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Abstract

We show that a class of area-preserving flows can deform every starshaped curve into a circle.
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1. Introduction

The curve-shortening flow has received much attention since the 1980s. Gage in [8]
and Gage and Hamilton in [10] showed that a convex initial curve remains so and
becomes more and more circular during the evolution process until it shrinks to a
round point in a finite time. More generally, Grayson in [12] used complex arguments
to show that any embedded curve will become convex and so shrinks to a point under
the curve-shortening flow. His argument is called Grayson’s theorem.

Finding analogues of Grayson’s theorem for expansion curve flow is also an
interesting problem. In 1996, Tsai [17] showed that a starshaped curve eventually
becomes convex under the nonhomogeneous expanding curve flow,

∂X
∂t

= F(κ)Nout,

where F(z) : R → R+ is an arbitrary positive smooth decreasing function which
satisfies limz→∞ F(z) = ∞ and dF(z)/dz < 0 and κ is the curvature and Nout the unit
outward normal vector of the evolving curve X. Chow and Tsai [6] showed that the
rescaling convex curve is convergent to the unit circle. Subsequently, the convexity
results have been generalised to embedded plane curves with turning angle greater
than −π (see [5]).
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Based on these results, it is of interest to study the convexity theorem under general
nonlocal curve flow. In 1984, Gage first introduced and studied the area-preserving
flow,

∂X
∂t

=

(
κ −

2π
L

)
N, (1.1)

where X, L, κ and N are the position function, the length, the curvature and the inner
unit normal vector of the evolving curve, respectively. In [9], Gage proved that a
convex curve evolving according to (1.1) remains convex and converges to a circle.
For recent work on the flow (1.1), see [3]. A natural question is whether, as in the case
of the curve-shortening flow, the initial curve can be extended to a general embedded
curve. Mayer [15] carried out a numerical experiment and found that the flow (1.1)
can develop singularities when the initial embedded curve bends violently. For recent
work associated with the convexity theorem for curve flows with a global forcing term,
see Dittberner [7].

If the initial curve is starshaped, whether or not the flow (1.1) has long-term
existence is still an open problem. Very recently, Gao and Pan [11] further restricted the
starshaped condition on the initial embedded curve to centrosymmetric and starshaped,
and proved that the flow (1.1) has long-term behaviour. In higher dimensions,
Huisken [14] considered the volume-preserving mean curvature flow. In 2015, Guan
and Li [13] dealt with the mean curvature flow in space forms for hypersurfaces.

Let γ0 be an arbitrary starshaped (with respect to the origin of R2) embedded closed
curve parameterised by a smooth embedding X0(u). We consider the evolving flow,

∂X
∂t

= (pκ − 1)N, (1.2)

where X, κ and N are the position vector, the curvature and the inner unit normal
vector and p = −〈X,N〉 is the support function of the evolving curve. The flow (1.2) is
different from the famous flows studied by Angenent [1, 2] and Oaks [16], where the
speed depends on κ and T (or equivalently N). Here p also depends on X.

Since (1.2) is never parabolic when viewed as a system, we need to fix a
parametrisation and express (1.2) as a single parabolic equation. By introducing polar
coordinates (r, θ) in R2, (1.2) for starshaped curves is equivalent to

∂r
∂t

=
r2rθθ
g3 +

r4
θ

rg3 . (1.3)

The proof of the equivalence is given in Section 2. We obtain the following main result.

Theorem 1.1. A curve X0 starshaped with respect to the origin in the plane evolving
under the flow (1.2) remains so, decreases its length and keeps the area which it
encloses constant. As time goes to infinity, the curve converges to a circle.

2. Preparation

Assume that K is an open and starshaped domain with respect to the origin and
that the boundary of K is of class C2. In this situation, X = ∂K is called a starshaped
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curve and the support function is defined by p = −〈X,N〉. If we express the curve by
X(s) = (x(s), y(s)), then T (s) = (ẋ(s), ẏ(s)) and N(s) = (−ẏ(s), ẋ(s)). Notice that

p(s) = x(s)ẏ(s) − ẋ(s)y(s) = det(X(s),T (s)).

Therefore, X is starshaped if and only if p(s) > 0 for all s. Using the polar coordinate
system (r, θ) for the plane, we can express any closed curve as X(s) = r(s)P(θ(s)),
where θ ∈ [0, 2π], r denotes the radial function of X and P(θ) = (cos(θ), sin(θ)).
With Q(θ) = (− sin(θ), cos(θ)), the unit tangential vector is T = rsP + rθsQ and the
curvature is

κ =
r2 + 2r2

θ − rrθθ
(r2 + r2

θ )3/2
. (2.1)

First, by adding a tangential component, we show that the flow remains equivalent
but θ can be made constant. Second, we reduce the flow (1.2) to a Cauchy problem
of a single equation for the radial function r = r(θ, t) and we use this to explore some
simple properties of the flow (1.2).

Let g :=
√
〈∂X/∂ϕ, ∂X/∂ϕ〉 be the metric of the evolving curve. Set β = pκ − 1.

Under the flow (1.2), g evolves according to

∂g
∂t

=
1
g

〈
∂

∂t
∂X
∂ϕ

,
∂X
∂ϕ

〉
= g

〈
∂

∂s
(αT + βN),T

〉
=

(
∂α

∂s
− βκ

)
g.

The interchange of the operators ∂/∂s and ∂/∂t is given by

∂

∂t
∂

∂s
=
∂

∂t

(1
g
∂

∂ϕ

)
=
∂

∂s
∂

∂t
−

(
∂α

∂s
− βκ

)
∂

∂s

and we have the evolution equations of T and N,

∂T
∂t

=
∂

∂t
∂X
∂s

=
∂

∂s
∂X
∂t
−

(
∂α

∂s
− βκ

)
T =

(
ακ +

∂β

∂s

)
N,

∂N
∂t

=

〈
∂N
∂t
,T

〉
T +

〈
∂N
∂t
,N

〉
N = −

(
ακ +

∂β

∂s

)
T.

If there is a family of starshaped curves evolving under the flow (1.2), then we can
describe the evolving curve by

X(θ(t), t) = r(θ(t), t)P(θ(t)). (2.2)

Equation (2.2) is valid at least for a short time and in Corollary 2.5 we show that the
starshaped property is preserved and hence (2.2) is valid for the life of the flow.

Since Xθ = rθP + rQ,

g =

∥∥∥∥∥∂X
∂θ

∥∥∥∥∥ =

(
r2 +

(
∂r
∂θ

)2)1/2
, T =

∂r
∂s

P +
r
g

Q, N = −
r
g

P +
∂r
∂s

Q. (2.3)

Using (1.2), (2.2) and (2.3),

∂r
∂t

P + r
∂θ

∂t
Q = αT + βN =

(
α
∂r
∂s
−

rβ
g

)
P +

(
αr
g

+ β
∂r
∂s

)
Q.
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Comparing the coefficients on both sides leads to the evolution equations

∂r
∂t

= α
∂r
∂s
−

rβ
g
,

∂θ

∂t
=
α

g
+
β

r
∂r
∂s
.

From now on, we choose α = −gβrs/r = −βrθ/r, making the polar angle θ independent
of t, that is,

∂θ

∂t
≡ 0.

From (2.1), (2.2) and (2.3) and the formula

p = −〈X,N〉 = −

〈
rP,−

r
g

P +
rθ
g

Q
〉

=
r2

g
,

we immediately obtain

∂r
∂t

=
r2rθθ
g3 +

r4
θ

rg3 . (2.4)

On the other hand, if r = r(θ, t) > 0 is defined on [0,2π] × [0, ω) and satisfies (2.4), then
the family of curves {X = rP | t ∈ [0, ω)} satisfies the flow (1.2). So, we can reduce the
flow (1.2) to (1.3) with initial value r0(θ) > 0.

Lemma 2.1. Suppose that X0 is starshaped with respect to the origin. The flow (1.2) is
equivalent to (1.3) with a positive initial value r0(θ) in some interval [0, ω).

Since L(T ) =
∫ 2π

0 g(θ, t) dθ =
∫ 2π

0

√
r2 + (rθ)2 dθ, one can define an operator F from

the space C2,α([0, 2π] × [0, ω)) to Cβ([0, 2π] × [0, ω)), for 0 < β < α ≤ 1, by

F(r) =
∂r
∂t
−

r2rθθ
g3 −

r2
θ

rg3 .

The Frechet derivative of F at some point r0 > 0 is

DF(r0)u = F(r) =
∂u
∂t
−

1√
r2

0 + (∂r0/∂θ)2

∂2u
∂θ2 + lower derivatives of u,

so (2.4) is uniformly parabolic near its initial value r0. The implicit function theorem
for Banach spaces implies that the Cauchy problem (2.4) has a unique solution in some
small time interval. So, Lemma 2.1 gives the short-time existence.

Lemma 2.2. The flow (1.2) has a unique solution in some time interval [0, ω) for ω > 0.

Next, we use the maximum principle to derive C0 and C1 estimates for the radial
function r.

Lemma 2.3. Given a starshaped curve X0 with respect to the origin, under the
flow (1.2), the radial function r is uniformly bounded from above and below.
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Proof. From (2.4), at critical points,

∂r
∂t

=
rθθ
r
.

Thus, the maximum principle yields the desired result. �

As mentioned at the beginning of Section 2, X is starshaped if and only if

p = r2/
√

r2 + r2
θ > 0. Thus, we need to bound rθ.

Lemma 2.4. Let X0 be a starshaped curve with respect to the origin. If r(θ, t) is the
solution of (2.4) in a time interval [0,T ], then

|rθ| ≤ C,

where C is a constant which depends only on the initial curve.

Proof. Tedious computation yields the evolution equation of rθ,

(rθ)t =
r2

g3 rθθθ +
(6r2r3

θ + r5
θ − r4rθ − 3r3rθrθθ)rθθ

rg5 −
4r2r5

θ + r7
θ

r2g5 .

With h = r2
θ/2, one obtains hθ = rθrθθ, hθθ = r2

θθ + rθrθθθ and

ht = rθ(rθ)t = rθ(rt)θ

=
r2hθθ

g3 −
r2r2

θθ

g3 +
(6r2r3

θ + r5
θ − r4rθ − 3r3rθrθθ)hθ

rg5 −
32r2h3 + 16h4

r2g5 . (2.5)

Suppose that h attains a maximum value at the point (θ∗, t∗). At the critical point,

ht ≤ −
32r2h3 + 16h4

r2g5 ≤ 0.

From the parabolic maximal principle, r2
θ ≤ C2 = max r2

θ (θ, 0), which completes the
proof. �

Lemmas 2.3 and 2.4 yield the following result.

Corollary 2.5. The evolving curve X(θ, t) remains starshaped with respect to the
origin of R2.

3. Long-term existence

In this section, we show that the flow (1.2) exists in the time interval [0,∞) if
the initial curve is starshaped. In order to prove the long-term existence, we need to
estimate the second derivative rθθ, which depends only on the initial curve. Although
it is hard to estimate rθθ from the evolution equation directly, we can do so from the
curvature estimate.

Lemma 3.1. Under the flow (1.2), the function rθθ has uniform upper and lower bounds.
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Proof. The curvature evolution equation under the flow (1.2) is given by

κt = pssκ + 2psκs + pκss + pκ3 − κ2. (3.1)

From p = −〈X,N〉,

ps = κ〈X,T 〉, pss = κ + κs〈X,T 〉 − pκ2.

Then (3.1) can be written as

κt = pκss + 3κκs〈X,T 〉.

Since p is uniformly bounded above and below, the parabolic maximum principle tells
us that the curvature κ has uniform upper and lower bounds. The lemma follows from
(2.1) and Lemmas 2.3 and 2.4. �

By the classical theory of parabolic equations, the higher regularity of the solution
associated to (2.4) comes from the uniform gradient estimates in Lemmas 2.4
and 3.1. Moreover, the solution for the radial function r(·, t) exists for all times
t ∈ [0,∞).

4. The final shape and convergence

In this section, we show that the area-preserving flow (1.2) can deform every
smooth, closed and starshaped curve into a circle.

From the equations of [4],

∂A
∂t

= −

∫ L

0
(pκ − 1) ds = −L + L = 0.

Since
L2 ≤

∫
p ds

∫
pκ2 ds = 2A

∫
pκ2 ds,

it is easy to see that

∂L
∂t

= −

∫ L

0
pκ2 ds + 2π ≤ −

L2 − 4πA
2A

≤ 0.

Thus,
d
dt

(L2 − 4πA) = −
L
A

(L2 − 4πA) ≤ 0.

If a family of starshaped curves evolves under the flow (1.2), then the area enclosed
by X is invariant and the length L is decreasing. The classical isoperimetric inequality
gives the following lemma.

Lemma 4.1. Under the flow (1.2), the area of the evolving curve A(t) ≡ A0 and the
length L satisfies 4πA0 ≤ L2(t) ≤ L2

0. Furthermore, the isoperimetric deficit L2 − 4πA
is decreasing, which means that the evolving curve becomes more and more circular.
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Next, we use the comparison principle to obtain the C∞ convergence.

Theorem 4.2. The flow (1.2) evolves any starshaped curve into a circle in the sense of
C∞ topology.

Proof. From Lemmas 2.3 and 2.4, (2.5) can be written as

ht = c1hθθ − c1r2
θθ + (c2 − c3hθ)hθ − c4h2,

where the ci (i = 1, 2, 3, 4) are positive constants.
Consider h̃(t) = 1/c4(t − c̃4), which satisfies h̃t = −c4h̃2 and limt→∞ h̃(t) = 0. By a

comparison of ordinary differential equations, h(t) ≤ h̃(t). Since h(t) = r2
θ/2,

lim
t→∞

r2
θ (θ, t)

2
= 0.

This means that as time t goes to infinity,

lim
t→∞

r(θ, t) = constant,

which is the required result. �
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