm to solve the inverse kinematic of a serial
manipulator using unit quaternion feedback.

In transformation representation through homogeneous transformation matrices (HTMs), the error
accumulated from successive multiplications leads to a loss of orthonormality and to singular matrices.
The application of quaternionic elements for movement representation is not only to guarantee an
orthonormal transformation but also to ensure the smallest variation and minimize the acceleration
peaks. These phenomena can be seen in ref. [8] in which the authors present the potential of this
element for a reduction in the discrete movement representation errors.

The application of unit quaternions is restricted to the orientation representation. The application
of these elements for translational motion is only possible by applying complex, nonlinear
mathematical relations; e.g., Sahu et al.9 apply a methodology that combines the use of unit
quaternions and dual quaternions to perform a linear motion. However, this approach becomes
confusing because using elements of different algebras led the authors to equivocate the algebraic
definition, and consequently, the wrong use of the elements, i.e., the double number definition was
employed in the dual number relations. Qiao et al.10 introduce the inverse kinematic solution of
a serial 6R chain that employed the dual quaternions using a correlation with the transformation
matrix and not an algebraic definition, which led to an incorrect definition of the algebraic properties
and, consequently, increased the solution complexity. Sariyildiz and Temeltas11 present an inverse
kinematic method using dual quaternions, but the approach is purely geometrical and dependent on
the mechanism topology, i.e., the application in other mechanisms is not trivial.

This paper presents a methodology for the use of dual quaternions in kinematic mapping using
the Davies method, which avoids the occurrence of kinematic singularities and inherits the algebraic
properties of the quaternions. This work is organized in the following manner. Section 2 discusses
the problem of singularity occurrence in the classic method. Section 3 is an overview of the Clifford
algebra for the correct definition of the elements and the algebraic relationships. Sections 4 and
5 define the quaternions and biquaternions. Section 6 presents some methodologies for the dual-
quaternionic approach. Section 7 describes and discusses the computational performance analysis.
Section 8 presents a singularity-free trajectory tracking. Finally, Section 9 presents the conclusions.

2. The Problem of Singularity Occurrence
To explain the problem of singularity occurrence, it is necessary to analyze the method of inverse
kinematic determination. The inverse kinematics for a system of screws can be determined using the
screws through the Davies method. This method is an adaptation of the Kirchhoff’s law of mechanisms.
According to Kirchhoff’s law, the algebraic sum of the potential difference in an electrical circuit is
zero. By analogy, in mechanisms, the sum of the relative kinematic velocity pairs along a kinematic
chain is zero; in this case

n∑
i=1

$̂i q̇i = 0, (1)

where a screw axis $i can be expressed by the corresponding normalized axis $̂i and its magnitude
q̇i .
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Fig. 1. System of screws.

The normalized screw axis is defined as

$̂ =
[

ŝ

s0 × ŝ + hs

]
, (2)

where s0 is the position vector of the screw in relation to reference system, ŝ is the direction of screw
axis, and hs is the screw step.

Joint topology defines the screw step as

$̂ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ŝ

s0 × ŝ

] ⎧⎨
⎩

for a
revolute joint

hs = 0

[
0
ŝ

] ⎧⎨
⎩

for a
prismatic joint

hs = ∞

. (3)

However, robot manipulators are usually open kinematic chains, i.e., it is not possible to apply
the Davies method. To close the chain, Campos et al.12 presented the concept of virtual chains of
Assur, i.e., the inclusion of virtual kinematic chains. As a result, it is possible to control and to impose
movements to the kinematic chain. However, during implementation of the interactive procedure,
error can occur that causes the chain to open, and consequently, the solution degenerates. A similar
phenomenon occurs in the algorithm presented by Siciliano et al.1 and is called a “drift.” As a result
and due to the integration procedure, the locations of the joint angle end effectors are different than
the desired pose. Simas et al.13 employ virtual error chains, which prevent the chain from opening
and solve this issue.

The initial aim of this paper is to clarify the problem of chain opening using a trajectory-tracking
example and to present the solution using the dual-quaternionic approach. This method is employed
using a classic SCARA manipulator (shown in Fig. 1), which is composed of three rotary joints and
one prismatic joint. The manipulator has the following physical characteristics: the height of the base
(d0), link length 1 (a1), link length 2 (a2), and the length of the wrist (d4). The joint variables are the
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angular displacement 1 (θ1), angular displacement 2 (θ2), prismatic joint displacement (d3), and the
wrist joint displacement (θ4).

The relative speed formulation, according to Eq. (1), can be subdivided into small plots of the
primary joints, i.e., the virtual chain of Assur; the secondary joints, i.e., the manipulator; and the error
chain, which results in

Ns (qs )q̇s︷ ︸︸ ︷
[$1 $2 $3 $4][q̇1 q̇2 q̇3 q̇4]T +

Ne(qe)q̇e︷ ︸︸ ︷
[−$erz

− $epz
− $epy

− $epx
][q̇erz

q̇epz
q̇epy

q̇epx
]T

+
Np(qp)q̇p︷ ︸︸ ︷

[−$rz
− $px

− $py
− $pz

][q̇rz
q̇px

q̇py
q̇pz

]T = 0,

(4)

or simply

Np(qp)q̇p + Ns(qs)q̇s + Ne(qe)q̇e = 0, (5)

where Np is the sub-matrix that represents the screws of primary joints on the virtual chain of Assur,
Ns is the sub-matrix that represents the screws of the secondary joints, i.e., the manipulator, Ne

corresponds to the screws of error chain, and q̇p, q̇s , and q̇e are the magnitude vectors of the primary
joints velocity, the secondary joint velocity, and the error, respectively.

Therefore, as in ref. [13], the secondary joint velocities may be obtained from Eq. (5) through the
rearrangement and integration of the solution

qs(ti+1) = qs(ti) −
(
N−1

s

(
qs(ti)

)
Ne

(
qe(ti)

)
Keqe(ti)

)
�t, (6)

where Ke is a positive-definite gain matrix.
This methodology is based on the use of an interactive procedure that corrects for the chain

opening error. Furthermore, this methodology employs a feedback loop for the operational pose in
space, which requires an orientation representation. The error chain qe(ti) is a direct association of the
minimal representation error, which is based on the position and orientation in the operational space
that is represented by six independent variables. This representation expresses the movement by the
degrees of freedom of the operational space, is called the minimal representation, and is defined as

k(q) = xee =
[

φe

pe

]
= [

φx ; φy ; φz; px ; py ; pz

]T
, (7)

where xee is the end effector description in the operational space, pe is the position vector in the
operational space, and φe is the orientation vector in the operational space.

The error chain is obtained from the difference between the trajectory in the operational space and
the mapping in this space of the inverse kinematics result or simply

x̃ee = xeed
− xee. (8)

The minimal representation of the mechanism pose is obtained through the kinematic
transformation. The position is obtained directly from the position vector that represents the
transformed object. The orientation angles need to be extracted from the composite transformation
that represents the kinematics of the mechanism. However, the extraction of the Euler angles from
the HTMs commonly introduces singularities (see refs. [1], [14] and [15] for more information). The
occurrence of kinematic singularities degenerates the mobility of the system and may compromise
the primary objective.

The object of this study is a SCARA manipulator that must follow a triangular, planar trajectory,
and the transition between the points is performed using a trapezoidal speed profile, as described in
Fig. 2. The trajectory is specified in the regions of kinematic singularities. A more detailed discussion
about singularity analysis of this manipulator can be seen in refs. [16] and [17]. In the second sector
of the trajectory, the manipulator approaches a singular configuration, and peaks are generated in the
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Fig. 2. Triangular trajectory in the operational space.

Fig. 3. Dynamic simulation environment.

joint space to ensure the stability of the movement. When the manipulator enters these regions, a loss
of mechanism mobility occurs.

The control strategy employed is a proportional derivative (PD) in the joint space, but the trajectory
is specified in terms of the operational space. Therefore, the inverse kinematics convert the points
in the trajectory reference signal to the controller, and the forward kinematics convert the end
effector position measurements in the feedback signals from the controller. The simulation structure
is described in Fig. 3.

The forward kinematics using the Denavit–Hartenberg convention for this robot are

H 0
4 =

⎡
⎢⎣

Ra Rb 0 Lx

Rc Rd 0 Ly

0 0 −1 Lz

0 0 0 1

⎤
⎥⎦ , where

Ra = c124 + s124

Rb = −c12s4 + s12c4

Rc = s12c4 + c12s4

Rd = −s124 − c124

and
Lx = a1c1 + a2c12

Ly = a1s1 + a2s12

Lz = a0 − d3 − a4

, (9)

where c124 = cos(θ1 + θ2 + θ4) and s124 = sin(θ1 + θ2 + θ4).
The control strategy requires the rearrangement of the dynamic model to isolate the joint

accelerations, which introduces the inversion of the inertia matrix B(q) and results in

q̈ = B(q)−1
(
τ − (

C(q, q̇)q̇ + Fvq̇ + g(q)
))

, (10)

where B(q) is the inertia matrix, C(q, q̇) are the contributions of centrifugal and Coriolis forces, Fv:
is the diagonal matrix of viscous friction coefficients, g(q) are the gravitational terms, and τ is a
generalized forces vector.

The classic dynamic model of a manipulator in the joint space is dependent on the joint variables
and its derivatives. In the singular regions, the inertia matrix loses its full rank and becomes non-
invertible with a null determinant through its direct influence of the angle of joint 2 in the main
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Fig. 4. Analysis of the singularity occurrence in trajectory tracking using the HTM method; (a) Det[B] profile,
and (b) normalized error in end effector pose.

diagonal. It is possible to identify the occurrence of kinematic singularities by the behaviour of inertia
matrix.

The dynamic analysis of the manipulator and their physical parameters were based on the
specifications given by the authors of ref. [18]. The extraction of the orientation angles for the
dynamic determination of the manipulator is achieved from the HTM. Using this method, is it possible
to monitor the inertia matrix B(q), which needs to be inverted depending on the pose (position and
RPY angles). This matrix has singularities, i.e., it becomes a singular matrix and is non-invertible;
consequently, the determinant is zero. Figure 4 shows the trajectory tracking. The occurrence of
singularities is demonstrated through the use of the HTMs and leads to an indeterminate region,
which prevents a full execution of the trajectory using this method.

A new method for movement representation, which avoids the singularity occurrence, is presented
in this work. However, the dual-quaternionic elements are defined using a Clifford algebra, which is
discussed below.

3. Clifford Algebra
One of the initial studies in the development of Clifford algebra was published by Sir William R.
Hamilton and presents the generalization of the complex numbers in a system called quaternions. The
quaternions are appropriate objects to describe the three-dimensional space transformations, e.g., the
rotations.

Later, the term biquaternion was introduced by Hamilton to designate the quaternion with seven
complex terms. These entities have the form q + ωr , where q and r are the usual quaternions. The
function of the operator ω has become “unclear,” but the correct definition is essential for structuring
the algebra of this element. Nevertheless, in ref. [19], a paper titled “On the three types of complex
number and planar transformations” was presented, and three types of complex numbers are defined
in the geometric and the kinematic context. The difference between the elements is the behavior of
the square operator ω.

From an algebraic point of view, each type of complex number is an ordered pair (a, b) of real
numbers with different rules for their multiplication. By expanding this definition for the ordered
pairs (r, s), the classical Hamilton quaternions (q = a1 + a2i + a3j + a4k) have the following sets:

• Hypercomplex number or Octonion (r + ls), where l2 = −1;
• Dual quaternion (r + εs), where ε2 = 0;
• Double quaternion (r + ds), where d2 = +1.
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The Clifford algebra allows for the generalization of the Hamilton quaternions and biquaternions.
In this context, it is possible to examine the consequences of the multiplication rule’s influence on
operator ω using an algebraic operation. This operation is an associative algebra generated by a
number of base elements e1, e2, . . . , en.

The definition of the algebric properties is based on the multiplication rule of the elements. The
Clifford algebra is defined as Cl(p, q, r), where p is the number of generator bases whose square is
equal to 1, q is related to the number of equal squares that equal −1, and r is the number of squares
equal to 0.

After discussing the Clifford algebras and the main arithmetic operations, we will explore the
algebras that define the Hamilton quaternions to expand the dimensions and obtain the Clifford
biquaternions.

4. Biquaternions and Dual Quaternions
The Clifford biquaternions are the result of coupling between two traditional Hamilton quaternions.
These elements are defined according to their characteristic operator ω, which defines the algebra.
Therefore, a biquaternion can be classified as having a hypercomplex number, or an octonion, as a
double quaternion or as a dual quaternion, as discussed above. A biquaternion is considered a dual
quaternion when the square of operator ω is zero, which results in the operator being represented by
ε. A dual quaternion (DQ) is defined as

z = q1 + q2ε, (11)

where q1 and q2 are two classic Hamilton quaternions.
These elements can also be represented by the rigid body movements in space. However, those

transformations can be applied in different geometric elements, as seen in ref. [20]. The transformation
of a dual quaternion is given by

ξ ′ = hξh∗, (12)

where ξ is the geometric element, h is the transformation that respects the condition hh∗ = 1, and
h∗ = g∗ + 1

2 tg∗e is the conjugated of h.
The basic geometric transformations of a spatial rigid body can be represented by biquaternions,

which include the linear movements. In this way, the biquaternion that represents the rigid body
motion in space is defined as

h = g + 1

2
tgε, (13)

where g represents the rotational portions using a unit quaternion and t represents the linear movement
through a pure quaternion.

From a quaternionic viewpoint, the rotation is defined by a unit quaternion, e.g., g = a0 + a1i +
a2y + a3k , and the linear movement is represented as a pure quaternion, i.e., t = b1i + b2j + b3k.
The biquaternion transformation (Eq. (13)) can be expanded and generates

h = (a0 + a1i + a2y + a3k) + 1

2
(a0b1 − a2b3 + a3b2)iε + 1

2
(a0b2 + a1b3 − a3b1)jε

+ 1

2
(a0b3 − a1b2 + a2b1)kε − 1

2
(a1b1 + a2b2 + a3b3)ε. (14)

Just like the quaternion, the biquaternion may be represented using Clifford algebra. One algebraic
expression that defines the dual quaternions is Cl+(0, 3, 1). This algebra is employed using four
generators: three generators {e1, e2, e3} whose square is −1 and a generator {e} whose square is zero.
In this even algebra (Cl+), the bases are associated to generate elements of only an even grade, which
results in seven complex elements: six elements of grade 2, {e1e2, e2e3, e3e1, e1e, e2e, e3e} , and one
element of grade 4, {e1e2e3e}.
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The element of this algebra that represents the rigid body transformation in space is similar to that
defined in Eq. (13), but the operator is replaced by generator e, which results in

h = g + 1

2
tge. (15)

Therefore, the rotation transformation (Rφ) is a unit quaternion and is expressed as

g = cos
(θ

2

)
+sin

(θ

2

)
[e2e3 + e3e1 + e1e2], (16)

where transformation g is also equal to −g , i.e., (−g)ξ (−g∗) = g ξ g∗.
The translational component is a pure quaternion and is defined in the following algebra:

t = xe1 + ye2 + ze3. (17)

The conjugation of the transformation elements in this algebra is solely given by the conjugation
of the rotational components. For example, the conjugate of the composed transformation element
(defined in Eq. (15)) is given by

h∗ = g∗ + 1

2
tg∗e. (18)

The rotational component g is a unit quaternion and is defined in this algebra as g = a0 + a1e2e3 +
a2e3e1 + a3e1e2, and the translational component t is a pure quaternion, which is defined in this
algebra by t = b1e2e3 + b2e3e1 + b3e1e2. The transformation defined in Eq. (15) can be expanded
and it generates

h = (a0 + a1e2e3 + a2e3e1 + a3e1e2) + 1

2
(a0b1 − a2b3 + a3b2)e1e + 1

2
(a0b2 + a1b3 − a3b1)e2e

+ 1

2
(a0b3 − a1b2 + a2b1)e3e + 1

2
(a1b1 + a2b2 + a3b3)e1e2e3e. (19)

The equivalence between the elements of the Clifford algebra Cl+(0, 3, 1) and the dual quaternions
can be verified by comparing Eqs. (14)–(19), which results in the following relations:

i = e2e3, j = e3e1, k = e1e2,

iε = e1e, jε = e2e, kε = e3e,

and ε = −e1e2e3e.

(20)

The expansion of the algebra provides a new representation point with an element of grade 3,
which permits the application of the relational operations between the geometric elements (ξ ). A new
point definition, in algebra Cl(0, 3, 1), also respects the quadratic condition pp∗ = 1 and is defined
as

p = e1e2e3 + (xe2e3e + ye3e1e + ze1e2e). (21)

In a geometric transformation composed and represented by a dual quaternion according to
Eq. (15), the spatial position of the element is obtained by applying this transformation on a base
element, as defined in Eq. (12). The minimal representation of a rigid body orientation in space is
performed in a standardized way regardless of the manipulator topology. Unlike extraction of the
angles from the HTM, some mathematical articles based on the function Atan−1

2 are applied to
determine these angles, e.g., refs. [21] and [22].

However, the rigid body orientation is extracted from the biquaternion directly. The Z-Y-X
Euler angles, also called the Roll(ϕ)–Pitch(ϑ)–Yaw(ψ) of the dual quaternion of transformation
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h = a0 + a1e2e3 + a2e3e1 + a3e1e2 + a4e1e2e3e + a5e1e + a6e2e + a7e3e, are obtained as

ψ = 2sin−1(A1), ϑ = 2sin−1(A2), and ϕ = 2sin−1(A3), (22)

where A1, A2, and A3 represent the angles a1, a2, and a3 in degrees.
A more detailed discussion of the movement representation using dual quaternions is presented in

refs. [23] and [24].
After demonstrating the Clifford algebra, which defines the dual quaternions and its properties, a

way to represent the spatial transformation of a rigid body will be discussed using the elementary
transformation applied in robot kinematics.

5. Dual-quaternionic Approach
The classic direct kinematic calculation is based on the assignment of some intermediate coordinate
system, which represents the joint position of a kinematic chain. The transformation of the variables
attached to the end effector position and the orientation of the joint variables is achieved through the
homogeneous transformation between each coordinate system.

However, the determined position and orientation of the intermediate coordinate systems is not
univocal but allows for different solutions for the direct kinematics. There are some methods for direct
kinematic systematization. The Denavit–Hartenberg convention is a systematic methodology for the
classical determination of the transformations between the rigid bodies. This method determines the
forward kinematics of the mechanism, i.e., defines the transformation sequences and not how to
accomplish them. These transformations can be represented through the dual quaternions, which are
defined by the algebra previously presented.

5.1. D-H convention
The Denavit–Hartenberg (D-H) convention is based on the transformation representation between
two links and are defined by four parameters. These parameters are used to mount the composite
transformation of the element; each parameter is associated with a particular transformation, i.e.,
Hn−1

n = Rz(θi)Tz(di)Tx(ai)Rx(αi); and all parameters are associated with a HTM, see ref. [1] for
more details. However, the same methodology can be applied to a transformation representation that
is associated with these parameters through a dual quaternion

hn−1
n =

(
gz(θn) + 1

2

(
tz(dn) + tx(an)

)
gz(θn)e

)
gx(αn). (23)

In an expanded form, this equation becomes

hn−1
n =

( gz(θn)︷ ︸︸ ︷(
cos

(θn

2

)
+sin

(θn

2

)
e1e2

)
+

(
1
2

( tz(dn)︷︸︸︷
dne3 +

tx (an)︷︸︸︷
ane1

)
gz(θn)︷ ︸︸ ︷(

cos
(θn

2

)
+sin

(θn

2

)
e1e2

)
e

)) gx (αn)︷ ︸︸ ︷(
cos

(αn

2

)
+sin

(αn

2

)
e2e3

)
,

(24)

where θn, dn, an, and αn are the D-H parameters and n is the link number.
The D-H dual-quaternionic methodology was applied to the same SCARA manipulator from

the previous example. The transformations between the intermediate coordinate systems of the
mechanism have the same rotational influence and are defined as

g3
n=1 = cos

(θn

2

)
+sin

(θn

2

)
e2e3. (25)
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Fig. 5. Method of successive screw displacements applied on a SCARA manipulator.

The translation influences are

t1 = a1cos(θ1)e1 + a1sin(θ1)e2 + (a0 − d3 − a4)e3,

t2 = a2cos(θ2)e1 + a2sin(θ2)e2,

t3 = 0.

(26)

5.2. Method of successive screw displacements
An alternative to the D-H convention is a method of successive screw displacements and is presented
in ref. [14]. This methodology is based on the use of a differential geometry element: the screw. This
element consists of a directed line called the axis and a scalar parameter with a unit length, i.e., the
screw step. Both the axis and the step are employed to represent the composition of the translational
and rotational motions simultaneously, which results in a helical movement.

The method of successive screw displacements is a methodology for the kinematic analysis of
open chains through the use of a screw. One particularity of this method is the necessity to use only
a fixed reference coordinate system and a coordinate system of the end effector, which is unlike the
D-H convention that employs a coordinate system for each joint, as described in Fig. 5.

The initial procedure in this method is to determine the reference manipulator position. This
position can be selected arbitrarily. However, it is advised to choose a known configuration where the
joint angles can be easily determined, e.g., the setting where all joint angles are zero. The position
and the orientation of joints axes also need to be determined, which is accomplished by placing a
screw in each joint axis to determine the direction of screw axis (si), i.e., the joint axis, and screw
axis position (s0), i.e., the joint location. It is possible to mount the transformations associated with
each screw with the desired manipulator position expressed in terms of end effector position. The
coupling of these influences generates the direct kinematics defined as

hn =
(
gsi (θn) + 1

2

(
tx(qx) + ty(qy) + tz(qz)

)
gsi (θn)e

)
, (27)

where gsi
is the rotational component of the screw displacement, and qx , qy , and qz are the translational

components of screw displacement.
This equation can also be expressed in an expanded form:

hn =

gsi (θn)︷ ︸︸ ︷(
cos

(θ

2

)
+sin

(θ

2

)
[sxe2e3 + sye3e1 + sze1e2]

)
+ 1

2

( tx (qx)︷︸︸︷
qxe1 +

ty (qy)︷︸︸︷
qye2 +

tz(qz)︷︸︸︷
qze3

)
gsi (θn)︷ ︸︸ ︷(

cos
(θ

2

)
+sin

(θ

2

)
[sxe2e3 + sye3e1 + sze1e2]

)
e,

(28)

where si = (sx, sy, sz) is screw direction vector.
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Fig. 6. Analysis of the computational performance of the multiplication of two DQs.

To illustrate the dual quaternions application and to determine the transformation between the
screw systems, this methodology is applied for the previous example, as described in Fig. 5. The
initial pose of the system is defined as p = 1 + (a1 + a2)e1e.

The transformations between the screws results in the same rotation when using the D-H
methodology, defined in Eq. (25). However, the translational components are given by

t1 = (a0 − d3 − a4)e3

t2 = a1(1 − cos(φ2))e1 − a1sin(φ2)e2

t3 = (a1 + a2)(1 − cos(φ4))e1

−(a1 + a2)sin(φ4)e2

. (29)

Transformations can also be analyzed in terms of the computational performance, which will be
discussed below.

6. Computational Performance
The analysis of computational performance methods is achieved by implementing the methodologies
in a dedicated digital signal processor. With the objective to evaluate the execution time in
both transformation methods, the authors of ref. [25] present the computational analysis of the
screw transformation using different methods (including the dual quaternions). However, the actual
computational resources allow scaling and parallel processing and require a different analysis.

For this purpose, a high-performance DSP with a RISC CPU and 16-bit resolution that was able
to execute 30 MIPS was used. This processor performs multiply-accumulate operations in one clock
cycle due to a dedicated peripheral unit. The first test conducted was the multiplication of two dual
quaternions to determine the execution time of this operation, as described in Fig. 6, which resulted
in a time range of 6.98 μs, or 209 clock cycles.

To compare the performance of both methods, a classic anthropomorphic (6 degrees of freedom)
arm for forward kinematics determination with the assignment of the coordinate systems using the
D-H convention was used. In the first case, HTMs were used to perform transformations, as shown
in Fig. 7, and in the second case, the dual quaternions were used, as seen in Fig. 8. The result is
that the kinematics using the dual quaternions were determined in 1.343 clock cycles, i.e., 47.78 μs.
Processing the HTM was performed in 6.270 clock cycles, i.e., 209.02 μs. Consequently, the dual
quaternions have a lower computational cost than the HTMs.

The direct kinematics for both transformation methods can be expressed in terms of
the mathematical operations, e.g., addition, subtraction, and multiplication. The computational
performance is also influenced by the memory access operations, and this influence is primarily
the writing process that can take up to 8 clock cycles. The comparison between the operations
carried out by dual quaternions and the HTMs are described in Table I. The dual quaternions require
fewer mathematical operations and memory accesses to perform the transformations. Performance is
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Table I. Comparison of the mathematical operations between the DQs and the HTM.

Addition/ Write Read
Subtraction Multiplication memory memory

Multiplication
of HTM 180 216 36 432

Multiplication
of DQ 40 48 8 96

Kinematic
by HTM 930 1116 186 2664

Kinematic
by DQ 280 336 56 672

Fig. 7. Analysis of the computational performance of the transformation using the HTMs.

Fig. 8. Analysis of the computational performance of the transformation using the DQs.

improved with the dual quaternions because of the characteristic of the dual element (ε2 = 0) which
simplifies the multiplication operation.

7. Singularity-free Trajectory Tracking
To prove the potential of the dual quaternions in kinematics and control, the same environment for
the previous example for trajectory tracking is used. Furthermore, the movement representation is
performed using the dual-quaternionic elements.
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Fig. 9. Dual-quaternionic feedback.

Fig. 10. Analysis of the singularity occurrence in trajectory tracking using the DQ method; (a) Det[B] profile,
and (b) normalized error in end effector pose.

In this method, the operational space feedback is performed by the forward kinematic and by the
dual quaternions, as shown in Fig. 9. The extraction of the orientation angles is determined without the
kinematic singularities, which is unlike the method using the HTMs. The phenomenon of kinematic
singularities is not present because this element avoids the occurrence of kinematic singularities but
in these regions the motion is kinematically disturbed. The use of dual quaternion allows for full
trajectory tracking, as presented in Fig. 10.

The graphic of the controller output for the trajectory execution without the occurrence of
singularities is presented in Fig. 11, and the correct trajectory tracking is demonstrated. n some
transitions, the manipulator approximates of kinematic singularities, which results in an acceleration
peak for the quickly adaptation of pose and stabilization the trajectory tracking. For example, a
saturation and velocity profile to promote a realistic dynamic simulation is imposed.

In this case study, the dual quaternions allow for manipulation in regions of kinematic singularities
unlike the HTMs. However, errors are added to the trajectory tracking to maintain the movement
stability. These effects are a consequence of the imposition of torque peaks for a quick change of
pose.
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Fig. 11. (a) Normalized joint position profiles, (b) normalized joint velocity profiles, (c) normalized joint
acceleration profiles, and (d) normalized joint torque profiles.

8. Conclusion
This paper presented a methodology for using quaternionic elements in a kinematic analysis. The
use of quaternionic transformations is related to a non-occurrence of kinematic singularities, but the
restrictions require the expansion of the dimensions and, hence, the employment of dual quaternions.
The use of this element is based on the definition of the Clifford algebra, which expands its operations
to translations. This feature increases the possibilities of kinematic analysis and explores the potential
of these elements.

The methodology is evaluated in different contexts. In terms of forward kinematics, the dual
quaternions were used in the classic D-H methodology and successive screw displacement methods.
It is demonstrated that the use of this element requires less computational performance than the
HTMs. In the inverse kinematics, the dual quaternions are applied through the method of kinematic
restrictions, which is based on the screw displacement. The consequence of this approach is that
kinematic singularities do not occur, but solutions for this method in the indeterminate regions of the
HTM method do exist. In the redundant systems, these elements minimize the acceleration peaks that
are imposed by the kinematic singularities.

The dual quaternions are promising elements for kinematic analysis because they prevent the
occurrence of singularities and minimize the acceleration peaks. The spatial transformation is
demonstrated with only eight variables, and the orientation is expressed in three independent
operational spaces variables. Finally, these elements also require less computational load for the
transformation determination.
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