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Influence of surface viscosity on droplets
in shear flow
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The behaviour of a single droplet in an immiscible external fluid, submitted to
shear flow is investigated using numerical simulations. The surface of the droplet is
modelled by a Boussinesq–Scriven constitutive law involving the interfacial viscosities
and a constant surface tension. A numerical method using Loop subdivision surfaces
to represent droplet interface is introduced. This method couples boundary element
method for fluid flows and finite element method to take into account the stresses
due to the surface dilational and shear viscosities and surface tension. Validation of
the numerical scheme with respect to previous analytic and computational work is
provided, with particular attention to the viscosity contrast and the shear and dilational
viscosities characterized both by a Boussinesq number Bq. Then, influence of equal
surface viscosities on steady-state characteristics of a droplet in shear flow are
studied, considering both small and large deformations and for a large range of bulk
viscosity contrast. We find that small deformation analysis is surprisingly predictive
at moderate and high surface viscosities. Equal surface viscosities decrease the Taylor
deformation parameter and tank-treading angle and also strongly modify the dynamics
of the droplet: when the Boussinesq number (surface viscosity) is large relative to the
capillary number (surface tension), the droplet displays damped oscillations prior to
steady-state tank-treading, reminiscent from the behaviour at large viscosity contrast.
In the limit of infinite capillary number Ca, such oscillations are permanent. The
influence of surface viscosities on breakup is also investigated, and results show
that the critical capillary number is increased. A diagram (Bq; Ca) of breakup is
established with the same inner and outer bulk viscosities. Additionally, the separate
roles of shear and dilational surface viscosity are also elucidated, extending results
from small deformation analysis. Indeed, shear (dilational) surface viscosity increases
(decreases) the stability of drops to breakup under shear flow. The steady-state
deformation (Taylor parameter) varies nonlinearly with each Boussinesq number or
a linear combination of both Boussinesq numbers. Finally, the study shows that for
certain combinations of shear and dilational viscosities, drop deformation for a given
capillary number is the same as in the case of a clean surface while the inclination
angle varies.
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1. Introduction
Since the work of Taylor (1934), the case of droplets suspended in a simple,

immiscible flow has received attention in experimental, theoretical and computational
studies. Results from studies of droplet deformation have proved useful in informing
investigations of other soft matter modelling paradigms, such as capsules or vesicles,
which involve interfaces with more complicated mechanics (e.g. Stone 1994;
Barthès-Biesel 2009; Vlahovska, Podgorski & Misbah 2009b; Abreu et al. 2014).
More directly, studies of droplets may be used to better understand the properties of
emulsions providing an insight of rheological properties of interfaces. For instance,
the critical state at which a droplet breaks apart helps to quantify emulsion stability
(Fischer & Erni 2007). Likewise, droplet studies may help to characterize the
relationship between interfacial and hydrodynamic forces in emulsions.

In the simplest model, the interfacial stress between immiscible fluids may be
described by a constant surface tension. However, the production of an emulsion or
foam often involves the use of surfactants, which decrease the stress at the interface,
and variations in surfactant concentration may lead to Marangoni flow (Pawar &
Stebe 1996; Erni 2011). Other contaminants in the fluids may provide additional
interfacial stresses (Rumscheidt & Mason 1961) and the interface may display
the properties of a two-dimensional fluid (Boussinesq 1913). The properties of an
interface characterised by surfactants and contaminants are necessary to understand
the behaviour of emulsions and foams (Langevin 2000). As a result, a model of
the interface must also account for these surface viscosities and gradients in surface
tension.

Oldroyd (1955) derived a formula for the effective viscosity of a dilute emulsion
with surface viscosity. Danov (2001) generalized Oldroyd’s result to account for both
surface viscosity and Marangoni stresses from surfactant concentration variations.
However, the role of surface viscosity in other aspects of emulsion behaviour is
somewhat unsettled. Of particular interest is the matter of how surface viscosity
may be related to emulsion and foam stability and longevity. Georgieva et al.
(2009) indicates that surface elasticity correlates well with emulsion stability with a
related concern, Ostwald ripening. Experimental results have long indicated that shear
surface viscosity is correlated with the stability of emulsion coalescence (Dickinson,
Murray & Stainsby 1988; Miller et al. 2010). However, first, Harvey et al. (2005)
suggests that dilational surface viscosity should also be taken into account. Mun &
McClements (2006) measured a high dilational modulus of SDS-chitosan interface
for example. Second, recent results by Zell et al. (2014) cast doubt on previous
experimental measurements of shear surface viscosity and then on conclusions drawn
from these measurements on emulsion stability. As briefly presented, the question
of the measurement of surface viscosities is still under progress and debate. The
respective roles of shear and dilational surface viscosities on interfacial dynamics also
require clarification. In this paper, we choose to study numerically their roles on the
shape of a droplet in shear flow.

Meanwhile, the computational and analytic work which followed Taylor began by
considering a single ‘clean’ droplet, having an interface uncontaminated by impurities
or surfactants, and therefore reasonably described by a constant surface tension. Cox
(1969) used small deformation analysis to describe the time evolution of droplets in
linear flows and accounted for the viscosity contrast between droplet and the external
flow. The small deformation theory of Barthès-Biesel & Acrivos (1973) explored the
conditions for droplet breakup in shear flow. These conditions are quantified by the
critical capillary number Cac, beyond which a droplet does not have a stable steady
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state. Numerical work by Rallison & Acrivos (1978) and Rallison (1981) studied the
critical capillary number in shear and extensional flows and its dependence on the
viscosity contrast. Kennedy, Pozrikidis & Skalak (1994) used a boundary element
method to estimate the critical viscosity contrast, which ensures a stable steady state
and lets Cac →∞. Subsequent numerical work (e.g. Li, Renardy & Renardy 2000
and Cristini et al. 2003) has continued to clarify the relationship between the critical
capillary number and viscosity contrast for clean droplets.

Numerical work has also explored how the presence and transport of surfactants
alters droplet behaviour. Broadly speaking, surfactant transport on the surface
encourages two competing processes, dilution and convection, which tend to decrease
and increase droplet deformation, respectively. The effect of an insoluble surfactant
on droplets with no viscosity contrast was studied by the boundary element methods
of Stone & Leal (1990) and Li & Pozrikidis (1997), which showed that surfactant
transport can either increase or decrease the critical capillary number. The numerical
and experimental work of Feigl et al. (2007) showed that the impact of surfactants on
the critical capillary number depended on the viscosity contrast. More comprehensive
discussions of surfactants on droplets may be found in Feigl et al. (2007) and Fischer
& Erni (2007).

Analytical and numerical work has also considered droplets with Newtonian surface
viscosity. The analysis of LeVan (1981) treated the Marangoni migration of droplets
with surface viscosity in an external flow. Manor, Lavrenteva & Nir (2008) extended
LeVan’s results to account for variable surface viscosities. Valkovska, Danov & Ivanov
(1999) studied how the deformation of bubbles, a related physical model, is affected
by surface viscosity and Marangoni stress during collisions. More recently, the effect
of surface viscosity on the dynamics of a spherical droplet in Poiseuille flow has
been studied. Schwalbe et al. (2011) showed analytically how surface viscosity and
Marangoni effects alter a droplet’s migration velocity in Poiseuille flow and the
velocity field inside the droplet. Subsequently, Reusken & Zhang (2013) used a
level-set model of two-phase flow to describe the droplet interface, and demonstrated
convergence to the migration velocities for varied surface viscosities. Both Schwalbe
et al. (2011) and Reusken & Zhang (2013) used a Boussinesq–Scriven constitutive
law to model the droplet surface.

However, few studies appear to have considered the deformation of a droplet with
surface viscosity, as in a shear flow. The principal result is from Flumerfelt (1980),
who extended the small deformation analysis of Cox (1969) for the deformation and
inclination angle of droplets in linear flows to incorporate the additional effects of
surface viscosity and small gradients in surface tension. Flumerfelt’s results suggested
that shear and dilational surface viscosity had rather distinct impacts on droplet
deformation. Phillips, Graves & Flumerfelt (1980) applied Flumerfelt’s analysis to
experimental results, finding that it held promise for measuring surface viscosity
parameters of droplets.

Pozrikidis (1994) developed an early computational model of surface viscosity for
spherical droplets in shear flow, generalizing the boundary element method presented
in Kennedy et al. (1994) for clean droplet deformation. Pozrikidis’ surface model was
also based on a Boussinesq–Scriven constitutive law. However, results were limited
by numerical stability and computational expense. As a result, steady-state values
could not generally be computed and only droplets with equal shear and dilational
surface viscosities were considered. Nonetheless, this work extended the existing
theory from Flumerfelt’s perturbation analysis, by considering larger deformations
and suggesting that surface viscosity may increase the critical capillary number at
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FIGURE 1. (Colour online) Deformation and inclination of a droplet in shear flow. The
arrows indicate the flow pattern at the interface, its magnitude increasing from blue to red
colour.

which a droplet breaks apart in flow. Interestingly, Yazdani & Bagchi (2013) have
studied the contribution of shear surface viscosity to the dynamics of capsules. They
showed notably that the period of tank-treading varies with membrane viscosity, a
result recently confirmed by experimental investigations on HSA microcapsules (de
Loubens et al. 2015b). However, the computation of bending stiffness was found to
be necessary for capsules, in order to suppress wrinkling. Moreover, the dilational
surface viscosity has not been taken into account. The calculation of the dynamics
of pearling instability along tubular vesicles Boedec, Jaeger & Leonetti (2014) has
been recently improved by taking into account the shear surface viscosity (Narsimhan,
Spann & Shaqfeh 2015). Here, the study is focused on droplets considering both the
dilational and shear viscosities to better understand their respective contributions on
shape dynamics of soft particles such as droplets.

In this work, we make a computational study of droplets with shear (figure 1) and
dilational surface viscosity, immersed in an external flow and subject to both large
and small deformations. Section 2.2 provides a physical description of the droplet
surface and its relation to the external flow. For simplicity, surfactant transport and
Marangoni stresses arising from gradients in surface tension are not considered. In
this paper, one aim is to clearly understand the respective roles of shear and dilational
viscosities. Section 2.3 implements this model numerically, with a Loop subdivision
surface and finite element method. A boundary element model is introduced in § 2.4,
which describes the time evolution of the coupled drop–flow system and is implicit
for droplet velocity. Validation of the numerical model is provided in § 3, with respect
to previous analytical and computational results considering the viscosity contrast and
both surface viscosities. Section 4 contains results for the deformation and dynamics
of droplets in shear flow, initially for identical shear and dilational surface viscosities
and subsequently for purely shear or dilational surface viscosity. Results are compared
with small deformation analysis and droplet dynamics during the approach to steady
state are explored.

2. Model
2.1. Fluid dynamics

The physical system considered is a droplet with a viscous interface, centred in and
surrounded by an abruptly started infinite Newtonian flow. In experiments on droplets
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and emulsions (Mun & McClements 2006; Feigl et al. 2007), the characteristic length
is droplet radius a∼10–100 µm and the characteristic velocity is u0∼100 µm s−1. In
combination with density ρ ∼ 103 kg m−3 and dynamic viscosity µ∼ 100 mPa s, an
approximate Reynolds number is not larger than Re∼ 10−4 for previous experiments
and reach Re∼ 10−2 considering water. As a result, the dynamics of the fluid inside
and outside of the drop are appropriately described by the Stokes equations

−∇p+µ1v + f = 0, ∇ · v = 0 (2.1a,b)

for pressure p and applied force f . In the following the inner and outer viscosities will
be noted as µint and µext, respectively. Due to the linearity of the Stokes equations,
the velocity v at the interface is the sum of the ambient flow v∞ and a ‘perturbation’
resulting from the force density on the interface Γ . For shear flow, v∞ = (ε̇y, 0, 0),
for shear rate ε̇ (figure 1). For Poiseuille flow, v∞ is described later in (3.6). Far from
the drop interface, as |x|→∞, the influence of the interfacial forces vanishes and the
boundary conditions are

v→ v∞ and p→ 0. (2.2a,b)

The droplet and ambient fluid are assumed to be immiscible, but their dynamics are
coupled. Velocity is continuous across the droplet surface Γ . Thus, at point x on Γ ,

vext(x)= vint(x)= vs(x) (2.3)

for external and internal fluid velocities vext and vint. As a result of the immiscibility,
fluid does not flow across the droplet surface and the droplet volume does not change.
As a result, the fluid velocities are identical to the velocity of the membrane,

Dx
Dt
= vs(x) (2.4)

for x on Γ and material derivative D/Dt. Additionally, the droplet surface is
assumed to be at mechanical equilibrium with hydrodynamic forces provided by
the hydrodynamic stress tensor σ̄ . This quasistatic equilibrium requires a surface
force density f , as

[[σ̄ ]] · n+ f = 0 (2.5)

in which [[σ̄ ]] = σ̄ ext− σ̄ int is the traction jump at the droplet surface Γ . n is the unit
outward normal vector to the surface.

2.2. Mechanical properties of the surface
The mechanical properties of the droplet surface are represented by the Boussinesq–
Scriven stress tensor, originally described by Boussinesq (1913) and generalized by
Scriven (1960). A Boussinesq–Scriven surface is characterized by a linear constitutive
law with surface tension γ , shear surface viscosity µs and dilational surface viscosity
µd. In these terms, the surface stress tensor σ̄s may be formulated as

σ̄s = γ P̄ + (µd −µs)ΘP̄ + 2µsē (2.6)

for surface projection tensor P̄, surface rate of dilation Θ and surface rate of
deformation tensor ē (Secomb & Skalak 1982). P̄ is defined using the unit outward
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normal vector n to the surface and the unit tensor Ī , as

P̄ = Ī − nnT. (2.7)

In terms of the surface gradient ∇s and surface velocity vs, the surface rate of
deformation tensor ē is given by

ē= 1
2 P̄(∇sv

s + (∇sv
s)T)P̄ (2.8)

and the surface rate of dilation Θ by

Θ = P̄ : ∇sv
s. (2.9)

In this paper, both shear and dilational surface viscosities µs and µd are constant.
Likewise, surface tension γ is also constant and, in the absence of an external
flow, the droplet’s equilibrium shape is spherical. As a result, droplets in subsequent
simulations are initially spherical.

2.3. Numerical model of the surface
The numerical model represents the droplet interface with Loop elements as a
subdivision surface (Loop 1987; Cirak, Ortiz & Schroder 2000), a powerful method
to computer aided design. Using a triangular mesh based on successive refinements of
an icosahedron, the subdivision method guarantees C2 continuity almost everywhere
on the surface (except on the 12 vertices of the initial icosahedron, where the
surface is only C1). However, these vertices do not necessitate special treatment,
since membrane forces are computed by a finite element method which relaxes the
continuity requirement compared to a direct computation (see below for more details).
The characteristic feature of a subdivision surface is that the displacement field of an
element depends on the nodal displacement of nearest-neighbour elements, in addition
to its own nodal displacement. These nearest-neighbour elements are said to comprise
the 1-ring about the element; regular elements have 12 elements in their 1-ring. For
a given element e, position x is computed as

x(ξ , η)=
∑
n∈En

Ne
n(ξ , η)xn (2.10)

for the curvilinear coordinates (ξ , η) on element e, node n in the 1-ring En about
element e, box-spline shape functions Ne

n and the nodal value xn. The velocity v(ξ , η)
on the surface is computed in the same way as x. The box-spline shape functions
used for both regular and irregular elements are discussed in the appendix of Cirak
et al. (2000). This surface representation provides accurate derivatives with respect
to ξ and η, which are necessary to compute the surface stress tensor. This method
provides an improvement compared to our previous code and notably for the surface
representation (Boedec, Leonetti & Jaeger 2011; Boedec, Jaeger & Leonetti 2012).
Two examples of meshing of droplets with dilational viscosity in shear flow for two
numbers of elements are shown in figure 2. Loop subdivision elements have been used
in previous studies on capsules (Le 2010; Huang et al. 2012) and vesicles (Spann,
Zhao & Shaqfeh 2014). However, the numerical methods to compute membrane stress
and the fluid solver are different.
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FIGURE 2. (Colour online) Two cases of meshing characterized by the number N of
elements of a capsule with dilational viscosity in shear flow: Ca=0.3, Bqs=0 and Bqd=1.
The colour code corresponds to the magnitude of the interface velocity. (a) N = 320, (b)
N = 1280.

With this framework established, the surface velocity gradient is computed on each
element as

∇sv = aαβ
∂vi

∂sα
∂xj

∂sβ
ei ⊗ ej, (2.11)

with Cartesian components of velocity vi and position xj, local curvilinear coordinates
sα = (ξ , η) and the local contravariant metric tensor aαβ . With (2.11) substituted into
the components of (2.6), the Boussinesq–Scriven stress tensor may be computed.
Transformed to curvilinear coordinates, the stress tensor takes the form

σ αβ = aαγ aβδ
∂xi

∂sγ
∂xj

∂sδ
σij. (2.12)

We follow the finite element method described by Cirak et al. (2000) to solve the
weak form of the equation

∇s · σ αβ − f = 0 (2.13)

for surface force density f . Introducing a virtual displacement field δx, (2.13) reads:∫
S

(
1
2
σ αβδaαβ + f · δx

)
dS= 0, ∀δx, (2.14)

where δaαβ = δx,α · x,β + x,α · δx,β is the virtual variation of the metric. Thus, with
the weak form of membrane equilibrium, only first derivatives of shape and virtual
displacement are needed to compute membrane forces. Using the same interpolation
basis (Loop elements) for the virtual displacement δx and for the force f , this equation
writes:

Nel∑
e=1

∫
Se

Ne∑
n=1

Ne∑
m=1

(
1
2
σ αβ[(Nn,αNm,β +Nn,βNm,α)δxn

i xm
i ] +NnNmf n

i δx
m
i

)
dSe = 0, (2.15)

where the integral over the surface S has been split as a sum of integration over
element e surface Se, with Ne elements in the mesh and the interpolation (2.10) by
Loop element has been used, with Nn as a notation for the nth shape function of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

39
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.39


Influence of surface viscosity on droplets in shear flow 471

element e, evaluated at coordinates (ξ , η) : Nn = Ne
n(ξ , η) and xn

i stands for the nodal
value n of the ith Cartesian component of position. The integration over surfaces Se

is computed using Gauss quadrature points. Thus, after rearranging the terms, and
solving the linear system with the nodal values of Cartesian component of force f n

i ,
the computation of f may be then formulated symbolically in terms of linear operators
Fγ and Fν acting on γ and v, respectively, as

f = Fγ (γ )+ Fν(v). (2.16)

2.4. Boundary element model and update scheme
The Stokes equations are solved using the standard boundary element method
(Pozrikidis 1992). The boundary element method is evaluated over the same mesh
used to describe the droplet surface and velocity is assumed to be continuous across
this interface. For Cartesian component i of the velocity v at x, the boundary integral
is

vi(x) = v∞i (x)+
1

8πµext

∫
S

Gij(x0, x)fj(x0) dS(x0)

+ 1− λ
8π

∫
S

[vi(x0)− vi(x)] Tijk(x, x0)nk(x0) dS(x0), (2.17)

with free space Stokeslet Gij = (δij/r) + (XiXj/r3) and Stresslet Tijk = −6(XiXjXk/r5),
point x0 on Γ , vector X = x0 − x and r = ‖X‖. The viscosity contrast has been
introduced as follows:

λ=µint/µext. (2.18)

As a result, at point x on Γ , the discretized version of (2.17) may be written as

v = v∞ +Gf + (1− λ)Tv. (2.19)

Taking into account the representation of the interfacial load in (2.16), the velocity
of the droplet interface v(t) is computed by solving the equation

v(x)= v∞(x)+G(Fγ (γ )+ Fν(v))+ (1− λ)Tv. (2.20)

This equation could be integrated explicitly in time, using the previous velocity field
vt to compute xt+dt. Doing so would result in a constraint on the time step depending
both on surface tension and surface viscosities. To avoid the constraint due to surface
viscosity, we choose instead to solve (2.20) at each substep of the time stepping
algorithm. Thus, as the equation is implicit for velocity v(t), it is recast as

(I −GFν − (1− λ)T )v(x)= v∞(x)+GFγ (γ ). (2.21)

A generalized minimum residual (GMRES) solver is used to solve (2.21) at each time
step, providing a fully implicit solution for v(t). As a result, this approach differs from
similar methods employing Boussinesq–Scriven stress, such as Rodrigues et al. (2015),
which provide only semi-implicit solutions to the fully coupled problem. The cost of
an implicit solution and iterative method, of course, is that multiple linear systems
of equations are solved at each time step. Nonetheless, the iterative approach ensures
that the primary restriction on time step dt is surface tension, not surface viscosity.
According to the no-slip boundary condition in (2.4), updated position x(t+ dt) on the
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droplet is computed using the Runge–Kutta–Fehlberg method RK45, with an adaptive
step size dt. The same method has been recently used to calculate the dynamics of
an elastic capsule without bending resistance in a planar elongation flow (de Loubens
et al. 2015a).

As the droplet elongates in flow, the quality of the elements composing the mesh
might degrade, especially for near-breakup simulations. Note that the inclusion of
surface viscosities tends generally to smooth the elongation of elements on the whole
mesh, thus leading to a better overall mesh quality. When needed, we use a remeshing
algorithm which updates the position of the nodes while preserving the deformed
shape. To do so, we slide the nodes tangentially on the surface, in order to have
more nodes in regions of high curvature, while also keeping area of elements locally
homogeneous.

2.5. Dimensionless parameters and variables
Several dimensionless parameters describe the surface tension and viscosities. The
ratio of hydrodynamic stress to the resistance of surface tension γ is reflected in the
capillary number (or Weber number)

Ca= µ
extε̇a
γ

(2.22)

for ambient fluid viscosity µext, shear rate ε̇ and initial droplet radius a. Borrowing
the terminology of Erni (2011), surface viscosity strengths are measured by the
dimensionless Boussinesq numbers,

Bqs = µs

µexta
(2.23)

Bqd = µd

µexta
(2.24)

characterizing shear and dilational surface viscosity, respectively. When Bqs=Bqd, this
single quantity is abbreviated by the Boussinesq number Bq. A droplet with Bq= 0
is said to be ‘clean’. Finally, β describes the relative magnitudes of surface viscosity
and tension as

β = (Bq)(Ca). (2.25)

Introduced by Barthès-Biesel & Sgaier (1985) for capsules with surface viscosity, β is
comparable to the Weissenberg number in rheology. In the part on the results of this
paper, we discuss clean drops with a contrast of viscosity λ and drops with a viscous
interface.

Additionally, physical quantities are non-dimensionalized: the lengths by the droplet
radius a, the time by the inverse of the shear rate 1/ε̇, the pressure and membrane
stress by µextε̇.

3. Validation
The numerical model in general, and the surface viscosity model in particular,

are validated for droplets in shear and Poiseuille flows. In both settings, numerical
convergence and good agreement with analytic or computational results are demon-
strated in a large range of viscosity contrast and capillary number. Notably, the
comparison of the inclination angle in the small capillary number limit establishes
clearly this consistency.
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3.1. Clean droplet in shear flow
The shape of a clean droplet (Bq = 0) in shear flow has been extensively studied
numerically in the past using the boundary element method (Rallison 1981; Kennedy
et al. 1994), advancing front method (Kwak & Pozrikidis 1998) and volume-of-fluid
method (Li et al. 2000), among many others. Such computational work has been
shown to be consistent with experimental results (Rumscheidt & Mason 1961; Kwak
& Pozrikidis 1998). Many authors have also determined well known analytical results
based on the main assumption of small deformation theory: (Taylor 1934; Chaffey &
Brenner 1967; Cox 1969; Barthès-Biesel & Acrivos 1973; Rallison 1980; Vlahovska,
Blawzdziewicz & Loewenberg 2005, 2009a). These approaches have their own domain
of validity (Acrivos 1983; Rallison 1984). We recall below the analytical results well
discussed in the literature which are sufficient for the validation of the code.

The shape in shear flow is mainly characterized by the so-called Taylor deformation
parameter D= (L− B)/(L+ B), in which L and B are the major and minor axes of
the ellipsoid having the same moment of inertia as the droplet. These axes remain in
the z= 0 plane for the duration of the simulations. Another salient parameter is the
inclination θ which represents the angle between the direction of flow and the major
axis of the droplet.

In his seminal work, Taylor (1934) has determined D at the first order in Ca
and inclination θ at the zeroth order in Ca in both limits of low and high viscosity
contrast λ:

λ� 1; Ca=O(1)→DT = 5
4λ
; θ = 0 (3.1)

λ=O(1); Ca� 1→DT =Ca
19λ+ 16
16λ+ 16

; θ = π

4
. (3.2)

Cox (1969) has proposed compact analytical equations which cover a large range
of viscosity contrast assuming slight deformations from the spherical shape which can
be quantified for example by D� 1:

DCox =
Ca

19λ+ 16
16λ+ 16√

1+
(

19λCa
20

)2
; θCox = π

4
− 1

2
atan

(
19λCa

20

)
. (3.3a,b)

If the viscous stress is large λCa� 1 (or very small), (3.1) (or (3.2)) is obtained.
Further analysis has shown that the equations of Cox (1969) are in fact valid in
the limit of large viscosity contrast (Rallison 1980). However, these equations are
useful to validate our code, to highlight the global correct agreement between theory
and numerics, the consistence of the high viscosity contrast limit and the need of
high numerical accuracy to distinguish numerically models even if theory has already
established their respective validities.

We performed numerical simulations of a clean droplet in shear flow covering
12 decades of viscosity contrast from 10−6 to 106. The capillary number was
chosen as Ca = 10−3 to be consistent with the assumption of small deformation
of models. The number of elements were 5120 elements without remeshing and 1280
elements with remeshing without notable differences. Both limits of Taylor (1934) are
recovered as shown in figures 3 for the deformation and 4 for the inclination angle
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FIGURE 3. (Colour online) Clean droplet. Steady-state deformation: the Taylor parameter
D= (L− B)/(L+ B) of a clean droplet in the limit of small capillary number Ca= 10−3.
Comparisons are made with analytical results of Taylor (1934) and Cox (1969).
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FIGURE 4. (Colour online) Clean droplet. Steady-state inclination angle θ of a clean
droplet in the limit of small capillary number Ca = 10−3. Comparisons are made with
analytical results of Taylor (1934) and Cox (1969).

at weak and high viscosity contrasts. In the case of the Taylor parameter, the error
|D − DCox|/DCox on the Taylor parameter D is approximately 3.0 × 10−5 for λ < 10,
less than 3.0 × 10−6 for λ > 105 and reaches the maximum 2.0 × 10−4 for λ = 100.
This very good agreement could be due to the choice of a very small capillary
number which is true in part. Then, the capillary number has also been varied from
0.001 to 0.4 for a range of viscosity contrast from 2 to 100: figure 5. We have
checked that the slopes of numerical simulations of D versus the capillary number
are in excellent agreement with the theory of Taylor (1934). It is quite surprising that
the results are in good agreement with the equations of Cox (1969) up to Ca = 0.1
for a large range of viscosity contrast. But they become not satisfactory for Ca> 0.3.
To conclude on the Taylor parameter of deformation D, the comparisons between
numerics, analytical results of Taylor (1934) and Cox (1969) are very satisfactory
at high viscosity contrast as expected but also at small capillary numbers. However,
the Cox (1969) model should fail to describe accurately the shapes of droplets at
moderate and small capillary numbers (Rallison 1980). Our numerical code should be
able to highlight this discrepancy on the linear variations of deformation parameters
and provides additional information on the domains of validities of models.

At Ca= 10−3, the error on the inclination angle is larger, of the order of 10−3. Thus,
we can expect a larger error at higher capillary numbers such as 0.1 for example
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FIGURE 5. (Colour online) Clean droplet. Steady-state deformation for a large range of
capillary numbers Ca from 0.001 to 0.4 and for various viscosity contrasts λ equal to 2,
5, 10 and 100.

which is not the case for D. In the limit of small capillary number and small
deformation, Chaffey & Brenner (1967) derived another equation for the inclination
angle as a function of viscosity contrast λ and capillary number Ca:

θCB = π

4
−Ca

(19λ+ 16)(2λ+ 3)
80(1+ λ) . (3.4)

This equation has been recovered by several authors (Barthès-Biesel & Acrivos 1973;
Rallison 1980; Vlahovska et al. 2005, 2009a) who calculate the power expansion in a
small parameter, mainly the capillary number Ca, of all the physical quantities: shape
deformation, curvature, pressure, velocities and stress tensor. It means in particular that
the viscous stress must be small, λCa� 1 contrary to the model of Cox (1969). Note
that this result has also been validated experimentally (Guido & Villone 1998; Guido,
Greco & Villone 1999).

This relation is completely different from (3.3). Indeed, for a zero viscosity contrast,
the result of Cox (1969) is π/4 whatever the capillary number in agreement with
Taylor (1934) but in contradiction with the expression of Chaffey & Brenner (1967):
θCB = π/4− (3/5)Ca. Moreover, it is possible to develop (3.3) in the limit of small
viscous stress λCa � 1 providing the linear variation of the inclination with the
capillary number, highlighting the difference between the theoretical results. Thus,
θCox=π/4−Ca(19λ/40). This is especially important to validate our numerical code.
With a fixed viscosity contrast, the slopes are different meaning that the code must
be able to differentiate clearly the models by a careful measurement of the inclination
angle. Moreover, a linear variation as (3.4) valid for small viscous stress and Ca is
always an opportunity to validate a numerical code. It is sufficient to decrease the
capillary number up to a clear linear variation and to measure the slope. To perform
this, we have varied the capillary number from 0.001 to 0.4 and the viscosity contrast
from 1 to 100. The number of elements was 1280 or 5120. The residual of GMRES
was fixed to 10−9 for the resolution of (2.21) and the precision to 10−8 for the
selection of the maximal step size in the RK45 time integrator. As expected, for
λCa > 1, agreement is not reached with the (3.4) but there is good agreement with
the Cox results as shown in figure 6(a). On the contrary, for λCa<1, the agreement is
excellent with (3.4): figure 6(b) and the curve λ= 1 for figure 6(a). If this comparison
allows us to validate our code for a clean droplet in Stokes flow, our calculations also
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FIGURE 6. (Colour online) Clean droplet. Inclination angle as a function of the capillary
number Ca and the viscosity contrast: dashed lines (full Cox equation), line (linear
Chaffey–Brenner equation), symbols (numerical simulations). Colour code corresponds to
λ= 1 (black), λ= 5 (blue), λ= 10 (green) and λ= 100 (red, x). Symbol code corresponds
to λ= 1 (disc), λ= 5 (square), λ= 10 (asterisk) and λ= 100 (cross).

permit us to extract the limit of validity of (3.4) which is λCa6 0.2. Indeed, with this
criterion and regardless of the viscosity, the agreement between the result of Chaffey
& Brenner (1967) and our numerical results are excellent. Numerical studies on
drops and capsules focus often on the Taylor parameter of deformation D, and more
scarcely on the inclination angle while in this study, the latter is however essential
to validate our code by differentiating unambiguously the linear models. Indeed,
without deformation, the droplet radius is known while the inclination angle is not
definite at this zeroth order. When the droplet deforms slightly from the spherical
shape, the first order corresponds to the equations of Taylor (1934) which provides
an inclination angle of π/4 and a linear variation of D with Ca. Thus, equation of
Chaffey & Brenner (1967) provides an upper order of the inclination angle which is
more dependent on models while remaining linear.

In the literature, to our knowledge, the case λ = 1 has mainly been studied for
comparisons with analytical expressions and to validate numerical codes: figure 7. Our
results depart from linear theory earlier than Kwak & Pozrikidis (1998), at Ca= 0.25,
but match very well Li et al. (2000), in doing so considering the Taylor parameter
D. The inclination angle θ differs more among the numerical studies in the literature.
The results of Kennedy et al. (1994) and Li et al. (2000) do not really match the
linear theory of Chaffey & Brenner (1967) but provide a good approximation and in
any case, are largely better than the linear result of Cox (1969). Indeed, the slopes at
λ=1 are 35/32≈1.09 (Chaffey & Brenner 1967) compared with 0.5∗ (19/20)=0.475
(Cox 1969). While the previous numerical results are performed for a capillary number
larger than 0.1, the present work extends the study to a minimum capillary number of
10−3, allowing a full comparison with linear theory, notably in the more difficult case
of an inclination angle. An additional concern for this line of inquiry is the critical
capillary number Cac, beyond which a steady-state deformation does not exist for a
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FIGURE 7. (Colour online) Clean droplet with λ = 1. Comparisons with previous
numerical studies. (a) The Taylor parameter D versus the capillary number Ca. (b) The
inclination angle versus Ca.

clean droplet with λ = 1. We find the critical value Cac ≈ 0.43, which is consistent
with the range 0.37− 0.43 found in previous computational and experimental studies
(Rallison 1981; Kennedy et al. 1994; Li et al. 2000; Cristini et al. 2003; Fischer &
Erni 2007).

3.2. Droplet with viscous interface in shear flow
First, to evaluate the accuracy and convergence of the surface viscosity model, we
consider a spherical droplet with Ca=∞ and Bq=Bqs=Bqd= 1 placed in shear flow.
The initial viscous force distribution on the surface is computed and compared with
the analytical values for each mesh. If the velocity far from the droplet is V = ε̇yex,
the analytical viscous force is f = (−3y + 8yx2)ex + (−3x + 8xy2)ey + 8xyzez. Error
is computed by calculating the `2 norm of the relative error at each node and using
the Voronoi region about each node to integrate over the surface of the sphere. As
seen in figure 8(a), first-order convergence of the error with respect to the number of
elements N is observed.

Second, to evaluate the numerical convergence over the duration of a simulation,
we consider a droplet with a viscous surface in shear flow. The dependence of the
deformation D on grid refinement (or number of elements) is shown in figure 8(b),
for two droplets with different viscosity contrast and Boussinesq number in shear
flow. While there is noticeable error for the coarsest mesh (using only 80 elements),
finer meshes agree very well for both sets of parameters. Subsequent simulations
are conducted with 320 elements except for the breakup which can necessitate 1280
elements with remeshing or more.

3.3. Droplet with viscous interface in Poiseuille flow
A third validation setting of a viscous interface is provided by Poiseuille flow. Recent
studies of droplets with viscous surfaces, Schwalbe et al. (2011) and Reusken &
Zhang (2013), consider the migration velocity of a droplet in Poiseuille flow and
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FIGURE 8. (Colour online) Droplet with viscous interface and λ= 1. (a) Error in viscous
force for a spherical droplet with Bq = Bqs = Bqd = 1 and infinite Ca. The number
of elements N varies from 80 to 20 480. The order of convergence is one (solid line).
(b) Variation with dimensionless time ε̇t of the Taylor parameter D with two sets of
parameters (Ca; λ; Bq)= (0.5; 1; 10) and (Ca; λ; Bq)= (0.35; 0.1; 5) for three numbers N
of elements.

propose it as a benchmark problem. Indeed, Schwalbe’s analysis establishes that the
droplet’s migration velocity for λ= 1 is

Uanalytic

αa2
=− 2Bqd + 3

3(2Bqd + 5)
ey (3.5)

for a droplet with radius a. Thus, as Bqd→∞, Um/αa2 tends toward −(1/3)ey.
Thus, a spherical droplet is centred in a planar Poiseuille flow v∞,

v∞ = (V − αy2)ex, (3.6)

for speed V at the centre line and α being proportional to the flow profile’s curvature
(Schwalbe et al. 2011). The migration velocity Um may then be defined as

Um(t)= 1
Ω(t)

∫
Ω(t)
(v(x, t)− v∞(0)) dx (3.7)

for velocity v(x, t) on the droplet, undisturbed velocity v∞(0) at the centre line
and droplet volume Ω (Reusken & Zhang 2013). We consider a capillary number
Ca= 0.01 to maintain the deformations below O(10−4). The results were checked by
another approach taking Ca= 1 but a very small time step of 10−5. The velocity is
measured at short times preventing the appearance of any deformation (no inertia).
There are no differences between the two calculations.

The instantaneous Um was computed and the error is defined as ‖Um−Uanalytic‖2. A
grid refinement study is shown in figure 9(a), for Bqd= 0, 1 and 10. The convergence
is of second order with respect to the number of triangular elements N. A comparison
with analytic results for a broad range of Bqd is given in figure 9(b), using a mesh
with N = 320 triangles. Again, excellent agreement occurs over the entire set of Bqd
considered.
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FIGURE 9. (Colour online) Droplet with viscous interface. (a) Error for Um/αa2 for
Bqd= 0, 1 and 10 with a second-order convergence. (b) Computed Um/αa2 compared with
Schwalbe et al. (2011).

4. Results
4.1. Surface viscosity Bq= Bqs = Bqd

Large deformations of a droplet with identical shear and dilational surface viscosities
were investigated numerically by Pozrikidis (1994), but steady-state results were
difficult to compute. Accordingly, we compare in figure 10 the steady-state behaviour
of droplets with surface viscosity Bq to the predictions from the small deformation
analysis of Flumerfelt (1980) which is currently the only one taking into account the
dilational and shear interface viscosities. Unless they are very heavily deformed, the
steady-state shapes for droplets with surface viscosity are approximately ellipsoidal
and, therefore, are well described by the Taylor deformation parameter D.

In the case of λ= 1, results are shown for Ca= 0.1, 0.33 and 0.5. As with clean
droplets, deformation increases with the capillary number. The first two capillary
numbers belong to the stable region for clean droplets Ca<Cac, but the last is larger
than Cac for a clean droplet. This clearly questions the contribution of interfacial
viscosities to breakup: this will be discussed in more details below. The Taylor
parameter D decreases monotonically with the Boussinesq number whatever the
capillary number: figure 10. Surface viscous dissipation is expected to reduce the
deformation as also observed for high viscosity contrast. However, contrary to this
basic argument, this result becomes false considering different weights for dilational
and shear Boussinesq numbers (Bqs 6= Bqd) as we will show below. We return to the
case Bqs = Bqd. With Ca = 0.1, the smallest deformations occur and the agreement
between the present method and Flumerfelt (1980) for D is excellent except at zero
Bq. Even at the two higher capillary numbers, agreement is surprisingly consistent.
In the limit of large Boussinesq number, Bq > 30, the inclination and the Taylor
parameter are in excellent agreement with Flumerfelt (1980) whatever the capillary
number. Only as Bq→ 0 does divergence emerge for D, reflecting the known disparity
for clean droplets. It is striking that small deformation theory describes droplets with
viscous surfaces much better than clean droplets.
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FIGURE 10. (Colour online) Steady-state (a) deformation and (b) inclination angle of
droplets with surface viscosity Bq in shear flow, compared with Flumerfelt (1980) in the
case λ= 1.

However, a more obvious disagreement with small deformation theory is observed
for inclination angle θ . At moderate Bq 6 10, θ is not well described contrary to D
(figure 10), recovering the discrepancy of the Cox model to model the deformation
of clean droplet in shear flow (see figure 6 and the validation part). Unfortunately,
there is no theory for droplets with surface viscosities equivalent to the model of
Chaffey & Brenner (1967) for the first-order variation of the inclination with Ca with
the slope depending on λ and Bq, or to the more accurate models with expansion to
the third order with Ca (Vlahovska et al. 2005, 2009a). For larger Boussinesq number,
Bq > 15, the present results and small deformation theory begin to agree nicely for
the inclination angle. As with deformation, this agreement at large Bq is better than
previous studies of clean droplets would suggest, which is at least partly due to the
smaller deformations incurred at larger Bq. It is observed that a droplet with surface
viscosity has a lower steady-state angle of inclination than the corresponding clean
droplet. Generally, θ decreases monotonically as Bq is increased. As observed for
clean droplets with large λ (Kennedy et al. 1994), we see that the droplet’s major
axis tends toward the axis of flow due to viscous dissipation. Consequently, inclination
angles are smallest for higher Ca, as viscous dissipation on the surface dominates the
surface stress of these droplets.

The impact of surface viscosity is also clearly represented in the flow pattern on
the droplet. Surface viscosity tends to decrease any interfacial gradient of velocity.
In the plane of flux, xy-plane, the surface (and inner) flow becomes almost circular
while in the xz-plane, the streamlines are parallel and the magnitude of velocity varies
moderately with z on a larger depth compared to a clean droplet. The steady-state
velocity magnitudes of droplets with clean and viscous surfaces at Ca = 0.33 are
depicted in figure 11. In the case λ 6= 1, the deformation of droplets with a viscous
interface was studied on six decades of viscosity contrast from 10−3 to 103, five
Boussinesq numbers Bq from 0 to 50 and four capillary numbers Ca from 0.1 to 0.5:
figure 12. We recover the same typical variation of the Taylor parameter as for clean
droplets characterized by a plateau at small viscosity contrast and an asymptotic weak
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FIGURE 11. (Colour online) Magnitude of velocity ‖v‖ on droplet surface in steady state
with λ = 1. (a) Droplet with Ca = 0.33 and Bq = 0. (b) Droplet with Ca = 0.33 and
Bq= 10.
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FIGURE 12. (Colour online) (a,b) Deformation of a droplet with viscous interface in a
shear flow as a function of the Bq and λ. (c) Deformation of a droplet as a function of
Ca and λ. (a) Ca= 0.1. (b) Ca= 0.35. (c) Bq= 5.
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decreasing for viscous droplets. In the limit of Bq→ 0, D reaches a maximum in the
moderate range of viscosity contrast, namely λ= 0(1). For Bq > 1, it disappears. At
small capillary number Ca= 0.1 characterized by small deformations, there is a good
agreement with the theory of Flumerfelt (1980) on all the range of viscosity contrast
and Boussinesq number. The agreement is also excellent for viscosity contrast larger
than 100 whatever Ca and Bq. For Ca= 0.35, the agreement is very good for Bq> 20:
figure 12(b). For higher capillary numbers, the approximation of small deformations is
not satisfied and the deviation from theory appears clearly: figure 12(c). As expected,
the theory of Flumerfelt (1980) is useful in the case of small deformations which can
be reached under a moderate capillary number or a high surface viscosity.

Thus far, we have studied the stationary state of a stable droplet with a viscous
interface and viscosity contrast in shear flow: a tank-treading motion of the interface
with a stationary shape. Here, the dynamics to reach this state is explored. This is
particularly important to interpret correctly experimental results.

Kennedy et al. (1994) note that, for λ > λc, a damped oscillation in D and θ

occurs during the droplet’s approach to steady state. In contrast, a droplet with a
smaller λ undergoes a smooth, if not necessarily monotonic, transition to equilibrium.
Oscillations occur when the flow time scale and droplet relaxation time scale differ
significantly. The shorter time scale causes oscillations by ‘over-shooting’, while the
longer time scale gradually damps this phenomenon and steady state is eventually
achieved. Experiments in Erni, Fischer & Windhab (2005) also indicate similar
oscillations for droplets with a viscoelastic surface layer.

At higher values of β = Ca Bq in our simulations, a similar transient oscillating
relaxation is observed: figure 13(a,b). The change between transient oscillating and
consistent tank-treading occurs near β = 3.5 as highlighted by figure 13(d). At a
given Ca, increasing Bq results in an increased oscillation frequency. For large Bq, the
oscillation frequency becomes nearly independent of Ca, as shown in figure 13(a,b)
for Bq=40. In fact, two modes of relaxation to tank-treading can be distinguished. For
3.5 6 β 6 10, the longest axis of the droplet oscillates around a positive inclination.
In this range, the criterion is that the temporal variations of Taylor parameter and
inclination θ have at least both an overshoot followed by an undershoot. Above β>10,
the inclination oscillates between negative and positive values. The curve β = 10 has
been determined by the additional criterion θ 6 0 for some time. In the limiting case
of Ca=∞, as predicted by Barthès-Biesel & Sgaier (1985), the droplet displays an
undamped oscillation between θ =π/4 and −(π/4).

Despite their similar frequencies, the amplitude and decay rate of the oscillations
shown differ quite significantly, with the persistence of the oscillation increasing with
Ca. However, if time t is normalized by surface tension time scale τγ = (µexta/γ ),
figure 13(c) shows that the amplitudes of the oscillations have the same exponential
rate of decay. Thus, transient oscillating behaviour occurs when surface viscosity
dominates surface tension, but the properties of this oscillation depend on each
quantity separately. As with λ in Kennedy et al. (1994), tumbling-like behaviour is
not observed for spherical droplets for any value of Bq. However, an initially prolate
spheroidal droplet will tumble transiently if the major axis is initially inclined relative
to the direction of flow.

Overall, presence of additional dissipation due to surface viscosity Bq leads to
a smaller deformation than would be observed for the corresponding clean droplet,
as shown for droplets with large λ (Kennedy et al. 1994). As Bq becomes large,
the three semi-axes tend to the same value, the droplet becoming spherical, almost
independently of Ca. Further, the presence of surface viscosity Bq raises the Cac
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FIGURE 13. (Colour online) Droplet with surface viscosity and λ= 1. (a,b) The droplet
shape relaxes to its tank-treading shape by numerous oscillations (Bq = 40). Larger is
the capillary number, longer is the persistence time of oscillations. (c) The amplitude
of transient oscillatory relaxation to tank-treading motion decreases exponentially with a
viscous characteristic time τγ =µexta/γ based on surface tension (Bq= 40). (d) A droplet
with viscous interface has a tank-treading (TT) motion or evolves to breakup. The two
domains are separated by the continuous black line in the space of parameters (Bq; Ca).
In the domain of TT, the longer axis can oscillate transiently around a positive inclination
angle (damped oscillation 2, green disc) or begins to oscillate between −π/4 and π/4 to
return more slowly to an oscillation around a positive inclination (damped oscillation 1,
blue circles). For Bq < 2, the different relaxations are not distinguished for the sake of
clarity.

above the value for a clean droplet, as steady states were computed at Ca = 0.5 in
figure 10. The dependence of Cac is examined in more details below.

To determine the influence of Bq on the stability of a droplet under shear flow,
we compute the dynamics of a initially spherical droplet immersed in a equiviscous
(λ = 1) shear flow abruptly started. The droplets are then classified as stable if
their shape tends towards an (elongated) ellipsoid (cf. figure 14a) and unstable if
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(a) (b)

FIGURE 14. (Colour online) Droplet with surface viscosity Bq= 0.1 and λ= 1. (a) The
shape is stationary. (b) The shape is unstable and the drop evolves to breakup. (a) Ca=
0.45. (b) Ca= 0.47.
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FIGURE 15. (Colour online) Breakup diagram in the case λ = 1. Droplet shapes are
unstable above a critical capillary number Cac which increases with the Boussinesq
number Bq. The parabolic dashed line – Cac = 0.44 + 0.45Bq2 – is a guide for eye
providing a good fit of the transition from tank-treading stable shapes to breakup.

their shape tends towards an unsteady characteristic shape composed of two bulbous
ends connected by a neck (cf. figure 14b). The figure 15 shows the nonlinear
variation of the critical capillary number with the Boussinesq number. Note that this
is reminiscent of previous studies (Kennedy et al. 1994; Li et al. 2000; Cristini et al.
2003) which have investigated the dependence of Cac on λ, observing an intriguingly
nonlinear relationship. Further, these studies define a critical fluid viscosity ratio λc,
beyond which all clean droplets have stable equilibria, independently of Ca. Here, a
critical Boussinesq number beyond which no breakup can occur also exists, since the
oscillating dynamics is permanent for Ca=∞, Bq= 40.

4.2. Respective roles of shear and dilational surface viscosities
Flumerfelt (1980) considers several scenarios concerning the effects of surface
viscosity, including when Bqs or Bqd is large relative to Ca, λ and the other
Boussinesq number. In contrast to the trend for large Bq, the deformation and
angle of inclination approach non-zero limits as either Bqs or Bqd → ∞. Further,
Flumerfelt notes that, for small capillary numbers, Bqs and Bqd becoming large leads
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FIGURE 16. (Colour online) A droplet with various shear viscous surface Bqs, λ=1, Ca=
0.3 and Bqd= 0 in shear flow. (a,c,e,g) Corresponds to the flow plane (x, y) while (b,d, f,h)
to the view (x, z). (a,b) Bqs = 0, (c,d) Bqs = 0.3, (e, f ) Bqs = 1, (g,h) Bqs = 5.

to smaller and larger deformations, respectively. However, as Flumerfelt’s analysis
is limited to small deformations and steady-state values, it is interesting to consider
how Bqs and Bqd separately alter a droplet’s dynamics in shear flow.

4.2.1. Shear surface viscosity Bqd = 0
An example of the steady-state deformation and inclination angle for droplets

is shown in figure 16 where only the value of shear surface viscosity is varied
from 0 to 10. The shapes appear more quasi-spherical (D decreases) as the shear
Boussinesq number increases. As for the case Bq= Bqs = Bqd, this result is expected
due to a stronger droplet dissipation. This result is confirmed by a study of shape
deformations for three capillary numbers Ca = 0.1, 0.33, 0.5 with 0 6 Bqs 6 40.
At small deformation (Ca = 0.1), the Taylor parameter is in good agreement with
Flumerfelt (1980) while it is not the case for higher capillary numbers even if
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FIGURE 17. (Colour online) Droplet with surface viscosity and λ = 1. Steady-state
deformation (a) and inclination angle (b) of droplets with shear surface viscosity Bqs in
shear flow, compared with Flumerfelt (1980).
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FIGURE 18. (Colour online) Comparison between a droplet with Ca= 0.33 and λ= 1 in
shear flow. (a) Bqs = Bqd = 10, (b) (Bqd; Bqs)= (0; 10).

the trend is recovered: figure 17(a). On the contrary, the effect of shear surface
viscosity has a weaker impact on the inclination angle which is not well described
by Flumerfelt (1980) quantitatively and qualitatively. Indeed, in the limit of small to
moderate Bqs, the inclination increases with Bqs for high capillary numbers, contrary
to theory: figure 17(b). At small capillary number (Ca= 0.1), the classic decreasing
of the inclination with the shear viscosity is recovered. But, the values reached at
large shear Boussinesq number are overestimated by theory for all capillary numbers.

More importantly, the stable steady states at Ca= 0.5 in figure 17 show that purely
shear surface viscosity is sufficient to increase the critical capillary number of a
droplet. This result is consistent with previous suggestions of a correlation between
shear surface viscosity and stability. Note that in the next section, we show that
the dilational viscosity is not able to stabilize the shape above the critical capillary
number for a clean droplet, contrary to the shear viscosity. Further, a comparison of
shapes and magnitude of velocity in figure 18 indicates that Bq and Bqs Boussinesq
numbers lead to similar velocity fields on the droplet but to different inclinations.

Moreover, droplets with purely shear surface viscosity Bqs lack a characteristic
behaviour noted for droplets with Bq. The magnitude of Bqs does not alter the time
required for the droplet to reach steady state; indeed, as shown and discussed further
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FIGURE 19. (Colour online) Droplet with surface viscosity and λ = 1. Steady-state
deformation (a) and inclination angle (b) of droplets with dilational surface viscosity Bqd
in shear flow, compared with Flumerfelt (1980).

(figure 21), the time is comparable to the time for clean drops with the same Ca. On
the contrary, transient oscillatory relaxation to tank-treading motion is still observed
but at high values of Bqs. In a shear flow characterized by Ca= 0.1, oscillations are
visible for Bqs > 104, which is out of the experimental range for droplets.

4.2.2. Dilational surface viscosity Bqs = 0
The expected role of purely dilational surface viscosity is somewhat clearer, as

Flumerfelt incorporated both dilational surface viscosity and small variations in
surface tension into a single apparent surface dilational viscosity. Computations and
experiments with surfactant concentrations on the droplet surface have shown the
major axis is elongated, while both minor axes become smaller (Feigl et al. 2007).
As a result, the droplet deformation D may significantly increase and, therefore,
decrease a given drop’s critical capillary number Cac.

The steady-state deformation and inclination angle for drops with only dilational
surface viscosity Bqd, are compared with the small deformation analysis from
Flumerfelt (1980) in figure 19. As in previous cases, the present method agrees well
with Flumerfelt for Ca = 0.1 (and, to a lesser extent, 0.2), excepting the standard
overprediction of the inclination angle. At Ca = 0.33, however, our results show a
much more significant increase in D and, indeed, a steady-state equilibrium does
not exist beyond Bqd = 200 ± 40. Thus, surface dilational viscosity is effective in
decreasing the critical capillary number of a drop. Consistently, steady-state values
for dilational surface viscosity at Ca = 0.5 or other high capillary numbers do not
exist: all droplets in this case tend to breakup.

Studies of surfactant transport have noted two processes, convection and dilution,
which serve to increase and decrease droplet deformation, respectively (Feigl
et al. 2007). For dilational surface viscosity, the analogous terms are negative and
positive surface velocity divergence, respectively. Distributions of the surface velocity
divergence for droplets with dilational surface viscosity are shown in figure 20. In
particular, the negative velocity divergence at the ends of the major axis serves to
lower the surface stress in those regions and leads to larger droplet deformation.
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FIGURE 20. (Colour online) Effect of dilational surface viscosity on the droplet shape
(longest axis increasing) and variation of surface divergence of membrane velocity in
steady state. Here, Bqs = 0 and λ= 1. (a) ∇s · v with Ca= 0.3 and Bqd = 0, (b) ∇s · v
with Ca= 0.3 and Bqd = 1, (c) ∇s · v with Ca= 0.3 and Bqd = 5, (d) ∇s · v with Ca= 0.3
and Bqd = 10.
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FIGURE 21. (Colour online) Droplet in a shear flow Ca = 0.1 with λ = 1 for five
combinations of shear Bqs and dilational Bqd surface viscosities but with the same
deformation, namely the Taylor parameter (a). On the contrary, the inclination angles are
different (b).

At Ca = 0.1, this effect is limited by the high γ and by the positive velocity
divergence about the equator of the droplet. At Ca = 0.3, however, both of these
limiting factors are reduced and negative surface velocity divergence dominates,
leading to significantly larger deformation even at Bqd = 1: figure 20. Dilational
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FIGURE 22. (Colour online) Steady-state deformations of a droplet with λ = 1 in shear
flow (Ca= 0.1) with various shear and dilational surface viscosities.

surface viscosity does not have a large qualitative effect on the velocity distribution on
the droplet but does decrease the velocity magnitude, as also observed for Marangoni
stress (Feigl et al. 2007).

As with shear surface viscosity alone, aspects from simulations with both surface
viscosities were lacking here. No transient oscillating relaxation to permanent tank-
treading shape was observed as drops approached steady state, but dilational surface
viscosity did slightly increase the time required to reach steady state.

4.2.3. Shear and dilational surface viscosities
An interesting consequence of shear and dilational surface viscosity tending to

decrease and increase deformation, respectively, is that certain combinations of
surface viscosity will lead to the same steady-state deformation as the corresponding
clean droplet (albeit at a slightly different angle of inclination). For instance, in
figure 21(a), four combinations of Bqs and Bqd result in the same deformation as a
clean droplet at the same capillary number: D≈ 0.11. In figure 21, it is striking that
the dilational surface viscosity varies by a factor 100 while the shear surface viscosity
by a factor 10 approximately. This prevents a measurement of Boussinesq numbers
by only the Taylor parameter. However, following the theoretical work of Flumerfelt
(1980), Phillips et al. (1980) proposed that experimentally-determined deformation
and inclination simultaneously may be used to solve for a droplet’s surface viscosity
coefficients. We checked that the inclination angle varies for these five couples on
a reasonable range: figure 21(b). Our results for purely shear or dilational surface
viscosity suggest a limitation of this approach. Indeed, at Ca = 0.1, for the same
Taylor parameter, the inclination varies smoothly with Bqs. Such a measurement
by inverse method needs a careful interplay between experiments and numerical
simulations, limiting its widespread use. Moreover, when Bqs � 1 and Bqd � 1,
deformation and inclination angle are unlikely to differ by a sufficient amount to
make an accurate estimation. To confirm the complex dependence of deformations
in respect of the shear surface viscosity for a droplet in shear flow, we performed
also the study of deformations by setting the ratio Bqs/Bqd to 0, 1 %, 10 % and
∞ (Bqs = 0): see the figure 22. First, we recover the results of previous parts with
only one Boussinesq number: Bqs (red curve) decreases the deformation while Bqd
increases it (blue curve). In the cases of 1 % or 10 %, the deformations begin to
increase and reach a maximum for approximately Bqd = 2 and Bqd = 10, respectively.
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Despite this behaviour at small to moderate Bqd, the deformations of pure shear and
Bqs/Bqd= 10 % become equal for Bqd= 100. It can be inferred that the deformation is
not a function of a linear combination of Bqs and Bqd. We recover this phenomenon
for a minute contribution of shear surface viscosity, namely 1 %: figure 22. It means
notably a strong dependence on Bqs when Bqd� 1.

5. Conclusion

This paper presents a numerical study of the effect of surface viscosities on
droplet dynamics in shear flow performed with a new numerical method. The droplet
surface is described with a Loop subdivision method, which provides the necessary
continuity to compute the surface rate of deformation tensor and Boussinesq–Scriven
stress tensor. The interface motion is calculated by the boundary integral method
associated with a RK45 temporal scheme. While derived for droplet surfaces, the
method is naturally extensible to capsule and vesicle models. When combined with
the boundary element model, to describe the bulk Stokes flow and fluid–interface
interaction, the method is used to simulate the response of an immiscible droplet
with a viscous surface to deformation in shear flow.

Validation and convergence analysis of the method is presented by comparing with
previous analytical and numerical works in the case of a clean (no surface viscosity)
droplet with viscosity contrast. The method is then used to compute the influence
of equal shear and dilational surface viscosities, measured by the Boussinesq number
Bq= Bqs = Bqd. Surface viscosity is shown to decrease deformation and the angle of
inclination. Numerical results are systematically compared to the small deformation
analysis of Flumerfelt (1980), allowing us to discuss its range of validity: notably, the
deformation parameter is very well captured by theory, except in the limit Bq→ 0,
while the inclination angle is only qualitatively described, the theory matching the
numerical results in the high surface viscosities limit Bq > 30. Surface viscosities
not only affect the steady-state results, but also alter the dynamics of a drop under
abruptly started shear flow. In particular, a transient damped oscillation is observed,
persisting indefinitely in the limit of infinite capillary number. Finally, one crucial
effect of surface viscosities is to strongly modify the critical capillary number: a drop
with a slight surface viscosity (Bq = O(1)) is much more stable than a clean drop.
In other soft matter particles with surface viscosity, such as protein covered droplets,
vesicles and red blood cells, shear Boussinesq numbers Bqs=O(1)−O(10) are quite
reasonable (Chang & Olbricht 1993; Erni 2011). The recent work of Zell et al. (2014)
on shear surface viscosity of surfactants shows that µs < 10−2 µN · s m−1, in contrast
to previous studies that proposed values several orders of magnitude larger (Dickinson
et al. 1988; Harvey et al. 2005). Even for relatively small droplets and a low bulk
viscosity, this suggests that Bqs < 1. Thus, while we find that shear surface viscosity
in itself increases droplet stability, the effect at Bqs < 1 is minor at best. On the other
hand, even prior to Zell et al. (2014), it has been argued that µs � µd (Georgieva
et al. 2009), suggesting Bqs and Bqd values closer to the scenario considered in § 4.2.2.
However, this statement is not correct. The results of the part § 4.2.3 have shown
that even if µs/µd ≈ 0.01, the effect of shear surface viscosity can dominate, at least
for a droplet in shear flow. Further inquiry, taking into account surfactant transport,
would be useful in clarifying both the relative magnitudes of the surface viscosities
and their relation to emulsion stability. Numerical simulations of the full problem and
comparisons with experiments will allow to determine these essential parameters to
understand and control complex interface stability.
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A first step towards such understanding is to delineate the role of shear and
dilational viscosities. Simulations presented in this paper show that the shear viscosity
stabilizes droplet shapes and leads to overall lower deformation, while the dilational
viscosity has the opposite effect, leading to increased elongation and thus reduced
stability. Moreover, we found that these opposing effects could be combined in
order to lead to a similar steady-state deformation for very different pairs of values
of (Bqs, Bqd). This highlights the strikingly complex role of rheological interfacial
properties on the droplet dynamics.

If studies on the contribution of interfacial viscosities to droplet dynamics are scarce,
the effect has been considered in the context of viscoelastic capsules by Yazdani &
Bagchi (2013). If a careful comparison is well beyond the scope of this paper, some
general comments may be made in light of our own preliminary results. The damped
oscillations observed here for droplets at large β also occur for viscoelastic capsules
with a high ratio of surface viscosities to shear elasticity, in both our preliminary
results and in Yazdani & Bagchi (2013). We also observe convergence to the results of
Barthès-Biesel & Sgaier (1985), in the limit of high Bq and vanishing shear elasticity.
A subsequent paper will explore viscoelastic capsules in detail.
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Appendix A
The small deformation analysis of Flumerfelt (1980) studied the deformation

D and inclination θ of a spherical droplet in linear Stokes flows. Based on
spherical harmonics, the expansion solution is first order in terms of the perturbation
parameter. The method is based on the work of Cox (1969). The analysis considers
a droplet with a viscosity contrast λ, along with constant non-dimensional shear and
dilational surface viscosities Bqs and Bqd, and small variations in surface surfactant
concentration.

The modified viscosity ratio λ′ is defined as

λ′ = λ+ 6
5 Bqd + 4

5 Bqs. (A 1)

Then, in shear flow, the steady-state deformation and inclination of a droplet with
surface viscosity are given by Flumerfelt’s equations (145) and (150):

D= 1
16

19λ′ + 16+ 6
5 Bqd − 36

5 Bqs

(λ′ + 1)
(

Ca−2 + ( 19
20λ
′R
)2
)1/2 (A 2)

θ = π

4
− 1

2
arctan

(
19Caλ′R

20

)
(A 3)

in which

R= 1− 1
114λ′

(
678
5

Bqd + 132
5

Bqs + 1
λ′

(
6
5

Bqd − 36
5

Bqs

)2
)
. (A 4)
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These two equations are used to compute the Flumerfelt results cited in § 4. In the
special case of a clean droplet, the first-order expansion in Ca reduces to Taylor’s
equations (3.1) and (3.2) and reduces to Cox’s equations (3.3) in any cases. Note that
here, the inclination angle is measured between flow direction and the longest axis
of the droplet which explains the sign − in the right member after π/4. Flumerfelt
(1980) defines the angle between the normal to the flow direction and the longest
axis.
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